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Abstract. The phase retrieval problem has drawn considerable attention, as many optical
detection devices can only measure magnitudes of the Fourier transform of the underlying object
(signal or image). This paper addresses the phase retrieval problem from incomplete data, where
only partial magnitudes of Fourier transform are obtained. In particular, we consider structured
illuminated patterns in holography, and find that non-integer values used in designing such pat-
terns often yield better reconstruction than the conventional integer-valued ones. Furthermore, we
demonstrate theoretically and numerically that three set of diffracted set of (complete) magnitude
data are sufficient to recover the object. To compensate for incomplete information, we incorporate
a total variation regularization to impose a priori to guarantee the reconstructed image satisfying
some desirable properties. The proposed model can be solved efficiently by an alternative directional
multiplier method with provable convergence. Numerical experiments validate the theoretical find-
ing, and demonstrate the effectiveness of the proposed method in recovering objects from noisy and
incomplete data.
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1. Introduction. When light waves pass by an object, far field measurements
in terms of pointwise absolute value of the Fourier transform (FT) of the object can
be obtained by Huygens’ principle [25]. There are many applications involving such
measurements, for instance, astronomical imaging [14], electron microscopy [36], and
optics [43, 41], etc. As phase information is completely lost, the recovery of the
underlying object u from the magnitudes of its Fourier transform is referred to as
phase retrieval (PR). In this work, we focus on reconstructing a 2D image u defined
on a discrete lattice Ω = {0, 1, · · · , n1 × n2 − 1} → R of size n1 × n2 (note that we
represent a 2D image in terms of a vector by the lexicographical order). The obtained
data b0 : Ω→ R are magnitudes of the Fourier transform of u, i.e., b0 = |Fu|, where
F : Rn1×n2 → Cn1×n2 denotes the discrete Fourier transform (DFT)

(Fu)(ω1 + ω2n1) :=
1

√
n1n2

∑
0≤tk≤nk−1,

k=1,2

u(t1 + t2n1) exp(−2πi(ω1t1/n1 + ω2t2/n2)),

∀ 0 ≤ ωk ≤ nk − 1, for k = 1, 2, where i =
√
−1. As different images can have the

same magnitudes, the PR problem does not have a unique solution, thus ill-posed.
One pioneer work of phase retrieve was proposed by Gerchberg and Saxton [22]

using a projection-based error reduction method, which was later improved by a hybrid
input-output algorithm proposed by Fienup [19]. Other projection-based variants
include a hybrid projection-reflection method [2, 3], an iterated difference-map method
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2 Phase Retrieval via Total Variation Regularization

[15], and relaxed averaged alternation reflections [30]. Alternatively, Machesini [34]
adopted a saddle-point optimization to solve the PR problem, and a similar idea was
presented in [44].

Major recent developments have been focused on semi-definite programming. For
example, PhaseLift [9] reformulated the PR as a rank-one minimization problem,
which was relaxed by a convex trace (nuclear) norm minimization. Waldspurger et
al. [42] considered another convex relaxation technique, called PhaseCut, by splitting
the phases and magnitudes via a complex semi-definite programming. Yin and Xin
[47] proposed a nonconvex variant of PhaseLift by subtracting off Frobenius norm
from the trace norm in PhaseLift, named as PhaseLiftOff, which successfully recovers
signals with fewer measurements than PhaseLift numerically. A direct solver of the
nonconvex PR problem was introduced in [8] and further developed in [12] where
Wirtinger flow, a gradient scheme with novel update rules, was considered together
with a careful initialization by means of a spectral method.

In this paper, we explicitly address the nonuniqueness issue of PR by acquiring
two additional sets of data, thus yielding three sets in total:

(1.1) M(u) := {|Fu|, |F (u+Dsu)|, |F (u− iDsu)|},

where
(1.2)

(Dsu)(t1 +t2n1) = exp

(
2πis1t1
n1

+
2πis2t2
n2

)
u(t1 + t2n1), 0 ≤ tk ≤ nk−1, k = 1, 2.

The data M(u) can be obtained by illuminating the samples with three light fields:
{1, 1 + exp(2πis1t1/n1 + 2πis2t2/n2), 1 + exp(2πis1t1/n1 + 2πis2t2/n2− iπ/2}. It was
proved in [7] that if both s1 and s2 in (1.2) are prime numbers (thus integers) with
respect to n1 and n2 respectively, and each element of |Fu| is non-zero, the signal
u can be exactly recovered from 3n1n2 measurements. Unfortunately, 3n1n2 mea-
surements are often practically insufficient to recover the signal, and instead 7n1n2

measurements are suggested by the authors. We find that if s1 = s2 = 1/2, then
3n1n2 measurements yield an exact recovery of the PR problem, both theoretically
and empirically. In particular, we assume the original image is non-negative, bound-
ed, and real-valued; in other words, we assume that u satisfies a [0, 1] box constraint
(up to scaling)1. We prove that u can be uniquely determined from 3n1n2 measure-
ments for s1 = s2 = 1/2 in (1.2). We then demonstrate numerically that the unique
solution can be obtained by solving a least-squares problem with a box constrain-
t. Furthermore, we demonstrate that phase retrieval from incomplete information is
possible. For this purpose, we formulate a variational model by introducing a total
variation (TV) regularization, which is widely used in image processing since the sem-
inal work of [39]. Recently, with the advance in compressive sensing (CS) [6], the TV
regularization is provably efficient to recover signals or images from incomplete data
or limited measurements [32, 33]. We employ an alternating direction of multipliers
method (ADMM) [23, 45, 5, 10] or equivalently split Bregman method [24] to solve
the TV-regularized minimization, followed by convergence analysis indicating that
the algorithm converges to a stationary point. Numerical experiments show that the
proposed method can recover the image from incomplete magnitude data and is stable
to the presence of the noise.

1Such assumption was not needed in [7].
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The rest of this paper is organized as follows. In Section 2, we present the
uniqueness proof of the solution from 3n1n2 measurements for s1 = s2 = 1/2 in
(1.2). Both least-square and total variation models are examined in Section 3, while
Section 4 discusses corresponding numerical algorithms with convergence analysis.
Experiments are conducted in Section 5 to validate the theoretical aspects of the
work, and demonstrate the robustness of the proposed method for image recovery
from noisy and incomplete magnitude data. Finally, conclusions and future works are
given in Section 6.

2. Theoretical analysis. It is straightforward that there exist three trivial am-
biguities satisfying b = |Fu| for different u: (1) multiplication by a complex constant
with unit norm; (2) time-reversal(reflection); (3) shifted transformation (translation).
Moreover, one can find infinitely many non-trivial solutions theoretically in [40]. To
overcome the nonuniquesness issue, oversampling is often adopted [35, 37], i.e., ac-
quiring more samples in the frequency domain than that in the Nyquist frequency.
Hayes [26] and Sanz [40] proved that if the underling signal is finitely supported and
non-negative, then the solution of PR is uniquely determined from the number of
measurements that is two times the dimension of the signal. The results are fur-
ther extended under the setting of random oversampling [16, 17, 18], where random
illumination was proposed to enforce absolute uniqueness and resolve all types of
ambiguities, trivial or nontrivial. The close relevant to this work is considered in
[7], where 3n1n2 measurements are measured in the form of M(u) (1.1), and PR’s
uniqueness holds if s1, s2 in (1.2) are integers. The result is included here.

