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An aperture synthesis system produces ringing at sharp edges and other transitions
in the observed field. In this paper, we have developed an efficient multispectral de-
convolution method, based on Split Bregman total variation minimization technique,
and showed it to reduce image ringing, blurring, and distortion, while sharpening the
image and preserving information content. We also present a multispectral multiframe
super-resolution method that is robust to image noise and noise in the point spread
function and leads to additional improvements in spatial resolution. The methodolo-
gies are based on current research in sparse optimization and compressed sensing,
which lead to unprecedented efficiencies for solving image reconstruction problems.
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1. Introduction

Physically deforming phenomena, such as hurricanes and tropical storms, will soon
be continuously captured using geostationary microwave sensors. These sensors are
designed to penetrate through thick clouds to see the structure of a storm. The
images collected are valuable for evaluating the storm’s internal processes and its
strength.
The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a

microwave spectrometer aperture synthesis system that will be used to capture
hurricane imagery (Tanner et al. 2007). A characteristic of an aperture synthesis
system is that the point spread function (PSF) is a 2-dimensional sinc-like function,
showing positive and negative excursions (cf. Fig. 3), that produces ringing at sharp
edges and other transitions in the observed field. The conventional approach to
suppressing such sidelobes is to apply linear apodization, which has the undesirable
side effect of degrading spatial resolution (Tanner and Swift 1993; Yanovsky et al.
2015).
In order to reduce image ringing while sharpening the image and preserving infor-

mation content, we formally solved the deconvolution inverse problem for single-
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(a) (b)

Figure 1. Original microwave channels of the simulated hurricane Rita image are displayed as red-green-
blue images for (a) (50.3, 52.8, 53.6) GHz, and (b) (54.4, 54.94, 55.5) GHz.

(a) (b)

Figure 2. Original microwave channels of the simulated hurricane Rita image are displayed as red-green-
blue images for (a) (150, 157, 166) GHz, and (b) (176.31, 180.31, 182.31) GHz.

channel images in (Yanovsky et al. 2015). Since the convolution problem in the
presence of noise is highly ill-posed, regularization was applied to achieve stability
while preserving a priori properties of the solution. We formulated the restoration
problem within the variational framework, using the total variation regulariza-
tion (Rudin, Osher, and Fatemi 1992). Total variation (TV) of an image measures
the sum of the absolute values of its gradient and increases in the presence of
the ringing artifact caused by sidelobes. By minimizing the TV, we showed that
the process reduces not only the ringing within the image, but also significantly
reduces the brightness temperature errors in the overall image. These processes
were rendered efficiently by employing methodologies based on current research
in sparse optimization and compressed sensing. We performed the total variation
based deconvolution within the Split Bregman optimization framework to achieve
a significant computational time improvement over already robust total-variation
gradient descent based techniques. In this paper, we generalize an efficient TV-
based Split Bregman deconvolution method to efficiently reconstruct multispectral
imagery.
Split Bregman method can be derived from the well-known alternating direction

method of multipliers (ADMM) (Glowinski and Marrocco 1975; Gabay and Mercier
1976; Glowinski, Lions, and Tremolieres 1981) and is very efficient because it can
decompose a non-smooth multi-term optimization problems into subproblems with
closed-form solutions. This advantage for total variation regularization problems
was first discovered in (Wang et al. 2008) for image denoising and deblurring, and
has been generalized to multichannel problems in (Yang et al. 2009), the TV-L1
model in (Yang, Zhang, and Yin 2009), TV-based compressed sensing in (Goldstein
and Osher 2009; Yang, Zhang, and Yin 2010), and an edge guided compressive
sensing reconstruction approach for recovering images of higher qualities from fewer
measurements in (Guo and Yin 2012).
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Figure 3. (a) The GeoSTAR PSF shown as image. A characteristic of an aperture synthesis system is
that the PSF is a 2-dimensional sinc-like function, showing positive and negative excursions, that produces
ringing at sharp edges and other transitions in the observed field. (b) The GeoSTAR PSF shown as surface.

2. Notation

We first introduce notations that will be used throughout this paper.

