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Abstract

A weighted and convex regularized nuclear norm model is introduced to con-
struct a rank constrained linear transform on feature vectors of deep neural net-
works (DNN). The feature vectors of each class are modeled by a subspace, and
the linear transform aims to enlarge the pairwise angles of the subspaces. The
weight and convex regularization resolve the rank degeneracy of the linear trans-
form. The model is computed by a difference of convex function algorithm whose
descent and convergence properties are analyzed. Numerical experiments are
carried out in convolutional neural networks on CAFFE platform for 10 class
handwritten digit images (MNIST) and small object color images (CIFAR-10)
in the public domain. The transformed feature vectors improve the accuracy of
the network in the regime of low dimensional features subsequent to dimensional
reduction via principal component analysis. The feature transform is indepen-
dent of the network structure, and can be applied to reduce complexity of the
final fully-connected layer without retraining the feature extraction layers of the
network.
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1 Introduction

Deep neural networks (DNN, [8, 6, 13]) are the state of the art methods in object
classification tasks in computer vision [10] among other fields [20]. The basic form of
DNN is convolutional neural networks (CNN) [2, 3]. An open source platform to study
CNN on handwritten digits (MNIST [9]) and image classification (CIFAR [7]) is CAFFE
[5]. Typically, a large number of multi-scale features arise from DNN [6, 7, 8, 13]. On
the other hand, learning a rank-constrained transformation to group the features into
clusters on the order of the number of classes has been shown recently to increase the
performance of classifiers [11]. Each cluster or class is modeled as a subspace. The
learned linear transformation aims to restore a low-rank structure for data from the
same subspace, while enforcing a maximally separated structure for data from different
subspaces.

Figure 1: An illustration of DNN for image classification. From left to right: multi-
layers of feature extractions involve convolution and nonlinearities, the last layer is fully
connected and leads to the final class probabilities.

In this paper, we study such a geometric linear feature transform (LFT) acting at
the entrance of the last fully connected layer of DNN, see Fig. 1 for an illustration. A
high dimensional feature vector appears (after the curved arrow in the middle of Fig. 1)
and a large size weight matrix is necessary to map it to a small number of classes (10
in the data sets we study here). To overcome the complexity of the fully-connected layer
and maintain the classification accuracy, we construct a linear transform to project the
DNN feature vectors at the entrance of the fully connected layer to a low dimension, then
train a small network with a single hidden layer to serve as a proxy for generating class
probabilities. We shall work with the existing LeNet and cuda-convnet [2] on CAFFE for
the MNIST and CIFAR-10 data sets respectively. It is well-known that there is a lot of
redundancy in DNN features, hence performing standard dimensional reduction such as
the principal component analysis (PCA) on the DNN features to certain threshold low
dimension will nearly maintain the accuracy. Below the threshold, DNN performance
will downgrade significantly. Our main finding is that performing rank constrained
LFT helps to bring up the accuracy in the low dimensional feature regime. This can
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be done without retraining or modifying the network where the original features come
from. Moreover, the LFT model and algorithm can be applied to most DNNs and be
used to produce a low cost solution.

The major assumption of LFT is that the feature vectors (denoted by column vectors
of matrix Y ) approximately lie in a subspace and thus have low dimensional structure.
Therefore, we aim to find a linear transform T ∈ Rm×n, such that dimension of the
transformed features TY is greatly reduced (i.e. m� n), meanwhile the classification
performance is maintained. The advantages of having low dimensional features include
speed up of computation during inference stage of network, as well as low memory and
low energy consumption demand on mobile devices. Various simplifications exploiting
linear concepts and structures have been studied to reduce costs in filtering and con-
volution layers of the network, such as rank-1 (separable) filter learning [14], low rank
compression [4], sparse network and mimic learning (chapter 7, [20]). Mimic learning [1]
refers to teaching a small or shallow NN (SNN) with a large and high performance DNN.
The SNN is like a student, and is trained on synthetic labels to mimic the functionality
of the teacher (large DNN). The synthetic lables are obtained by passing unlabeled
data through the large and accurate DNN and collecting the scores. Experiments on
CIFAR-10 image dataset [1] showed that a mimic SNN with a single convolution layer
for feature extraction recovers the performance of the teacher DNN. With the speedup
at inference by a combination of these strategies (especially mimic learning), our low
dimensional feature transform can further save memory and computation at the fully
connected layer.

