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In this article, we develop an approach for temporal resolution enhancement of blurry
and distorted image sequences capturing evolving weather phenomena. We first enhance
the spatial resolution of a sequence of images using an efficient deconvolution method
which we showed to reduce image ringing, blurring, and distortion, while sharpening
the image and preserving information content. Such methodology is based on current
research in sparse optimization and compressed sensing, which lead to unprecedented
efficiencies for solving image reconstruction problems. We then consider the evolving
sequence to be embedded in a deformable medium, and enhance temporal resolution
of a sequence using nonlinear viscous fluid registration model. The physical continuum
equation is solved using an efficient multigrid full approximation scheme.

1. Introduction

Temporal resolution enhancement is important in the studies of physically evolving
phenomena, such as hurricanes and tropical storms. Such weather phenomena will
soon be continuously captured using geostationary microwave sensors. These sensors
are designed to penetrate through thick clouds to see the structure of a storm. The
images collected are valuable for evaluating the storm’s internal processes and its
strength.
Temporal resolution specifies the revisiting frequency of a satellite sensor for a

specific location, or equivalently, refers to how often an area can be imaged by
a sensor. In other words, temporal resolution defines the time interval between
consecutive captured frames. It also relates to the duration of time for acquisition
of a single frame of a dynamic process.
Spatial resolution, on the other hand, is conceptually different from temporal

resolution. Spatial resolution is a measure of how fine an image is and often specifies
the pixel size of satellite images covering the earth surface. For blurry and distorted
imagery, spatial resolution is coarser than the pixel size of an image. For remotely
sensed imagery, spatial resolution refers to the smallest feature that can be resolved
in the image.
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There is often a tradeoff between temporal resolution of a measurement and its
spatial resolution. Acquiring a high spatial resolution image requires more time,
which inadvertently affects temporal resolution of a sequence. On the other hand,
spatial resolution is affected if images are acquired quickly. Both spatial resolution
and temporal resolution enhancements are challenging inverse problems. Conceptual
diagram depicting spatial and temporal resolution enhancement processes is shown
on Figure 1.
In our studies, we consider the Geostationary Synthetic Thinned Aperture Ra-

diometer (GeoSTAR) (Tanner et al. 2007), which is a microwave spectrometer aper-
ture synthesis system that will be used to capture hurricane imagery and other
evolving weather phenomena. A characteristic of an aperture synthesis system is
that the point spread function (PSF) is a 2-dimensional sinc-like function, showing
positive and negative excursions (cf. Fig. 2(a,b)), that produces ringing at sharp
edges and other transitions in the observed field. The conventional approach to
suppressing such sidelobes is to apply linear apodization, which has the undesirable
side effect of degrading spatial resolution (Tanner and Swift 1993; Yanovsky et al.
2015).
In Section 2, we use sparsity-based approaches to first enhance spatial resolution

of image sequence. In order to reduce image ringing while sharpening the image
and preserving information content, we formally solved the deconvolution inverse
problem for single-channel images in (Yanovsky et al. 2015). Since the convolution
problem is highly ill-posed, regularization was applied to achieve stability while
preserving a priori properties of the solution. We formulated the restoration problem
within the variational framework, using the total variation regularization (Rudin,
Osher, and Fatemi 1992). Total variation (TV) of an image measures the sum of the
absolute values of its gradient and increases in the presence of the ringing artifact
caused by sidelobes. By minimizing the TV, we showed that the process reduces
not only the ringing within the image, but also significantly reduces the brightness
temperature errors in the overall image. These processes were rendered efficiently
by employing methodologies based on current research in sparse optimization and
compressed sensing.
In Section 3, we describe the methodology to enhance temporal resolution of image

sequences capturing evolving weather phenomena. Given a pair of spatially resolved
frames, we solve an image registration problem in order to find an unknown inter-
mediate frame. An important observation, which stimulated the development of
intensity-based nonlinear image registration algorithms, was the connection of the
image data with a physically deforming system. Physical continuum models con-
sider the deforming image to be embedded in a deformable medium, which can be
either an elastic material or a viscous fluid. We use the viscous fluid registration in
order to temporally resolve multiframe sequence of images.
In our experiments, we use simulated microwave images of Atlantic hurricane Rita,

which was active in the Gulf of Mexico between 18 and 26 September 2005. The real
image, captured by the Moderate-resolution Imaging Spectroradiometer (MODIS)
instrument on board the Terra Satellite at 4:55 PM GMT on 22 September 2005,
is shown in Figure 2(c).
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Figure 1. Conceptual diagram of spatial and temporal resolution enhancements.