• For a single-channel image u ∈ R
n×n, the value of u at a pixel (i, j),

with 0 ≤ i, j ≤ n, is denoted as ui,j. The norms are defined as:

||u||1 =
∑

(i,j)∈Ω

|ui,j |, ||u||2 =

√

∑

(i,j)∈Ω

|ui,j|2,

where Ω is an image domain. The gradient of u is denoted as ∇u and its value at
pixel (i, j) as (∇u)i,j, with (∇u)i,j ∈ R

2. Consider scalar-valued functions d1 and
d2. For a vector-valued quantity d i,j = ((d1)i,j , (d2)i,j) ∈ R

2 (e.g. d = ∇u), the
norms are defined as

||d ||1 =
∑

(i,j)∈Ω

||d i,j||2, ||d ||2 =

√

∑

(i,j)∈Ω

||d i,j||
2
2, (1)

where ||d i,j||2 =
√

(d1)
2
i,j + (d2)

2
i,j . Unless specified otherwise, || · || = || · ||2 in the

remainder of this paper.

• For a multichannel image u ∈ (Rn×n)
C
, with C channels, u is written

as u = (u(1), u(2), · · · , u(C)). Each u(c), c = 1, . . . , C, is a single-channel
image. The value of u at a pixel (i, j), with 0 ≤ i, j ≤ n, is denoted as

u i,j = (u
(1)
i,j , u

(2)
i,j , · · · , u

(C)
i,j ). The norms are defined as:

||u||1 =
∑

(i,j)∈Ω

(

|u
(1)
i,j |+ . . .+ |u

(C)
i,j |

)

,

||u||2 =

√

∑

(i,j)∈Ω

(u
(1)
i,j )

2 + . . .+ (u
(C)
i,j )2.

We denote the generalization of the gradient for a multichannel image u as ∇u
and its value at pixel (i, j) as (∇u)i,j, with (∇u)i,j ∈ R

2C . For d = ∇u, the

norms are defined as in (1), with ||d i,j||2 =
√

(d1)2i,j + . . .+ (d2C)2i,j .

• The following signal-to-noise ratio (SNR) and root mean square error (RMSE)
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(a) (b) (c) (d)

Figure 4. Multispectral reconstruction of simulated hurricane images using Split Bregman deconvolution.
The two rows represent different microwave channels as RGB color images: (50.3, 52.8, 53.6) GHz and
(54.4, 54.94, 55.5) GHz, respectively. Note that the multispectral reconstruction is performed over all six
channels, and three-channel RGB images are shown only for visualization purposes. (a) Original microwave
channels from Figure 1 are convolved with GeoSTAR kernel from Figure 3. (b) Errors in convolved images.
(c) Deconvolution results. (d) Errors in reconstructed results.

were employed as quantitative measures:

SNR = 10 log10

(

σ2
u0
n2

∑C
c=1 ||u

(c)
0 − u(c)||2

)

, (2)

RMSE =

√

√

√

√

1

Cn2

C
∑

c=1

∑

(i,j)∈Ω

|u
(c)
0 i,j − u

(c)
i,j |

2, (3)

where C is the number of channels, n2 is the total number of pixels in the image,

u0 = (u
(1)
0 , u

(2)
0 , · · · , u

(C)
0 ) represents the original multichannel clean image, σ2

u0
is

the variance of u0, and u represents the image of interest.

3. Multispectral Deconvolution

The standard linear degradation model for a blurry and noisy multichannel obser-
vation f is given as

f = K ∗ u0 + κ, (4)

where ∗ denotes convolution operator, K is a kernel, κ is additive noise, and u0 is
a clean unknown image. For an aperture synthesis system, K is a sinc-like point
spread function which introduces sidelobes in the observation. Rather than apply
the conventional linear apodization approach, which has the undesirable side effect
of degrading spatial resolution (Tanner and Swift 1993), we suppress interferomet-
ric sidelobes by constructing a variational formulation for image reconstruction and
solving an inverse problem. Regularization is applied within a variational frame-
work in order to achieve stability while preserving a priori properties of the solution.
New image restoration models, based on non-local image information, have been
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(a) (b) (c) (d)

Figure 5. Multispectral reconstruction of simulated hurricane images using Split Bregman deconvolution.
The two rows represent different microwave channels as RGB color images: (150, 157, 166) GHz and (176.31,
180.31, 182.31) GHz, respectively. Note that the multispectral reconstruction is performed over all six
channels, and three-channel RGB images are shown only for visualization purposes. (a) Original microwave
channels from Figure 2 are convolved with GeoSTAR kernel from Figure 3. (b) Errors in convolved images.
(c) Deconvolution results. (d) Errors in reconstructed results.