Theorem 2.1. [7, Theorem 3.3] Assume that the DFT of u ∈ Cn1×n2 is non-
vanishing (each component is nonzero). Then u can be recovered up to global phase
(unique up to a multiplication with a unit scalar) from 3n1n2 measurements in (1.1),
if and only if si is prime with ni(i = 1, 2) and n1 is prime with n2.

Due to the nonconvex nature of PR, numerical algorithms are often stuck at
the local minimizers. Consequently it is not surprising that 3n1n2 is empirically
insufficient to give a satisfactory reconstruction, and one remedy suggested in [7] is
via over-sampling. We find that 3n1n2 measurements are sufficient if s1 = s2 = 1/2,
as opposed to integers in [7], with additional assumption that the underlying image
u is real-valued and non-negative. Please refer to Section 5.1 for numerical validation
of s1 = s2 = 1/2 and comparison to integer values. The theoretical guarantee is given
in the following theorem.

Theorem 2.2. Assume that u is non-negative and real-valued, the DFTs of u
and Dsu are non-vanishing, and s1 = s2 = 1/2. Then u can be recovered from 3n1n2

measurements in (1.1), if n1 is prime with n2.
Proof. This theorem holds for both 1-D and 2-D cases. Here we only give a sketch

proof for 1-D case, and see the complete proof in the Appendix.
In 1-D cases, u = (u0, u1, . . . , un−1)T ∈ Rn, and uk ≥ 0,∀0 ≤ k ≤ n− 1. Since u

is real-valued and Fu is non-vanishing, one has

(2.1) U mod (n−k,n) = Ūk 6= 0, ∀0 ≤ k ≤ n− 1,

where U = (U0, U1, . . . , Un−1)T := Fu, z̄ denotes the complex conjugate of z. Simi-
larly, one readily has

(2.2) V mod (n+1−k,n) = V̄k 6= 0,∀0 ≤ k ≤ n− 1,

where V = (V0, V1, . . . , Vn−1)T := FDsu.
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In the following we will study how to solve U and V alternatively by the relations
in (2.1) and (2.2). As the triple (|U0|, |U0 + V0|, |U0 − iV0|) is known, and U0 is non-
negative real-valued, we can solve U0, V0 if U0 6= 0, V0 6= 0. We will use (2.1) and (2.2)
to find the next triple, which can be solved as the similar manner of the previous
one. One can readily find another triple (|Ū1|, |Ū1 + V̄0|, |Ū1 − iV̄0|) as the next one,
and we can also obtain U1 if U1 6= 0. Repeatedly, one can sequentially obtain all
the {Ui}n−1

i=0 and {Vi}n−1
i=0 . That finishes the proof in the 1-D case by inverse Fourier

transformation of U .

Although Theorem 2.2 has a similar statement to Theorem 3.3 in [7], the proof is
different (cf. Appendix), as we exploit the nonnegativity of the original image u, and
s1 = s2 = 1/2 is heuristically prime to n1, n2. More importantly, not only does the
choice of s1 = s2 = 1/2 empirically yields exact recovery when using full (3 sets) data,
but it also enables phase retrieval with significant amount of downsampling and noise
in the measurement data. Note that non-vanishing DFT condition is mild, since one
can use masks to scramble the Fourier transform to make it non-zero [7] (we do not
consider this mask in experiments). To this end, we study the image reconstruction
problem from the incomplete noisy measurements of M(u), i.e., downsampling the
data by random binary masks, with additive Gaussian noise.

Remark 2.1. One can consider a more general problem as

(2.3) find u, s.t. b :=M(u) = |Lu|,

where M is a nonlinear mapping, specifically taking magnitudes of a linear transfor-
mation L on the signal u. Phase retrieval is a special case of (2.3), as L is a sub-
sampling of the Fourier matrix. The injectivity of M (the uniqueness) does not hold
from Fourier measurements due to trivial ambiguities, such as the positivity, compact
support for real-valued u. In [26], at least 2d times measurements by oversampling are
needed to obtain the injectivity theoretically for d−dimensions real-valued problems.
For the general phase retrieval problems, the injectivity is guaranteed by collecting
K ≥ 2N − 1 [1] and K ≥ 4N − 4 [13] measurements for real u ∈ RN and complex
u ∈ CN signals respectively, provided that all mapping M generated by a generic
frame2. In particular, Shechtman et al. [41] showed that the lower bound 2N − 1
can be achieved with high probability by collecting full-spark random measurements,
following the work [1]. By collecting 3N non-random Fourier measurements generated
by deterministic masks for u ∈ CN , the uniqueness is derived in [7].

As stated in [31, 7], the theory of injectivity or the uniqueness in the afore men-
tioned work could not tell us how to retrieve the phases from the clean and noisy data,
and one can not readily translate the theoretical results to the numerical simulation
and practical applications. For example, it is proved in [7] that 3N measurements
with integer s can guarantee the uniqueness of the solution, but empirically at least
7N measurements for 1D case are needed to yield reasonable results. We added Figure
4 to show that at least 7N measurements for 2D case (N = n1×n2) for integer-valued
s yield worse results in terms of SNR compared to 3N measurements with si = 1/2.

3. Proposed models. To account for down-sampling, we introduce three sub-
sets: Ωi ⊂ Ω, for 0 ≤ i ≤ 2, each of which provides a binary mask of the incomplete FT

2Generic frame means a K−element frame belongs to an open dense subset of the set of all
K−element frames in Rn or Cn [1]
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magnitude. Then phase retrieval from the partial FT magnitudes can be formulated
as a least-square type of minimization with a box constraint,

(3.1) min
0≤u≤1

‖|Fu| − b0‖2Ω0
+ ‖|F (u+Dsu)| − b1‖2Ω1

+ ‖|F (u− iDsu)| − b2‖2Ω2
,

where ‖v‖S := (
∑
j∈S
|v(j)|2)

1
2 for S ⊂ Ω. To simplify, we introduce a linear op-

erator A := [I, I + Ds, I − iDs]T , where I is the identity operator; and hence
A u = (u, u + Dsu, u − iDsu). Denote b := (b0, b1, b2), Ω̄ := (Ω0,Ω1,Ω2) and
Fz := (Fz0,Fz1,Fz2) for z = (z0, z1, z2). Eqn. (3.1) is equivalent to

(3.2) min
0≤u≤1

ELSB = ‖|FA u| − b‖2Ω̄,

which is referred to as least-square box (LSB) model. The LSB model yields an exact
recovery if complete information (3n1n2 measurements) is available. With extreme
downsampling, e.g. using only 10% × 3n1n2 measurements, the reconstructed result
of LSB contains visible artifacts, as illustrated in Figure 1 (c).

