
SCALABLE LOW DIMENSIONAL MANIFOLD MODEL IN THE RECONSTRUCTION OF
NOISY AND INCOMPLETE HYPERSPECTRAL IMAGES

Wei Zhu

Duke University
Mathematics Department

zhu@math.duke.edu

Zuoqiang Shi∗

Tsinghua University
Department of Mathematical Sciences

Yau Mathematical Sciences Center
zqshi@tsinghua.edu.cn

Stanley Osher†

UCLA
Department of Mathematics

sjo@math.ucla.edu

ABSTRACT
We present a scalable low dimensional manifold model for the
reconstruction of noisy and incomplete hyperspectral images.
The model is based on the observation that the spatial-spectral
blocks of a hyperspectral image typically lie close to a collec-
tion of low dimensional manifolds. To emphasize this, the di-
mension of the manifold is directly used as a regularizer in a
variational functional, which is solved efficiently by alternat-
ing direction of minimization and weighted nonlocal Lapla-
cian. Unlike general 3D images, the same similarity matrix
can be shared across all spectral bands for a hyperspectral im-
age, therefore the resulting algorithm is much more scalable
than that for general 3D data [1]. Numerical experiments on
the reconstruction of hyperspectral images from sparse and
noisy sampling demonstrate the superiority of our proposed
algorithm in terms of both speed and accuracy.

Index Terms— Scalable low dimensional manifold
model, hyperspectral image, noisy and incomplete image
reconstruction.

1. INTRODUCTION

A hyperspectral image (HSI) is a collection of 2D images of
the same spatial location taken at hundreds of different wave-
lengths [2]. The observed images are typically degraded when
such data of high dimensionality are collected. For instance,
the images can be very noisy due to limited exposure time, or
some of the voxels can be missing due to the malfunctions of
the hyperspectral cameras. An important task in HSI analy-
sis is to recover the original image from its noisy incomplete
observation. This is an ill-posed inverse problem, and some
prior knowledge of the original data must be exploited.

One widely used prior information of HSI is that the 3D
data cube has a low-rank structure under the linear mixing
model (LMM) [3]. More specifically, the spectral signature of
each pixel is assumed to be a linear combination of a few con-
stituent endmembers. Under such an assumption, low-rank
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matrix completion and sparse representation techniques have
been used for HSI reconstruction [4, 5, 6]. Despite the sim-
plicity of LMM, the linear mixing assumption has been shown
to be physically inaccurate in certain situations [7].

Various partial differential equation (PDE) and graph
based image processing techniques have also been applied
to HSI reconstruction. The total variation (TV) method [8]
has been widely used as a regularization in hyperspectral
image processing [9, 10, 11, 12]. The nonlocal total varia-
tion (NLTV) [13], which computes the gradient in a nonlocal
graph-based manner, has also been applied to the analysis of
hyperspectral images [14, 15, 16]. However, such methods
fail to produce satisfactory results when there is a significant
number of missing voxels.

In [17, 18], the authors proposed a low dimensional mani-
fold model (LDMM) for general image processing problems.
LDMM is based on the observation that patches of a natu-
ral image typically sample a collection of low dimensional
manifolds. Therefore the dimension of the patch manifold is
directly used as a regularization term in a variational func-
tional. The resulting Euler-Lagrange equation is solved either
by the point integral method (PIM) [19], or the weighted non-
local Laplacian [20]. LDMM achieved excellent results, es-
pecially in image inpainting problems from very sparse sam-
pling. LDMM was also extended to 3D scientific data inter-
polation [1], but such generalization has poor scalability and
requires huge memory storage.

In this paper, we exploit the special structure of hyper-
spectral images and propose a scalable LDMM specifically
designed for the reconstruction of HSI from noisy and sparse
sampling. The rationale behind the proposed method is that a
hyperspectral image is a collection of 2D images of the same
spatial location, and hence a single spatial similarity matrix
can be shared across all spectral bands. The resulting algo-
rithm is considerably faster than its 3D counterpart: it typi-
cally takes less than two minutes given a proper initialization
as compared to hours in [1].