The paper is organized as follows. In section 2, we revisit the LFT model of [11]
and observe the rank deficiency phenomenon. The norm constraint of the model [11]
prevents the iterations from approaching zero but may not exclude rank degeneracy of
the transform. We also note that the LFT algorithm of [11] is not descending in general.
Our main contribution here is to fix the rank deficiency and non-descending issues in
[11] by proposing a weighted difference of convex function (WDC) model augmented with
a convex regularization. In section 3, we present the associated DC algorithm (DCA)
and show that it is descending and sub-sequentially convergent. In section 4, numerical
experiments show that our proposed algorithm indeed computes LFT to enhance the
accuracy on CIFAR-10 and MNIST data when feature dimension is reduced by a factor
of 32 while the accuracy is nearly maintained. The more the dimension is reduced, the
higher the LFT enhancement. Concluding remarks are in section 5.

Notations. Throughout the paper, for any matrix X ∈ Rm×n of rank r, we refer
to the singular value decomposition (SVD) of X by the form UΣV T, where Σ ∈ Rr×r is

diagonal. ‖X‖F :=
√∑

i,j X
2
ij denotes the Frobenius norm of X. Let σi(X) be the i-th

largest singular value of X. ‖X‖ := σ1(X) denotes the spectral norm of X, whereas
‖X‖∗ :=

∑r
i=1 σi(X) denotes the nuclear norm of X. The subdifferential of ‖X‖∗ is

given by [17]

∂‖X‖∗ = {UV T +W : UTW = 0, WV = 0, ‖W‖ ≤ 1}.
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2 LFT and Nuclear Norm Models

In this section, we review the LFT nuclear norm model of [11], point out the rank
defects and propose our weighted-regularized model for DNN experiments in section 4.

In [11], the authors propose to learn a global linear transformation on subspaces that
preserves the low-rank structure for data within the same subspace, and, meanwhile
introduces a maximally separated structure for data from different subspaces. More
precisely, for the task of classification, they propose to solve the following minimization
problem for the transformation matrix T̂ :

T̂ = arg min
T

c∑
i=1

‖TYi‖∗ − ‖TY ‖∗ s.t. ‖T‖ = 1, (2.1)

where c is the total number of classes, Yi is the matrix of training data for the i-th
class, Y is the concatenation of all Yi’s containing the whole training data. The norm
constraint ‖T‖ = 1 simply prevents the trivial solution T̂ = 0. The nuclear norm serves
as a convex relaxation of rank functional. Beyond that, it is shown in [11] that the
objective function in (2.1) satisfies

c∑
i=1

‖TYi‖∗ − ‖TY ‖∗ ≥ 0, (2.2)

with equality when all transformed data from different classes are orthogonal to each
other, i.e., (TYi)

TTYj = 0, ∀ i 6= j. When feature vectors of each class belong to

a proper subspace of Rn, the transform T̂ tends to align feature vectors in each sub-
space while enlarge angles between subspaces, thus intuitively promoting accuracy of
classification.

On the computational side, since the objective is a difference of two convex functions,
the non-convex minimization problem (2.1) can be solved by the so-called difference of
convex function algorithm (DCA) [16, 18, 19] via the iteration:

T k+1 = arg min
T

c∑
i=1

‖TYi‖∗ − 〈Sk, TY 〉 s.t. ‖T‖ = 1. (2.3)

where Sk ∈ ∂‖T kY ‖∗ is a subgradient of ‖ · ‖∗ at T kY . Note that although the objective
function is convex, (2.3) is still a non-convex program because of the constraint.