2. Efficient Deconvolution

A deconvolution process reverses the effects of a blurring sensor PSF on observed
data in the presence of noise. Let Ω be an open and bounded domain in R

2. Let
I0 : Ω → R be an original unknown image, K be a convolution operator that
represents the point spread function, and κ be additive noise. A blurred, distorted,
and noisy observation J satisfies the model

J = K ∗ I0 + κ, (1)

where ∗ denotes convolution. For an aperture synthesis system, K is a sinc-like point
spread function which introduces sidelobes in the observation. Rather than apply
the conventional linear apodization approach, which has the undesirable side effect
of degrading spatial resolution (Tanner and Swift 1993; Yanovsky et al. 2015), we
suppress interferometric sidelobes by constructing a variational formulation for im-
age reconstruction and solving an inverse problem. Regularization is applied within
a variational framework in order to achieve stability while preserving a priori prop-
erties of the solution.
In (Yanovsky et al. 2015), we formulated the restoration problem within the vari-

ational framework, using the total variation regularization. The L1-regularized type
norm ||I||TV =

∫

|∇I| measures TV of a signal (Rudin, Osher, and Fatemi 1992).
Given an observation J , we solve the inverse problem related to (1). That is, we find
a suitable approximation of the original unknown image I by means of the solution
of the following TV-L2 minimization problem

min
I

||I||TV +
µ

2
||K ∗ I − J ||22, (2)
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(a) (b) (c)

Figure 2. (a) The GeoSTAR PSF shown as image. A characteristic of an aperture synthesis system is
that the PSF is a 2-dimensional sinc-like function, showing positive and negative excursions, that produces
ringing at sharp edges and other transitions in the observed field. (b) The GeoSTAR PSF shown as surface.
(c) Terra MODIS image of hurricane Rita in the Gulf of Mexico captured at 4:55 PM GMT on 22 September
2005. Image Credit: NASA/GSFC, MODIS Rapid Response.

where µ > 0. The value of µ can be calculated automatically via Bregman iteration
(Yin et al. 2008; Osher et al. 2005). We solve (2) using Split Bregman (Goldstein
and Osher 2009) deconvolution model where the equation for I is re-written in the
fast Fourier Transform formulation framework (Yanovsky et al. 2015).

3. Registration Problem

Let I1 : Ω → R and I2 : Ω → R be the two images to be registered. Both I1
and I2 were independently reconstructed using the process of Section 2 from blurry
observations J1 and J2, respectively. The goal of image registration is to find the
transformation g : Ω → Ω that maps the source image I2 into correspondence
with the target image I1. The displacement field u(x ) from the position x in the
deformed image I2 ◦ g(x ) back to I2(x ) is defined in terms of the deformation g(x )
by the expression g(x ) = x − u(x ) at every point x ∈ Ω. The term displacement
is used because it can be viewed as how a point in the deformed template is moved
away from its original location. Thus, the problems of finding deformation g and
displacement u are equivalent.

3.1. Registration Metric

Images acquired using the same or similar sensors are expected to present the same
intensity range and distribution. For registration of such images, the most common
way to define the distance between the deformed source and the target images
is to use the L2 norm, or the sum of squared differences (SSD). Alternatively, if
evolutionary mechanisms such as growth and decay of image intensity is needed to
be modeled, mutual information between the images could be considered.
The L2 distance between the deformed image I2(x − u) and target image I1(x )

is defined as

FL2(I1, I2,u) =
1

2

∣

∣

∣

∣I2(x − u)− I1(x )
∣

∣

∣

∣

L2(Ω)
=

1

2

∫

Ω

(

I2(x − u)− I1(x )
)2

dx .(3)

Computing the first variation of the L2 similarity functional FL2 with respect to
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variations of the displacement field u gives

f (x ,u(x )) = −∂uFL2(I1, I2,u) = [I2(x − u(x ))− I1(x )]∇I2|x−u , (4)

where f is the force field, or the body force, which drives the source into registration
with the target. The first term in the definition of f , namely I2(x − u)− I1(x ), is
the difference in intensity between the deformed image and the target image. This
term causes the field force to tend to zero in areas where the deformed source image
is locally aligned with the target image. The second term ∇I2|x−u is the gradient of
the deformed source image and has largest values at the edges of the source image.
This term determines the directions of the local deformation forces applied to the
source.
The minimization of (3), however, is known to be ill-posed. In particular, the dis-

placement field u is not unique, and the regularization on u is required to make the
problem be well-posed. We now review approaches to regularizing the displacement
field.

