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Advective diffusion of passive tracers by fluid flow plays a key role in the transport

of salt, heat, buoys and markers in geophysical flows, in the dispersion of pollutants

and trace gases in the atmosphere, and even in the motion of sea ice floes influenced

by winds and ocean currents. The long time, large scale behavior of such systems is

equivalent to an enhanced diffusion process with an effective diffusivity tensor D∗.

Over twenty five years ago, a Stieltjes integral representation for the homogenized

tensor was derived, involving the spectral measure of a self-adjoint operator that

depends on the flow characteristics. However, analytical calculations of D∗ have

been obtained for only a few simple flows, and numerical computations of the effective

behavior based on this powerful representation have apparently not been attempted.

We overcome these limitations by providing a mathematical foundation for rigorous

computation of D∗. We explore two different approaches and for each approach we

derive Stieltjes integral representations for the symmetric and antisymmetric parts

of D
∗, involving a spectral measure of a self-adjoint random operator. In discrete

formulations of each approach, we express the spectral measure explicitly in terms

of standard (or generalized) eigenvalues and eigenvectors of Hermitian matrices. We

develop and implement a numerically efficient projection method that significantly

reduces the dimension of the random matrix in computations of spectral statistics.

We use this method to compute the effective behavior for several model flows and

relate spectral characteristics to flow geometry and transport properties.
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I. INTRODUCTION

The enhancement in diffusive transport of passive scalars by complex fluid flow plays a

key role in many important processes in the global climate system [55] and Earth’s ecosys-

tems [14]. Advection of geophysical fluids intensifies the dispersion and large scale transport

of heat [36], pollutants [7, 12, 48], and nutrients [14, 21] diffusing in their environment.

Advective processes also enhance the large scale transport of plankton [21], which is an

important component of the food web that sustains life in the polar oceans. The transport

of vast sea ice floes in the polar oceans is driven by a seasonally and regionally changing

balance in oceanic and atmospheric forces [28, 55]. These forces can enhance the transport

of sea ice floes by eddie fluxes in the atmosphere and ocean currents [28, 44, 45, 56].

Complex interactions between shearing ocean waves, tidal currents, and wind drift, for

example, gives rise to complex, behavior of the flow fields [11, 27, 59]. It was discovered in

the early 1900s [53] that complex fluid flows transport passive scalars in much the same way

as molecular diffusion. The mathematical description of this phenomenon [54] demonstrated

that the long time, large scale behavior of a diffusing particle or tracer being advected by an

incompressible fluid velocity field is equivalent to an enhanced diffusion process with an effec-

tive diffusivity tensor D∗. Describing the enhancement of the effective transport properties

by fluid advection is a challenging problem with theoretical and practical importance in many

fields of science and engineering, ranging from turbulent combustion [1, 10, 43, 52, 57, 58]

to mass, heat, and salt transport in geophysical flows [36].

A broad range of mathematical techniques have been developed that reduce the analysis

of complex fluid flows, with rapidly varying structures in space and time, to solving averaged

or homogenized equations that do not have rapidly varying data, and involve an effective

parameter [9, 15, 16, 29–31, 41, 58]. Homogenization of the advection-diffusion equation for

passive scalar transport by random, time-independent, mean-zero fluid velocity fields was

treated in [31]. This reduced the analysis of advective diffusion to solving a diffusion equation

involving a homogenized temperature and a (constant) effective diffusivity tensor D∗.

An important consequence of this analysis is that the effective diffusivity D∗ is given in

terms of a random “cell problem” involving a curl-free stationary stochastic process [31],

which satisfies a steady state diffusion equation involving a skew-symmetric random matrix

H [2, 3, 15, 16]. By adapting the analytic continuation method of homogenization theory
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for composite materials [19], it was shown [2, 3] that the cell problem could be written as a

resolvent formula involving a self-adjoint random operator acting on the Hilbert space of curl-

free vector fields. This, in turn, led to a Stieltjes integral representation for the symmetric

part of D∗, involving the Péclet number Pe of the flow and a spectral measure of the operator.

A key feature of the integral representation for D∗ is that parameter information in Pe is

separated from the geometry of the fluid velocity field, which is encoded in the spectral

measure through its moments. This parameter separation has led [2, 3] to rigorous forward

bounds for the diagonal components of D∗.

The mathematical framework developed in [31] was adapted [41] to the case of a periodic,

time-dependent fluid velocity field with non-zero mean. It was shown [41] that, depending

on the strength of the fluctuations relative to the mean flow, the effective diffusivity tensor

D∗ can be constant or a function of both space and time. When D∗ is constant, only its

symmetric part appears in the homogenized equation as an enhancement in the diffusivity.

However, when D∗ is a function of space and time, its antisymmetric part also plays a

key role in the homogenized equation. Based on [8], the cell problem associated with a

time-independent flow was transformed [41] into a resolvent formula involving a self-adjoint

operator, acting on a Sobolev space [17, 33] of spatially periodic scalar fields, which is also

a Hilbert space. This, in turn, led to a discrete Stieltjes integral representation for the

antisymmetric part of D∗, involving the Péclet number of the flow and a spectral measure

of the operator.

Such methods have been extended to steady flows where particles diffuse according to

linear collisions [42], solute transport in porous media [8], anelastic (weakly compressible)

flows [32], and to the setting of a time-dependent fluid velocity field [4, 38]. All these

approaches yield integral representations of the symmetric and, when appropriate, the an-

tisymmetric part of D∗. Variational formulations of the effective parameter problem for D∗

are given in [3, 15, 16].

Here we adapt and extend the mathematical frameworks developed in both [3] and [41]

to the case of a time-independent periodic flow. We also discuss how the frameworks are

extended to randomly perturbed periodic flows. In particular, for each approach in [3,

41], we develop Stieltjes integral representations for both the symmetric and antisymmetric

parts of D∗, involving the molecular diffusivity and a spectral measure of a self-adjoint

operator that depends only on the fluid velocity field. Moreover, for each approach in [3, 41],
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we provide a mathematical foundation for rigorous computation of D∗ through discrete,

matrix formulations of these effective parameter problems. For an alternative computational

method that is accurate for large Péclet numbers see [20].

We demonstrate for the setting introduced in [3], that the discrete spectral measure

is given explicitly in terms of the eigenvalues and eigenvectors of a standard eigenvalue

problem. We develop a projection method which allows the spectral measure to be obtained

from the eigenvalues and eigenvectors of a much smaller matrix, greatly increasing the

efficiency of numerical computations. For the setting described in [41], we show that the

spectral measure is instead given in terms of the eigenvalues and eigenvectors of a generalized

eigenvalue problem.

We provide a detailed matrix analysis that demonstrates the two approaches yield equiva-

lent spectral representations of the effective diffusivity tensor D∗ when the matrix Laplacian,

at the heart of both approaches, is of full rank. Moreover, we demonstrate that both ap-

proaches can be formulated in terms of a common, standard eigenvalue problem. However,

the matrix Laplacian becomes rank deficient when periodic boundary conditions are im-

posed. We generalize both approaches to this rank deficient setting and show that the two

generalized approaches again yield equivalent spectral representations of D∗. This analysis

provides a numerically efficient way to compute the discrete spectral measure underlying the

integral representation for D∗. We utilize this unified mathematical framework to compute

the effective diffusivity for some model flows.

A. Synopsis of the paper

In Section II, we formulate the effective parameter problem for advection enhanced diffu-

sion by random, incompressible flows. In particular, we review the problem of homogenizing

the advection-diffusion equation for such flows, developed in [31], which yields a rigorous

functional representation for the effective diffusivity tensor D∗ in terms of the solution of a

random “cell problem” which arises in the homogenization procedure.

In Section III A, we discuss how the incompressibility of the fluid velocity field allows it

to be expressed in terms of the divergence of an antisymmetric random matrix. This, in

turn, allows the cell problem to be written as a steady state diffusion equation involving a

curl-free random field. Moreover, we demonstrate how this leads to functional formulas for
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the symmetric and antisymmetric parts of the effective diffusivity tensor D∗, involving the

curl-free field and a self-adjoint random operator. In Section III B, we discuss how the cell

problem can be transformed into a resolvent formula involving this self-adjoint operator,

which acts on the Hilbert space of curl-free, random vector fields [2, 3]. We then discuss

how this result and the spectral theorem [46, 51] yields Stieltjes integral representations for

both the symmetric [2, 3] and antisymmetric parts of D∗, involving a spectral measure of

the operator. We utilize analytical properties of the Stieltjes integrals to provide rigorous

bounds for the components of these homogenized tensors.

In Section IV A, we provide a mathematical foundation for rigorous computation of D∗

associated with this approach. In particular, a discrete representation of the cell problem

involving a Hermitian random matrix leads to Stieltjes integral representations for the sym-

metric and antisymmetric parts of D∗, involving a discrete spectral measure which is given

explicitly in terms of the eigenvalues and eigenvectors of the matrix. In Section IV B, we

develop a projection method which allows spectral statistics to be obtained by diagonalizing

a much smaller random matrix, greatly increasing the efficiency of numerical computations.

In Section V, we formulate another approach to the effective parameter problem [41],

which is different from the approach discussed in Section IV. We demonstrate this approach

also provides Stieltjes integral representations for the symmetric and antisymmetric parts

of D∗. In particular, we transform the cell problem into a resolvent formula involving a

self-adjoint random operator acting on a Sobolev space of random scalar fields, which is also

a Hilbert space. This leads to functional formulas for D∗ and a resolvent formula for the

cell problem. This, in turn, leads to Stieltjes integral representations for the symmetric and

antisymmetric parts of D∗, involving a spectral measure of the random operator.

The symmetry of the random operator depends intimately on the Sobolev-type inner-

product in this approach. Consequently, its matrix formulation is substantially different

from that of Section IV. This technical difficulty is overcome in Section VI by casting the

effective parameter problem in terms of a generalized eigenvalue problem, which has the

Sobolev-type inner-product as a key feature. This leads to Stieltjes integral representations

for the symmetric and antisymmetric parts of D∗, involving a discrete spectral measure

which is given explicitly in terms of the associated generalized eigenvalues and eigenvectors.

The inverse Laplacian operator is central to both of the continuum formulations of the

effective parameter problems described in Sections III and V. Consequently, the matrix
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Laplacian is also central to both of the discrete formulations described in Sections IV and VI,

which is assumed to be of full rank so that it is invertible. Given this condition, we demon-

strate in Section VII that the two discrete formulations of the effective parameter problems

given in Sections IV and VI produce equivalent spectral representations for the effective

diffusivity tensor D∗.

In Section VIII, we generalize the mathematical frameworks formulated in Sections IV

and VI to the case of a rank deficient matrix Laplacian. This is important in computations

of the effective diffusivity tensor D∗ for randomly perturbed periodic flows, as the matrix

Laplacian with periodic boundary conditions is rank deficient. A detailed matrix analysis

shows that both approaches yield equivalent spectral representations of D∗ and that the

spectral statistics can be obtained from a standard eigenvalue problem of a much smaller

random matrix. When the matrix Laplacian is of full rank, these generalized formulations

reduce to the formulations in Sections IV and VI.

In Section IX we numerically compute the spectral measures and effective diffusivity

tensors for several non-random periodic flows as well as randomly perturbed periodic flows.

Our computations are in excellent agreement with theoretical results [3] for shear flow. We

relate spectral characteristics of our computations to flow geometry and transport properties.

II. HOMOGENIZATION OF THE ADVECTION-DIFFUSION EQUATION

The dispersion of a cloud of passive scalars with density φ diffusing with molecular dif-

fusivity ε and being advected by a incompressible velocity field u satisfying ∇·u = 0 is

described by the advection-diffusion equation

φt(t, x ) = u(x)·∇φ(t, x ) + ε∆φ(t, x ), φ(0, x) = φ0(x), x ∈ R
d, t > 0, (1)

with initial density φ0(x) given. Here, φt denotes partial differentiation of φ with respect

to time t, ∆ = ∇·∇ = ∇2 is the Laplacian, ε > 0, d is the system dimension, and we

denote by 0 the null element on all linear spaces in question. Moreover, ξ·ζ = ξ †ζ and †
is the operation of complex-conjugate-transpose, with ξ·ξ = |ξ|2. Later, we will extensively

use this form of the dot product over complex fields, with built in complex conjugation.

However, we stress that all quantities considered in this section are real-valued. We assume

for now that the time-independent fluid velocity field u is spatially periodic on the region
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V ⊂ R
d. Later, we will discuss the case of an array of randomly perturbed, periodic flows.

The long time, large scale dispersion of the passive scalars can be described [54] by an

effective diffusivity tensor D∗. An explicit representation for D∗ can be found using methods

of homogenization theory [6, 39]. These methods have demonstrated that the averaged or

homogenized behavior of the advection-diffusion equation in (1) is determined by a diffusion

equation involving an averaged scalar density φ̄ and a (constant) effective diffusivity tensor

D∗ [31]

φ̄t(t, x) = ∇·[D∗
∇φ̄(t, x)], φ̄(0, x) = φ0(x). (2)

The components D∗
jk, j, k = 1, . . . , d, of D∗ are given by [31]

D∗
jk = εδjk + 〈ujχk〉, (3)

where 〈·〉 denotes volume averaging over the period cell V . The function χj in (3) satisfies

a cell problem which is a steady state advection-diffusion equation with a forcing term

involving uj, the jth component of the fluid velocity field u [16, 31],

u·∇χj + ε∆χj = −uj, 〈∇χj〉 = 0. (4)

Equations (2)–(4) follow from the assumption that the initial density φ0 is slowly varying

relative to the variations of the velocity field u [16, 31]. This information is incorporated

into equation (1) by introducing a small dimensionless parameter δ � 1 and writing [31]

φ(0, x) = φ0(δx). (5)

Anticipating that φ will have diffusive dynamics as t → ∞, space and time are rescaled

by x 7→ x/δ and t 7→ t/δ2. As δ → 0, the associated solution φδ(t, x) = φ(t/δ2, x/δ) of

equation (1) (in the rescaled variables) converges to φ̄(t, x) which satisfies equation (2). The

convergence is in an L2 sense that depends on the technical assumptions made about the

fluid velocity field u [3, 15, 16, 29, 31, 41].

We stress that the cell problem in (4) involves only the fast variables x/δ and t/δ2 [31].

Other space-time scalings have also been considered, which have lead to space-time depen-

dent D∗ [41] and even anomalous diffusive dynamics [29]. Homogenization theorems for

space-time dependent fluid velocity fields are treated in [9, 29, 41].
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In our analysis of the effective diffusivity tensor D∗, it will be convenient to use non-

dimensional parameters. We therefore assume that equation (1) has been non-dimensionalized

as follows. Let ` and τ be typical length and time scales associated with the problem of

interest. Mapping to the non-dimensional variables t 7→ t/τ and x 7→ x/`, one finds that φ

satisfies the advection-diffusion equation in (1) with a non-dimensional molecular diffusivity

and fluid velocity field,

ε 7→ τε/` 2, u 7→ τ u/`. (6)

In the case of a time-independent, spatially periodic flow, a natural choice for ` and τ is,

respectively, the maximum cell period and τ = `/〈|u|2〉1/2, so that (6) is given by ε 7→
ε/(` 〈|u|2〉1/2) and u 7→ u/〈|u|2〉1/2. In this case, a natural definition of the Péclet number

Pe is

Pe =
`〈|u|2〉1/2

ε
, (7)

so that the scaled molecular diffusivity satisfies ε = Pe−1.