It is easy to see that a necessary condition for the transformed feature subspaces to
be pairwise orthogonal is

c∑
i=1

di ≤ n, (2.4)

where di is the dimension of the subspace of the i-th class. However, this condition is
somewhat too restrictive and often violated in real-world examples such as CIFAR-10 in
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our experiments. When subspace dimensions are relatively large, the pairwise orthogo-
nality between transformed subspaces is clearly unachievable. In this case, we observed
numerically that T̂ tends to be rank deficient, in particular rank-1 which aligns all the
feature vectors along a line. The norm constraint ‖T‖ = 1 in (2.1) does not prevent
such a rank-1 defect solution from occurring. Moreover, since the subproblem (2.3) of
DCA is non-convex due to the norm constraint which is implemented by normalization
in [11], the iteration sequences from (2.3) can be non-descending.

To fix the issues aforementioned, we introduce a weight w > 1 to the second term
‖TY ‖∗ to enforce enlargement of angles between subspaces. We also replace the con-
straint ‖T‖ = 1 with a convex penalty term. Our new model is the following uncon-
strained minimization problem:

min
T

Ψ(T ) :=
c∑
i=1

‖TYi‖∗ − w‖TY ‖∗ +
λ

2
‖T − P‖2F . (2.5)

In this new model, we search for T̂ in the neighborhood of a candidate P whose size is
controlled by the parameter λ > 0. For m = n, we may simply take P as the identity
matrix In ∈ Rn×n. If m < n, we choose P via principal component analysis (PCA).
Let the SVD of Y be Y = UΣV T, then P = UT

·,1:m ∈ Rm×n with U·,1:m consisting of left
singular vectors of Y associated with the m largest singular values. We choose PCA
as a simple unsupervised dimension reduction method for initiating P because there is
no class information at the testing (inference) time and PCA strikes a good balance
between efficiency and computational costs. In our numerical experiments, the PCA
initialization did much better than random subspace projection or selecting a fixed
subspace such as projecting onto the first few coordinates.

The (strongly) convex penalty is much better than using unit-norm constraint in
preserving the rank. To demonstrate improvement of the proposed (2.5) over (2.3),
we provide a synthetic example in R3 of three classes (subspaces) of dimensions 2, 1,
1, respectively, as shown in Fig. 2 (left plot). In this case, mutual orthogonality is
impossible. Solving (2.3) gives a rank-1 deficient T̂ (middle plot), whereas solving (2.5)
with P = I3, outputs a full rank T̂ helping enforce the separation between classes (right
plot).

3 Algorithms

In this section, we present difference of convex functions algorithm and its convergence
property for our model. Let us consider a general objective function Φ(X) = Φ1(X)−
Φ2(X), where Φ1 and Φ2 are convex functions. DCA deals with the minimization of
Φ(X) and takes the following form{

W k ∈ ∂Φ2(X
k)

Xk+1 = arg minX Φ1(X)− (Φ2(X
k) + 〈W k, X −Xk〉)
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Figure 2: Left: data points of the three classes. The angles between classes are 4.70◦,
10.52◦, 10.14◦, respectively. Middle: degenerate solutions by solving (2.3). The trans-
formed data points end up lying on a line. Right: separation results by solving (2.5).
The corresponding angles are enlarged to 38.48◦, 22.01◦, 18.73◦, respectively.

By the definition of subgradient, we have

Φ2(X
k+1) ≥ Φ2(X

k) + 〈W k, Xk+1 −Xk〉.

As a result,

Φ(Xk) = Φ1(X
k)− Φ2(X

k) ≥ Φ1(X
k+1)− (Φ2(X

k) + 〈W k, Xk+1 −Xk〉)
≥ Φ1(X

k+1)− Φ2(X
k+1) = Φ(Xk+1),

We used the fact that Xk+1 minimizes Φ1(X)− (Φ2(X
k) + 〈W k, X −Xk〉) in the first

inequality above. Therefore, DCA permits a decreasing sequence {Φ(Xk)}, leading to
its convergence provided Φ(X) is bounded from below.

The DCA for solving (2.5) is:

T k+1 = arg min
T

c∑
i=1

‖TYi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F (3.1)

with Sk ∈ ∂‖T kY ‖∗. Suppose the SVD of T kY is UkΣkV kT, then we can choose

Sk = UkV kT.
Now that the subproblem (3.1) is a convex program, the DCA for (2.5) is always

descending provided that (3.1) is solved properly, which is a nice mathematical property
to have.

