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Abstract

The analysis of multilayer networks is among the most active areas of network science, and there
are now several methods to detect dense “communities” of nodes in multilayer networks. One way
to define a community is as a set of nodes that trap a diffusion-like dynamical process (usually a
random walk) for a long time. In this view, communities are sets of nodes that create bottlenecks to
the spreading of a dynamical process on a network. We analyze the local behavior of different random
walks on multiplex networks (which are multilayer networks in which different layers correspond to
different types of edges) and show that they have very different bottlenecks that hence correspond to
rather different notions of what it means for a set of nodes to be a good community. This has direct
implications for the behavior of community-detection methods that are based on these random walks.

A “community” in a network describes a densely-connected set of nodes (often rela-
tive to a null model), and communities can reveal regularities in processes of network
formation, strongly influence the behavior of dynamical processes that take place on a
network, and be related to functional groups of nodes (Porter et al., 2009; Fortunato, 2010;
Coscia et al., 2011). One can examine community structure in a network from either a
global perspective or a local one. When using a global perspective, one typically partitions
a network into a set of (potentially overlapping) communities; by contrast, when taking
a local perspective, one seeks to determine the community or communities associated
with a given node (or set of nodes). A local perspective naturally allows the detection of
overlapping communities, as local communities for different seed nodes can share nodes
without having to be identical.

From either a global or local perspective, communities can be viewed as dependent not
only on network structure but also on dynamical processes (as a surrogate for function)
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on a network. Moreover, the choices of both dynamical process and initial conditions
are very important (Jeub et al., 2015). A popular and successful approach for identifying
community structure—both globally (Rosvall & Bergstrom, 2008; Delvenne et al., 2010)
and locally (Andersen et al., 2006; Leskovec et al., 2009; Jeub et al., 2015)—is to analyze
the behavior of a diffusion, random walk, or other spreading process on a network. This
exploits the connection between the presence of communities in a network and the behavior
of associated dynamical processes on that network (Lambiotte et al., 2009; Lambiotte
et al., 2015).

Although numerous tools have been developed for the analysis of networks (Newman,
2010), most of them concentrate on time-independent networks with only a single type
of tie between entities. Such ordinary networks are often unable to capture the complex
interactions among entities in the real world. In general, interactions (and the entities them-
selves) can change over time, and there can also be multiple types of interactions between
the same pair of entities. Temporal networks allow one to examine the former situation
(Holme & Saramäki, 2012; Holme, 2015), and multiplex networks allow consideration of
the latter (Wasserman & Faust, 1994). The use of multilayer networks (Boccaletti et al.,
2014; Kivelä et al., 2014) allows one to examine either temporal networks or multiplex
networks. In the former case, each layer represents a time or a time window (though it is
important to think about issues such as discrete versus continuous time). In the latter case,
each layer represents a type of interaction. One can also represent a multiplex temporal
network by using a multilayer framework.

Because multilayer networks are graphical structures with nodes and edges, the notion
of bottlenecks to dynamical processes on networks extends in a natural way to multilayer
networks. (See Boccaletti et al. (2014), Kivelä et al. (2014), and Salehi et al. (2015) for dis-
cussions of numerous dynamical processes on such networks.) The notion that diffusion-
like dynamics should exhibit bottlenecks when there are good communities has been a
fruitful perspective for generalizing algorithmic detection of global community structure
from single-layer networks to multilayer networks (Mucha et al., 2010; De Domenico
et al., 2015). In the present paper, we view community structure in multilayer networks
from a local perspective, and we demonstrate that one can directly apply the methodology
from Jeub et al. (2015) by considering a dynamical process that traverses both intralayer
and interlayer edges. (One can also study community structure in multilayer networks
using other approaches, such as ones based on stochastic block models (Peixoto, 2015).)
In particular, one way to do this is to define an appropriate random walk on a multilayer
network.

In the present article, we illustrate some features that one can encounter as a consequence
of the particular structure of multiplex networks. As examples, we use two different random
walks to explore the structure of synthetic benchmark multiplex networks and two empiri-
cal multiplex networks. In Section 1, we discuss random walks on multilayer networks in
general and the two random walks that we choose to explore in more detail. In Section 2,
we introduce our methodology for identifying and summarizing community structure in
networks. We then use this methodology to explore the behavior of the different random
walks on synthetic benchmark networks in Section 3 and on a transportation and a social
multiplex network in Section 4. We conclude in Section 5.
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1 Random Walks on Multilayer Networks

As with a traditional network, different choices are possible when defining a random walk
on a multilayer network (Mucha et al., 2010; De Domenico et al., 2014; De Domenico
et al., 2015; Kuncheva & Montana, 2015). Following (Kivelä et al., 2014), a multilayer
network M(VM,EM,V,L) is a graph GM(VM,EM) with an additional layer structure. Here V
is a set of nodes, L is a set of layers, VM ⊆V ×L is a set of state nodes1, and EM ⊆VM×VM

is a set of (directed) edges. We use iα ∈ VM to denote the state node that represents node
i∈V in layer α ∈ L and (iα, jβ )∈ EM to denote a directed edge from state node iα to state
node jβ . One can encode the connectivity structure of a multilayer network, including both
intralayer and interlayer edges, using an adjacency tensor A (the analogue of the adjacency
matrix for single-layer networks) with elements

Aiα
jβ =

{
1, (iα, jβ ) ∈ EM ,
0 , otherwise .