III. CURL-FREE FIELDS AND THE EFFECTIVE DIFFUSIVITY TENSOR

In this section, we adapt and extend a method [2, 3] which leads to integral representations

for the effective diffusivity tensor D∗. More specifically, in Section III A we provide functional

formulas for the symmetric and antisymmetric parts of D∗, involving the curl-free vector

field ∇χj in equation (4). We review a Hilbert space formulation of this effective parameter

problem [2, 3, 15, 16] in Section III B, which leads to a resolvent formula for ∇χj, involving

a self-adjoint operator. Moreover, we use this result and the spectral theorem [46, 51] to

provide Stieltjes integral representations for both the symmetric and antisymmetric parts of

D∗, involving a spectral measure of the operator.

A. Functional formulas for the effective diffusivity tensor

Since u(x) is incompressible, ∇·u = 0, there is a real (non-dimensional) antisymmetric

matrix H(x) [2, 3] such that

u = ∇·H, HT = −H, (8)
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where HT denotes transposition of the matrix H. Due to the anti-symmetry of the matrix H

and the symmetry of the Hessian operator ∇∇ when acting on a sufficiently smooth space

of functions, we have that H : ∇∇ϕ = 0 for all such smooth functions ϕ. Consequently,

∇·[H∇ϕ] = [∇·H]·∇ϕ + H : ∇∇ϕ = [∇·H]·∇ϕ, or ∇·[H∇] = [∇·H]·∇ as operators

acting on such functions. Using this identity and the representation of the fluid velocity

field u in (8), equation (1) can be written as a diffusion equation,

φt = ∇·[D∇φ], φ(0, x) = φ0(x), D = εI + H. (9)

Moreover, the cell problem in (4) can be written as a steady-state diffusion equation [15, 16],

∇·[D(∇χk + ek )] = 0, 〈∇χk〉 = 0, k = 1, . . . , d. (10)

Here, 〈·〉 denotes volume averaging over the period cell V , ek is a standard basis vector,

k = 1, . . . , d, and D(t, x) = εI + H(t, x) can be viewed as a local diffusivity tensor with

coefficients

Djk = εδjk + Hjk, j, k = 1, . . . , d, (11)

where δjk is the Kronecker delta and I is the identity operator on Rd.

The symmetric S∗ and antisymmetric A∗ parts of the effective diffusivity tensor D∗ are

defined by

D∗ = S∗ + A∗, S∗ =
1

2

(

D∗ + [D∗] T
)

, A∗ =
1

2

(

D∗ − [D∗] T
)

. (12)

Substituting into equation (3) the expression for uj in (4) and using equation (8), u = ∇·H,

one finds that the components S∗
jk and A∗

jk, j, k = 1, . . . , d, of S∗ and A∗ can be written in

terms of the following functionals involving the real-valued vector field ∇χk

S
∗
jk = ε(δjk + 〈∇χj·∇χk〉), A

∗
jk = 〈H∇χj·∇χk〉. (13)

The symmetry S∗
jk = S∗

kj of the tensor S∗ in (13) follows from the fact that the vector field

∇χk is real-valued so that 〈∇χj·∇χk〉 = 〈∇χk·∇χj〉. Moreover, the positivity condition

〈∇χk·∇χk〉 = 〈|∇χk|2〉 ≥ 0 demonstrates that the effective transport of the scalar density

φ is always enhanced in all of the principle directions ek, k = 1, . . . , d, by the presence of

an incompressible velocity field, D∗
kk = S∗

kk ≥ ε. The equality D∗
kk = S∗

kk follows from the

skew-symmetry of the matrix A∗, A∗
kj = −A∗

jk, hence A∗
kk = 0. This, in turn, follows from
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the skew-symmetry of the real-valued matrix H, which implies that A∗
jk = 〈H∇χj·∇χk〉 =

−〈∇χj·H∇χk〉 = −〈H∇χk·∇χj〉 = −A∗
kj .

We conclude this section by noting that the cell problem in equation (10) is equivalent [2,

3, 15, 16] to the quasi-static limit of Maxwell’s equations [19, 24, 35], which describe the

transport properties of an electromagnetic wave in a composite material,

∇×Ek = 0, ∇·J k = 0, J k = DEk, 〈Ek〉 = ek, D = εI + H. (14)

Here, Ek = ∇χk + ek plays the role of the local electric field, J k = DEk plays the role

of the local current density, and D = εI + H plays the role of the local conductivity tensor

of the medium. Since H is skew-symmetric, the intensity-flux relation Jk = DEk is not

the usual Fourier law, but instead resembles that of a Hall medium [15, 16, 23, 35]. In

Section III B, we employ the representation of the cell problem in (10) and adapt the analytic

continuation method [19] for characterizing transport in composites to provide Stieltjes

integral representations for both the symmetric and antisymmetric parts of the effective

diffusivity tensor D∗, involving a spectral measure of a self-adjoint operator.

B. Hilbert space and integral representations

The analytic continuation method provides Stieltjes integral representations for the bulk

transport coefficients of composite media [19]. This method is based on the spectral theorem

of Hilbert space theory and a resolvent formula for, say, the electric field, involving a self-

adjoint operator [19] or matrix [37] which depends only on the composite geometry. In this

section, we adapt this method [2, 3] to provide Stieltjes integral representations for both

the symmetric and antisymmetric parts of the effective diffusivity tensor D∗, which encodes

the complicated geometry of the fluid velocity field in a spectral measure of a self-adjoint

operator.

The analytical platform of the analytic continuation method is a Hilbert space H . In

the effective parameter problem for effective diffusivity, the mathematical structure of H

depends on the specific details of the fluid velocity field of interest. When one considers a

fluid velocity field that is spatially periodic on a region V ⊂ Rd, the Hilbert space H can

be taken to be [29]

H = {ξ ∈ ⊗d
n=1L

2(V , m) : ξ(x) is periodic in V}, (15)



12

where m is the normalized Lebesgue measure (uniform distribution) on R
d, restricted to

V , and L2(V , m) is the space of complex-valued scalar functions that are square-integrable

with respect to m. The Hilbert space H is equipped with a sesquilinear inner-product 〈·, ·〉
defined by 〈ξ, ζ〉 = 〈ξ·ζ〉, with 〈ζ, ξ〉 = 〈ξ, ζ〉 for ξ, ζ ∈ H , which induces a norm ‖ · ‖
defined by ‖ξ‖ = 〈ξ, ξ〉1/2 and ξ ∈ H implies that ‖ξ‖ < ∞. Here, 〈·〉 denotes volume

average over the period cell V with respect to the measure m, a is the complex-conjugate

of the scalar a, and we stress that the dot product ξ·ζ = ξ †ζ includes the operation † of

complex-conjugate-transpose.

One could also imagine a random fluid flow filling all of Rd, with a velocity field u de-

termined by the probability space (Ω, P ) with σ-algebra generated by the sets {u(x) ∈ B},
where x ∈ Rd and B is a Borel subset of Rd [3]. Here, Ω is the set of all geometric realiza-

tions of u, which is indexed by the parameter ω ∈ Ω representing one particular geometric

realization, and P is the associated probability measure. The underlying Hilbert space in

this case can be taken to be H = L2(Ω, P ), i.e., the space of all P -measurable vector-valued

functions ξ satisfying ‖ξ‖ = 〈|ξ|2〉1/2 < ∞, where 〈·〉 denotes ensemble averaging and the

underlying sesquilinear inner-product is defined by 〈ξ, ζ〉 = 〈ξ·ζ〉 . In this case, one could

consider a random fluid flow with a velocity field u that is stationary [31] or ergodic [2, 3],

for example, with regularity conditions at infinity, i.e., as |x| → ∞. In these cases, one works

with an infinite medium directly, which presents substantial computational difficulties.

A more computationally tractable, random system is given by a n×n array of randomly

perturbed periodic flows [16]. In this case, the σ-algebra associated with the underlying

probability space is generated by the Lebesgue measurable subsets of Rd. Here, the Hilbert

space H is given by equation (15) and averaged quantities depend on the realization of the

random medium because 〈·〉 is given by volume averaging over the period cell V [16]. The

effective diffusivity tensor D∗ is obtained by taking an infinite volume limit, D∗ = limn→∞ D∗
n,

of the finite volume effective diffusivity tensor D∗
n and evoking an ergodic theorem [16, 19].

Numerically, it is natural to spatially average each statistical trial and then ensemble average

over all of the sampled random realizations.

In any case, once the Hilbert space H is established, with associated average 〈·〉, inner-

product 〈·, ·〉, and norm ‖ · ‖, the spectral theory presented in the remainder of this section

progresses independent of the underlying details, as it lays on an axiomatic foundation [51].

For the sake of numerical tractability, we will assume that the Hilbert space H is given by
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equation (15). The fluid velocity field u can be assumed to represent a periodic or randomly

perturbed periodic flow.

Now consider the associated Hilbert space H× of curl-free fields [3, 15, 16, 19, 35],

H× = {ξ ∈H : ∇×ξ = 0 weakly and 〈ξ〉 = 0} . (16)

The curl-free vector field ∇χk in the cell problem in (10) is mean-zero 〈∇χk〉 = 0. When

the matrix D in equation (9) is bounded in the operator norm ‖ · ‖ induced by the H -inner-

product [18], ‖D‖ <∞, then there exists unique ∇χk ∈H× satisfying equation (10) [19, 39].

We assume that

0 < ε <∞, ‖H‖ <∞, (17)

which together imply that ‖D‖ <∞.

The linear operator Γ = ∇(∆−1)∇· is a projection onto the Hilbert space H× in the

sense that Γ : H 7→H× and Γξ = ξ (weakly) for all ξ ∈H×, in particular Γ∇χk = ∇χk.

It is based on convolution with respect to the Green’s function for the Laplacian ∆ [34, 49].

Applying the integro-differential operator ∇∆−1 to the cell problem in equation (10) yields

Γ[(εI + H)(∇χk + ek )] = 0. Since Γek = 0 and Γ∇χk = ∇χk, this is equivalent to

(εI + ΓHΓ)∇χk = −ΓHek, which yields the following resolvent formula for ∇χk

∇χk = (εI + A)−1gk, A = ΓHΓ, gk = −ΓHek. (18)

Since Γ is a projection operator onto H× ⊂H it is bounded by unity in operator norm on

H , ‖Γ‖ ≤ 1 [18, 47]. Integration by parts and the symmetry of the operator (−∆)−1 [49]

shows that Γ is also a symmetric operator, i.e., 〈Γξ·ζ〉 = 〈ξ·Γζ〉 for all ξ, ζ ∈H . These two

properties of Γ show that it is a self-adjoint operator on H [46]. Using this property and

Γ∇χk = ∇χk, we may write A∗
jk in equation (13) as A∗

jk = 〈A∇χj·∇χk〉. Consequently,

substituting the resolvent formula for ∇χk in equation (18) into the functional formulas in

equation (13) yields

S∗
jk = ε(δjk + 〈(εI + A)−1gj·(εI + A)−1gk〉), (19)

A
∗
jk = 〈A (εI + A)−1gj·(εI + A)−1gk〉.

Since Γ is self-adjoint on H , the anti-symmetry of the matrix H implies that A = ΓHΓ

is an antisymmetric operator on H , i.e., 〈Aξ·ζ〉 = −〈ξ·Aζ〉. We stress that the operator
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A depends only on the fluid velocity field via equation (8). By equation (17), the operator

A is bounded on H with ‖A‖ ≤ ‖H‖ < ∞. This, the skew-symmetry of A, and the

sesquilinearity of the H -inner-product imply that M = −ıA, where ı =
√
−1, is a bounded

symmetric operator, hence self-adjoint on H with ‖M‖ = ‖A‖ <∞. The spectrum Σ of the

self-adjoint operator M is real-valued with spectral radius equal to its operator norm [46],

i.e.,

Σ ⊆ [−‖H‖, ‖H‖ ]. (20)

The spectral theorem for bounded linear self-adjoint operators in Hilbert space states that

there is a one-to-one correspondence between the operator M and a family of self-adjoint

projection operators {Q(λ)}λ∈Σ — the resolution of the identity — satisfying [51]

lim
λ→ inf Σ

Q(λ) = 0, lim
λ→ supΣ

Q(λ) = I. (21)

Furthermore, for all ξ, ζ ∈ H×, the complex-valued function of the spectral variable λ

defined by µξζ(λ) = 〈Q(λ)ξ, ζ 〉 has real and imaginary parts that are strictly increasing

and of bounded variation [51]. Therefore, there is a complex Radon–Stieltjes measure µξζ

associated with µξζ(λ) [18, 50, 51]. The spectral theorem also states that, for all complex-

valued functions f ∈ L2(µξξ) and h ∈ L2(µζζ), there exist linear operators denoted by f(M)

and h(M) which are defined in terms of the sesquilinear functional 〈f(M) ξ, h(M) ζ 〉 [51].

In particular, this functional has the following integral representation involving the Stieltjes

measure µξζ , for all ξ, ζ ∈H×,

〈f(M)ξ, h(M) ζ 〉 =

∫ ∞

−∞

f (λ)h(λ) dµξζ(λ), µξζ(λ) = 〈Q(λ)ξ, ζ〉, (22)

where the integration is over the spectrum Σ of M [46, 51] and f denotes complex conjugation

of the scalar function f .

Since a Stieltjes measure ν has the property [51]
∫ b

a
dν(λ) = ν(b) − ν(a), equation (21)

implies that the mass µ0
ξζ of the measure µξζ is given by

µ0
ξζ =

∫ ∞

−∞

dµξζ(λ) =

∫ ∞

−∞

d〈Q(λ)ξ, ζ 〉 = 〈ξ, ζ〉, (23)

which is bounded in the sense that |µ0
ξζ | ≤ ‖ξ‖ ‖ζ‖ < ∞ for all ξ, ζ ∈ H×. Due to

the sesquilinearity of the inner-product and the fact that the projection operator Q(λ)

is self-adjoint on H×, the complex-valued function µζξ(λ) satisfies µζξ(λ) = µξζ(λ) and
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µξξ(λ) = ‖Q(λ)ξ‖2. Consider the associated positive Stieltjes measure µξξ and the real-

valued functions

Re µξζ(λ) =
1

2

(

µξζ(λ) + µξζ(λ)
)

, Im µξζ(λ) =
1

2 ı

(

µξζ(λ) − µξζ(λ)
)

, (24)

with associated signed Stieltjes measures Re µξζ and Im µξζ [18].

For notational simplicity we denote by µjk(λ) = 〈Q(λ)gj, gk〉 instead of µgjgk
(λ). We now

demonstrate that the spectral theorem in (22) provides Stieltjes integral representations for

the functional formulas in equation (19), involving a spectral measure µjk associated with the

function µjk(λ), where the real-valued vector field gk = −ΓHek is defined in equation (18).

From equation (23), the mass µ0
jk of the measure µjk is real-valued and satisfies

µ0
jk = 〈gj, gk〉 = 〈ΓHej · ΓHek〉 = 〈HT ΓHej · ek〉, |µ0

jk| ≤ ‖H‖2 <∞, (25)

where we have used that Γ is a self-adjoint projection operator on H×. In equation (22),

set M = −ıA, ξ = gj, and ζ = gk. Moreover, for the first formula in equation (19)

set f(λ) = h(λ) = (ε + ıλ)−1, and in the second formula set f(λ) = ıλ(ε + ıλ)−1 and

h(λ) = (ε + ıλ)−1, with λ ∈ R and |λ| ≤ ‖H‖ < ∞. Since (ε2 + λ2)−1 ≤ 1/ε2 < ∞ and

λ2(ε2 + λ2)−1 ≤ 1 for all 0 < ε <∞, it is clear from equation (25) that the functions f and

h defined above satisfy f, h ∈ L2(µkk) for all k = 1, . . . , d and 0 < ε <∞. Consequently, the

spectral theorem in (22) implies that the functional formulas for S∗
jk and A∗

jk in equation (19)

have the following Stieltjes integral representations

S
∗
jk = ε

(

δjk +

∫ ∞

−∞

dµjk(λ)

ε2 + λ2

)

, A
∗
jk = −

∫ ∞

−∞

ıλdµjk(λ)

ε2 + λ2
, (26)

which involve the complex measure µjk.