3.1 Convergence

Due to weighting in the nuclear norm model, the convex penalty term is needed to
guarantee the lower bound of objective function. Next we show that the objective
in (2.5) has a lower bound under mild conditions, that {Ψ(T k)} converges and T k is
uniformly bounded in k.
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Proposition 3.1. For any positive parameters (λ,w) > 0, Ψ(T ) =
∑c

i=1 ‖TYi‖∗ −
w‖TY ‖∗ + λ

2
‖T − P‖2F is bounded from below by zero if w ≤ 1, and by −λ

2
‖P‖2F −

(w−1)2
λ
‖Y ‖2F if w > 1.

Proof. Since by (2.2),
∑c

i=1 ‖TYi‖∗−‖TY ‖∗ ≥ 0, it suffices to show that λ
2
‖T −P‖2F −

(w − 1)‖TY ‖∗ has lower bound. The low bound is clearly zero if w ∈ (0, 1]. Now
consider w > 1. By an alternative definition of nuclear norm [12], for any constant
ρ > 0,

‖X‖∗ := inf
Q,R

{
1

2
(ρ‖Q‖2F + ρ−1‖R‖2F ) : X = QRT

}
, (3.2)

therefore,

‖TY ‖∗ ≤
1

2
(ρ‖T‖2F + ρ−1‖Y T‖2F ). (3.3)

Choosing ρ = λ
2(w−1) , we have

λ

2
‖T − P‖2F − (w − 1)‖TY ‖∗ ≥

λ

4
‖T‖2F − λ〈T, P 〉+

λ

2
‖P‖2F −

(w − 1)2

λ
‖Y ‖2F (3.4)

=
λ

4
(‖T − 2P‖2F − 4‖P‖2F ) +

λ

2
‖P‖2F −

(w − 1)2

λ
‖Y ‖2F (3.5)

≥ −λ
2
‖P‖2F −

(w − 1)2

λ
‖Y ‖2F (3.6)

In the following, we show the descending property of Ψ(T k) and that ‖T k−T k+1‖F →
0 as k →∞.

Proposition 3.2. Let {T k} be the sequence of iterates generated by (3.1) with w ≥ 1.
Then {Ψ(T k)} is descending and convergent, and ‖T k − T k+1‖F → 0 as k →∞.

Proof.

Ψ(T k)−Ψ(T k+1) =
λ

2
‖T k − T k+1‖2F + λ〈T k − T k+1, T k+1 − P 〉

+ w(‖T k+1Y ‖∗ − ‖T kY ‖∗) +
c∑
i=1

(‖T kYi‖∗ − ‖T k+1Yi‖∗) (3.7)

By the the first-order optimality condition for (3.1), we have that there exist Lk+1
i ∈

∂‖T k+1Yi‖∗ for 1 ≤ i ≤ c, such that

c∑
i=1

Lk+1
i Y T

i − wSkY T + λ(T k+1 − P ) = 0,
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and therefore,

λ〈T k − T k+1, T k+1 − P 〉 = −
c∑
i=1

〈Lk+1
i , (T k − T k+1)Yi〉+ w〈Sk, (T k − T k+1)Y 〉

=
c∑
i=1

(‖T k+1Yi‖∗ − 〈Lk+1
i , T kYi〉) + w(‖T kY ‖∗ − 〈Sk, T k+1Y 〉).

Upon substitution into (3.7), we have

Ψ(T k)−Ψ(T k+1) =
λ

2
‖T k − T k+1‖2F + w(‖T k+1Y ‖∗ − 〈Sk, T k+1Y 〉)

+
c∑
i=1

(‖T kYi‖∗ − 〈Lk+1
i , T kYi〉)

≥ λ

2
‖T k − T k+1‖2F ,

implying the descent and convergence properties of Ψ(T k). In the above arguments, we
have used the facts that

〈Lk+1
i , TYi〉 ≤ ‖TYi‖∗, for all T ∈ Rm×n and 1 ≤ i ≤ c

with equality at T = T k+1, and that

〈Sk, TY 〉 ≤ ‖TY ‖∗, for all T ∈ Rm×n

with equality at T = T k.