2. LDMM FOR HSI RECONSTRUCTION

2.1. Patch Manifold

We first describe the patch manifold of a hyperspectral image.
Let u ∈ Rm×n×B be a hyperspectral image, wherem×n and
B are the spatial and spectral dimensions of the image. For
any x ∈ Ω̄ = [m] × [n], where [m] = {1, 2, . . . ,m}, we
define a patch Px(u) as a 3D block of size s1× s2×B of the
original data cube u, and the pixel x is the top-left corner of
the rectangle of size s1 × s2. The patch set P(u) is defined
as the collection of all patches:

P(u) = {Px(u) : x ∈ Ω̄} ⊂ Rd, d = s1 × s2 ×B. (1)

Previous work [1, 17] has shown that the point cloud
P(u) is typically close to a collection of low dimensional
smooth manifolds M = ∪Ll=1Ml embedded in Rd. This
collection of manifolds is called the patch manifold of u.

2.2. Scalable LDMM

Our objective is to reconstruct the unknown HSI u from its
noisy and incomplete observation b ∈ Rm×n×B . Assume
that for each spectral band t ∈ [B], b is only known on a
random subset Ωt ⊂ Ω̄, with a sampling rate r (in our ex-
periments r = 5% or 10%). According to [1, 17], we can
use the dimension of the patch manifold as a regularizer to
reconstruct u from b:

min
u∈Rm×n×B

M⊂Rd

∫
M

dim(M(p))dp+ λ

B∑
t=1

‖ut − bt‖L2(Ωt)2

subject to: P(u) ⊂M, (2)

where ut is the t-th spectral band of the HSI u, M(p) de-
notes the smooth manifold Ml to which p belongs, and∫
M dim(M(p))dp =

∑L
l=1 |Ml|dim(Ml) is the L1 norm

of the local dimension. Based on Proposition 3.1 in [17],
the first term in (2) can be written as the L2 norm of the
coordinate functions αt

i : M → R. More specifically, (2) is
equivalent to

min
u∈Rm×n×B

M⊂Rd

ds∑
i=1

B∑
t=1

‖∇Mαt
i‖2L2(M) + λ

B∑
t=1

‖ut − bt‖L2(Ωt)2

subject to: P(u) ⊂M, (3)

where ds = s1 × s2 is the spatial dimension, αt
i is the coor-

dinate function that maps every point p = (pti)i,t ∈ M into
its (i, t)-th coordinate pti. Note that (2) is nonconvex, and we
solve it by alternating the direction of minimization with re-
spect to u andM. More specifically, givenM(k) and u(k) at
step k satisfying P(u(k)) ⊂M(k):

• With fixedM(k), update the data u(k+1) by solving:

min
u

∑
i,t

‖∇M(k)αt
i‖2L2(M(k)) + λ

B∑
t=1

‖ut − bt‖2L2(Ωt)

subject to: αt
i(Pu(k)(x)) = Pt

iu(x), x ∈ Ω (4)

wherePt
iu(x) is the (i, t)-th element in the patchPxu.

• Update the manifold M(k+1) as the image under the
perturbed coordinate function α:

M(k+1) = α(M(k)) (5)

The manifold update (5) is easy to implement, and [18, 1]
introduced a way to solve (4) using the weighted nonlocal
Laplacian (WNLL) [20]. The idea is to discretize the Dirich-
let energy ‖∇M(k)αt

i‖2L2(M(k) as

|Ω̄|
|Ωt

i|
∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x,y)
(
αt
i(Pu(k)(x))− αt

i(Pu(k)(y))
)2

+
∑

x∈Ω̄\Ωt
i

∑
y∈Ω̄

w̄(x,y)
(
αt
i(Pu(k)(x))− αt

i(Pu(k)(y))
)2

,

(6)

where Ωt
i =

{
x ∈ Ω̄ : Pt

iu
(k)(x) is sampled

}
is a spatially

translated version of Ωt, |Ω̄|/|Ωt
i| = 1/r is the inverse of the

sampling rate, and w̄(x,y) = w(Pu(k)(x),Pu(k)(y)) is the
similarity between the patches, with

w(p, q) = exp

(
−‖p− q‖

2

σ(p)σ(q)

)
, (7)

where σ(p) is the normalizing factor. Combining the WNLL
discretization (6) and the constraint in (4), the update of u in
(4) can be discretized as

min
u

λ

B∑
t=1

‖ut − bt‖2L2(Ωt)

+
∑
i,t

 ∑
x∈Ω̄\Ωt

i

∑
y∈Ω̄

w̄(x,y)
(
Pt
iu(x)− Pt

iu(y)
)2

+
1

r

∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x,y)
(
Pt
iu(x)− Pt

iu(y)
)2 . (8)

Remark 1. Unlike the model in [1], the similarity matrix w̄
in (8) is built on 2D coordinates x,y ∈ Ω̄, which significantly
improves the scalability of the model.