(a) (b)

Figure 6. (a) Result obtained after applying the conventional linear apodization method on image of
Figure 5(a, top). (b) Corresponding error is shown. SNR = 34.07 and RMSE = 19.96K. Linear apodization
method raises the errors relative to Figure 5(b, top).

developed (Gilboa and Osher 2007, 2008; Peyré 2008; Szlam, Maggioni, and Coif-
man 2008; Lou et al. 2010; Buades, Coll, and Morel 2005; Kindermann, Osher, and
Jones 2005). In particular, in (Jung et al. 2009, 2011), the authors proposed the
Mumford-Shah based model (Mumford and Shah 1989) which uses nonlocal image
information. However, such approaches are very computationally expensive.
In (Yanovsky et al. 2015), by formally solving the deconvolution inverse problem

for single-channel images, we reduced image ringing inherent in aperture synthesis
system, while sharpening the image and preserving information content. We used
the L1-regularized type norm ||u||TV =

∫

|∇u|, which measures the total variation
(TV). The minimization of the TV norm does not penalize edges in an image. In
this paper, we minimize the deconvolution problem within an efficient multispectral
total variation based Split Bregman minimization framework.
The generalization of the TV norm to multispectral framework is the multichan-

nel total variation (MTV), and is given as

||u ||MTV =
∑

(i,j)∈Ω

√

||(∇u(1))i,j ||2 + · · ·+ ||(∇u(C))i,j||2. (5)
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Given a single observation f , we solve the inverse problem. The minimization
problem for MTV-L2 deconvolution can be written as

min
u
||u ||MTV +

µ

2
||K ∗ u − f ||22, (6)

where the second term is the L2 norm of the residual of (4), µ > 0 is a weight, and
u is a reconstruction.
The Split Bregman formulation minimizes (6) by introducing an additional vari-

able d in order to transfer ∇u out of non-differentiable terms at each pixel:

min
u,d

||d ||1 +
λ

2
||d −∇u − b||2 +

µ

2
||K ∗ u − f ||2. (7)

Here, λ is a nonnegative parameter, and variable b is chosen through Bregman
iteration (Yin et al. 2008; Osher et al. 2005):

b ← b + (∇u − d). (8)

For a fixed u , the minimization problem for d is

d∗ = argmin
d

{

||d ||1 +
λ

2
||d −∇u − b ||2

}

, (9)

which can be explicitly solved for d , at each pixel, by using a generalized shrinkage
formula (Donoho and Johnstone 1995; Wang, Yin, and Zhang 2007).
For a fixed d , the minimization problem (7) is quadratic in u :

u∗ = argmin
u

{

||d −∇u − b||2 +
µ

λ
||K ∗ u − f ||2

}

,

and has the optimality condition:

µK̃ ∗K ∗ u − λ△u = µK̃ ∗ f − λ∇ · (d − b), (10)

where K̃(x) = K(−x). We solve (10) using the fast Fourier transform. Algorithm
1 below is a high level description of the method.

Algorithm 1 Split Bregman Isotropic TV Deconvolution

1: Initialize u = f , d = 0, b = 0.
2: Solve (9) for d .
3: Update b as in (8).
4: Solve (10) for u .
5: Repeat from step 2.

We tested the method on simulated microwave images of the 2005 Atlantic hur-
ricane Rita, shown in Figures 1 and 2. Figure 1 shows 50.3, 52.8, 53.6, 54.4, 54.94,
55.5 GHz channels as color images (three channels per color image). These six chan-
nels correspond to the AMSU-A channels. Figure 2 shows 150, 157, 166, 176.31,
180.31, 182.31 GHz channels as color images. These six channels correspond to the
AMSU-B water vapor sounding channels, which are placed progressively closer to
the 183 GHz water vapor resonance frequency to provide a range of penetration
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Table 1. Signal-to-noise ratios of blurry and reconstructed images

shown in Figures 4, 5, and 8

SNR

Image Blurry image Reconstructed image

AMSU-A (Figure 4) 34.71 41.80
AMSU-B (Figure 5) 35.49 42.97
TC Katrina (Figure 8) 37.04 50.44
TC Rita (Figure 8) 36.91 50.44
TC Talim (Figure 8) 40.63 52.40

Table 2. Root mean square errors in blurry and reconstructed images
shown in Figures 4, 5, and 8

RMSE

Image Blurry image Reconstructed image

AMSU-A (Figure 4) 15.34 6.78
AMSU-B (Figure 5) 16.96 7.17
TC Katrina (Figure 8) 11.66 2.49
TC Rita (Figure 8) 11.61 2.44
TC Talim (Figure 8) 7.51 1.93