(1)

One can write a discrete-time random walk on a multilayer network as

piα(t +1) = ∑
jβ∈VM

P jβ
iα p jβ (t) , (2)

where p jβ (t) is the probability for a random walker to be at node j in layer β at time t and

P jβ
iα is the probability for a random walker at node j in layer β to transition to node i in

layer α in a time step. The transition tensor P encodes both the intralayer and interlayer
behavior of the random walk. We also want the random walk to be ergodic, so that it has
a well-defined stationary distribution piα(∞). The stationary distribution is a fixed point of
equation 2. That is, it satisfies

piα(∞) = ∑
jβ∈VM

P jβ
iα p jβ (∞) . (3)

There are different ways to define a random walk on a multilayer network that reduce to
the usual definition of a random walk for a single-layer network. The most direct way to
generalize the concept of a random walk to a multilayer network is the classical random
walk (Mucha et al., 2010; De Domenico et al., 2014), which treats interlayer edges and
intralayer edges as equivalent objects (though they can be differentiated using heteroge-
neous spreading rates). The elements of the transition tensor for a classical random walk
on a multilayer network are thus

Piα
jβ =

Aiα
jβ

∑
jβ∈VM

Aiα
jβ

. (4)

An alternative way to generalize the concept of a random walk is by using a physical
random walk (De Domenico et al., 2015; De Domenico et al., 2014) with transition-tensor

1 Following (De Domenico et al., 2015), we use the terms state node to refer to a node-layer tuple
and physical node to refer to the collection of all state nodes that represent the same node.
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(a) Classical random walk
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(b) Relaxed random walk

Fig. 1: Illustration of two types of random walk on a multilayer network. The walks differ
in the way that random walkers change layers. (a) Classical random walk (Mucha et al.,
2010; De Domenico et al., 2014), in which we introduce interlayer edges with weight
ω between state nodes (i.e., node-layer tuples) that represent the same physical node in
adjacent layers. (b) Relaxed random walk (De Domenico et al., 2015), in which a random
walker is constrained at each step to follow an edge within the same layer with probability
(1− r) and can choose any intralayer edge attached to the same physical node in any layer
with probability r. In the latter case, the walker chooses uniformly at random from the set
of all neighbors across all layers.

elements

P̃iα
jβ =

Aiα
iβ

∑
β∈L

Aiα
iβ

Aiβ
jβ

∑
j∈V

Aiβ
jβ

. (5)

One time step of this physical random walk corresponds to a random walker first switch-
ing layers with probabilities proportional to the weights of the interlayer edges and then
performing an ordinary random-walk step in the new layer2. This type of physical random
walk on a multilayer network is equivalent to a classical random walk on a transformed
multilayer network with adjacency-tensor elements Ãiα

jβ = Aiα
iβ Aiβ

jβ . This transformed mul-
tilayer network has non-diagonal, directed interlayer edges even when the original multi-
layer network is undirected.

In this paper, we consider two types of random walks that have been proposed to study
communities in multiplex networks: the classical random walk with uniform categorical
coupling (Mucha et al., 2010) and the relaxed random walk (De Domenico et al., 2015).
For the classical random walk with uniform categorical coupling (which we henceforth call
the “classical random walk” for short), we introduce interlayer edges with uniform weight
ω ∈ [0,∞] between all pairs of state nodes that correspond to the same physical node. That
is, we define Aiα

iβ = ω , α 6= β in Eq. 4. For the relaxed random walk, we constrain the
random walker to follow an edge within the same layer with probability 1−r (so r ∈ [0,1])
and allow it to choose uniformly at random among all intralayer edges attached to the same

2 Note that this definition of a physical random walk assumes that the multilayer network has
diagonal coupling (i.e., that all interlayer edges are between state nodes that represent the same
node).
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physical node with probability r. Thus, the transition-tensor for the relaxed random walk
has elements

Piα
jβ = (1− r)δ (α,β )

Aiα
jα

∑
j∈V

Aiα
jα

+ r
Aiβ

jβ

∑
j∈V,β∈L

Aiβ
jβ

. (6)

Alternatively, one can think of the relaxed random walk as a physical random walk with
the interlayer edges defined as

Aiα
iβ = (1− r)δ (α,β ) ∑

j∈V,α∈L
Aiα

jα + r ∑
j∈V

Aiβ
jβ .

In Fig. 1, we illustrate the classical and relaxed random walks. In Section 2, we discuss
how we use random walks to identify communities and characterize mesoscale structures
in multilayer networks.