Note that (8) is decoupled with respect to the spectral co-
ordinate t, and for any given t ∈ [B], we only need to solve



the following problem:

min
ut

λ‖ut − bt‖2L2(Ωt)

+

ds∑
i=1

 ∑
x∈Ω̄\Ωt

i

∑
y∈Ω̄

w̄(x,y)
(
Piu

t(x)− Piu
t(y)

)2

+
1

r

∑
x∈Ωt

i

∑
y∈Ω̄

w̄(x,y)
(
Piu

t(x)− Piu
t(y)

)2 . (9)

A standard variational technique shows that (9) is equivalent
to the following Euler-Lagrange equation:

0 =µ

ds∑
i=1

P∗i IΩt
i

∑
y∈Ω̄

w̄(x,y)
(
Piu

t(x)− Piu
t(y)

)
+

ds∑
i=1

P∗i

∑
y∈Ω̄

2w̄(x,y)
(
Piu

t(x)− Piu
t(y)

)

+ µ
∑
y∈Ωt

i

w̄(x,y)
(
Piu

t(x)− Piu
t(y)

)
+ λIΩt

(
ut − bt

)
, ∀x ∈ Ω̄ (10)

where µ = 1/r − 1, P∗i is the adjoint operator of Pi, IΩt is
the projection operator that sets ut(x) to zero for x /∈ Ωt.
We use the notation xĵ to denote the j-th component (in the
spatial domain) after x in a patch. It is easy to verify that
Piu

t(x) = ut(x
î−1

), and P∗i ut(x) = ut(x
1̂−i). Following

the analysis similar to [1], we can rewrite (10) as

0 =µIΩt

∑
y∈Ω̄

ds∑
i=1

w̄(x
1̂−i, ŷ1−i)

(
ut(x)− ut(y)

)
+

ds∑
i=1

∑
y∈Ω̄

2w̄(x
1̂−i, ŷ1−i)

(
ut(x)− ut(y)

)

+ µ
∑
y∈Ωt

w̄(x
1̂−i, ŷ1−i)

(
ut(x)− ut(y)

)
+ λIΩt

(
ut − bt

)
. ∀x ∈ Ω̄ (11)

After setting w̃(x,y) =
∑ds

i=1 w̄(x
1̂−i, ŷ1−i), (11) is

equivalent to

0 =2
∑
y∈Ω̄

w̃(x,y)
(
ut(x)− ut(y)

)
+ λIΩt

(
ut − bt

)
.

+µIΩt

∑
y∈Ω̄

w̃(x,y)
(
ut(x)− ut(y)

)
+µ

∑
y∈Ωt

w̃(x,y)
(
ut(x)− ut(y)

)
, ∀x ∈ Ω̄ (12)

Note that (12) is a linear system for ut in Rmn, but un-
like [1], the coefficient matrix is not symmetric because of
the projection operator IΩt . In our numerical experiments,
we always truncate the similarity matrix w̄(x,y) to 20 near-
est neighbors. Therefore, (12) is a sparse linear system and
can be solved by the generalized minimal residual method
(GMRES). The proposed algorithm for HSI reconstruction is
summarized in Algorithm 1.

Algorithm 1 Scalable LDMM for HSI reconstruction
Input: A noisy and incomplete observation b of an unknown

hyperspectral image u ∈ Rm×n×B . For every spectral
band t ∈ [B], u is only partially observed on a random
subset Ωt of Ω̄ = [m]× [n].

Output: Reconstructed HSI u.
Initial guess u(0).
while not converge do

1. Extract the patch set Pu(k) from u(k).
2. Compute the similarity matrix on the spatial domain

w(x,y) = w(Pu(k)(x),Pu(k)(y)), x,y ∈ Ω.

3. Assemble the new similarity matrix

w̃(x,y) =

ds∑
i=1

w̄(x
1̂−i, ŷ1−i)

4. For every spectral band t, Update (ut)(k+1) as the
solution of (12) using GMRES.
5. k ← k + 1.

end while
u = u(k).