Finally, since {Ψ(T k)} converges, we must have ‖T k − T k+1‖F → 0 as k →∞.

Remark 3.1. Our proof above is self-contained and more direct than the general theory
[15, 16] which treated the vector case.

Corollary 3.1. There exists a positive constant C = C(λ,w) such that ‖T k‖F ≤ C,
for all k ≥ 1, hence the sequence {T k} is sub-sequentially convergent.

Proof. The descent property of Ψ(T k) and (3.4)-(3.5) give:

Ψ(P = T 0) ≥ Ψ(T k)

≥ λ

2
‖T k − P‖2F − (w − 1)‖T kY ‖∗

≥ λ

4
‖T k − 2P‖2F −

λ

2
‖P‖2F −

(w − 1)2

2
‖Y ‖2F

from which the corollary follows.
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3.2 Solving the subproblem

Each DCA step for T k+1 can be updated via the alternating direction method of mul-
tipliers (ADMM). By introducing the auxiliary variable Z and multiplier Λ, we first
recast (3.1) as

min
T

c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F s.t. Z − TY = 0,

and then form the augmented Lagrangian:

c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F + 〈Λ, Z − TY 〉+

δ

2
‖Z − TY ‖2F

=
c∑
i=1

‖Zi‖∗ − w〈Sk, TY 〉+
λ

2
‖T − P‖2F +

c∑
i=1

〈Λi, Zi − TYi〉+
c∑
i=1

δ

2
‖Zi − TYi‖2F ,

where Z = [Z1, . . . , Zc] and Λ = [Λ1, . . . ,Λc] are partitioned in the same way as Y is.
By ignoring constants, ADMM takes the iteration:

T l+1 = arg min
T
−w〈Sk, TY 〉+

λ

2
‖T − P‖2F + 〈Λl, Z l − TY 〉+

δ

2
‖Z l − TY ‖2F

Z l+1
i = arg min

Zi

‖Zi‖∗ + 〈Λl
i, Zi − T l+1Yi〉+

δ

2
‖Zi − T l+1Yi‖2F , i = 1, . . . , c

Λl+1
i = Λl

i + δ(Z l+1
i − T l+1Yi), i = 1, . . . , c

The ADMM steps for updating T l+1 and Z l+1
i have closed form solutions. Hereby we

summarize the algorithm for solving (3.1) in Algorithm 1. In Algorithm 1,

Sr(X) :=
n∑
i=1

1{σi(X)>r}(σi(X)− r)uivTi

denotes the soft-thresholding operator on singular values of X, where 1{σi(X)>r} is the
indicator function given by

1{σi(X)>r} :=

{
1, σi(X) > r

0, otherwise

4 Numerical experiments

We present numerical experiments on the benchmark image datasets MNIST [9] and
CIFAR-10 [7], using neural network classifiers. The MNIST database is a large database
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Algorithm 1 ADMM for updating T k+1 in (3.1)

Input: T k, Y = [Y1, . . . , Yc], S
k, P, δ > 0.

Initialize: {Z0
i }ci=1, {Λ0

i }ci=1.

for l = 0, 1, . . . do
Z l = [Z l

1, . . . , Z
l
c]

Λl = [Λl
1, . . . ,Λ

l
c]

T l+1 = (ΛlY T + λP + wSkY T + δZ lY T)(δY Y T + λIn)−1

Z l+1
i = S1/δ(T l+1Yi − Λl

i/δ), i = 1, . . . , c
Λl+1
i = Λl

i + δ(Z l+1
i − T l+1Yi), i = 1, . . . , c

end for

Output: T k+1.

Figure 3: Left: sample images of handwritten digits in MNIST. Right: 10 random
example images from each class in CIFAR-10.

of handwritten digits that is commonly used for training various image processing sys-
tems. The MNIST database contains 70,000 28×28 images, including 60,000 training
images and 10,000 testing images. The CIFAR-10 dataset consists of 60,000 color im-
ages of size 32×32. Each image is labeled with one of 10 classes (for example, airplane,
automobile, bird, etc). These 60,000 images are partitioned into a training set of 50,000
images and a test set of 10,000 images; see Fig. 3 for sample images from the datasets.