To further improve the results, we incorporate a total variation (TV) regulariza-
tion [39] into (3.2), referred to as TVB model,

min
0≤u≤1

ETV B(u) = TV(u) +
λ

2
‖|FA u| − b‖2Ω̄,(3.3)

where TV (u) denotes the discrete total variation semi-norm, i.e., the L1 norm of the
discrete gradient of u, and the parameter λ balances the regularization term and the
data fitting term. The objective functional favors the solution being approximately
piecewise constant, and the model is effective for the data which is corrupted by the
Gaussian white noise, i.e. b̂i = bi + σni, where ni ∼ N(0, 1) and σ is the standard
deviation. Other types of noise can be processed by changing the data fitting terms,
which is beyond the scope of our paper. One can readily infer from Figure 1 (d) that
TV regularization significantly improves the LBS.

We prove the existence of minimizer to the TVB model (3.3) in the continuous
setting, which holds in the discrete case. Denote Ω be the bounded and Lipschitz-
regular domain, and we obtain the existence of the minimizer.

Theorem 3.1. Given non-negative real data b = (b0, b1, b2), the TVB model (3.3)
has at least one minimizer u∗ ∈ BV (Ω).

Proof. One readily knows ETV B(u) ≥ 0. Hence, there exists a minimizing se-
quence {uk}0≤k≤∞, s.t. ETV B(u0) ≥ ETV B(u1) ≥ . . .. As 0 ≤ uk ≤ 1 and Ω is bound-
ed and Lipschitz-regular, there exists a positive constant C, s.t. TV(uk) + ‖uk‖1 ≤
C. By Rellich’s compactness theorem, there exists u∗ ∈ BV (Ω), and subsequence
(unk

)k≥1, such that unk
→ u∗ in L1(Ω) as k tends to +∞. By the continuity of the

second term of ETV B and TV’s lower semi-continuity, one obtains

lim sup
unk
→u∗

ETV B(uk) ≥ ETV B(u∗).

Therefore, u∗ is one minimizer of ETV B(u).

4. Numerical Algorithms.
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(a) (b)

(c) (d)

Fig. 1. (a): 10% mask; (b): Original image (Resolution: 100 × 100); (c): phase retrieval by
LSB with SNR=8.65; (d): phase retrieval by TVB with SNR=22.47.

4.1. Solving the LSB model. There are numerious algorithms available to
solve the LSB model (3.2), such as the error reduction (ER) [22], hybrid input-output
(HIO) [19], hybrid projection-reflection (HPR) [15, 3] etc. It is studied in [44] that
ADMM outperforms these projection algorithms (ER, HIO and HPR) in terms of
both image quality and convergence rates, and hence we adopt ADMM here. As AD-
MM is a first-order algorithm [27] for non-differential convex optimization problems,
we will explore fast algorithms in the future, such as [4] with second-order convergence
rate and parallel acceleration [11]. The LSB model (3.2) can be rewritten as

min
u

1

2
‖|z| − b‖2Ω̄ + χ(v),

s.t.

{
u = v,

z = FA u,

where z = (z0, z1, z2), and

χ(v) =

{
0, 0 ≤ v ≤ 1;

∞, otherwise.

The augmented Lagrangian reads

LLSB(u, v, z;w, d) =
1

2
‖|z| − b‖2Ω̄ + χ(v) + <〈d, z −FA u〉

+
ρ1

2
‖z −FA u‖2 + 〈w, u− v〉+

ρ2

2
‖u− v‖2,

(4.1)
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where d = (d0, d1, d2) and ρ1, ρ2 are positive parameters. The ADMM for this saddle
point problem involves minimizing LLSB with respect to u, v, z alternatively while
updating the dual variables d and w. The algorithm is summarized in Algorithm 1.

Below we elaborate on how to solve these three subproblems,

uk+1 = arg min
u

LLSB(u, vk, zk;wk, dk),(4.2)

vk+1 = arg min
v

LLSB(uk+1, v, zk;wk, dk),(4.3)

zk+1 = arg min
z

LLSB(uk+1, vk+1, z;wk, dk).(4.4)

There are closed-form solutions for (4.3) and (4.4). The expression for v is given by

(4.5) vk+1 = min
{

1,max
{

0, uk+1 + wk/ρ2

}}
.

Minimization for each component of z is independent of other two, so we just describe
how to solve for z0 as an example. The solution of

min
z0

1

2ρ1
‖|z0| − b0‖2Ω0

+
1

2
‖z0 + d0/ρ1 −Fu‖2,

can be expressed as

(4.6) z∗0 =


b0 + ρ1|g0|

1 + ρ1

g0

|g0|
, if x ∈ Ω0 ∩ {g0 6= 0};

b0
1 + ρ1

c∗, if x ∈ Ω0 ∩ {g0 = 0};

g0, otherwise.

where g0 = Fu − d0/ρ1, ∀c∗ ∈ C with |c∗| = 1. To minimize LLSB with respect to
u, we calculate the derivatives

∂u
(
‖z0 −Fu‖2/2

)
= ∂u

(
‖F ∗z0 − u‖2/2

)
= u−<(F ∗z0),(4.7)

∂u
(
‖z1 −F (u+Dsu)‖2/2

)
= (2 + 2<(Ds))u−<(F ∗z1 +DsF ∗z1 ),(4.8)

∂u
(
‖z2 −F (u− iDsu)‖2/2

)
= (2 + 2=(Ds))u−<(F ∗z2 − iDsF ∗z2 ),(4.9)

where F ∗ denotes the inverse Fourier transform, z̄ denotes the complex conjugate of
z. Therefore, (4.2) is equivalent to solving u from

(ρ1(5 + 2<(Ds) + 2=(Ds)) + ρ2I)u

= ρ1(<(ẑk0 + ẑk1 +Ds ¯̂zk1 + ẑk2 ) + =(Ds ¯̂zk2 )) + (ρ2v
k − wk),

(4.10)

where ẑki = F ∗(zki +dki /ρ1) for 0 ≤ i ≤ 2. Note that each diagonal element of Ds is a
complex number with magnitude not greater than 1 , and hence 5I+2<(Ds)+2=(Ds)
is invertible, and (4.10) can be solved efficiently by direct inversion of the diagonal
matrix ρ1(5I + 2<(Ds) + 2=(Ds)) + ρ2I, i.e.,

u = (ρ1(5 + 2<(Ds) + 2=(Ds)) + ρ2I)
−1×(

ρ1(<(ẑk0 + ẑk1 +Ds ¯̂zk1 + ẑk2 ) + =(Ds ¯̂zk2 )) + (ρ2v
k − wk)

)
.

(4.11)
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Algorithm 1 ADMM for solving the LSB model (3.2)

Initialization. k = 0, w0 = 0, d0 = 0, v0, z0.
while stopping conditions are not satisfied do

Solve (4.10) via (4.11) to obtain uk+1;
Update vk+1 via (4.5);
Update zk+1

0 via (4.6), similarly for zk+1
1 , zk+1

2 ;
Update the dual variables

(4.12)

{
dk+1 = dk + ρ1(zk+1 −FA uk+1),

wk+1 = wk + ρ2(uk+1 − vk+1);

k ← k + 1.
end while
output the solution u∗ = uk+1.