We now show how the integrals in (26) for S∗
jk and A∗

jk can be represented in terms of the

signed measures Re µjk and Im µjk, respectively, associated with the functions in (24). Since

∇χk and H in (13) are real-valued, we have from (18) the following symmetry conditions

〈(εI + A)−1gj·(εI + A)−1gk〉 = 〈(εI + A)−1gk·(εI + A)−1gj〉 (27)

〈A (εI + A)−1gj·(εI + A)−1gk〉 = 〈(εI + A)−1gk·A (εI + A)−1gj〉.

These symmetries, the sesquilinearity of the H -inner-product, the linearity [51] of the Stielt-

jes integral in (22) with respect to the function µξζ(λ) and equation (26) yield

S∗
jk = ε

(

δjk +

∫ ∞

−∞

dRe µjk(λ)

ε2 + λ2

)

, A∗
jk =

∫ ∞

−∞

λdIm µjk(λ)

ε2 + λ2
, (28)
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where we have used Re µjk(λ) = (µjk(λ)+µjk(λ))/2 and Im µjk(λ) = (µjk(λ)−µjk(λ))/(2ı).

The formulas for S∗
jk and A∗

jk in (28) were computed with respect to the standard basis

{ej}, through the definition of µjk(λ) = 〈Q(λ)gj, gk〉 with gk = −ΓHek. We now show

that, given S∗
jk and A∗

jk, j, k = 1, . . . , d, the effective diffusivity tensor can be computed

relative to any directions. This is due to the bilinearity of the inner-product underlying the

definition of µjk(λ). More specifically, if ξ, ζ ∈ Rd are arbitrary directions of interest, then

〈Q(λ)ΓHξ,ΓHζ〉 =
∑

jk ajbk〈Q(λ)gj, gk〉, where the constants aj and bk, j, k = 1, . . . , d, are

the coordinates of the vectors ξ and ζ with respect to the standard basis. This immediately

leads to integral representations for the effective diffusivity tensor relative to any desired

directions.

We conclude this section with a discussion regarding some rigorous bounds for S∗
jk and

A∗
jk, j, k = 1, . . . , d, that follow from the integral representations in (28). We assume that

0 < ε <∞ throughout our discussion. From equation (20), the spectrum Σ of the operator

M = −ıA is a bounded subset of R. Denote λ+ = supΣ and |λ|+ = supλ∈Σ |λ|, and recall

that infλ∈Σ λ2 = 0 as λ = 0 is a limit point [49] of the compact operator M [8, 29]. Since µkk

is a positive measure with finite mass µ0
kk, the inequalities 1/(ε2 +λ2

+) ≤ 1/(ε2 +λ2) ≤ 1/ε2,

holding for all λ ∈ Σ, yield [18]

ε [1 + µ0
kk/(ε

2 + λ2
+)] ≤ S

∗
kk ≤ ε [1 + µ0

kk/ε
2]. (29)

It may be that µ0
kk = 0, hence S∗

kk = ε, e.g., shear flow orthogonal to the kth direction [3, 15].

When j 6= k, Re µjk is a signed measure. There are unique, positive measures Re µ+
jk

and Re µ−
jk such that Re µjk = Re µ+

jk − Re µ−
jk [18]. Moreover, associated with the signed

measure Re µjk is its total variation |Re µ|jk [18]

Re µjk = Re µ+
jk −Re µ−

jk, |Re µ|jk = Re µ+
jk + Re µ−

jk. (30)

From equation (25) the measures Re µ+
jk and Re µ−

jk have bounded mass, [Re µ+
jk]

0 and

[Re µ−
jk]

0, respectively, thus the mass |Re µ|0jk of the measure |Re µ|jk is also bounded. Since

|S∗
jk| ≤

∫

d|Re µ|jk(λ)/(ε2 +λ2) [18], the upper bound in equation (29) with µ0
kk replaced by

|Re µ|0jk holds for the positive quantity |S∗
jk|. Our numerical results in Section IX indicate

that µkk = |Re µ|jk, j 6= k, for 2D flows that are symmetric about the line y = x, such as as

cat’s eye flow, yielding the bound |S∗
jk| ≤ S∗

kk which holds for such flows (see Figures 3 and 4

below). These bounds for S∗
jk can be improved upon by separately considering the positive
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and negative contributions of the integral representation for S∗
jk, yielding

ε
[Re µ+

jk]
0

ε2 + λ2
+

−
[Re µ−

jk]
0

ε
≤ S

∗
jk ≤

[Re µ+
jk]

0

ε
− ε

[Re µ−
jk]

0

ε2 + λ2
+

, j 6= k. (31)

In a similar way, we obtain the following bounds for A∗
jk

−
|λ|+ |Imµ|0jk

ε2
≤ A∗

jk ≤
|λ|+ |Imµ|0jk

ε2
, j 6= k, (32)

where |Imµ|0jk is the finite mass of the total variation |Imµ|jk = Im µ+
jk +Im µ−

jk of the signed

measure Im µjk = Im µ+
jk− Imµ−

jk [18]. Bounds on S∗
kk can also be obtained using variational

methods [3, 15, 16] as well as Padé approximants [3, 5] of Stieltjes functions.

IV. DISCRETE SETTING: HILBERT SPACE OF CURL-FREE FIELDS

Here, we provide a discrete formulation of the effective parameter problem in Section III B,

which will be used in Section IX to compute a discrete spectral measure µjk involved in

discrete versions of the Stieltjes integral representations for the effective diffusivity tensor

D∗ in equation (28). More specifically, we use the cell problem in equations (10) and (18),

written as (εI + A)∇χk = gk, to express the discrete spectral measure explicitly in terms

of the eigenvalues and eigenvectors of a matrix representation A of the operator A = ΓHΓ,

not to be confused with the antisymmetric part A∗ of the effective diffusivity tensor. In

Section IV A, we discuss the spectral properties of the matrix A and provide the Stieltjes

integral representations for the effective diffusivity tensor D∗ in (28), involving the discrete

spectral measure µjk. A projection method is formulated in Section IV B, which shows that

the discrete measure µjk is determined by the eigenvalues and eigenvectors of a matrix that

is much smaller than the matrix A. This greatly increases the efficiency of our numerical

computations of D∗ in Section IX.

A. Matrix formulation of the effective parameter problem

In the discrete setting [37], H is represented by a banded antisymmetric matrix. For

simplicity we will not make a notational distinction between the two cases, as the context

will be made clear. The differential operator ∇ is represented by a finite difference matrix

∇ [13, 37], where∇T = (∇T
1 , . . . ,∇T

d ) and∇j, j = 1, . . . , d, are also finite difference matrices.
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Moreover, the divergence operator ∇· is given by −∇T and the matrix representation of

the negative Laplacian −∆ is given by ∇T∇. Consequently, the projection operator Γ =

∇(∆−1)∇· is represented by the symmetric projection matrix Γ = ∇(∇T∇)−1∇T , satisfying

Γ 2 = Γ and Γ∇ = ∇, where (∇T∇)−1 is now interpreted as a matrix inversion. We assume

here that the matrix ∇ is of full rank so that (∇T∇)−1 exists. The rank deficient case,

where the matrix ∇T∇ is singular, is examined in detail in Section VIII. In this way,

the integro-differential operator A is represented by an antisymmetric matrix A = ΓHΓ

satisfying AT = −A, which is not to be confused with the antisymmetric part A∗ of the

effective diffusivity tensor D∗. In a similar way, the vectors gk = −ΓHek, k = 1, . . . , d, are

redefined in this matrix setting and, for simplicity, we will not make a notational distinction

between the two cases for the vectors gk and ek, as the context will be made clear.

The spectrum Σ of the antisymmetric matrix A, of size N , say, consists solely of eigen-

values υn, n = 1, . . . , N , with corresponding eigenvectors wn satisfying Awn = υnwn. It

is well known [22] that its eigenvalues υn are purely imaginary, υn = ıλn with λn ∈ R.

Therefore, the matrix M = −ıA is Hermitian (M† = M) and it has the same eigenvectors wn

as the matrix A and real eigenvalues given by λn = Im υn. It is also well known [25] that

the eigenvectors wn, n = 1, . . . , N , form an orthonormal basis for CN , i.e., w †
nwm = δnm

and for every ξ ∈ CN we have ξ =
∑

n(w
†
nξ)wn =

(
∑

n wnw†
n

)

ξ. Consequently, defining

Qn = wnw†
n, n = 1, . . . , N , to be the mutually orthogonal projection matrices onto the

eigenspaces spanned by the wn,

N
∑

n=1

Qn = I, Qn = wnw†
n, QlQm = Ql δlm. (33)

We now use equation (33) to prove the spectral theorem in (22) for this matrix setting.

From Mwn = λnwn and equation (33) we have that MQn = λnQn. This formula and (33)

then imply that the matrix M has the spectral decomposition M =
∑

n λnQn. By the mutual

orthogonality of the projection matrices Qn and by induction, we have that Mm =
∑

n λm
n Qn

for all m ∈ N. This, in turn, implies that f(M) =
∑

n f(λn)Qn for any polynomial f : R 7→ C.

From the mutual orthogonality and the symmetry of the projection matrices Qn it follows

that, for all ξ, ζ ∈ CN and complex-valued polynomials f(λ) and h(λ), the bilinear functional

〈f(M)ξ·h(M)ζ〉 has the integral representation in equation (22), with M substituted by M.

Moreover, the complex-valued function µξζ(λ) = 〈Q(λ)ξ, ζ〉 in equation (22) is now given

by µξζ(λ) = 〈Q(λ)ξ·ζ〉, where the associated matrix representation Q(λ) of the projection
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operator Q(λ) and the discrete spectral measure dµξζ(λ) are given by

Q(λ) =
∑

n: λn≤λ

θ(λ− λn)Qn, dµξζ(λ) =
∑

n: λn≤λ

〈δλn(dλ)[Qnξ·ζ]〉. (34)

Here, θ(λ) is the Heaviside function, satisfying θ(λ) = 0 for λ < 0 and θ(λ) = 1 for λ ≥ 0,

and δλn(dλ) is the δ-measure centered at λn.

The spectral theorem for symmetric matrices also holds for functions of the form f(λ) =

aλl(b + cλ)−m, with l, m ∈ N, a, b, c ∈ C, and b + cλ 6= 0 for all λ ∈ Σ. We will demonstrate

this for the special cases that arise in the functional formulas for S∗
jk and A∗

jk in equation (19),

with A substituted with A, which yield the integral representations in (26) involving a dis-

crete spectral measure dµjk(λ) associated with the measure in (34). The argument involving

the function f(λ) above is a simple extension of that given here.

As A is a real-valued matrix, its eigenvalues υn = ıλn, n = 1, . . . , N , and eigenvectors

wn come in complex-conjugate pairs [22]. Therefore, if the size N of A is even, then we

may re-number the index set IN as IN = {−N/2, . . . ,−1, 1, . . . , N/2} such that υ−n = υn =

−υn and w−n = wn. If N is odd then υ0 = 0 is also an eigenvalue with a real-valued

eigenvector w0. Denoting by W the matrix with columns consisting of the eigenvectors wn,

Υ = diag(υ−N/2, . . . , υN/2) the diagonal matrix with eigenvalues υn on the main diagonal,

and Λ = diag(λ−N/2, . . . , λN/2), we have that A = WΥW† = ıWΛW†, where the matrix W

is unitary W†W = WW† = I [22]. Therefore, the matrix M = −ıA = WΛW† is Hermitian

(M† = M).

This spectral decomposition of A demonstrates that the matrix (εI+A)−1, is well defined

for all 0 < ε <∞. In particular, since W† = W−1, it has the following useful representation

(εI+ A)−1 = W(εI+ ıΛ)−1W†, where (εI+ ıΛ)−1 is a diagonal matrix with entries 1/(ε + ıλ).

This allows the discrete version of the resolvent formula in equation (18) to be written as

∇χj = W(εI + ıΛ)−1
W

†gj, gj = −ΓHej. (35)

Substituting the resolvent formula for ∇χk in equation (35) into the discrete version of (13)

and using Γ∇ = ∇ to write 〈H∇χj·∇χk〉 = 〈A∇χj·∇χk〉, we obtain the following analogue

of equation (19),

S
∗
jk = ε( δjk + 〈(εI + ıΛ)−1

W
†gj·(εI + ıΛ)−1

W
†gk〉 ), (36)

A∗
jk = 〈ıΛ(εI + ıΛ)−1W†gj·(εI + ıΛ)−1W†gk〉,
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where we have used that W† = W−1. The quadratic form W†gj·W
†gk arising in (36) can be

written in terms of the projection matrices Qn defined in (33) as follows

W
†gj·W

†gk =
∑

n∈IN

(w†
ngj)(w

†
ngk) =

∑

n∈IN

Qn gj·gk. (37)

This implies that the functional formulas for S∗
jk and A∗

jk in equation (36) have the in-

tegral representations in equation (26) with discrete spectral measure dµjk(λ) defined in

equation (34) with ξ = gj = −ΓHej and ζ = gk = −ΓHek.

As in the abstract Hilbert space setting discussed in Section III B, we may use the fact

that the matrix A, the vector gj, and the molecular diffusivity ε are real-valued to obtain

the symmetry relations in equation (27), with A changed to A. This allows us to rewrite

the integral representations for S∗
jk and A∗

jk in (26) involving the discrete, complex measure

dµjk(λ), as the integral representations in equation (28) involving the real signed measures

Re µjk and Im µjk. As in the abstract Hilbert space setting, these signed measures are

determined by the functions Re µjk(λ) and Im µjk(λ) in equation (24), where in this matrix

setting µjk(λ) = 〈Q(λ)gj·gk〉 and Q(λ) is defined in equation (34). As the projection matrix

Qn is Hermitian, we have [Qngk·gj] = [Qngj·gk]. Consequently, from equations (24) and (34)

we have that

Re µjk(λ) =
1

2

∑

n: λn≤λ

〈θ(λ− λn)[(Qn + Qn)gj·gk ]〉 (38)

Im µjk(λ) =
1

2ı

∑

n: λn≤λ

〈θ(λ− λn)[(Qn − Qn)gj·gk ]〉,

where [(Qn + Qn)gj·gk ] = 2Re [Qngj·gk] and [(Qn − Qn)gj·gk ] = 2ıIm [Qngj·gk].

Since the eigenvalues υn = ıλn and eigenvectors wn of the matrix A come in complex

conjugate pairs, the representations of the measures Re µjk and Im µjk, which follow from

the functions in equation (38), can be simplified and shown [41] to depend only on the

restricted index set {n ≥ 0 : λn ≤ λ}. This is clear from equations (28) and (38), since for

n ≥ 0 we have λ2
−n = (−λn)2 = λ2

n and w−n = wn, thus Q−n = Qn. Consequently, we have

that

Re [Qngj·gk] + Re [Q−ngj·gk] = 2Re [Qngj·gk] (39)

λnIm [Qngj·gk] + λ−nIm [Q−ngj·gk] = 2λnIm [Qngj·gk],

with λ0Im[Q0gj·gk] ≡ 0.
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B. Projection method

We now formulate a projection method which demonstrates that the discrete spectral

measure µjk in (38) is determined by the eigenvalues and eigenvectors of a matrix that is

much smaller than the matrix A. This will be used in Section IX to greatly increases the

efficiency of our numerical computations of D∗. This method follows from the projective

nature of the matrix Γ, which causes A = ΓHΓ to have a large null space associated with

the null space of Γ. We demonstrate that the spectral weights [Qngj·gk] associated with

this null space are identically zero and therefore do not need to be computed at all.