(a) (b) (c)

Figure 7. Original AMSU-B channels capturing tropical cyclones (TC) (a) Katrina, (b) Rita, and (c)
Talim are displayed as red-green-blue images.

depths. These channels are later combined with temperature profiles to resolve the
vertical distribution of water vapor in the atmosphere. For comparison, GeoSTAR
operates at some of the same frequencies of the Advanced Microwave Sounding
Unit - A (AMSU-A) and - B (AMSU-B) temperature and humidity sounders near
55 GHz and 180 GHz, respectively. The images have a size of 400 × 400 pixels
and were derived from cloud resolving numerical weather prediction model (WRF)
(Michalakes et al. 1998) simulations. The resolution of a pixel is 1.3 km. With this
grid spacing, we can resolve features that are approximately 5 km wide. We used
the 101 × 101 GeoSTAR point spread function K, which has a full width at half
maximum of 27.6 km and is shown in Figure 3, to blur the images.
Figure 4(a) shows the multispectral images of Figure 1 degraded with the

GeoSTAR blur. These six channels (between 50.3 and 55.5 GHz) correspond to
some of the frequencies of AMSU-A. The result in Figure 4(c) is obtained using the
efficient multispectral Split Bregman deconvolution model. Note that even though
Figure 4(c) shows three channels per image, multispectral reconstruction was per-
formed on all six channels simultaneously. Figures 4(b,d) show the original error
and error after reconstruction and Tables 1 and Table 2 give signal-to-noise ratio
(SNR) and root mean square (RMS) error values (see (2) and (3)), respectively.
These error measures are relative to the original image in Figure 1. In Figure 4(c),
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(a)

(b)

Figure 8. Multispectral reconstruction of real tropical cyclone images using Split Bregman deconvolu-
tion. Different microwave channels are represented as RGB color images. Note that the multispectral
reconstruction is performed over all five AMSU-B channels, and three-channel RGB images are shown only
for visualization purposes. (a) Original microwave channels from Figure 7 are convolved with GeoSTAR
kernel from Figure 3. Initial errors are also shown. (b) Reconstructed images and corresponding errors.
Columns of this figure show tropical cyclone Katrina and corresponding errors, tropical cyclone Rita and
corresponding errors, and tropical cyclone Talim and corresponding errors.

the proposed technique has produced an image which appears to match the true
image, and also in Figure 4(d) truly reduces image errors compared to Figure 4(b).
Similarly, Figure 5(a) shows the multispectral images of Figure 2 degraded with

the GeoSTAR blur. These six channels (between 150 and 182.31 GHz) correspond
to some of the frequencies of AMSU-B. The result in Figure 5(c) is obtained using
the efficient multispectral Split Bregman deconvolution model. Figures 5(b,d) show
the original error and error after reconstruction and Tables 1 and Table 2 give SNR
and RMS error values, respectively. As expected, the deconvolution model decreases
the errors. On the other hand, apodization (see Figure 6) raises the errors relative
to Figure 5(b,top) (Tanner and Swift 1993).
Figure 7 shows multispectral AMSU-B images capturing 2005 tropical cyclones

(TC) Katrina, Rita, and Talim. Figure 8(a) shows the multispectral images of Fig-
ure 7 degraded with the GeoSTAR blur. Initial errors are also shown on this figure.
The result in Figure 8(b) is obtained using the multispectral Split Bregman decon-
volution model. Errors after reconstruction are also shown on this figure. Tables 1
and Table 2 give SNR and RMS error values, respectively. Figure 9 shows all five
original AMSU-B channels capturing TC Katrina, TC Rita, and TC Talim. Fig-
ures 10(a), 11(a), and 12(a) display images of Figure 9 degraded with the GeoSTAR
blur. Figures 10(b), 11(b), and 12(b) display results obtained using multispectral
Split Bregman deconvolution model.
We also assessed computational efficiency of the fast fourier transform-based Split

Bregman deconvolution method and found that solving the deconvolution problem
using the fast Split Bregman method is over five hundred times faster than using
the gradient descent method.
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channel 1 channel 2 channel 3 channel 4 channel 5

(a)

(b)

(c)

Figure 9. All five original AMSU-B channels capturing tropical cyclones (TC) (a) Katrina, (b) Rita, and
(c) Talim are displayed.