We extract both training and testing features through trained convolutional neural
nets (CNN) on Caffe [5]. Caffe is a deep learning framework developed by the Berkeley
Vision and Learning Center and by community contributors. LeNet [9] and cuda-
convnet [2] are two baseline CNNs (BCNN) on Caffe, working with MNIST and CIFAR-
10 datasets respectively. The extracted features of CIFAR-10 images through cuda-
convnet are 3-D arrays of dimensions 64×4×4, while that of MNIST through LeNet are
vectors in R500. We convert CIFAR-10 features into vectors in R1024. After T̂ ∈ Rm×n

(n = 1024 for CIFAR-10 and n = 500 for MNIST) is computed from the training



10

feature vectors only, we then apply it to both the training and testing data, and feed
the transformed data to a single layer neural net classifier (i.e., multi-class perceptron)
from Scikit-learn package implemented in Python. Comparison of BCNN+PCA and
BCNN+PCA+LFT is shown in Tables 2 and 3. The PCA provides m� n orthogonal
left singular vectors corresponding to the top m singular values of the feature matrix
Y . These m� n singular vectors span the reduced feature vector space.

For CIFAR-10, when feature dimensions are reduced to m = 64 and m = 32 from
n = 1024, the accuracy dropped noticeably. The LFT can further improve the accuracy
on top of PCA (or another dimensional reduction method). The P in model (2.5) is
provided by PCA, with parameters w = 3 and λ = 200. The λ value is chosen so that
the iterations deviate enough from the initial value while being non-degenerate. The w
value is selected to enlarge angles among subspaces. Though there is room to vary these
values, we have not observed much difference in the resulting classification accuracies re-
ported here. These two parameter values are the same in all our numerical experiments.
The stopping condition for the LFT iterations is that ‖T k+1−T k‖F/‖T k‖F ≤ 10−5. The
additional gain from LFT is 2% at feature dimension m = 32, and 0.7% at dimension
m = 64. For MNIST, when reduced feature dimensions are m = 8 and m = 16 from
n = 500, LFT improves the accuracy by 1.8% and 0.2% respectively. We see in both
cases that the lower the reduced dimension, the greater the improvement from LFT. If
feature dimension remains at the original level (or m = n, P = In), the improvement
by LFT is less than when m� n as seen in Table 1. We remark that at w = 1, or using
the method of [11], we have consistently encountered degeneracies in LFT iterations
on either CIFAR-10 or MNIST data. This may indicate that the dimensionality con-
dition (2.4) fails for features from deep neural networks, in other words

∑c
i=1 di > n.

Nonetheless, the weighted model (2.5) offers a non-degenerate solution, especially when
m� n.

Table 1: Accuracy for CIFAR-10 and MNIST using CAFFE when m = n.

Dataset Baseline-CNN
(BCNN)

BCNN+LFT

CIFAR10 81.77 % 81.97 %

MNIST 99.05 % 99.12 %

5 Concluding Remarks

From the classification experiments on MNIST and CIFAR-10, we found that LFT
can improve CNN classifiers based on the new linear feature transform model (2.5)
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Table 2: Accuracy for CIFAR-10 with reduced feature dimensions (m = 256, 128, 64, 32)
from n = 1024 in BCNN.

Reduced dim BCNN+PCA BCNN+PCA+LFT

256 81.75 % 81.68 %

128 81.12 % 81.44 %

64 80.21 % 80.90 %

32 77.91 % 79.95 %

Table 3: Accuracy for MNIST with reduced feature dimensions (m = 64, 32, 16, 8) from
n = 500 in BCNN.

Reduced dim BCNN+PCA BCNN+PCA
+LFT

64 98.98 % 99.06 %

16 98.92 % 98.95 %

32 98.14 % 98.33 %

8 95.31 % 97.10 %

especially in the regime of low feature dimensions. This is attactive for reducing the
complexity of the last fully-connected layer where a large weight matrix multiplication
is involved. With the help of LFT, a much smaller classifier can be used as a proxy
to output class probabilities. Since LFT is independent of the CNN architecture, it is
applicable to a state-of-the-art classifier without retraining.
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