Since Γ is a real-symmetric projection matrix of size N , its eigenvalues γn, n = 1, . . . , N ,

satisfy γn = 0, 1 [22]. Consequently, Γ has the spectral decomposition Γ = PGPT , where P is

an orthogonal matrix, PPT = PT P = I, with columns consisting of the eigenvectors of Γ, and

the diagonal matrix G has the eigenvalues γn along its main diagonal. Write P = [P0 P1],

where the columns of the N × N0 matrix P0 and the N × N1 matrix P1 are orthonormal

eigenvectors that span the null space and range of Γ, respectively, with N0 +N1 = N [22]. It

follows that G = diag(0N0
, 1N1

), where 0N0
and 1N1

are vectors of zeros and ones of length

N0 and N1, respectively. This, in turn, implies that the matrix Γ can be written as

Γ = P1P
T
1 . (40)

The matrix P being orthogonal implies that PT
1 P1 = I11, where I11 is the identity matrix of

size N1 × N1. This demonstrates that the matrix Γ satisfies Γ2 = Γ. Moreover, Γ projects

vectors in RN on to the subspace spanned by the columns of P1.

Using the spectral decomposition Γ = PGPT of Γ, we may write the matrix A = ΓHΓ as

A = P[G(PTHP)G]PT . The block matrix form of the matrix G(PTHP)G = PT AP is given by

G(PTHP)G =





O00 O01

O10 I11









PT
0

PT
1



 H

[

P0 P1

]





O00 O01

O10 I11



 =





O00 O01

O10 PT
1 HP1



 , (41)

where Oab is a matrix of zeros of size Na ×Nb, a, b = 0, 1.

Due to the skew-symmetry of H, the matrix PT
1 HP1 of size N1×N1 is also antisymmetric

and consequently has the spectral decomposition

PT
1 HP1 = ıR11Λ11R

†
11, (42)
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where R11 is a unitary matrix, R
†
11R11 = R11R

†
11 = I11, and Λ11 is a real-valued diagonal

matrix. Equations (41) and (42) allow the matrix A to be written as

A = ıWΛW†, W = PR, R =





I00 O01

O10 R11



 , Λ =





O00 O01

O10 Λ11



 , (43)

where I00 is the identity matrix of size N0×N0. Since R11 is a unitary matrix, the matrix R

also is. Consequently, since P is orthogonal, W is a unitary matrix W†W = WW† = I.

Equation (43) demonstrates that the eigenvalues ıλn of the matrix A are zero for all

n = 1, . . . , N0. We now show that the associated spectral weights [Qngj·gk] are also zero

for all n = 1, . . . , N0. Here, gj = −ΓHej, Qn = wnw †
n, and wn, n = 1, . . . , N , are the

eigenvectors of A which comprise the columns of the matrix W. From equation (43), we

see that W† = R†PT . Since Γ = PGPT and P is an orthogonal matrix, this implies that

W†Γ = R†GPT . It follows from the block forms of the matrices G, P, and R in equations (41)

and (43), that W†Γ is given by

W†Γ = R†GPT =





I00 O01

O10 R
†
11









O00 O01

O10 I11









PT
0

PT
1



 =





O0N

R
†
11P

T
1



 , (44)

where O0N is a matrix of zeros of size N0×N . It follows from gj = −ΓHej and equation (44)

that w †
ngj = 0 for all n = 1, . . . , N0. This and equation (37) imply that [Qngj·gk] = 0 for

all n = 1, . . . , N0, as claimed.

In Section IX we will employ this projection method to compute the discrete spectral mea-

sure dµjk(λ) by directly computing the eigenvectors and eigenvalues of the matrix PT
1 HP1.

Our analysis demonstrates that the discrete spectral measure dµjk(λ) associated with equa-

tion (34) does not depend on components [Qngj·gk], n = 1, . . . , N0, and therefore do not

need to be computed at all. Moreover, in the case of a randomly perturbed, periodic velocity

field, since the matrix Γ is non-random, the spectral decomposition Γ = PGPT needs to be

computed only once, while the spectral decomposition in (42) of the much smaller matrix

PT
1 HP1 of size N1 × N1 is performed repeatedly to gather spectral statistics. This greatly

increases the efficiency of our associated computations.

V. SOBOLEV SPACE AND THE EFFECTIVE DIFFUSIVITY TENSOR

In this section, we adapt and extend an alternate method [8, 41] to the method presented

in Section III, which provides integral representations for the effective diffusivity tensor
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D∗, and leads to a more direct approach for its computation than the projection method

discussed in Section IV B. We provide functional formulas that are analogous to the formulas

in equation (13) for the symmetric S∗ and antisymmetric A∗ parts of D∗, involving the

scalar field χj in equation (4). We also provide a Sobolev space formulation of the effective

parameter problem [41] which yields a resolvent formula for χj that is analogous to the

formula in (18), involving a self-adjoint operator that depends only on the fluid velocity

field. This leads to the Stieltjes integral representations in (28), involving a spectral measure

of the operator.

In contrast to Section III B, which defined the effective tensor D∗ in terms of the vector

field ∇χj, here we define D∗ in terms of the scalar field χj. Consider the Hilbert space H,

H = {f ∈ L2(V , m) : f(x) is periodic in V}, (45)

where m is the Lebesgue measure on Rd, restricted to V , and the σ-algebra associated with

the underlying probability space is generated by the Lebesgue measurable subsets of Rd. The

Hilbert spaceH is equipped with a sesquilinear inner product 〈·, ·〉 defined by 〈f, h〉 = 〈 f h 〉,
with 〈h, f〉 = 〈f, h〉 for f, h ∈ H, which induces a norm ‖ · ‖ defined by ‖f‖ = 〈f, f〉1/2 and

f ∈ H implies ‖f‖ < ∞. Now consider the associated Sobolev space H1,2, which itself is a

Hilbert space [8],

H1,2 = {f ∈ H : ‖f‖1,2 <∞, 〈f〉 = 0}, ‖f‖1,2 = 〈|∇f |2〉1/2, (46)

where ‖·‖1,2 is the norm induced by the underlying sesquilinear inner-product 〈·, ·〉1,2 defined

by 〈f, h〉1,2 = 〈∇f ·∇h〉, with 〈h, f〉1,2 = 〈f, h〉1,2.

Recall the definition of the components D∗
jk = εδjk+〈ujχk〉, j, k = 1, . . . , d, of the effective

diffusivity tensor D∗ in (3). Rewrite the functional 〈ujχk〉 as [41],

〈ujχk〉 = 〈[∆∆−1uj]χk〉 = −〈∇∆−1uj·∇χk〉 = −〈∆−1uj, χk〉1,2, (47)

where we have used the periodicity of the functions uj and χk. Substituting into equa-

tion (47) the expression −uj = u·∇χj + ε∆χj for −uj in (4) yields the following functional

formulas for the components S∗
jk and A∗

jk, j, k = 1, . . . , d, of the symmetric S∗ and antisym-

metric A∗ parts of D∗ defined in equation (12),

S∗
jk = ε(δjk + 〈χj, χk〉1,2), A∗

jk = 〈Aχj, χk〉1,2, A = ∆−1[u·∇]. (48)
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The functional formulas in (48) are analogous to the functional formulas in equation (13).

Due to the incompressibility of the fluid velocity field, ∇·u = 0, the operator A is anti-

symmetric on H1,2, i.e., 〈Af, h〉1,2 = −〈f, Ah〉1,2 for all f, h ∈ H1,2 (see equation (A1)).

We stress that the operator A is independent of ε. Since the scalar fields χj and Aχj are

real-valued, we have that 〈χj, χk〉1,2 = 〈χk, χj〉1,2 and A∗
kj = 〈Aχk, χj〉1,2 = −〈χk, Aχj〉1,2 =

−〈Aχj, χk〉1,2 = −A∗
jk, confirming that S∗ is symmetric and A∗ is antisymmetric.

Applying the operator ∆−1 to both sides of the the cell problem ε∆χj + u·∇χj = −uj

in equation (4) yields the following resolvent formula for χj involving the antisymmetric

operator A, which is analogous to equation (18),

χj = (ε + A)−1gj, gj = −∆−1uj. (49)

Substituting the resolvent formula for χj in (49) into the functionals in equation (48) yields

S
∗
jk = ε(δjk + 〈(ε + A)−1gj, (ε + A)−1gk〉1,2), (50)

A∗
jk = 〈A (ε + A)−1gj , (ε + A)−1gk〉1,2,

which is a direct analogue of equation (19).

Since V is a bounded domain, the linear operator ∆−1 is bounded on H [49]. When |u|2

is uniformly bounded on the period cell V ,

sup
x∈V

|u(x)|2 <∞, (51)

the linear operator A is bounded on H1,2, with (see equations (A2) and (A3))

‖A‖1,2 ≤
[

‖∆−1‖ sup
x∈V

|u(x)|2
]1/2

<∞. (52)

All of the fluid velocity fields that we consider in Section IX satisfy equation (51). More

generally, for uk ∈ H, k = 1, . . . , d, the operator A is compact onH1,2 [8], hence bounded [49].

It follows that M = −ıA is a bounded linear operator on H1,2 with ‖M‖1,2 = ‖A‖1,2 < ∞,

where ı =
√
−1. Moreover, the skew-symmetry of A and the sesquilinearity of the H1,2-

inner-product imply that M is also symmetric, 〈Mf, h〉1,2 = 〈f, Mh〉1,2, hence self-adjoint

on H1,2 [46]. The spectrum Σ of the self-adjoint operator M is real-valued, with spectral

radius equal to its operator norm [46], i.e.,

Σ ⊆ [−‖A‖1,2, ‖A‖1,2 ]. (53)
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Exactly as in Section III B, direct analogues of equations (22)–(28) lead to the Stieltjes

integral representations in (28), involving a Stieltjes measure µjk associated with the function

of the spectral variable λ defined by µjk(λ) = 〈Q(λ)gj , gk〉1,2, where gj = −∆−1uj is defined

in (49) and {Q(λ)}λ∈Σ is the family of self-adjoint projection operators that is in one-to-

one correspondence with the bounded linear self-adjoint operator M on the Hilbert space

H1,2. From equation (23), the mass µ0
jk of the measure µjk is given by µ0

jk = 〈gj , gk〉1,2 =

〈∇∆−1uj·∇∆−1uk〉 so that

µ0
jk = 〈[(−∆)−1uj] uk〉, |µ0

jk| ≤ ‖∆−1uj‖ ‖uk‖ <∞. (54)

VI. DISCRETE SETTING: SOBOLEV SPACE OF SCALAR FIELDS

In Section IX, we consider a discrete approximation of the cell problem in (4) written

as (ε + ıM)χj = gj, where M = −ıA, A = ∆−1[u·∇], and gj = −∆−1uj, as defined in

equations (48) and (49). From the formula u = ∇·H in equation (8) and our discussion

in Section IV A, we may write the discrete, matrix representation M of the self-adjoint

operator M = ∆−1[−ı∇·H∇] by M = (−∇T∇)−1[−ı∇TH∇]. As in Section IV A, for sim-

plicity, we do not make a notational distinction for the matrix H, between the continuum

and discrete settings as the context will be clear. This composition of the Hermitian matrix

−ı∇TH∇ and the real-symmetric matrix (−∇T∇)−1 is not symmetric. From equation (A1)

we see that the symmetry properties of the operator M depend intimately on the inner-

product 〈f, h〉1,2 = 〈∇f ·∇h〉 of the underlying Sobolev space H1,2 defined in equation (46).

Therefore, the properties of this inner-product must be included in the discrete formulation

of the effective diffusivity tensor D∗.

In this section, we provide a discrete, matrix formulation of the effective parameter prob-

lem introduced in Section V, which involves a generalized eigenvalue problem that has

the Sobolev-type inner-product as a central feature. In particular, this formulation re-

tains the key properties of the weak form of the eigenvalue problem 〈Mϕn, ϕn〉1,2 = λn.

Namely, the operator M is self-adjoint with respect to the inner-product 〈·, ·〉1,2 defined by

〈f, h〉1,2 = 〈∇f ·∇h〉, its eigenfunctions ϕn ∈ H1,2 are orthonormal 〈ϕn, ϕm〉1,2 = δnm,

n, m = 1, 2, 3, . . ., with respect to the inner-product 〈·, ·〉1,2, and the spectrum Σ of M is

real valued, Σ ⊂ R. Towards this goal, consider the eigenvalue problem Mϕn = λnϕn in the



26

following form,

−ı∇·H∇ϕn = λn∆ϕn. (55)

Equation (55) is well defined for Hjk ∈ C1(V) and ϕn ∈ C2(V), where Cr(V) the space of

continuously differentiable functions of order r with domain V . Using a discrete version of

equation (55), our goal is to establish the integral representations in (28) for the functionals

S∗
jk = ε(δjk + 〈χj, χk〉1,2) and A∗

jk = 〈ıMχj, χk〉1,2 in (48), involving a discrete spectral

measure which is analogous to the measure in equation (34).

By our discussion in Section IV A, the matrix representation of (55) is given by

Bzn = λnCzn, B = −ı∇TH∇, C = ∇T∇. (56)

The first formula in equation (56) is a generalized eigenvalue problem [40] associated with

the pencil B− λC, where B and C are Hermitian and real-symmetric matrices, respectively,

of size K, say. The λn and zn, n = 1, . . . , K, are known as generalized eigenvalues and

eigenvectors, respectively. The matrix C = ∇T∇ is clearly positive semi-definite. In this

section, we will assume that C is positive definite, hence invertible. We will discuss the case

where C is positive semi-definite in Section VIII.

Since the matrices B and C are symmetric and C is positive definite, the generalized

eigenvalue problem has properties which are similar to the properties of the standard sym-

metric eigenvalue problem [40]. In particular, the generalized eigenvalues λn are all real, the

generalized eigenvectors zn form a basis for CK , and the zn are orthonormal in the following

sense z †
nCzm = δnm, n, m = 1, . . . , K, [40]. Since C = ∇T∇ is real-valued, this is equivalent

to the Sobolev-type orthogonality condition

∇zn·∇zm = δnm. (57)

In other words, the generalized eigenvectors zn are orthonormal with respect to the “discrete

inner-product” 〈·, ·〉1,2 defined by 〈ξ, ζ〉1,2 = ∇ξ·∇ζ, for ξ, ζ ∈ C
K . Denoting by Z the

matrix with columns consisting of the generalized eigenvectors zn, equation (57) is seen to

be equivalent to [∇Z]†[∇Z] = I, or Z†CZ = I. A key feature of the generalized eigenvalue

problem is that the matrix Z simultaneously diagonalizes B and C. Specifically, if Λ is the

diagonal matrix whose elements on the main diagonal are the generalized eigenvalues λn,

then [40]

Z†BZ = Λ, Z†CZ = I. (58)
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Since the zn, n = 1, . . . , K, form a basis for C
K and satisfy (57), for all ξ ∈ C

K , we

have that ξ =
∑

n(∇zn·∇ξ)zn =
∑

n(zn[∇zn]
†∇)ξ, which implies the following analogue

of equation (33)

K
∑

n=1

Qn = I, Qn = zn[∇zn]
†∇, QlQm = Ql δlm, (59)

where the matrices Qn, n = 1, . . . , K, are self-adjoint with respect to the discrete inner-

product 〈·, ·〉1,2 defined above, i.e., 〈Qnξ, ζ〉1,2 = 〈ξ,Qnζ〉1,2 for all ξ, ζ ∈ CK .