4.2. Solving the TVB model (3.3). Inspired by split Bregman [24] or equiv-
alently ADMM, we introduce an auxiliary variation p and rewrite (3.3) as

min
u

ETV B(u) := ‖p‖1 +
λ

2
‖|z| − b‖2Ω0,Ω1,Ω2

+ χ(v),

s.t. u = v, p = ∇u, z = FA u.
(4.13)

The augmented Lagrangian of ETV B(u) reads

LTV B(u, v,p, z;w, q, d)

= ‖p‖1 +
λ

2
‖|z| − b‖2Ω0,Ω1,Ω2

+ χ(v) + <〈d, z −FA u〉+
ρ1

2
‖z −FA u‖2

+ 〈q,p−∇u〉+ 〈w, u− v〉+
ρ2

2
‖u− v‖2 +

ρ3

2
‖p−∇u‖2,

(4.14)

where q : Ω→ R2 and ρ1, ρ2, ρ3 are positive parameters. Again we apply ADMM to
solve the saddle point problem

max
w,q,d

min
u,v,p,z

LTV B(u, v,p, z;w, q, d).

Please refer to Algorithm 2. Below we only describe the difference to Algorithm 1 in
details.

The subproblem to minimize over u is simplified by omitting superscripts and
subscripts,

min
u

1

2
‖p + q/ρ3 −∇u‖2 +

ρ2

2ρ3
‖u− v + w/ρ2‖2 +

ρ1

2ρ3

(
‖z + d/ρ1 −FA u‖2

)
.

(4.15)

By calculating the derivative,

∂u
(
‖p + q/ρ3 −∇u‖2/2

)
= div(p + q/ρ3 −∇u) = −∆u+ div(p + q/ρ3),

and together with (4.7)-(4.9), we can obtain the Euler-Lagrangian equation to (4.15)

−∆u+

(
ρ1

ρ3
(5 + 2<(Ds) + 2=(Ds)) +

ρ2

ρ3

)
u

=
ρ1

ρ3
(<(ẑ0 + ẑ1 +Ds ¯̂z1 + ẑ2) + =(Ds ¯̂z2)) +

1

ρ3
(ρ2v − w)− div(p + q/ρ3).
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Algorithm 2 ADMM for solving the TVB model (3.3)

Initialization. k = 0, w0 = 0, q0 = 0, d0
i = 0, v0, z0

i .
while stopping conditions are not satisfied do
uk+1 = arg min

u
LTV B(u, vk,pk, zk;wk, qk, dk): solve for (4.16) via CG;

vk+1 = arg min
v

LTV B(uk+1, v,pk, zk;wk, qk, dk): similar to (4.5);

pk+1 = arg min
p

LTV B(uk+1, vk+1,p, zk;wk, qk, dk): see (4.17);

zk+1 = arg min
z

LTV B(uk+1, vk+1,pk+1, z;wk, qk, dk): similar to (4.6);

Update dual variables

(4.18)


dk+1 = dk + ρ1(zk+1 −FA uk+1),

wk+1 = wk + ρ2(uk+1 − vk+1),

qk+1 = qk + ρ3(pk+1 −∇uk+1),

k ← k + 1.
end while
output the solution u∗ = uk+1.

where ẑi = F ∗(zi + di/ρ1) for 0 ≤ i ≤ 2. This equation is a linear second order PDE
as −∆u+ ρ1

ρ3
au = f, for a(x1, x2) = 5 + 2<(Ds) + 2=(Ds) + ρ2

ρ1
≥ 1 + ρ2

ρ1
, which can

be solved efficiently. In particular, we adopt the five-point difference discretization
scheme, and solve the following equation to obtain uk+1 via conjugate gradient (CG)
method,

−∆u+

(
ρ1

ρ3
(5 + 2<(Ds) + 2=(Ds)) +

ρ2

ρ3

)
u

=
ρ1

ρ3
(<(ẑk0 + ẑk1 +Ds ¯̂zk1 + ẑk2 ) + =(Ds ¯̂zk2 )) +

1

ρ3
(ρ2v

k − wk)− div(pk + qk/ρ3),

(4.16)

where ẑki = F ∗(zki + dki /ρ1) for 0 ≤ i ≤ 2. In addition, the update for p from

min
p
‖p‖1 +

ρ3

2
‖p + q/ρ3 −∇u‖2,

has a closed-form solution,

(4.17) p = Thresh(−q/ρ3 +∇u; 1/ρ3),

where the soft thresholding is denoted as Thresh(p; η) = pmax
{

0, 1− η
‖p‖

}
.

4.3. Convergence analysis. We shall analyze whether the proposed algorithms
converge. We only consider the convergence of TVB, as TVB reduces to LSB for suffi-
ciently large λ. In order to deduce the KKT condition of (4.13), which is a real-valued
objective functional with complex-valued constraints, one shall carefully deal with the
derivatives, as this objective functional is not holomorphic with respect to the com-
plex variables unless it is a constant. The CR-calculus formalism [38, 28] is adopted
to describe the derivatives. Assuming that the real-valued objective functional can be
expressed as D(z, z̄) with respect to the variable z and its conjugate z̄, the first order
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derivative can be defined as ∂D
∂z (or ∂D

∂z̄ ). z∗ is a stationary point if ∂D(z∗,z̄∗)
∂z = 0 or

∂D(z∗,z̄∗)
∂z̄ = 0, and one can refer to [28] for details. Therefore, we can readily derive the

KKT condition of (4.13) for some u∗, v∗,p∗, z∗ = (z∗0 , z
∗
1 , z
∗
2), w∗, q∗, d∗ = (d∗0, d

∗
1, d
∗
2)

(the first order condition of (4.14) without the augmented terms, i.e. ρ1 = ρ3 = 0)

(KKT)



0 = −<(d∗0 + d∗1 +Dsd̄∗1 + d∗2) + =(Dsd̄∗2) + div(q∗) + w∗,

0 ∈ ∂p‖p∗‖1 + q∗,

0 ∈ λ∂zi |z∗i | · (|z∗i | − b0) +
1

2
d̄∗i , ∀0 ≤ i ≤ 2,

0 ≥ 〈w∗, v − v∗〉,∀0 ≤ v ≤ 1,

0 = u∗ − v∗,
0 = p∗ −∇u∗,
0 = z∗ −FA u∗.

Theorem 4.1. Let (uk, vk,pk, zk, wk, qk, dk) be generated by Algorithm 2. If the
successive differences sequences of the multipliers wk+1−wk, qk+1− qk, dk+1− dk all
converge to 0 as k tends to∞, then there exists a subsequence Ssub whose accumulation
point satisfies the KKT condition of (4.13).

Proof. Define Xk := (uk, vk,pk, zk, wk, qk, dk). Since lim
k→0

(
dk+1 − dk

)
= 0, and

the multiplier updates by (4.18), one readily obtains that

(4.19) lim
k→0

zk −FA uk = 0.

As 0 ≤ vk ≤ 1, and lim
k→0

(
wk+1 − wk

)
= 0, there exists a bounded subsequence such

that lim
k→∞

uk = lim
k→∞

vk = u∗ (still denoted as uk, and wk).