3.2. Physical Continuum Models

An important observation, which stimulated the development of intensity-based
nonlinear image registration algorithms, was the connection of the image data with
a physically deforming system (Thompson and Toga 2002). Physical continuum
models consider the evolving image to be embedded in a deformable medium, which
can be either an elastic material or a viscous fluid. The medium is subjected to
certain distributed internal forces, which reconfigure the medium and eventually
drive the source into registration with the target. We briefly describe two of the
most well known such models.

3.2.1. Elastic Registration

Bajcsy and Kovacic (1989); Broit (1981); Dann et al. (1989) noticed the similarity
between image deformation and deformation of elastic plates. For linear elastic
solids, the force field f is proportional to the displacement field u . The spatial
transformation satisfies the Navier-Cauchy linear elastic partial differential equation

µ△u + (µ + ν)∇(∇ · u) + f (x ) = 0, (5)

where µ and ν are Lamé constants, describing the properties of the material.

3.2.2. Viscous Fluid Registration

A major shortcoming of the linear elastic approach using Navier-Cauchy equations
(5) is that it is based on the assumption of an infinitesimally small deformation.
Large deformations can not be accommodated with these linear partial differential
equations. The limitations of the linear elasticity model can be overcome by a viscous
fluid which allows the restoring forces to relax over time.
In the viscous fluid model, first proposed by Christensen, Rabbitt, and Miller

(1996), an Eulerian reference frame is used in describing large deformations. The
Eulerian frame of reference specifies the time evolution of particle positions and
velocities as observed at fixed points. Consequently, a particle located at x at time
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t = 0 minutes t = 10 minutes

Figure 3. Original 150GHz microwave 400×400 pixel images of the simulated hurricane Rita at time 12:00
AM GMT and 12:10 AM GMT.

t = 0 minutes t = 10 minutes

Figure 4. Original images from Figure 3 are convolved with the GeoSTAR kernel and corrupted with noise
κ from equation (1). The standard deviation of the noise, σ, was equal to 2K.

t originated at position

g(x , t) = x − u(x , t) (6)

at time t0 (t > t0), where u is the displacement. We let v denote the velocity field.
The material derivative, defined by D/Dt = ∂/∂t+ v · ∇, describes the time rate of
change experienced by an element of material instantaneously at point x at time t.
Hence, the Eulerian velocity field v is nonlinearly related to u and is determined
by

v =
Du

Dt
=

∂u

∂t
+ v · ∇u . (7)

The term v · ∇u accounts for the kinematic nonlinearities of the displacement field
u . Note that the material derivative with respect to time t and partial derivative
with respect to time t are approximately equal for small deformations.
Given the velocity field v , equation (7) can be solved to obtain the displacement

field u . Christensen, Rabbitt, and Miller (1996) considered the deforming template
image to be embedded in a viscous fluid whose motion is governed by Navier-Stokes
equation for conservation of momentum. Some simplification of the momentum con-
servation equation resulted in the following equation for the unknown variable v :

µ△v + (µ+ ν)∇(∇ · v ) + f (x ,u) = 0. (8)
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t = 0 minutes (image I2) t = 10 minutes (image I1)

Figure 5. Spatial resolution enhancement of images from Figure 4.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a) Linear interpolation between I1 and I2 for time = 5 minutes. (b) Image I2 defined at time =
0 (see Fig. 5) is deformed to time = 5 minutes. (c) Image I2 is deformed to match image I1 at time = 10
minutes. (d) Difference between I1 (time = 10 minutes) and I2 (time = 0). (e) Difference between I1 and
I2 ◦ g(t = 5 minutes) (f) Difference between I1 and I2 ◦ g(t = 10 minutes) indicating close match between
image I1 and image I2 after deformation.