We now use equation (59) to prove the spectral theorem in (22) for this generalized eigen-

value problem setting. From Bzn = λnCzn and equation (59) we have that BQn = λnCQn

which is equivalent to C−1BQn = λnQn, since the matrix C is invertible. As in the discussion

following equation (33), the mutual orthogonality of the projection matrices Qn implies that

f(C−1B) =
∑

n f(λn)Qn for any polynomial f : R 7→ C. From the mutual orthogonality of

the projection matrices Qn and their symmetry with respect to the discrete inner-product

〈·, ·〉1,2 it follows that, for all ξ, ζ ∈ CK and complex-valued polynomials f(λ) and h(λ), the

bilinear functional 〈f(C−1B)ξ, h(C−1B)ζ〉1,2 has the integral representation in (22), with M

substituted by C−1B. Moreover, the complex-valued function µξζ(λ) = 〈Q(λ)ξ, ζ〉 in (22)

is now given by µξζ(λ) = 〈Q(λ)ξ, ζ〉1,2, where the associated matrix representation Q(λ)

of the projection operator Q(λ) and the discrete spectral measure dµξζ(λ) are given by the

following analogue of equation (34)

Q(λ) =
∑

n: λn≤λ

θ(λ− λn)Qn, dµξζ(λ) =
∑

n: λn≤λ

〈δλn(dλ)[∇Qnξ·∇ζ]〉. (60)

We now demonstrate that discrete representations of the functional formulas for S∗
jk

and A∗
jk in equation (48) yield their associated integral representations in (28), involving

the discrete spectral measure µjk in (60). From A = ∆−1(∇·H∇) and (56), the matrix

representation of the functional formulas S∗
jk = ε(δjk + 〈χj, χk〉1,2) and A∗

jk = 〈Aχj, χk〉1,2 in

equation (48) are given by

S
∗
jk = ε(δjk + 〈∇χj·∇χk〉) A

∗
jk = 〈∇C

−1[ıB]χj·∇χk〉. (61)

Moreover, the matrix representation of the cell problem ε∆χj + ∇·H∇χj = −uj, in (4), is

given by

(εC + ıB)χj = uj, (62)
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where uj is the discrete, vector representation of the jth component of the fluid velocity

field uj, for example. The matrix Z is invertible, as the generalized eigenvectors zn form a

basis for CN . Consequently, by equation (58) we have that B = Z−†ΛZ−1, C = Z−†Z−1. It

now follows from equation (62) that Z−†(εI + ıΛ)Z−1χj = uj, or equivalently

χj = Z(εI + ıΛ)−1Z †uj. (63)

Substituting the resolvent formula for χj in (63) into equation (61) yields the following

formula that is a direct analogue of equation (36)

S
∗
jk = ε(δjk + 〈(εI + ıΛ)−1

Z
†uj·(εI + ıΛ)−1

Z
†uk〉) (64)

A∗
jk = 〈ıΛ(εI + ıΛ)−1Z †uj·(εI + ıΛ)−1Z †uk〉,

where we have used that [∇Z]† = [∇Z]−1. The quadratic form Z †uj·Z
†uk arising in (64)

can be written in terms of the projection matrices Qn defined in (59) as follows. Analogous

to equation (37), we have

Z†uj·Z
†uk =

N
∑

n=1

(z†
nuj)(z

†
nuk) =

N
∑

n=1

znz †
nuj·uk. (65)

We now demonstrate that znz †
nuj·uk = ∇Qngj·∇gk, where gj = (∇T∇)−1uj,

znz
†
nuj·uk = znz †

n[∇T∇]gj·[∇T∇]gk = [∇zn][∇zn] †∇gj·∇gk = ∇Qngj·∇gk. (66)

It follows from equations (65) and (66) that the functional formulas for S∗
jk and A∗

jk in (64)

have the Stieltjes integral representations in equation (26), involving the discrete spectral

measure µjk in (60) with ξ = gj = (∇T∇)−1uj and ζ = gk = (∇T∇)−1uk.

Exactly as in Section IV A, we may rewrite these integral representations for S∗
jk and

A∗
jk in equation (26), involving the complex measure µjk, as the integral representations in

equation (28) involving the real signed measures Re µjk and Im µjk. The associated real-

valued functions Re µjk(λ) and Im µjk(λ) are given by equation (38) with [(Qn +Qn)gj·gk ]

substituted by [∇(Qn +Qn)gj·∇gk ]. Furthermore, due to the generalized eigenvalues and

eigenvectors of the antisymmetric matrix ıM = ∇TH∇ coming in complex conjugate pairs,

the discrete measure µjk depends only on a subset of the index set of the sums in (65) and

satisfy equation (39), with [Qngj·gk ] substituted by [∇Qngj·∇gk ].
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VII. DISCRETE EQUIVALENCE OF THE EFFECTIVE PARAMETER

PROBLEMS

In Section III, we formulated an effective parameter problem for the effective diffusivity

tensor D∗ associated with an incompressible fluid velocity field. The discrete version of

this effective parameter problem was formulated in Section IV. An alternate approach to

the effective parameter problem was formulated in Section V, and its discrete version was

formulated in Section VI. In this section, we demonstrate that the discrete versions of these

effective parameter problems yield equivalent spectral representations of D∗ when the matrix

∇ is of full rank, so that the matrix Laplacian is invertible.

Let ∇ = UΣVT be the singular value decomposition (SVD) of the matrix∇ of size N×K,

say, where N > K. Here, Σ = diag(σ1, . . . , σK), where 0 ≤ σ1 ≤ · · · ≤ σK , and the matrices

U and V are of size N ×K and K ×K, respectively, and satisfy [13]

UTU = I, VTV = VVT = I, (67)

where I is the K ×K identity matrix. The columns of U are called left singular vectors, the

columns of V are called right singular vectors, and the σi are called singular values.

It follows from ∇ = UΣVT and equation (67) that the spectral decomposition of the

negative matrix Laplacian ∇T∇ is given by ∇T∇ = VΣ2VT [13]. We assume that ∇ is of

full rank so that σi > 0 for all i = 1, . . . , K. This implies that Σ−1 exists so that the matrix

Laplacian is invertible. In this case, it follows from ∇ = UΣVT and equation (67) that the

projection matrix Γ = ∇(∇T∇)−1∇T is given by

Γ = UUT , (68)

which is a N × N symmetric projection matrix satisfying Γ2 = Γ and Γ∇ = ∇ (see equa-

tion (67)). A key property of the SVD of the full rank matrix ∇ is that its range is spanned

by the columns of U [13], hence Γ = UUT projects subspaces of RN onto the range of ∇.

From equations (67) and (68), we can write the eigenvalue problem −ıΓHΓwn = λnwn

discussed in Section IV A as

[−ıUT
HU][UTwn] = λn[UTwn]. (69)

Now consider the generalized eigenvalue problem −ı∇TH∇zn = αn∇T∇zn discussed in

Section VI and recall that ∇ = UΣVT and ∇T∇ = VΣ2VT . Since Σ is invertible, by
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equation (67), we can write this generalized eigenvalue problem as the following standard

eigenvalue problem

[−ıUT
HU][ΣV

T zn] = αn[ΣV
T zn]. (70)

Comparing the formulas in equations (69) and (70) indicates that spectrum associated with

each of these eigenvalue problems is identical, αn = λn, and that the eigenvectors are

related by UT wn = ΣVT zn. Since Γ is a projection matrix, Γ2 = Γ, the eigenvalue problem

ΓHΓwn = ıλnwn can be written as ΓHΓ[Γwn] = ıλn[Γwn], which implies that Γwn = wn.

Consequently, applying the matrix U to both sides of the formula UT wn = ΣVT zn and

recalling that Γ = UUT and ∇ = UΣVT we have

wn = ∇zn. (71)

In the following lemma we make precise the correspondence between the standard eigen-

value problem −ıΓHΓwn = λnwn and the generalized eigenvalue problem −ı∇TH∇zn =

αn∇T∇zn, as well as the associated spectral measures in equations (34) and (60), respec-

tively.

Lemma 1 Consider the standard eigenvalue problem and the generalized eigenvalue problem

given, respectively, in equations (72) and (73) below

−ıΓHΓwn = λnwn, (72)

−ı∇TH∇zn = λn∇T∇zn. (73)

Let ∇ = UΣVT be the SVD of the matrix ∇, which we assume to be of full rank. Then

equation (72) implies and is implied by equation (73), with wn and zn related as in equa-

tion (71). This implies that the spectrum associated with each of these eigenvalue problems

is identical. Moreover, the spectral weights in equations (37) and (66) are identical, i.e.,

QnΓHej·ΓHek = ∇Qn[∇T∇]−1uj·∇[∇T∇]−1uk. (74)

This, in turn, implies that the associated spectral measures in equations (34) and (60) are

identical for all ξ, ζ ∈ CN .

Proof of Lemma 1

Recall that ∇ = UΣVT , ∇T∇ = VΣ2VT , and Γ = UUT , where Σ is invertible, and the matri-

ces V and U satisfy equation (67). First consider equation (72) written as in equation (69),



31

[−ıUTHU][UTwn] = λn[UTwn]. Since the matrix Σ is invertible and VT V = I, we can rewrite

equation (69) as

VΣ[−ıUT
HU](ΣV

T )(VΣ−1)[UTwn] = λn(VΣ2
V

T )(VΣ−1)[UT wn], (75)

which is precisely equation (73) written in terms of ∇ = UΣVT with zn = VΣ−1UT wn. This

formula for zn, equation (67), and the formula Γwn = wn above equation (71) imply that

wn = UΣVT zn = ∇zn. Now consider equation (73) written as in (70), [−ıUTHU][ΣVTzn] =

λn[ΣVTzn]. Since UTU = I, we can rewrite equation (70) as

U[−ıUTHU](UTU)[ΣVT zn] = λnU[ΣVTzn], (76)

which is precisely (72) written in terms of Γ = UUT with wn = UΣVT zn = ∇zn.

We now establish equation (74). From the formula u = ∇·H in (8), we have that

uj = ∇·Hej. Since ∇ = UΣVT , the discrete version of this formula is given by

uj = −∇THej = −VΣUT Hej. (77)

From ∇ = UΣVT and (∇T∇)−1 = VΣ−2VT we have ∇(∇T∇)−1 = UΣ−1VT . Consequently,

Γ = UUT , and equations (67) and (77), yield −ΓHej = ∇(∇T∇)−1uj. Equation (74) now

follows from the formula wn = ∇zn in (71)

wnw†
n∇(∇T∇)−1uj·∇(∇T∇)−1uk = [(∇T∇)−1∇Twn][(∇T∇)−1∇Twn]†uj·uk

= [(∇T∇)−1∇T∇zn][(∇T∇)−1∇T∇zn]†uj·uk

= znz
†
nuj·uk, (78)

where we have used that the inverse of a symmetric matrix is also symmetric [22]. The

equivalence of equations (74) and (78) now follows from equations (33), (59), and (66). This

concludes our proof of Lemma 1 2.

We conclude this section with a discussion regarding numerical computations of the ef-

fective diffusivity D∗. The approach discussed in this section and the projection method

discussed in Section IV B combine the computational advantages of the methods discussed

in Sections IV A and VI. More specifically, in the full rank setting, the spectral measure

underlying the discrete integral representation for D∗ was calculated in Section IV A in

terms of the standard eigenvalue problem −ıΓHΓwm = λnwn, where the matrix −ıΓHΓ

is of size N × N . In Section VI, D∗ was calculated in terms of the generalized eigenvalue
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problem −ı∇TH∇zn = λn∇T∇zn, involving the K×K matrices −ı∇TH∇ and ∇T∇. Since

∇T = (∇T
1 , . . . ,∇T

d ) is of size K × N we have that K = N/d. However, the generalized

eigenvalue problem is more computationally intensive than the standard eigenvalue prob-

lem [40]. For the case of randomly perturbed flows, these are not efficient ways to compute

spectral statistics for D∗.

The projection method developed in Section IV B demonstrates that, by first computing

the standard eigenvalue decomposition of the non-random matrix Γ, the spectral statistics

of the eigenvalue problem −ıΓHΓwn = λnwn can then be obtained by repeatedly comput-

ing the standard eigenvalue decomposition of smaller matrices. They are of size K × K

by equations (40), (41), and (68). We stress that K and N1 both denote the rank of the

matrix Γ in this section and in Section IV B, respectively, i.e., K = N1. Note that com-

puting the matrix Γ = ∇(∇T∇)−1∇T involves numerically solving N linear systems of size

K ×K. Alternatively, the proof of Lemma 1 illustrates that by first computing the SVD of

the matrix gradient, ∇ = UΣVT , the spectral statistics of the generalized eigenvalue prob-

lem −ı∇TH∇zn = λn∇T∇zn can then be obtained by repeatedly computing the standard

eigenvalue decomposition of the matrix −ıUTHU which is of size K ×K. When N is large,

these equivalent methods are more numerically efficient than the other approaches discussed

in Sections IV A and VI.

In Section VIII, we generalize Lemma 1 to the case where ∇ has rank K1 with K1 < K,

demonstrating that the two formulations yield equivalent spectral representations of the

effective diffusivity tensor D∗ in the this rank deficient setting. Moreover, we demonstrate

that, by first computing the SVD of the matrix gradient, D∗ can be computed via a standard

eigenvalue problem for matrices of size K1 ×K1. Consequently, the rank deficiency of the

problem actually increases the numerical efficiency of computations.

VIII. RANK DEFICIENCY AND A UNIFYING STANDARD EIGENVALUE

PROBLEM

In Sections IV and VI we provided two discrete, matrix formulations of the effective

parameter problem for the effective diffusivity tensor D∗. These two formulations assume

that the N ×K matrix ∇ is of full rank K so that the negative matrix Laplacian ∇T∇ is

invertible. Lemma 1 shows that, given this condition, the two formulations yield equivalent
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spectral representations of D∗. In this section, we generalize Lemma 1 to the case where ∇
has rank K1 with K1 < K, again demonstrating that the two formulations are equivalent in

this rank deficient setting. This framework is used in Section IX to compute D∗ for periodic

flows, for which the matrix ∇ with periodic boundary conditions is rank deficient.

Consider the cell problem in (4) written, via (8) and [∇·H ]·∇ϕ = ∇·[H∇ϕ], as

∇·H∇χj + ε∆χj = −uj. (79)

Discretizing equation (79) yields (see Section IV A for details)

∇TH∇χj + ε∇T∇χj = uj , (80)

where uj is the discrete, vector representation of the jth component of the fluid velocity field

uj, and similarly for χj . Substituting the formula for uj in (80) into the discrete version

D∗
jk = εδjk + 〈uj·χk〉 of equation (3) yields

D∗
jk = S∗

jk + A∗
jk, S∗

jk = ε(δjk + 〈∇T∇χj·χk〉), A∗
jk = 〈∇T H∇χj·χk〉, (81)

where, as before, S∗
kj = S∗

jk and A∗
kj = −A∗

jk.

We first work with equation (80) directly and develop a mathematical framework which

parallels the framework of Section VI. We then transform equation (80) into a discrete ana-

logue of equation (18) written as
(

εI+ΓHΓ
)

∇χj = −ΓHej , with a suitable generalization of

the formula for the matrix Γ in (68), and develop a mathematical framework which parallels

the framework of Section IV. We then generalize Lemma 1 of Section VII, establishing the

equivalence of these two formulations for the rank deficient setting.