It follows from (4.6) and (4.19) that {dk0} and {zk0} are bounded, and similarly
for zk1 , z

k
2 , d

k
1 , d

k
2 . The boundedness of qk can be derived using the similar analysis

in [44]. Therefore, there exists a bounded subsequence {Xnk} converging to X∗ =
{u∗, v∗,p∗, z∗, w∗, q∗, d∗}. Then {

z∗ = FA u∗,

p∗ = ∇u∗,

The variational inequality of Step 2 in Algorithm 2 reads ∀ 0 ≤ v ≤ 1,

〈−wk, v − vk+1〉 ≥ −ρ2〈uk+1 − vk+1, v − vk+1〉 ≥ −ρ2‖uk+1 − vk+1‖‖v − vk+1‖.

Hence

〈−w∗, v − v∗〉 ≥ 0,∀ 0 ≤ v ≤ 1.

The proof for the first three relations in the KKT condition are similar to the ones in
[44], which are omitted here.

Note that the requirement of multipliers wk+1 − wk, qk+1 − qk, dk+1 − dk con-
verging to zero in Theorem 4.1 seems rather strong, but it is common in nonconvex
optimization, see [44, 46, 29]. The convergence rate for such nonconvex optimization
problem will be considered as [27] in the future.
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5. Numerical examples. The masks Ωi are randomly generated, and we fur-
ther assume that they are identical, i.e., Ω0 = Ω1 = Ω2. Note that low DFT frequen-
cies contain more signal over noise, while high frequencies contain the information
determining the image resolution. As a result, the probability of selecting the lower
frequencies data shall be higher than that of high frequencies if only measuring the
partial magnitudes. Please refer to [33] for details about the different choice of the
sampling masks. In this part, we use a random mask to generate Ω0 and produce
the probability density function for 2D random sampling pattern with polynomial
variable density sampling [32].

We consider random initialization for both LSB and TVB. Specifically, variables
v0 and z0

i are chosen to be

z0
i (ω) =

{
bi(ω) exp(−2πiθiω), if ω ∈ Ω,

0, otherwise,

and v0 = F ∗z0
1 where θi are drawn from the standard uniform distribution on the

open interval (0,1). The gradient and divergence operators in the TVB model are
discretized with the periodical boundary condition. We set the maximum iteration
number to be 500. Relative-mean-squared-error (RMSE) and signal-noise-ratio (SNR)
are used to measure the reconstruction quality

RMSE(u, ug) =

∑
j∈Ω

|u(j)− ug(j)|2∑
j∈Ω

|ug(j)|2
,

SNR(u, ug) = −10 log10 RMSE(u, ug),

where ug is the ground truth image of size n1 × n2 and u is the reconstructed image.

5.1. Phase retrieval from complete information. We first demonstrate the
exact recovery theorem (Theorem 2.2) of phase retrieval using complete data M(u)
when s1 = s2 = 1/2. We employ the LSB model (3.1) on two testing cases: (1)
100 images that are randomly generated from uniform distribution on the interval
[0, 1] × [0, 1]; and (2) 50 natural images of resolutions 512 × 512 as shown in Figure
2. The SNR and RMSE values of the recovered images are put in Figure 3, which
shows that RMSEs are in the order of 10−9 and 10−7 for the random data and natural
images respectively, and SNRs are almost above 65dB and 40 dB for these two cases
respectively (average SNRs are 87dB and 68dB respectively).

In addition, we find that the LSB model does not work well with 3N measurements
if s1, s2 are chosen to be integers, which implies that the choice of s1 = s2 = 1/2 plays
an important role in exact phase retrieval problem. For integer values si, Candés et al.
[7] also suggested oversampling by using seven groups of data in order to give a stable
recovery for 1-D case. We demonstrate that 7N measurements for integer-valued si
are even worse in Figure 4 than 3N measurements for s1 = s2 = 1/2. In particular, we
consider 2-D real-valued images from Figure 2, and seven groups of data are adopted
with (s1, s2) = (0, 3), (3, 0), and (5, 5). The SNR values are reported in Figure 4 with
average value 29dB, which is much smaller than the case with average SNRs 68dB in
Figure 3 (b).

We also compare our proposed ADMM with three related algorithms, ER (error
reduction) algorithm [22], PhaseCut method [42], and Wirtinger flow (WTF) method
[8]. We implement the ER by our own, which consists of the following three steps:
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Fig. 2. Natural images
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Fig. 3. Exact recovery of complete information. (a) SNR values(dB) for random data with
average value 87dB; (b) SNR values(dB) for natural images with average value 68dB; (c) Corre-
sponding RMSE for random data; (d) Corresponding RMSE for natural images.

Step 1. Initialize u0, z0 := FA u0, which satisfies |z0| = b and set k := 0.
Step 2. Update u by solving the following least square problem

ũ = arg min
u∈Rn1×n2

‖FA u− z̃‖2,

where z̃(t) = b(t)zk(t)/|zk(t)|, 0 ≤ t ≤ n1n2 − 1.
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Fig. 4. Exact recovery of complete information with seven groups of data with (s1, s2) =
(0, 3), (3, 0), and (5, 5): SNR values(dB) for natural images with average value 29dB. Obviously the
recovery qualities by using seven groups of data by setting si as integers are much worse than those
by setting si = 1/2 in Fig. 3 (b) with average SNRs 68dB.

Step 3. Update uk+1 by a simple projection as

uk+1 = min{max{ũ, 0}, 1}

and zk+1 = FA uk+1. If satisfying some stopping condition, then stop and
output uk+1 as the final result; Otherwise, set k := k + 1 and goto Step 2.

We use the source codes of PhaseCut3 [42] to solve for the LSB model, with further
refinement by ER algorithm to obtain final results, similar to [21]. We adopt the
WTF scheme to our problem, which requires the solution to be real-valued with box
constraint. In particular, we use an iterative scheme to solve

min
0≤u≤1

G(u) :=
∥∥|FA u|2 − b2

∥∥2
,

by using a gradient projection method with adaptive steps

uk+1 = max{0,min{1, ûk+1}},with ûk+1 = uk − τk∇uG(uk), k = 0, 1, · · ·

where τk is the adaptive step. It seems that for LSB model the step-selecting scheme
for τk proposed in the numerical experiment of [8] does not work well. We further ap-
ply backtracking search technique [4] and consider two initialization schemes: random
and spectral initialization.

The comparison results to ER algorithm, WTF method, and PhaseCut are illus-
trated in Figure 5, which show that our proposed ADMM for LSB model are more
robust and efficient than these two other algorithms. For possible improvement of the
numerical performance for Wirtinger flow method, we will investigate how to develop
a more effective optimization model with different objective functional, where a good
initialization and more efficient numerical optimization schemes should be provided
meanwhile. In addition, a future work is how to reduce the computation complexity
for LSB model considering that the result in Figure 5 (d) generated by PhaseCut is
reasonably good.

3Available at http://www.di.ens.fr/ aspremon/PhaseCutCode
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(a) ER (b) WTF+random (c) WTF+spectral

(d) PhaseCut (e) Ours

Fig. 5. Results for LSB model by ER algorithm (stopped after 5000 iterations) in (a) with S-
NR=15.81, WTF in (b) with SNR=10.45 with random initialization, WTF in (c) with SNR=13.66
with spectral initialization, PhaseCut method (refinement by ER method as [21]) in (d) with S-
NR=19.27, and ADMM in (e) with SNR=53.91. Here we used the backtracking technique to improve
WTF [8].