Equation (8) describes the balance of forces acting in a given region of the fluid.
The △v term is the viscosity, which constraints the velocity field to vary smoothly.
The term ∇(∇ · v ) allows structures in the source image to change in mass. The
Navier-Stokes equation of fluid flow (8) is identical to the Navier-Cauchy equation
of linear elasticity (5) except that the Navier-Stokes partial differential equation
operates on velocity v rather than displacement u .
Equation (8) is computationally expensive to solve in practice using conventional

techniques. Christensen, Rabbitt, and Miller (1996) used successive over relaxation
(SOR) to solve (8), which is still inefficient for larger images. D’Agostino et al.
(2003) proposed to simplify the problem, obtaining the instantaneous velocity from
the convolution of f with Gaussian kernel G. We solve (8) very efficiently using the
multigrid full approximation scheme (Brandt 1977).
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(a) t = 5 minutes (b) t = 5 minutes (c) t = 10 minutes (d) t = 10 minutes

Figure 7. Displacement fields and deformation grids generated as image I2 is deformed to match image I1.
Deformation at intermediate and final stages are shown.

4. Results

Figure 1 shows a conceptual diagram of spatial and temporal resolution enhance-
ments. Spatial resolution enhancement is performed first for each image in a tem-
poral sequence. Temporal resolution is performed next using the nonlinear viscous
fluid registration model.

4.1. Spatial Resolution Enhancement

We performed spatial resolution enhancement of Section 2 on simulated microwave
150 GHz channel images of the 2005 Atlantic hurricane Rita, shown in Figure 3. For
comparison, GeoSTAR operates at some of the same frequencies of the Advanced
Microwave Sounding Unit - B (AMSU-B) temperature and humidity sounders near
180 GHz. The images are 400×400 pixels and were derived from cloud resolving
numerical weather prediction model (WRF) (Michalakes et al. 1998) simulations.
Each pair of images is captured 10 minutes apart. The resolution of a pixel is 1.3 km.
With this grid spacing, we can resolve features that are approximately 5 km wide.
We used the 101×101 GeoSTAR point spread function K, which has a full width
at half maximum of 27.6 km and is shown in Figure 2 (a,b), to blur the images.
Figure 4 shows a pair of 150 GHz images of Figure 3 degraded with the GeoSTAR

blur and corrupted with additive image noise κ from equation (1) of standard devi-
ation σ = 2K. The result in Figure 5 is obtained using the efficient Split Bregman
deconvolution model (Yanovsky et al. 2015).

4.2. Temporal Resolution Enhancement

In this section, we show temporal resolution enhancement of a sequence containing
consecutive images I2 and I1, shown in Figure 5, at times 0 and 10 minutes, respec-
tively. The goal of temporal resolution is to recover a representation of the evolving
phenomenon at intermediate time (e.g. 5 minutes).
We first perform linear interpolation between the two images from Figure 5 in or-

der to reconstruct intermediate image at time = 5 minutes. As shown on Figure 6(a)
linear interpolation smooths out features of the hurricane visible on Figure 5. On
the other hand, nonlinear viscous fluid registration deforms image I2, originally
defined at time 0, continuously moving through intermediate stages of deformation,
while preserving the structure of the hurricane, until it matches image I1 at time
10 minutes. Figure 6(b) shows image I2 deformed to time = 5 minutes, which is the
time we seek to have a valid frame. In Figure 6(c), image I2 is deformed to match
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image I1 at time = 10 minutes. Figure 6(d) shows difference between I1 and I2.
Figure 6(e) shows difference between I1 and I2 ◦g(t = 5 min) and Figure 6(f) shows
difference between I1 and I2◦g (t = 10 min) indicating that the algorithm is capable
of generating close matches for physical processes. We note that the performance
of the temporal interpolator has only been tested on one pair of images 10 minutes
apart, and without quantitative performance assessment. This technique may not
work well for intervals longer than 10 minutes.
Figure 7 shows displacement fields and deformation grids generated as image I2

is deformed to match image I1. Deformation at intermediate and final stages are
shown.

5. Conclusions

We developed an approach for temporal resolution enhancement of blurry and dis-
torted image sequences capturing evolving weather phenomena. In our studies, we
considered the GeoSTAR instrument, which is a microwave spectrometer aperture
synthesis system that will be used to capture hurricane imagery and other evolv-
ing weather phenomena. We used sparsity-based approaches to first enhance spatial
resolution of image sequence. In order to reduce image ringing while sharpening the
image and preserving information content, we formally solved the deconvolution
inverse problem for single-channel images. We then described the methodology to
enhance temporal resolution of image sequences capturing evolving weather phe-
nomena. Given a pair of spatially resolved frames, we solve an image registration
problem in order to find an unknown intermediate frame.
The GeoSTAR instrument is only one example for which our method is applicable.

The method considered in this article can be applied to other types of remote sensing
image sequences. The method is relevant in cases where there is oversampling and
when the PSF is known.
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