3. NUMERICAL EXPERIMENTS

3.1. Experimental Setup

In this section, we present the numerical results on the fol-
lowing datasets: Pavia University (PU), Pavia Center (PC),
Indian Pine (IP), and San Diego Airport (SDA). All images
have been cropped in the spatial dimension to 200 × 200 for
easy comparison. The objective of the experiment is to re-
construct the original HSI from 5% random subsample (10%
random subsample for noisy data).

Empirically, we found out that it is easier for LDMM to
converge if a reasonable initialization is provided. In our
experiments, we always use the result of the low-rank ma-
trix completion algorithm APG [21] as an initialization, and
run three iterations of manifold update for LDMM. The peak
signal-to-noise ratio, PSNR = 10 log10 (‖u∗‖∞/MSE), is
used to evaluate the reconstruction, where u∗ is the ground
truth, and MSE is the mean squared error. All experiments
were run on a Linux machine with 8 Intel core i7-7820X



3.6 GHz CPUs and 64 GB of RAM. All codes and datasets
are available for download at http://www.math.duke.
edu/˜zhu/software.html.

APG LDMM1 LDMM2
PSNR time PSNR time PSNR time

IP 26.80 13 s 32.09 8 s 34.08 22 s
PC 32.61 17 s 34.54 11 s 34.25 31 s
PU 31.51 13 s 33.38 11 s 33.66 29 s

SDA 32.43 23 s 40.33 16 s 44.21 46 s

Table 1. Reconstruction of the HSIs from their noise-free
5% subsamples. LDMM1 (LDMM2) stands for LDMM with
spatial patch size of 1×1 (2×2). The reported time of LDMM
does not include that of the AGP initialization.

Original (Band 33) 5% subsample

APG (PSNR = 32.43) Error
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LDMM (PSNR = 44.21) Error
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Fig. 1. Reconstruction of SDA from 5% noise-free subsam-
ple. Note that the error is displayed with a scale 1/20 of the
original data to visually amplify the difference.

3.2. Reconstruction from noise-free subsample

We first present the results of the reconstruction of HSI from
5% noise-free random subsample. Table 1 displays the com-
putational time and accuracy of the low-rank matrix comple-
tion (APG) initialization and LDMM with different spatial
patch sizes (1× 1 and 2× 2). It can be observed that LDMM
significantly improves the accuracy of APG with comparable
extra computational time. Figure 1 provides a visual illus-
tration of the results. Because of the limited space, we only
present the reconstruction of SDA on one spectral band.

APG LDMM1 LDMM2
PSNR time PSNR time PSNR time

IP 31.56 18 s 34.03 54 s 34.02 56 s
PC 30.22 47 s 30.55 82 s 31.61 82 s
PU 29.88 38 s 30.26 77 s 31.40 86 s

SDA 33.90 69 s 39.17 186 s 41.31 231 s

Table 2. Reconstruction of the noisy HSIs from their 10%
subsamples. LDMM1 (LDMM2) stands for LDMM with spa-
tial patch size of 1× 1 (2× 2). The reported time of LDMM
does not include that of the AGP initialization.

Original (Band 38) Noise added

10% noisy subsample LDMM

Fig. 2. Reconstruction of Indian Pine from 10% noisy sub-
sample.

3.3. Reconstruction from noisy subsample

We then show the results of the reconstruction of HSI from
10% noisy subsample. A gaussian noise with a standard de-
viation of 0.05 is added to the original image, and then we re-
move 90% of the voxels from the data cube. The accuracy and
computational time is reported in Table 2. Note that LDMM
with 2 × 2 patches typically produce better results than that
with 1× 1 patches because of the presence of noise. A visual
demonstration of the reconstruction is displayed in Figure 2.

4. CONCLUSION

We propose the scalable low dimensional manifold model for
the reconstruction of hyperspectral images from noisy and
incomplete observations with a significant number of miss-
ing voxels. The dimension of the patch manifold is directly
used as a regularizer, and the same similarity matrix is shared
across all spectral bands, which significantly reduces the com-
putational burden. Numerical experiments show that the pro-
posed algorithm is an accurate and efficient means for HSI
reconstruction.

http://www.math.duke.edu/~zhu/software.html
http://www.math.duke.edu/~zhu/software.html
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