Let ∇ = UΣVT be the SVD of the N ×K matrix ∇ discussed in Section VII. We assume

that ∇ is rank deficient so that ∇T∇ = VΣ2VT is singular, with K1 non-zero eigenvalues

and K0 = K −K1 zero eigenvalues, and write

U = [U0 U1], Σ =





O00 O01

O10 Σ1



 , V = [V0 V1]. (82)

Here, Oab are matrices of zeros of size Ka ×Kb, a, b = 0, 1, Ua is N ×Ka, Va is K × Ka,

and Σ1 is a K1 ×K1 diagonal, invertible matrix. By equation (67) the matrices U1 and V1

satisfy

UT
1 U1 = I1, VT

1 V1 = I1, (83)
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where I1 is the K1 ×K1 identity matrix. An important property of the SVD of the matrix

∇ is that its null space is spanned by the columns of V0 and its range is spanned by the

columns of U1 [13].

Due to the blocks of zeros of Σ in (82), the matrix elements of ∇ and ∇T∇ do not depend

on U0 nor V0 and can be written as ∇ = U1Σ1V
T
1 and ∇T∇ = V1Σ

2
1V

T
1 . Consequently,

equation (80) can be rewritten as

[V1Σ1][U
T
1 HU1][Σ1V

T
1 ]χj + εV1Σ

2
1V

T
1 χj = uj. (84)

Since the K1 × K1 matrix UT
1 HU1 is antisymmetric, it has the spectral decomposition

UT
1 HU1 = ıR1Λ1R

†
1, where Λ1 is a diagonal, real-valued matrix and R1 is a unitary matrix,

R
†
1R1 = R1R

†
1 = I1. It follows that

∇TH∇ = ı[V1Σ1R1]Λ1[V1Σ1R1]
†, ∇T∇ = [V1Σ1R1][V1Σ1R1]

†. (85)

Consequently, equation (84) can be rewritten as [V1Σ1R1](εI1 + ıΛ1)[V1Σ1R1]
†χj = uj . This

formula and equation (83) together imply the following analogue of equation (63)

V
T
1 χj = V

T
1 Z1(εI1 + ıΛ1)

−1
Z
†
1uj , Z1 = V1Σ

−1
1 R1. (86)

Substituting equation (86) into the functionals 〈∇T∇χj·χk〉 and 〈∇TH∇χj·χk〉 in equa-

tion (81) yields the following analogue of (64) (see Appendix B for details)

S∗
jk = ε(δjk + 〈(εI1 + ıΛ1)

−1Z
†
1uj·(εI1 + ıΛ1)

−1Z
†
1uk〉), (87)

A
∗
jk = 〈ıΛ1(εI1 + ıΛ1)

−1
Z
†
1uj·(εI1 + ıΛ1)

−1
Z
†
1uk〉.

The quadratic form Z
†
1uj·Z

†
1uk arising in (87) yields the following analogue of (65)

Z
†
1uj·Z

†
1uk =

K1
∑

n=1

([z1
n]†uj)([z

1
n]†uk) =

K1
∑

n=1

[z1
n][z1

n]
†uj·uk, z1

n = V1Σ
−1
1 r1

n, (88)

where r1
n, n = 1, . . . , K1, are the orthonormal eigenvectors of the matrix UT

1 HU1 which

comprise the columns of R1. From ∇ = U1Σ1V
T
1 and equations (83) and (88) we have

that ∇z1
n = U1r

1
n. The orthogonality condition r1

n·r1
m = δnm and equation (83) then

imply that the vectors z1
n satisfy the Sobolev-type orthogonality condition in equation (57),

∇z1
n·∇z1

m = δnm. Moreover, since
∑

n r1
n[r1

n]
† = I1, as the vectors r1

n form an orthonormal

basis for C
K1, we also have the following generalization of equation (59)

K1
∑

n=1

Q1
n = V1V

T
1 , Q1

n = z1
n[∇z1

n] †∇, Q1
lQ1

m = Q1
l δlm, (89)
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where the matrices Q1
n, n = 1, . . . , K1, are self-adjoint with respect to the discrete inner-

product 〈·, ·〉1,2 defined by 〈ξ, ζ〉1,2 = 〈∇ξ·∇ζ〉, i.e., 〈Q1
nξ, ζ〉1,2 = 〈ξ,Q1

nζ〉1,2 for ξ, ζ ∈ CK1.

It follows from equations (87) and (88) that

S
∗
jk/ε− δjk =

K1
∑

n=1

Re [ ([z1
n]

†uj)([z
1
n]†uk) ]

ε2 + [λ1
n]2

, A
∗
jk =

K1
∑

n=1

λ1
nIm [ ([z1

n]
†uj)([z

1
n]†uk) ]

ε2 + [λ1
n]2

, (90)

where λ1
n, n = 1, . . . , K1, are the eigenvalues of the matrix −ıUT

1 HU1 corresponding to the

eigenvectors r1
n. Here, as in equation (28), we have used the fact that the matrices ∇ and

H, as well as the vectors χ1 and uj, and the molecular diffusivity ε are real valued, so that

〈∇χj·∇χk〉 = 〈∇χk·∇χj〉 and 〈∇TH∇χj·χk〉 = 〈χk·∇TH∇χj〉. Due to the eigenvalues

and eigenvectors of the antisymmetric matrix UT
1 HU1 coming in complex conjugate pairs, as

in equations (38) and (39), the sums in (90) depend only on a subset of the index set.

We now argue that the mathematical framework developed in equations (80)–(90) gen-

eralizes the full rank case in Section VI. Indeed, in the full rank setting, the matrix V1 = V

is orthogonal, Σ1 = Σ is invertible, and R1 = R is orthogonal, so that the matrix Z1 = Z

defined in (86) is given by

Z = VΣ−1
R, (91)

and is invertible with Z−1 = R†ΣVT and satisfies Z−1Z = ZZ−1 = I. Consequently, equa-

tion (85) implies that equation (58) is satisfied with Λ1 = Λ. In this case, equations (63)–(65)

are identical to equations (86)–(88), respectively.

We now generalize the mathematical framework developed in Section IV to the case that

the matrix ∇ is rank deficient. Using equation (83) and the invertibility of the matrix Σ1,

we can rewrite equation (84) as

U1[U
T
1 HU1][U

T
1 U1][Σ1V

T
1 ]χj + εU1Σ1V

T
1 χj = U1Σ

−1
1 V

T
1 uj . (92)

Substituting the formula uj = −∇THej of (77) into equation (92) and using ∇ = U1Σ1V
T
1

yields

(

εI + Γ1HΓ1

)

∇χj = g1
j , Γ1 = U1U

T
1 , g1

j = −Γ1Hej, (93)

which analogous to equation (18). As in Section VII, the matrix Γ1 = U1U
T
1 projects

subspaces of R
N onto the range of ∇. Since the matrix Γ1HΓ1 is antisymmetric, it has
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the spectral decomposition Γ1HΓ1 = ıW1Λ̃W
†
1, where W1 is a unitary matrix W

†
1W1 =

W1W
†
1 = I. This and equation (93) yield the resolvent formula for ∇χj in (35), with

corresponding notational changes. In equation (81), write 〈∇T∇χj·χk〉 = 〈∇χj·∇χk〉 and

〈∇TH∇χj·χk〉 = 〈Γ1HΓ1∇χj·∇χk〉, where the second formula follows from UT
1 U1 = I1

and ∇ = U1Σ1V1 which imply that Γ1∇ = ∇. Exactly as in Section IV A, this leads to

equations (36) and (37), with corresponding notational changes. This, in turn, leads to the

integral representations for S∗
jk and A∗

jk in equation (28), involving a discrete spectral measure

µjk associated with the function µjk(λ) = 〈Q1(λ)g1
j ·g

1
j〉, defined by (34) with Q(λ) and Qn

substituted by Q1(λ) and Q1
n, respectively, where Q1

n = [w1
n][w

1
n]

† and w1
n, n = 1, . . . , K1,

are the eigenvectors of the matrix Γ1HΓ1 which comprise the columns of W1. In the case

that the matrix ∇ is of full rank, we have U1 = U hence W1 = W. This establishes that the

mathematical framework discussed in this paragraph reduces to the mathematical framework

in Section IV for the full rank setting and therefore is a generalization.

We now employ the projection method developed in Section IV B to generalize the math-

ematical framework in Section VII to the rank deficient setting, establishing the equivalence

of the two approaches that follow from equations (84) and (93). We stress that the matrix

Γ1 defined in this section is identical to the matrix Γ defined in Section IV B, Γ1 = Γ, which

were given different notations to clarify our discussion here.

Since Γ1 = U1U
T
1 is a projection matrix, the projection method discussed in Section IV B

can be directly applied to equation (93). However, the mathematical framework developed

here provides deeper insight into equation (41) of the method. In particular, in Section IV B

we wrote Γ = PGPT , where P is an orthogonal matrix consisting of the eigenvectors of Γ

and the matrix G is defined in equation (41). Moreover, we wrote P = [P0 P1], where the

columns of the matrices P0 and P1 are orthonormal eigenvectors that span the null space

and range of Γ, respectively. Since the eigenvalues γn associated with the eigenvectors in the

matrix P1 satisfy γn = 1, any linear combination of the corresponding eigenvectors is also

an eigenvector of Γ with eigenvalue γn = 1. Therefore, since the orthonormal columns of the

matrix U1 span the range of Γ1 = U1U
T
1 , without loss of generality, we may take P1 = U1 so

that P = [P0 U1]. Consequently, we can rewrite equation (42) as

UT
1 HU1 = ıR11Λ11R

†
11. (94)

From equation (94) and the comment after equation (84), we have that R11 = R1 and
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Λ11 = Λ1. This and equation (43) establishes that the spectra associated with each of the

two approaches are identical. We now establish that the spectral weights associated with

both approaches are also identical. From the formula P = [P0 U1] and equation (43) with

R11 = R1 and W redefined as W1, we have that W1 = PR = [P0 U1R1]. Consequently,

from ∇ = U1Σ1V
T
1 , equation (83), and the formula Z1 = V1Σ

−1
1 R1 in (86), we have that

∇Z1 = U1R1, which implies the following generalization of equation (71)

W1 = [P0 ∇Z1], ∇Z1 = U1R1. (95)

It now follows from Γ1P0 = O, Γ1∇ = ∇, and the formula uj = −∇THej in (77) that

W
†
1Γ1Hej·W

†
1Γ1Hek = [∇Z1]

†
Hej·[∇Z1]

†
Hek = Z

†
1uj·Z

†
1uk. (96)

This establishes that the spectral weights associated with both approaches are identical and,

in turn, establishes the equivalence of the two approaches following from equations (84)

and (93). In Section IX we will use equation (90) to compute the effective diffusivity ten-

sor D∗ for various periodic flows and relate spectral characteristics to flow geometry and

transport properties.

IX. COMPUTATIONS OF THE EFFECTIVE DIFFUSIVITY TENSOR

In this section, we employ the mathematical framework developed in Section VIII to pro-

vide rigorous computations of the effective diffusivity tensor D∗ for various model periodic

flows. In particular, we employ equation (90) to compute the symmetric S∗ and antisymmet-

ric A∗ parts of D∗. As a benchmark test we compute D∗ for shear flow, for which the spectral

measure is known [3]. We also consider a fluid velocity field that has a free parameter. As

the parameter varies, the flow transitions from cellular flow to shear flow in the diagonal x-y

direction. This gives rise to fascinating transitional behavior in the spectral measure, which

governs transitional behavior in the effective diffusivity tensor D∗. For the sake of brevity,

we will focus our attention on the ε behavior of the components S∗
jk, j, k = 1, . . . , d, of S∗.

Moreover, for computational simplicity, we have restricted our computations to dimension

d = 2.
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A. Numerical Methods

By equation (8), the time-independent fluid velocity field u = u(x) is given in terms

of an antisymmetric matrix H = H(x), u = ∇·H. For dimension d = 2, the matrix H is

determined by a stream function Ψ = Ψ(x),

H =





0 Ψ

−Ψ 0



 , (97)

yielding u = [−∂yΨ, ∂xΨ], where ∂x denotes partial differentiation in the variable x, for

example. In this section we consider two flows with free parameters which transition from

cellular flow to shear flow as parameters vary. In particular, we consider BC-flow [9] and

“cat’s eye” flow [15], which are defined by the following stream functions ΨBC and ΨCE ,

respectively,

ΨBC(x) = B sinx−C sin y, ΨCE(x) = sinx sin y + A cosx cos y, (98)

where we have denoted x = (x, y). The corresponding fluid velocity fields are

uBC(x) = (C cos y, B cosx), (99)

uCE(x) = (− sinx cos y + A cosx sin y, cosx sin y − A sinx cos y).

The flow geometry of these fluid velocity fields transition from shear to cellular flow structure

as the system parameters A, B, C ∈ [0, 1] vary.

Streamlines of a 2D flow are level sets of the stream function Ψ, which define a family of

curves that are instantaneously tangent to the fluid velocity field u, since u = [−∂yΨ, ∂xΨ]

implies that u·∇Ψ = 0. In Fig. 1, we display streamlines of the stream functions in

equation (98) for various parameter values. The streamlines for cat’s eye flow are sym-

metric about the line y = x, which follows from the symmetry of the stream function

ΨCE(x, y) = ΨCE(y, x). The stream function for BC-flow has a more complicated sym-

metry Ψ(x, y; B, C) = −Ψ(y, x; C, B). This symmetry indicates that if the values of B

and C are interchanged, B ←→ C , then the original flow is recovered from a 90◦ rotation

(x → y, y → −x) followed by a reflection about the x-axis (y → −y). Consequently, flows

elongated in the y-direction become flows elongated in the x-direction under the interchange

B ←→ C .
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FIG. 1. Transitions in flow structure. The streamlines for BC-flow and cat’s eye flow are displayed

for various parameter values, transitioning from shear to cell flow structure. From left to right

and top to bottom, the parameter values associated with BC-flow are B = 1 fixed and C =

0, 0.01, 0.1, 0.3, 0.5 and 1, while those for cat’s eye flow are A = 0, 0.1, 0.3, 0.5, 0.7, and 1.

In equation (6) and the paragraph therein we discussed our non-dimensionalization the

advection-diffusion equation in (1). In particular, we mapped u to the non-dimensional fluid

velocity field u 7→ u/‖u‖ and ε to the non-dimensional molecular diffusivity ε 7→ ε/(`‖u‖),
where ` is the maximum cell period and ‖u‖ = 〈|u|2〉1/2 is the Hilbert space norm of u. For

the fluid velocity fields in equation (99), V = [0, 2π]2 and ` = 2π. When u in equation (99)

is non-random then the underlying Hilbert space is H = L2(V , m), where m denotes the
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normalized Lebesgue measure (uniform distribution) on R
d, restricted to V , and ‖·‖ denotes

the H -norm, with

‖uBC‖2 =
B2 + C2

2
, ‖uCE‖2 =

1 + A2

2
. (100)

In Section III B we discussed the effective parameter problem for the setting of randomly

perturbed, periodic flows. For the sake of brevity, we consider here only the randomly

perturbed cat’s eye flow, with the parameter A uniformly distributed on the interval [0, p],

having second moment p2/3. Numerically, it is natural to set H = L2(m× P ) [26], where

P is the probability measure associated with the random variable A. In this case, by

Fubini’s theorem [18], 〈·〉 can be considered to denote spatial averaging followed by statistical

averaging and the formula for ‖uCE‖2 in (100) is replaced by

‖uCE‖2 =
3 + p2

6
. (101)

We now discuss in more detail our discrete, matrix formulation of the effective parameter

problem. To illustrate how to generalize these ideas to dimension d larger than d = 2, we

will maintain aspects of our general notation. In this discrete setting, the spatial region

V = [0, 2π]d, for example, is replaced by a square lattice Vd
L of size L containing Ld equally

spaced points in V . As discussed in the beginning of Section IV A, the differential operators

∇ and ∇· are replaced by finite difference, matrix operators ∇ and −∇T , respectively, with

suitable boundary conditions. Periodic boundary conditions will be assumed throughout

this section. Since these matrices operate on vectors, the d-dimensional lattice Vd
L must be

bijectively mapped to a one dimensional lattice VN of size N = Ldd. The specific structure

of VN and ∇ depend on the bijective mapping Θ chosen. In our computations discussed in

this section, we used the mapping Θ described in [37].