4. Multispectral Multiframe Super-resolution

Multiframe super-resolution reconstruction produces a high-resolution image from
a sequence of blurry and noisy low-resolution images. Given multiple noisy and
blurry multispectral observations f k, where k = 1, . . . , Q, we assume the point
spread function K contains noise sk. The convolution model describing the relation
between the unknown clean image u0 and each of the corrupted observations f k is
given by

f k = (K + sk) ∗ u0 + κk,

where κk is image noise. A conceptual diagram of multiframe super-resolution
process, which involves PSF degraded with different noise functions for each frame,
is shown in Figure 13.
We consider the following minimization problem for multispectral multiframe
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channel 1 channel 2 channel 3 channel 4 channel 5

(a)

(b)

Figure 10. Multispectral reconstruction of channels capturing tropical cyclone Katrina. (a) Original mi-
crowave channels from Figure 9(a) are convolved with GeoSTAR kernel from Figure 3. (b) Reconstructed
images.

channel 1 channel 2 channel 3 channel 4 channel 5

(a)

(b)

Figure 11. Multispectral reconstruction of channels capturing tropical cyclone Rita. (a) Original mi-
crowave channels from Figure 9(b) are convolved with GeoSTAR kernel from Figure 3. (b) Reconstructed
images.

super-resolution:

min
u
||u ||MTV +

µ

2

Q
∑

k=1

ωk||K ∗ u − f k||
2
2. (11)
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channel 1 channel 2 channel 3 channel 4 channel 5

(a)

(b)

Figure 12. Multispectral reconstruction of channels capturing tropical cyclone Talim. (a) Original mi-
crowave channels from Figure 9(c) are convolved with GeoSTAR kernel from Figure 3. (b) Reconstructed
images.

Here, the weighting constants ωk are calculated using the total variation (TV)
averaging (Marquina and Osher 2008; Jung, Marquina, and Vese 2009, 2013). Min-
imization problem (11) can be re-written as

min
u
||u ||MTV +

µ

2
||K ∗ u − f̄ ||22, (12)

where f̄ =
∑

k ωkf k is the weighted TV mean of the observations f k. Fast multi-
spectral Split Bregman deconvolution, described in the previous section, is applied
to (12).
Figure 13 displays a conceptual diagram and Figure 14 shows the multiframe

super-resolution results. As displayed in Figure 13, a physical scene is consecutively
blurred with a noisy GeoSTAR PSF corrupted with 10% visibility error to produce
a multiframe image sequence. The average signal-to-noise ratio of an image in the
corrupted sequence is 35.48, and the average RMS error is 16.98. Super-resolution
reconstruction results are shown in Figure 14 for cases when 1, 2, 3, 5, 10, and
20 frames are used. Table 3 shows RMS errors and signal-to-noise ratios of the
reconstructed images. As expected, the quality of the reconstruction increases with
the number of images in a sequence.
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Figure 13. Conceptual diagram of multiframe super-resolution process. A depiction of a physical scene,
when captured, is convolved by the PSF K, degraded by a different noise function sk, to arrive at the
observation fk. The super-resolution algorithm reconstructs image u from multiple observations.

Table 3. Root mean square errors
and signal-to-noise ratios in six-channel
reconstructed images after multispec-
tral multiframe reconstruction was per-
formed. Results are shown in Figure 14.
For initial frames, RMS errors are 16.98,
and SNR values are 35.48, on average.

Number of frames RMSE SNR

1 17.80 35.07
2 12.85 37.90
3 11.29 39.02
5 10.11 39.98
10 8.93 41.06
20 8.41 41.58

5. Conclusion and Future Work

We developed efficient multispectral deconvolution methodology and applied these
techniques to reduce image blurring and distortion inherent in an aperture synthesis
system. Unlike the conventional linear apodization approach, our process reduces
not only the ringing within the image, but also significantly reduces the errors in
the overall image.
There are several paths for future research. The most obvious one is to account

for physical deformation in consecutive frames while the scene is being captured.
Ongoing and future work will also involve a study of performing simultaneous up-
sampling and deconvolution on real data. Finally, we plan to combine multiframe,
multispectral, and simultaneous upsampling and deconvolution into a single com-
putational framework.
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1 frame 2 frames

3 frames 5 frames

10 frames 20 frames

Figure 14. Mulstispectral multiframe super-resolution results. Clean 6-channel image of Figure 2 is
consecutively blurred with noisy PSF (see Figure 13) to produce an image sequence. Super-resolution
reconstruction results along with corresponding errors are shown for cases when 1, 2, 3, 5, 10, and 20
frames are used. SNR and RMSE values for reconstructed images are listed in Table 3.
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