5.2. Noiseless incomplete measurements. We demonstrate the performance
of both LSB and TVB models when limited measurements are available. The param-
eters for the TVB model are put in Table 1, and we set the parameters ρ1 = 0.001 and
ρ2 = 0.01 for the LSB for all the testing cases. The numerical results are presented
in Figures 6-8, which show that the LSB model produces more visible artifacts than
the TVB. With TV regularization, the image qualities are significantly improved with
an average increase of 4db in SNR values. We present the reconstructed images at
different iteration numbers in Figure 9, which illustrates how the method gradually
recovers the image and converges after hundreds of iterations. Figure 10 plots en-
ergy and relative errors with respect to the iteration, which numerically verifies the
convergence analysis (Theorem 4.1).

All the tests are performed on a desktop computer with Intel(R) Core(TM) i3-
2310 CPU@3.30GHz and 4.00GB RAM. The computational time is recorded in Table
2, which shows that TVB is slower than LSB due to an additional sparse linear system
to solve. Computationally, the conjugate gradient method(CG) is adopted to solve
the linear system, and it is found that a few CG iterations are sufficient to give
satisfactory results.

5.3. Noisy incomplete measurements. Now we consider both incomplete
and noisy measurements. The data are corrupted by the white Gaussian noise, i.e.,
b̂i = bi + σni, where σ is the noisy level, and ni denotes the white Gaussian noise
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Figures λ ρ1 ρ2 ρ3

Figure 6 (d) 1000 0.1 0.1 0.02
Figure 6 (g) 1000 0.4 0.2 0.02
Figure 7 (d) 100 0.07 0.08 0.02
Figure 7 (g) 1000 0.1 0.1 0.02
Figure 8 (d) 1000 0.08 1 0.02
Figure 8 (g) 1000 0.2 1 0.02

Table 1
Parameters for Algorithm 2

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 6. (a): Original image (Resolution: 512 × 512); (b): 5% mask; (c): phase retrieval by
LSB with SNR=16.42; (d): phase retrieval by TVB with SNR=20.77; (e): 10% mask; (f): phase
retrieval by LSB with SNR=18.86; (g): phase retrieval by TVB with SNR=23.95.



16 Phase Retrieval via Total Variation Regularization

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 7. (a): Original image (Resolution: 256 × 256); (b): 10% mask; (c): phase retrieval by
LSB with SNR=14.50; (d): phase retrieval by TVB with SNR=18.04; (e): 30% mask; (f): phase
retrieval with LSB, SNR=15.35; (g): phase retrieval by TVB with SNR=19.29.

Name pixels Mask(ratio) time (s) of LSB time (s) of TVB
Leaf 256× 256 10% 29.36 36.54
Leaf 256× 256 30% 28.15 37.03

Cameraman 256× 256 10% 27.82 37.18
Cameraman 256× 256 30% 28.59 37.98

Liver 512× 512 5% 132.2 178.8
Liver 512× 512 10% 132.8 179.7

Table 2
Elapsed time for LSB and TVB.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 8. (a): Original image “Leaf” (Resolution: 256×256); (b): 10% mask; (c): phase retrieval
by LSB with SNR=14.19; (d): phase retrieval by TVB with SNR=18.35; (e): 30% mask; (f): phase
retrieval by LSB with SNR=17.41; (g): phase retrieval by TVB with SNR=22.75.

with the zero mean. The SNR of the noisy measurements is defined as

SNR(N,M) = −10 log10

( ∑
j∈Ω0,0≤k≤2

|b̂k(j)− bk(j)|2/
∑

j∈Ω0,0≤k≤2

|bk(j)|2
)
,

where N = {b̂0, b̂1, b̂2} is the noisy measurement with respect to the mask Ω0, and
M = {b0, b1, b2} is the ground truth measurement. Therefore, noise level σ can be
determined by the SNR value, i.e.,

σ =

√√√√10−SNR/10
∑

0≤k≤2,j∈Ω0

|bk(j)|2

3d
,
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(a) (b) (c)

(d) (e) (f)

Fig. 9. (a): SNR=6.47 after 10 iterations; (b): SNR=9.48 after 30 iterations; (c): SNR=14.89
after 100 iterations; (d): SNR=18.33 after 200 iterations; (e): SNR=19.95 after 300 iterations; (f):
SNR=20.15 after 400 iterations

where d = #{j : j ∈ Ω0}. The parameters for the TVB are set to be λ = 1000, ρ1 =
0.1, ρ2 = 0.1, ρ3 = 0.02 for both Figure 11 (d) and Figure 11 (f). The SNR values of
the TVB are increased at least 4db compared to the LSB.

5.4. Initialization and Parameters sensitivity. As is know, the proposed
model is not convex, thus sensitive to initialization and model parameters. We ana-
lyze the effects of random initialization, i.e., random θi, when applying the proposed
method on “Cameraman” image with a 30% mask. Figure 12 (a) shows that the SNR
values of restored images vary from 18.4dB to 19.8dB, which suggests that the pro-
posed algorithm is rather robust to initialization. By comparing Figure 12 (b) with
Figure 7 (g), we find that averaging the reconstructed images with different initial-
izations yields better image quality than individual ones, which is a trick suggested
by Fienup and Wackerman [20] to remove artifacts.

In addition, we shall study whether the proposed algorithm is sensitive to param-
eters, by varying one parameter and fixing the others. The default parameters are
set to be the same as Figure 7 (g). The resulting SNR values are recorded in Table
3, which implies that the proposed algorithm is insensitive to ρ1, ρ2 and empirically
ρ3 = 0.02 gives better results.

6. Conclusion. In this paper, we proposed a total variation regularization mod-
el to recover an image from its partial and noisy magnitude information. We found
that non-integer values when generating the structured illuminating data is key to
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Fig. 10. (a) and (c): Decreasing energies of 10% and 30% sampling for the example in Figure
8; (b) and (d): Corresponding relative errors.

Different λ
λ 10 102 103 104 105

SNR 18.70 19.07 19.29 19.07 19.13

Different ρ1
ρ1 10−3 10−2 0.1 1 10

SNR 13.52 16.97 19.29 16.53 15.75

Different ρ2
ρ2 10−3 10−2 0.1 1 10

SNR 19.20 18.80 19.29 18.77 14.94

Different ρ3
ρ3 2× 10−4 2× 10−3 2× 10−2 0.2 2

SNR 8.18 13.60 19.29 * 3.98
Table 3

Parameters sensitivities (* means the algorithm blows up with the given parameters).

stable phase recovery compared to the integers used conventionally [7]. The use of
TV regularization helped to maintain image quality when only a small number of
measurements are available. The ADMM is adopted to solve the proposed model effi-
ciently, which is rather robust to initialization and model parameters. The recovered
results are of better image quality, with at least 4dB increase in SNR values, com-
pared to the classic least-square type of method. Moreover, the images reconstructed
by our proposed method exhibit sharper edges and less artifacts.