Under the mapping Θ, a spatially dependent d-dimensional vector field v(x), say, is

bijectively mapped to a discretized constant vector of length N that contains all of the

spatial information of v(x) for x ∈ Vd
L. For example the spatially dependent vector v(x) =

(v1(x), v2(x)) is mapped to (v1, v2), where the vectors vi, i = 1, 2, are constant and of

length Ld. Similarly, the d-dimensional standard basis vector e1 = (1, 0, . . . , 0) is mapped

to the N -dimensional vector (1, 0, . . . , 0), where 1 and 0 are vectors of ones and zeros of

length Ld, respectively, and similarly for the ej for j = 2, . . . , d. Therefore, the vectors êj,
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j = 1, . . . , d, satisfying

êj = Θ(ej)/L
d/2, êj · êk = δjk, (102)

serve as “lattice standard basis vectors.” In previous sections, we deferred the description

of these vectors to the present section and, for simplicity, used the notation ej. Now that

the specific nature of these vectors has been discussed, we will henceforth use the notation

in equation (102). With this convention, the division by Ld/2 in (102) takes care of the

L-scaling in discrete representations of spatial integrals, where the normalized Lebesgue

measure dx becomes the discrete differential dx = (2π/L)d/(2π)d when V = [0, 2π]d and

the spatial average 〈ξ(x) ζ(x)〉V becomes ξ·ζ/Ld. As another example, under the bijective

mapping, the 2×2 matrix H in (97) becomes a N ×N antisymmetric banded matrix, where

the stream function Ψ(x) is represented by a diagonal Ld ×Ld matrix and the zero element

0 is represented by a matrix of zeros. In higher dimensions d > 2 the discrete representation

of the matrix H is also banded. As in previous sections, for notational simplicity, we will not

make a notational distinction for the matrix H between the continuum and discrete settings.

In Section VIII we demonstrated that, for the discrete setting, the spectral measure µjk

underlying the Stieltjes integral representation of S∗
jk is given by

dµjk(λ) =
∑

n: λ1
n≤λ

〈mjk(n) δλ1
n
(dλ)〉, (103)

where λ1
n, n = 1, . . . , K1, are the eigenvalues of the matrix −ıUT

1 HU1 in (94), while vari-

ous equivalent representations of the spectral weights mjk(n), j, k = 1, . . . , d, are given in

equation (96). In our computations of µjk, we used

mjk(n) = Re [ ([r1
n]

†UT
1 Hêj) ([r1

n]
†
U

T
1 Hêk) ], n = 1, . . . , K1, (104)

which follows from equations (38), (95), and (96). We stress that, for notational simplicity,

in this section we denote µjk ≡ Re µjk, j, k = 1, 2, as indicated in equation (104). In (104),

r1
n, n = 1, . . . , K1, are the complex eigenvectors of the matrix −ıUT

1 HU1. Consequently,

µkk is a positive measure and µjk is a signed measure for j 6= k. The size of the matrix

∇ is N × Ld, where N = Ldd. For d = 2 the nullity of ∇ is 1, therefore, the size of U1 is

N × (Ld − 1), so that the Hermitian matrix −ıUT
1 HU1 is of size K1 = Ld − 1.

We denote the spectral weights mjk(n) associated with the decomposition µjk = µ+
jk−µ−

jk

in (30) by m+
jk(n) and m−

jk(n), where m±
jk(n) ≥ 0. Moreover, we also denote [18] by the
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functions [S∗
12]

+ and [S∗
12]

−

[S∗
12]

+(ε) = max{S∗
12(ε), 0}, [S∗

12]
−(ε) = max{−S

∗
12(ε), 0}, (105)

for each 0 < ε <∞, so that S∗
12 = [S∗

12]
+ − [S∗

12]
−, [S∗

12]
±(ε) = S∗

12(ε; µ
±
12), and [S∗

12]
± ≥ 0.

In the case of a non-random fluid velocity field u, we used L = 200 so that K1 = 39, 999.

The eigenvalues λ1
n and eigenvectors r1

n of the non-random Hermitian matrix −ıUT
1 HU1

were computed using the Matlab function eig(). In this case, the averaging 〈·〉 in (103)

is interpreted as spatial averaging over the period cell V . In the random setting, we used

L = 100 so that K1 = 9, 999. In this case, the averaging 〈·〉 in (103) is interpreted as spatial

averaging followed by ensemble averaging over ∼ 103 statistical trials.

The numerical accuracy of the eigenvalue problem is determined by the eigenvalue con-

dition numbers K(λ1
n), n = 1, . . . , K1, which are the reciprocals of the cosines of the angles

between the left and right eigenvectors. Large eigenvalue condition numbers of a Hermitian

matrix implies that it is near a matrix with multiple eigenvalues, while eigenvalue condition

numbers close to 1 imply that the eigenvalue problem is well-conditioned. The eigenvalue

problem for the matrix−ıUT
1 HU1 is extremely well conditioned with maxn |1−K(λ1

n)| ∼ 10−14

typical, which were computed using Matlab’s function condeig().

To our knowledge, Matlab does not provide a function that describes the accuracy of

the computed SVD of the matrix ∇ = UΣVT . In order to better understand the numerical

accuracy in the entries of the matrix U, which is central to our computational method, we

performed the following tests. For the case of Dirichlet boundary conditions, the matrix

∇ is of full rank, hence the matrix Laplacian ∇T∇ is invertible. We computed the matrix

Γ = ∇(∇T∇)−1∇T directly using Matlab’s mldivide function A\B, i.e., Γ = ∇((∇T∇)\∇T),

and also using the SVD of the matrix ∇, with Γ = UUT . We then computed the component-

wise maximum difference maxlm |[∇((∇T∇)\∇T) − UUT ]lm|. When L = 100 and L = 200

this difference is ∼ 10−15, which gives an idea of the accuracy of the SVD of ∇ for the

rank deficient, periodic setting. In all of our computations, Matlab’s sparse architecture was

employed wherever possible to reduce roundoff error.
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B. Numerical Results

We now discuss our numerical results. It was shown [3] in the continuum setting that for

shear flow in the x-direction, the measure µ11 is given by a δ-measure concentrated at the

spectral origin, while µ22 ≡ 0, and similarly for shear flow in the y-direction. As a baseline

result, we computed the spectral measures and effective diffusivities for BC-shear-flow in

both the x and y-directions, which are obtained for parameter values (B, C) = (0, 1) and

(B, C) = (1, 0), respectively. Our computations of the components µjk, j, k = 1, 2, of the

spectral measure for BC-shear-flow displayed in Fig. 2 are in agreement with the theoretical

prediction in [3].

Fig. 2 displays the streamlines for BC-shear-flow in (a) the x-direction and (b) the y-

direction. In Fig. 2c the components S∗
jk, j, k = 1, 2, of the effective diffusivity tensor are

displayed for BC-shear-flow in the x-direction. The analogous result for BC-shear-flow in

the y-direction is visually identical to Fig. 2c under the mapping S∗
11 ↔ S∗

22, i.e., under

the exchange of the colors black ↔ blue. The components µjk, j, k = 1, 2, of the spectral

measure are displayed for BC-shear-flow in (d) the x-direction and (e) the y-direction.

We focus our discussion on the results for BC-shear-flow in the x-direction, as the dis-

cussion regarding BC-shear-flow in the y-direction is analogous. For all n = 1, . . . , K1, the

spectral weights m22(n) in Fig. 2d associated with the y-direction satisfy m22(n) . 10−29,

while m±
12(n) . 10−28 in the bulk of the spectrum with a peak near the spectral origin with

spectral weights satisfying m±
12(n) . 10−16. With the effects of finite resolution L < ∞ as

well as numerical errors in the computed components of the matrix −ıUT
1 HU1 and its eigen-

value decomposition, associated with roundoff error due to a machine epsilon of ∼ 10−16,

these spectral weights can be considered “numerically zero.” The spectral weights for the

x-direction satisfy m11(n) . 10−28 in the bulk of the spectrum, while the weights near the

spectral origin satisfy 10−9 . m11 . 10−1, resembling a δ-measure with virtually all of its

mass concentrated near the origin. This is consistent with theoretical predictions [3]. Due

to the antisymmetry of the real-valued matrix UT
1 HU1, its complex eigenvectors and purely

imaginary eigenvalues come in complex conjugate pairs [22]. Consequently, the eigenvalues

of the Hermitian matrix −ıUT
1 HU1 come in positive-negative pairs with identical spectral

weights, resulting in the symmetry about the y-axis displayed by the spectral measures

in Fig. 2.
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FIG. 2. Shear flow baseline result. The streamlines of BC-shear-flow in (a) the x-direction and (b)

the y-direction. (c) The ε behavior of our computations of the components S∗
jk, j, k = 1, 2, of the

effective diffusivity corresponding to shear flow in the x-direction. The spectral weights mjk of the

spectral measure Re µjk for shear flow in (d) the x-direction and (e) the y-direction. Consistent

with theoretical predictions, the measure associated with the direction of the flow resembles a delta

measure centered at the origin, while the other two components have spectral weights mjk with

very small magnitudes.

Due to the high concentration of measure mass in µ11 very near the spectral origin, our

computation of S∗
11 displayed in Fig. 2c behaves like it’s being governed by a delta function

concentrated at the origin. In particular, Fig. 2c shows that the computed ε behavior of S∗
11

displayed in black color with solid line-style lays right on top of the graph of its upper bound

ε [1 + µ0
kk/ε

2] given in (29), with µ0
11 ≈ 2.5204× 10−2, displayed in black color and dash-dot
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line-style. (We had to increase the line-width of the upper bound to be able to distinguish

between the two black lines.) Due to the extremely small magnitudes of the spectral weights

m22 and m±
12, with measure masses µ0

22 ≈ 2.7050 × 10−30, [µ0
12]

+ ≈ 5.2119 × 10−18, and

[µ0
12]

− ≈ 1.6910 × 10−16, the upper and lower bounds for S∗
22 and S∗

12 in equations (29)

and (31) are very close to ε and 0, respectively; The graph of S∗
22 is virtually right on top of

the lower bound ε in cyan color and solid line-style, and the magnitudes of [S∗
12]

+ and [S∗
12]

−

are so small they don’t even appear on the graph. Since the support of the spectral measure

is contained in the interval [−1, 1], the components of the effective diffusivity approach their

bare molecular diffusivity value ε δjk for large ε.

In [38] we developed Fourier methods for the rigorous computation of the spectral measure

µjk for BC-cell flow, with B = C = 1. In particular, the eigenvalue problem Aϕn = λnϕn as-

sociated with the operator A = ∆−1[u·∇] was transformed into an infinite algebraic system

of equations, defining a discrete, generalized eigenvalue problem. The Fourier coefficients of

the eigenfunctions ϕn, n = 1, 2, 3, . . ., for the continuum setting comprised the components

of the generalized eigenvectors in the discrete setting. Moreover, motivated by the theoret-

ical findings in the current work, we provided a rigorous extension of the results given here

to the setting of a time-dependent fluid velocity field, where A = ∆−1[∂t + u·∇] and ∂t

denotes partial differentiation in time. Furthermore, we used abstract methods of functional

analysis to generalize Lemma 1 to the continuum, steady and dynamic settings. The Fourier

methods in [38] were also generalized to the setting of a time-dependent fluid velocity field.

Since we already treated BC-cell flow in [38], and for the sake of brevity, we now turn our

attention to a discussion regarding our results for “cat’s eye flow.”

Since the streamlines for cat’s eye flow in Fig. 1 are symmetric about the line y = x, as

discussed above, we anticipate that µ11 = µ22. Our computations of the components µjk,

j, k = 1, 2, of the spectral measure displayed in Figures 3 and 4, for non-random A, indicate

that this is indeed the case. A closer look at these figures reveals a deeper symmetry, namely

that µ11 = µ22 = |µ12|, where |µ12| = µ+
12 + µ−

12 is the total variation of the signed measure

µ12 introduced in equation (30).

Since the operator A = ∆−1[∇·u] is compact [8], its spectra is discrete with a limit point

at the spectral origin λ = 0 [49]. This limit point behavior of the measures µjk, j, k = 1, 2,

can be seen in all of the panels of Fig. 3. When the parameter A = 0, the streamlines of

cat’s eye flow are closed cell structures, as shown in Fig. 1, so that large scale transport
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FIG. 3. Transition away from cat’s eye cell flow. The spectral weights mjk for the components

Re µjk, j, k = 1, 2, of the spectral measure are displayed with increasing values of the free parameter

A from left to right. As the parameter A increases, the streamlines of the flow transition away

from cell structures to open channels. This is reflected in the measure by a dramatic increase in

the magnitude of the spectral weights mjk associated with the limit point of the measure at λ = 0,

while the other weights change only slightly.

occurs only when ε > 0 [15]. In this case, the magnitude of the spectral weights mkk(n)

and m±
jk(n), n = 1, . . . , K1, associated with this limit point at λ = 0 are . 10−28, as shown

in Fig. 3. When A > 0, open channels connect neighboring cells and large scale transport

takes place both in thin boundary layers and within the channels [15]. This is reflected in

the spectral measure by a dramatic increase in the magnitude of the spectral weights mkk(n)
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FIG. 4. Transition toward cat’s eye shear flow. The spectral weights mjk for the components

Re µjk, j, k = 1, 2, of the spectral measure are displayed with increasing values of the free parameter

A from left to right. As the value of the parameter A increases, the streamlines become more

elongated in the x-y diagonal direction, becoming shear flow when A = 1. This is reflected in

the spectral measure by an increase in the breadth of the spectral region with significant measure

mass.

and m±
jk(n) associated with the limit point at λ = 0, by more than 15 orders of magnitude

for a change of only 10−6 in the magnitude of A, while the spectral weights associated with

the bulk of the spectrum change only subtlety, as shown in Fig. 3.

As the value of A increases into the range (10−2, 100), the limit point near λ = 0 persists.

However, the increase in the magnitudes of the associated spectral weights stops, with values
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in the range (10−11, 10−5) for all A ∈ (10−2, 100). In this regime, the limit point of the

spectral measure is closely surrounded by spectrum in the bulk having spectral weights with

comparable magnitudes. As A increases in the range (10−1, 100), a significant transitional

behavior arises in the spectral measure in the bulk of the spectrum, as shown in Fig. 4. In

particular, a plateau forms in the spectral measure for λ ∈ (−1,−0.5)∪(0.5, 1) with spectral

weights having magnitudes . 10−13. Another feature also arises that has a more significant

influence on the behavior of the effective diffusivity S∗. Namely, the appearance of spectra

λ ∈ (−0.5,−0.2) ∪ (0.2, 0.5) with measure masses in the range (10−10, 10−2), as shown in

Fig. 4. This broadening of the region having spectral weights with magnitudes as large as

10−2 from λ ∈ (−0.2, 0, 2), present for all A ∈ [0, 1], to λ ∈ (−0.5, 0, 5) has a significant

influence on the behavior of the effective diffusivity S∗, as shown in Fig. 5.