Through experiments, we observe that both s1 = s2 = 1/2 and [0, 1] box con-
straint are rather important to the exact/stable recovery. If s1, s2 are chosen to be
other real numbers, the results are found to be much worse than that of s1 = s2 = 1/2.
On the other hand, the box constraint is theoretically unnecessary to guarantee the so-
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. (a): 30% mask; (b): Original image (Resolution: 256 × 256); (c): phase retrieval
by LSB with SNR=15.60 from noisy data (SNR=30 for noisy data); (d): phase retrieval by TVB
with SNR=19.72; (e): phase retrieval by LSB with SNR=16.95 from noisy data (SNR=40 for noisy
data); (f): phase retrieval by TVB with SNR=21.85

lution’s uniqueness, but computationally it enforces the boundedness of the solution,
and hence the iterative algorithm is less prone to blow-up. It is worth of a careful in-
vestigation on these two conditions and how they interact with the TV regularization
in the future.
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the Computer Science Department of École Normale Supérieure to help us to do the
comparison with PhaseCut algorithm, Dr. Xiaodong Li in the Statistics Department
of UC Davis for helpful discussion. The insightful comments by the two referees are
very appreciated, which help to improve the paper greatly. Dr. H. Chang is partially
supported by National Natural Science Foundation of China (NSFC 11426165 and



Phase Retrieval via Total Variation Regularization 21

0 10 20 30 40 50 60 70 80 90 100
18.4

18.6

18.8

19

19.2

19.4

19.6

19.8

Different initialization

S
N

R

(a) (b)

Fig. 12. (a): The SNR values of derived images by TVB with different initializations; (b): the
average image derived by taking the average of all images with SNR=20.33.
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Appendix: Proof of Theorem 2.2. Proof. First we consider it in 1-D cases,
i.e. u = (u0, u1, . . . , un−1)T ∈ Rn, and uk ≥ 0,∀0 ≤ k ≤ n − 1. 3n measurements
M(u) = {|Fu|, |F (u + Dsu)|, |F (u − iDsu)|} are known, where F denotes the 1-D
discrete Fourier transformation, and (Dsu)k = exp(iπk/n)uk.

Since u is real-valued, and define U = (U0, U1, . . . , Un−1)T := Fu, one has

(6.1) U = (U0, U1, U2, U3, . . . , Ū3, Ū2, Ū1)T ,

where z̄ denotes the complex conjugate of z. Define

v = (v0, v1, . . . , vn−1)T := Dsu, V = (V0, V1, . . . , Vn−1)T := Fv.

One readily has

(6.2) V = (V0, V̄0, V2, V3, . . . , V̄4, V̄3, V̄2)T ,

since V1 = V̄0, and Vn+1−k = V̄k,∀2 ≤ k ≤ n − 1 (it could be readily verified only
from the definitions).

Next we will study how to solve U and V from the measurements based on the
the representations of U, V in (6.1) and (6.2). As the triple (|U0|, |U0 +V0|, |U0− iV0|)
is known, and U0 is non-negative real-valued, we can solve U0, V0 if U0 6= 0, V0 6= 0.
Similarly, by another triple (|Ū1|, |Ū1 +V̄0|, |Ū1−iV̄0|), we can also obtain U1 if U1 6= 0.
Repeatedly, we can obtain V̄2 by the triple (|Ū1|, |Ū1 + V̄2|, |Ū1 − iV̄2|) if V2 6= 0. In a
similar manner, one can sequentially obtain

U0 → V0(= V̄1)→ U1 → V2 → U2 → . . .→ U(n−1)/2 → V(n+1)/2, if n is odd;

U0 → V0(= V̄1)→ U1 → V2 → U2 → . . .→ Vn/2 → Un/2, if n is even.

By inverse Fourier transformation of U , one finally recovers the exact solution u =
F ∗U.
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For the 2-D cases, same notations u, v ∈ Rn1×n2 are used, and associated DFTs
are U and V respectively (Here we use the matrix form to represent their DFTs).
Similarly to the 1-D cases, we have

Uk1,k2 = Ū mod (n1−k1,n1), mod (n2−k2,n2),

Vk1,k2 = V̄ mod (n1+1−k1,n1), mod (n2+1−k2,n2),∀0 ≤ ki ≤ ni − 1.
(6.3)

Similarly to the proof for the 1-D case, we start to compute the element from the
index (0, 0), i.e. U0,0 > 0. First we get V0,0 if V0,0 6= 0. Repeatedly we find elements
from U and V in turn. The indexes for the elements are determined by (6.3) so that
the following sequences are generated as

(6.4)

U : Ui0,j0 Ui1,j1 −−−−→ Ui2,j2 Ui3,j3 −−−−→ . . .y x y x . . .

V : Vi0,j0 −−−−→ Vi1,j1 Vi2,j2 −−−−→ Vi3,j3 . . .

where

i2k+2 = mod (n1 − i2k+1, n1), j2k+2 = mod (n2 − j2k+1, n2),

i2k+1 = mod (n1 + 1− i2k, n1), j2k+1 = mod (n2 + 1− j2k, n2), ∀k = 0, 1, 2, . . . .

(6.5)

By (6.5), one can derive

(6.6) i2k+2 = mod (i2k − 1, n1), j2k+2 = mod (j2k − 1, n2),

for arbitrary non-negative integers k.
We construct a set

S := {(i2k, j2k)| k = 0, 1, 2, . . . , n1 × n2 − 1},

which is actually the index set by selecting some components of U by (6.4). If one
can prove that the cardinality of S is equal to be n1×n2, the proof will be completed
starting from U0,0. Let us first prove the cardinality of S is equal to be n1 × n2

by contradiction. Assume there exist two identical elements (i2k0 , j2k0) ∈ S and
(i2k1 , j2k1) ∈ S, with 0 ≤ k0 < k1 ≤ n1×n2− 1. Noting that the elements of S satisfy
(6.6), one has

i2k0 = i2k1 = mod (i2k0−(k1−k0), n1), j2k0 = j2k1 = mod (j2k0−(k1−k0), n2).

There exist two integers a, b, such that

i2k0 − (k1 − k0) = a× n1 + i2k0 , j2k0 − (k1 − k0) = b× n2 + i2k0 .

One readily deduces k1 − k0 = −a× n1 = −b× n2, i.e.

mod (k1 − k0, n1 × n2) = 0,

as n1 is prime with n2. Therefore k0 = k1, that leads to the contradiction with
k0 < k1. Then one can claim that S consists of all the indexes of U . That concludes
to this theorem.



Phase Retrieval via Total Variation Regularization 23

REFERENCES

[1] R. Balan, P. Casazza, and D. Edidin, On signal reconstruction without phase, Applied and
Computational Harmonic Analysis, 20 (2006), pp. 345–356.

[2] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Phase retrieval, error reduction algo-
rithm, and fienup variants: a view from convex optimization, J. Opt. Soc. Amer. A, 19
(2002), pp. 1334–1345.

[3] , Hybrid projectioncreflection method for phase retrieval, J. Opt. Soc. Amer. A, 20 (2003),
pp. 1025–1034.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM journal on imaging sciences, 2 (2009), pp. 183–202.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations and
Trends R© in Machine Learning, 3 (2011), pp. 1–122.

[6] E. Candés and T. Tao, Near-optimal signal recovery from random projections: Universal
encoding strategies?, IEEE Trans. Inform Theory, 52 (2006), pp. 5406–5425.

[7] E. J. Candés, Y. C. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix
completion, SIAM J. Imaging Sci., 6 (2013), pp. 199–225.

[8] E. J. Candes, X. Li, and M. Soltanolkotabi, Phase retrieval via wirtinger flow: Theory and
algorithms, IEEE Trans. Inf. Theory, 61 (2015), pp. 1985–2007.

[9] E. J. Candes, T. Strohmer, and V. Voroninski, Phaselift: Exact and stable signal recovery
from magnitude measurements via convex programming, Commu. Pure Applied Math., 66
(2013), pp. 1241–1274.

[10] R. H. Chan, M. Tao, and X.M. Yuan, Constrained total variational deblurring models and
fast algorithms based on alternating direction method of multipliers, SIAM J. Imaging Sci.,
6 (2013), pp. 680–697.

[11] H. Chang, X.-C. Tai, L.-L. Wang, and D. Yang, Convergence rate of overlapping domain de-
composition methods for the rudin-osher-fatami model based on a dual formulation, SIAM
J. Image Sci., 8 (2015), pp. 564–591.

[12] Y. Chen and E. J. Candes, Solving random quadratic systems of equations is nearly as easy
as solving linear systems, arXiv preprint arXiv:1505.05114, (2015).

[13] A. Conca, D. Edidin, M. Hering, and C. Vinzant, An algebraic characterization of in-
jectivity in phase retrieval, Applied and Computational Harmonic Analysis, 38 (2015),
pp. 346–356.

[14] J.C. Dainty and J.R. Fienup, Phase retrieval and image reconstruction for astronomy, Image
Recovery: Theory and Application, ed. by H. Stark, Academic Press, (1987), pp. 231–275.

[15] V. Elser, Phase retrieval by iterated projections, J. Opt. Soc. Am. A, 20 (2003), pp. 40–55.
[16] A. Fannjiang, Absolute uniqueness in phase retrieval with random illumination, Inverse Probl.,

28 (2012), p. 075008.
[17] A. Fannjiang and W. Liao, Phase retrieval with random phase illumination, J. Opt. Soc. Am.

A, 29 (2012), pp. 1847–1859.
[18] , Fourier phasing with phase-uncertain mask, Inverse Probl., 29 (2013), p. 125001.
[19] J. R. Fienup, Phase retrieval algorithms: a comparison, Appl. Opt., 21 (1982), pp. 2758–2769.
[20] J. R. Fienup and C. C. Wackerman, Phase-retrieval stagnation problems and solutions, J.

Opt. Soc. Am. A, 3 (1986), pp. 1897–1907.
[21] F. Fogel, I. Waldspurger, and A. d’Aspremont, Phase retrieval for imaging problems,

arXiv preprint arXiv:1304.7735, (2013).
[22] R. W. Gerchberg and W. O. Saxton, A practical algorithm for the determination of the

phase from image and diffraction plane pictures, Optik, 35 (1972), pp. 237–246.
[23] R. Glowinski and P. L. Tallec, Augmented Lagrangian and operator-splitting methods in

nonlinear mechanics, SIAM Studies in Applied Mathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1989.

[24] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM
J. Imaging Sci., 2 (2009), pp. 323–343.

[25] J.W. Goodman, Introduction to Fourier Optics, Third Version, Robert and Company Pub-
lishers, Englewood, 2005.

[26] M. Hayes, The reconstruction of a multidimensional sequence from the phase or magnitude of
its fourier transform, IEEE Trans. Acoust. Speech Signal Process., 30 (1982), pp. 140–154.

[27] B. He and X. Yuan, On the o(1/n) convergence rate of the douglas-rachford alternating
direction method, SIAM Journal on Numerical Analysis, 50 (2012), pp. 700–709.

[28] K. Kreutz-Delgado, The complex gradient operator and the CR-calculus, arXiv preprint,
(2009).



24 Phase Retrieval via Total Variation Regularization

[29] F. Li, S. Osher, J. Qin, and M. Yan, A multiphase image segmentation based on fuzzy
membership functions and l1-norm fidelity, CAM report No. 15-21, (2015).

[30] D. R. Luke, Relaxed averaged alternating reflections for diffraction imaging, Inverse Probl.,
21 (2005), pp. 37–50.

[31] D. R. Luke, J. V. Burke, and R. G. Lyon, Optical wavefront reconstruction: Theory and
numerical methods, SIAM review, 44 (2002), pp. 169–224.

[32] M. Lustig, SparseMRI v0.2. http://www.eecs.berkeley.edu/~mlustig/Software.html.
[33] M. Lustig, D.L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing mri, IEEE

Signal Processing Magazine, 25 (2008), pp. 72–82.
[34] S. Marchesini, Phase retrieval and saddle-point optimization, J. Opt. Soc. Am. A, 24 (2007),

pp. 3289–3296.
[35] J. Miao, H. N. Chapman, and D. Sayre, Image reconstruction from the oversampled diffrac-

tion pattern, Microscopy Microanalysis, 3 (1997), pp. 1155–1156.
[36] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, Extending x-ray crystallography to allow

the imaging of noncrystalline materials, cells, and single protein complexes, Annu Rev
Phys Chem., 59 (2008), pp. 387–410.

[37] J. Miao, J. Kirz, and D. Sayre, The oversampling phasing method, Acta Cryst., D56 (2000),
pp. 1312–1315.

[38] R. Remmert, Theory of complex functions, Springer-Verlag, 28 (1991).
[39] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation noise removal algorithm, Phys.

D, 60 (1992), pp. 259–268.
[40] J. L. C. Sanz, Mathematical considerations for the problem of fourier transform phase retrieval

from magnitude, SIAM J. Appl. Math., 45 (1985), pp. 651–664.
[41] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, Phase

retrieval with application to optical imaging: a contemporary overview, Signal Processing
Magazine, IEEE, 32 (2015), pp. 87–109.

[42] I. Waldspurger, A. Aspremont, and S. Mallat, Phase recovery, maxcut and complex
semidefinite programming, Math. Program., Ser. A, (DOI 10.1007/s10107-013-0738-9,
2012), pp. 1–35.

[43] A. Walther, The question of phase retrieval in optics, Journal of Modern Optics, 10 (1963),
pp. 41–49.

[44] Z. Wen, C. Yang, X. Liu, and S. Marchesini, Alternating direction methods for classical
and ptychographic phase retrieval, Inverse Probl., 28 (2012), p. 115010.

[45] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods and split-Bregman iter-
ations for ROF, vectorial TV and higher order models, SIAM J. Imaging Sci., 3 (2010),
pp. 300–339.

[46] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix com-
pletion with nonnegative factors, Frontiers of Mathematics in China, 7 (2012), pp. 365–384.

[47] P. Yin and J. Xin, Phaseliftoff: an accurate and stable phase retrieval method based on
difference of trace and frobenius norms, Comm. Math. Sci., 13 (2015), pp. 1033–1049.