Our computations of the components S∗
jk, j, k = 1, 2, for cat’s eye flow are displayed in

Fig. 5 along with their upper bounds given in the same color and dash-dot line-style. Since

the support of µjk is contained in the interval [−1, 1], the components S∗
jk of the effective

diffusivity approach their bare molecular diffusivity value ε δjk for large ε. We discussed

above that our computations of the components µjk, j = 1, 2, of the spectral measure display

the symmetry µ11 = µ22 = |µ12|. Since the behavior of the µjk govern the behavior of the

corresponding components of the effective diffusivity S∗
jk, the symmetry µ11 = µ22 = |µ12|

between the measures gives rise to the symmetry S∗
11(ε) = S∗

22(ε) = ε+X(ε; µ+
12)+X(ε; µ−

12)

between the components of the effective diffusivity, where we have denoted by X(ε; ν) =
∫

dν(λ)/(ε2 + λ2), e.g., S∗
11(ε) = ε + X(ε; µ11). The symmetry S∗

11 = S∗
22 can be clearly seen

in our computations of S∗
jk, j, k = 1, 2, displayed in Fig. 5; The two curves lay right on top

of one another, as do their upper bounds as µ0
11 = µ0

22. The lower bounds for S∗
kk, k = 1, 2,

have been omitted in the figure panels, as they are virtually right on top of the looser lower

bound ε (displayed in cyan color) due to the small measure masses . 10−3. We have also

numerically explored the approximate relationship S∗
11 ≈ ε + [S∗

12]
+ + [S∗

12]
− by plotting S∗

11,

S∗
22, and ε + [S∗

12]
+ + [S∗

12]
− on one graph. For most values of A and ε considered, the three

curves lay virtually on top of each other (not shown), and when there is a deviation of

ε + [S∗
12]

+ + [S∗
12]

− from S∗
11, it is slight.

Recall, we demonstrated in Fig. 3 that for A ∈ (0, 10−2), the limit point λ = 0 of the

spectral measure µjk has weights mjk with magnitudes that increase dramatically as A

increases from zero, with magnitudes in the interval (10−11, 10−5) when A ∼ 10−2. However,
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FIG. 5. Transitional behavior of the effective diffusivity from cat’s eye cell flow to shear flow. The

behavior of the components S∗
jk, j, k = 1, 2, of the effective diffusivity as a function of the molecular

diffusivity ε and increasing values of the parameter A from left to right and top to bottom. The

upper bounds corresponding to S
∗
jk are in dash-dot line-style and are the same color for S

∗
kk and

red for S
∗
12, while the lower bound ε for S

∗
kk is in cyan color and solid line-style. For small values of

the parameter A, the enhancement in the effective diffusivity is more pronounced for small values

of ε. However, as the value of the parameter A increases and the flow transitions from cell to shear

structure, there is a substantial enhancement in the effective diffusivity for larger values of ε. This

is due to the behavior of the spectral measure discussed in Figures 3 and 4.

in the bulk of the spectrum, the magnitudes of the spectral weights change only subtlety.

Consequently, for A ∈ (0, 10−2) this transitional behavior of the spectral measure µkk governs

primarily the small ε behavior of S∗
kk, as shown in the panels of Fig. 5 corresponding to A = 0

and A = 10−2. The transitional behavior of S∗
12 is more pronounced due to the lack of the

ε δjk term for j 6= k.

Recall, we demonstrated in Fig. 4 that when the parameter A increases in the interval

(10−1, 100), spectra λ ∈ (−0.5,−0.2) ∪ (0.2, 0.5) appear with measure masses in the range

(10−10, 10−2). This broadens the influence of the spectral measure µjk over the effective
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free parameter A of cat’s eye flow increases from zero, the magnitude of the spectral weights m±
12

increase dramatically. Moreover, the spectra associated with the positive weights m+
12 migrate

away from the spectral origin until the limit point is comprised only of negative valued mass.

diffusivity S∗
jk to larger values of ε, greatly enhancing it above its bare molecular diffusivity

value ε δjk, as shown in the panels of Fig. 5 for A ≥ 0.1. Note that, since µ11 = µ22 = |µ12|,
we have the inequalities S∗

11 ≥ ε + [S∗
12]

+ and S∗
11 ≥ ε + [S∗

12]
−, with S∗

11 = S∗
22, as shown in

Fig. 5.

When the figure panels associated with µ12 in Fig. 3 are plotted in log-log scale as shown

in Fig. 6, the following is revealed. As A increases from zero, the spectra of the limit point

with positive measure mass migrates away from λ = 0, so that the limit point eventually

consists of spectra with only negative measure mass. Consequently, as ε decreases below

10−3, this influence of µ12 on S∗
12 becomes more dominant and S∗

12 changes sign, becoming

negative, as shown in Fig. 5. As the value of ε approaches the location of this limit point,

the numerical approximation breaks down due to effects of finite resolution L.

We now discuss our computations of the components µjk and S∗
jk, j, k = 1, 2, of the

spectral measure and effective diffusivity, respectively, for cat’s eye flow with random pa-

rameter A uniformly distributed on the interval [0, p]. For each statistical trial of a sample

space Ω0 of ∼ 103 statistical trials and a system resolution L = 100, we computed ev-

ery eigenvalue λ1
n and eigenvector r1

n, n = 1, . . . , K1, of the matrix −ıUT
1 HU1 to form the

spectral measure µjk in equation (103). In order to visually determine the behavior of the

function µjk(λ) = 〈Q(λ)êj, êk〉 underlying the spectral measure µjk, we plot a histogram

representation of µjk(λ) called the spectral function, which we will also denote by µjk(λ).
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FIG. 7. Spectral functions and effective diffusivities for randomly perturbed cat’s eye flow. The

random parameter A is uniformly distributed on the interval [0, p]. The spectral functions µjk(λ)

are displayed with corresponding effective diffusivities S
∗
jk directly below for various values of p,

increasing from left to right. As p increases and the streamlines of the flow become more elongated

in the x-y direction, on average, the region about the spectral origin λ = 0 with substantial

measure mass increases in breadth and magnitude. This gives rise to a substantial enhancement in

the components S
∗
jk of the effective diffusivity for larger values of the molecular diffusivity ε. The

color scheme of the panels for S
∗
jk is the same as that in Fig. 5.

We now describe how we computed this graphical representation of the measure µjk. First,

the spectral interval I ⊇ Σ was divided into V sub-intervals Iv, v = 1, . . . , V , of equal length

1/V . Second, for fixed v, we identified all of the eigenvalues that satisfy λ1
n(ω) ∈ Iv, for

n = 1, . . . , K1 and ω ∈ Ω0. The assigned value of µjk(λ) at the midpoint λ of the interval
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Iv, is the sum of the spectral weights mjk(ω) associated with all such λ1
n(ω) ∈ Iv. In our

computations of the spectral functions, we typically used V ∼ 102.

Consistent with the symmetries of the random flow, our computations of the spectral

function satisfies µ11(λ) = µ22(λ), hence the ensemble averaged components S∗
jk of the

effective diffusivity also satisfy S∗
11 = S∗

22, as shown in Fig. 7. Similar to our computations

for non-random A, when p = 0.1 the measure mass of µjk, j, k = 1, 2, near the spectral origin

is quite small and, on average, the region with significant magnitude increases in breadth as

p increases. This average increase in the breadth of the region with significant mass gives

rise to a substantial enhancement of the components S∗
jk of the effective diffusivity above

the bare molecular diffusivity values ε δjk. Our results for cat’s eye flow with random A also

demonstrate the influence of resolution L in the numerical computations. In particular, with

a decrease in resolution L from L = 200 in Figures 3 and 4 to L = 100 in Fig. 7, we see that

the accuracy of the numerical computations break down for ε ∼ 10−3 with L = 100 instead

of ε ∼ 10−4 with L = 200, indicated by a 1/ε divergence. For the continuum setting, the

limit point of the spectrum at λ = 0 can be discrete with finite or infinite multiplicity, and

can even be continuous [51].

X. CONCLUSIONS

In Section III we adapted and extended a method [2, 3] that provides the rigorous Stielt-

jes integral representations for the symmetric S∗ and antisymmetric A∗ parts of effective

diffusivity tensor D∗ shown in equation (28). These integral representations involve the

molecular diffusivity ε and a spectral measure µjk of a self-adjoint operator that acts on the

Hilbert space of curl-free vector fields. In Section IV we considered a discrete formulation

of Section III for the case that the matrix Laplacian is of full rank, hence invertible. A

matrix analysis showed that the spectral measure is given in terms of the eigenvalues and

eigenvectors of a Hermitian matrix. In Section IV B we provided a projection method which

revealed that many of the spectral weights of the discrete spectral measure are identically

zero, while the others are determined by a much smaller Hermitian matrix. This method

stabilizes and increases the efficiency of numerical computations of µjk, which enables more

accurate computations of the effective diffusivity tensor D∗.

In Section V we returned to the continuum setting, adapting and extending a different
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method [8, 41] that provides the rigorous Stieltjes integral representations in equation (28),

involving the molecular diffusivity ε and a (possibly different) spectral measure µjk of a self-

adjoint operator that acts on a Sobolev space of scalar fields. In Section VI we considered

a discrete formulation of Section V for the case that the matrix Laplacian is of full rank.

A matrix analysis showed that the spectral measure is given in terms of the generalized

eigenvalues and eigenvectors associated with a pair of Hermitian matrices of the same size

as that arising in the above mentioned projection method.

In Section VII we used properties of the singular value decomposition of the matrix gra-

dient∇ to reveal symmetries between the two discrete approaches formulated in Sections IV

and VI, establishing in Lemma 1 that the two approaches yield equivalent spectral repre-

sentations of the effective diffusivity tensor D∗ when the matrix Laplacian is of full rank.

In particular, we established in the proof of Lemma 1 that the eigenvalues and generalized

eigenvalues underlying the spectral measures for each method are in fact eigenvalues of a

Hermitian matrix arising in both methods. Moreover, the eigenvectors wn and generalized

eigenvectors zn of the two methods are related by wn = ∇zn, which leads to the equivalence

of the discrete spectral measures of the two approaches.

In Section VIII we generalized Lemma 1 to the case that matrix Laplacian is rank defi-

cient, hence non-invertible. This extends the numerical methods developed in Sections IV

and VI to the setting of periodic boundary conditions, for which the matrix Laplacian is

singular. In over 25 years since the formulation [2, 3] of Stieltjes integral representations

for the effective diffusivity tensor D∗, analytical calculations of D∗ have been obtained for

only a few simple flows, such as shear flow. Our results of Section VIII help overcome this

limitation by providing a mathematical foundation for rigorous computation of D∗.

In Section IX we employed the numerical methods formulated in Section VIII to com-

pute the components Sjk, j, k = 1, . . . , d, of S∗ for some model 2D periodic flows, by directly

computing the associated spectral measure Re µjk. As a baseline result, we computed Sjk

and Re µjk for BC-shear-flow, for which the spectral measure is known [3]. Our numerical

results are in good agreement with the theoretical result. We also computed the transitional

behavior of Sjk and Re µjk for “cat’s eye” flow as a function of a free parameter, both for

the random and non-random settings. Consistent with the symmetries of the flow, our com-

putations indicate that Re µ11 = Re µ22. Our computations of Re µjk, j, k = 1, 2, for cat’s

eye flow also reveal a deeper symmetry, namely Re µ11 = Re µ22 = |Re µ12|, where |Re µ12|
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is the total variation of the measure Re µ12. Our computations of Sjk are consistent with

these symmetries, as well as rigorous bounds that we derived from the analytic properties

of the Stieltjes integral representation for Sjk and the associated measures.

Motivated by the theoretical findings in the current work, in [38] we provided a rigorous

extension of the results given here to the setting of a time-dependent fluid velocity field

u = u(t, x). Furthermore, we used abstract methods of functional analysis to generalize

Lemma 1 to the continuum, steady and dynamic settings. We are currently exploring the

extension of these methods to the time-stochastic setting, which is relevant to atmospheric

and oceanic flows.
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Appendix A: Properties of the linear operator A

In this section we derive various properties of the linear operator A = ∆−1[u·∇] defined

in equation (48). In particular, we demonstrate that A is antisymmetric on the Hilbert

space H1,2 defined in (46). Moreover, we show that A is bounded on H1,2 and we provide

an upper bound for ‖A‖1,2 when u is uniformly bounded on the period cell V .

We first show that the incompressibility condition ∇·u = 0 implies that the operator

A is antisymmetric on H1,2 [8], 〈Af, h〉1,2 = −〈f, Ah〉1,2. On the Hilbert space H defined

in (45) the linear operator ∆−1 satisfies 〈∆∆−1f, h〉 = 〈f, h〉 in a distributional sense, for all
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f, h ∈ H [17, 33]. Consequently, for all f, h ∈ H1,2 we have

〈Af, h〉1,2 = 〈[∇(∆−1)(u·∇)f ]·∇h〉 (A1)

= −〈[(u·∇)f ] , h〉

= −〈[∇·(uf)] , h〉

= 〈f , [(u·∇)h]〉

= 〈f , [∆(∆−1)(u·∇)h]〉

= −〈∇f ·[∇(∆−1)(u·∇)h]〉

= −〈f, Ah〉1,2.

Now, we derive the bound on ‖A‖ given in equation (52). From the Cauchy-Schwartz

inequality |〈f, h〉| ≤ ‖f‖ ‖h‖ we have that

‖Af‖21,2 = |〈∇[∆−1(u·∇f)]·∇[∆−1(u·∇f)]〉| (A2)

= | − 〈[∆−1(u·∇f)] , (u·∇f)〉|

≤ ‖∆−1(u·∇f)‖ ‖u·∇f‖

≤ ‖∆−1‖ ‖u·∇f‖2.

We now provide an upper bound for ‖u·∇f‖ when the components uk, k = 1, . . . , d, of the

fluid velocity field u are uniformly bounded on the period cell V . By the Cauchy-Schwartz

inequality, |ξ·ζ| ≤ |ξ| |ζ|, we have

‖u·∇f‖2 = 〈|u·∇f |2〉 ≤ 〈|u|2 |∇f |2〉 ≤ sup
x∈V

|u(x)|2 ‖f‖21,2 . (A3)

The result in equation (52) is now clear.

Appendix B: Derivation of equation (87)

In this section we provide a derivation of equation (87). Equation (85) allows equa-

tion (80) to be written as [V1Σ1R1](εI1 + ıΛ1)[V1Σ1R1]
†χj = uj. This and equation (83)

imply that

VT
1 χj = Σ−1

1 R1(εI1 + ıΛ1)
−1R

†
1Σ

−1
1 VT

1 uj. (B1)
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This formula and ∇ = U1Σ1V
T
1 imply that

∇χj = U1R1(εI1 + ıΛ1)
−1R

†
1Σ

−1
1 VT

1 uj. (B2)

Therefore, since UT
1 U1 = I1 and R

†
1R1 = I1, we clearly have the first formula in (87) for S∗

jk

with Z
†
1 = R

†
1Σ

−1
1 VT

1 . From equation (85) we have that

〈∇T
H∇χj·χk〉 = 〈ı[V1Σ1R1]Λ1[R

†
1Σ1V

T
1 ]χj·χk〉 = 〈ı[Σ1R1Λ1R

†
1Σ1]V

T
1 χj·V

T
1 χk〉. (B3)

This formula, R
†
1R1 = I1, ΣT

1 = Σ1, and equation (B1) clearly imply the second formula for

A∗
jk in equation (87), with Z

†
1 = R

†
1Σ

−1
1 VT

1 .
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