2 Local Communities and Network Community Profiles

We seek to contrast the behavior of different types of random walks on multilayer networks.
From a dynamical perspective, communities correspond to sets of state nodes that create
bottlenecks to a diffusive dynamical process. For a random walk, one measure to quantify
bottlenecks is conductance3 (Jerrum & Sinclair, 1988)

φ(S) =
∑

iα∈S
∑

jβ /∈S
Piα

jβ piα(∞)

∑
iα∈S

piα(∞)
(7)

of a set S ⊂ VM of state nodes. Conductance measures the outflow of random walkers
from a set of state nodes relative to the total number of random walkers within the set at
stationarity. If a set of state nodes constitutes a bottleneck to a random walk, only a few of
the random walkers present within the set should leave the set in a given time step, so the
set should have low conductance. The two extreme cases are φ(S) = 1 if S has no internal
flow (i.e., no state node in S is adjacent to any other state node in S) and φ(S) = 0 if S is
disconnected from the rest of a network.

Different types of random walks correspond to different notions of what it means for
a set of nodes to be a good community. Our choice of conductance as a measure of
community quality is motivated by its nice theoretical properties. The presence of low-
conductance sets (i.e., sets are considered to be “good” communities based on the con-
ductance measure) relates directly to slow mixing of a random walk (Mihail, 1989). There
are efficient algorithms for identifying low-conductance sets with known approximation
guarantees (Andersen et al., 2006; Leskovec et al., 2009). There is also some empirical
evidence that conductance is a reasonably effective measure for evaluating community
quality and that other measures for evaluating community quality give reasonably similar
results in practice (Yang & Leskovec, 2012). However, conductance also has some lim-
itations as a measure of community quality. Most notably, it is not very sensitive to the

3 For a random walk on an undirected, single-layer network, this definition of conductance is
equivalent to the conductance in (Leskovec et al., 2009; Jeub et al., 2015).
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internal connectivity of putative communities. In the most extreme case, low-conductance
sets may even be internally disconnected (Leskovec et al., 2009; Leskovec et al., 2010;
Jeub et al., 2015). Our choice of algorithm for identifying local communities (see our
discussion below) somewhat mitigates this problem, as it implicitly optimizes the internal
connectivity of the identified communities (Leskovec et al., 2010).

We use the ACLcut method (Andersen et al., 2006; Leskovec et al., 2009; Jeub et al.,
2015) to identify putative communities. The ACLcut method is based on locally ranking
nodes near a seed node by approximating a personalized PageRank (PPR) score. Given an
appropriate random walk (or other Markov process4), one can define the associated PPR
score of state node iα as the solution to the equation

PPR(s,γ)iα = γ ∑
jβ∈VM

P jβ
iα PPR(s,γ) jβ +(1− γ)siα , (8)

where s is a probability distribution that determines the seed nodes for the method (Gleich,
2015) and γ ∈ [0,1] is a teleportation parameter. We use two different types of seeding
procedure with the ACLcut method:

• seeding using a state node jβ , where siα = δ (iα, jβ ) in Eq. (8); and
• seeding using a physical node j, where siα = δ (i, j)/| j| in Eq. (8).

We describe the ACLcut method in more detail in Appendix A.
Our main tool for summarizing size-resolved community structure is a network commu-

nity profile (NCP) (Leskovec et al., 2009). An NCP shows the quality of the best commu-
nity of a given size (i.e., number of nodes) as a function of community size. Because we
are using conductance as a measure of community quality, we define the “best” community
as the one with the lowest conductance. Hence, we define the NCP as

NCP(k) = min
S⊂VM , |S|=k

φ(S) . (9)

We also use local NCPs, where we constrain the communities to contain a given seed set
S0 of state nodes. That is,

localNCP(k,S0) = min
S⊂VM , |S|=k, S0⊂S

φ(S) . (10)

An NCP of a network can reveal interesting structural features about the network. In
particular, its qualitative shape can reveal the global organization of a network (Jeub et al.,
2015). A local NCP is useful for identifying communities at different scales associated
with a particular seed node (or seed set of nodes).

Our code for identifying local communities and visualizing networks is available at
https://github.com/LJeub. There is also a recently-proposed extension of the ACLcut
method (Kloster & Gleich, 2015) that allows one to sample local NCPs more efficiently,
although we did not use it for our computations in this paper.

4 More generally, it would also be both fruitful and interesting to develop local community-
detection methods using dynamical processes that are not Markovian. A good start would be to
use our approach through suitable adaptations of other processes that have been used to examine
community structure in networks. Examples include Kuramoto phase oscillators (Arenas et al.,
2006); epidemic spreading processes (Ghosh et al., 2014); and higher-order Markovian processes,
such as those that have been employed in the study of “memory networks” (Rosvall et al., 2014).

https://github.com/LJeub
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3 Synthetic Benchmark Multiplex Networks

We now explore the behavior of the two different random walks on synthetic networks with
known, planted community structure. The networks that we consider each have n = 1000
nodes and l = 10 layers (for a total of 10 000 state nodes, as we assume that every node
exists on all layers) and c = 10 planted communities.

We sample the planted community structure in the different layers in the following
way. We first sample a background community structure Sb by sampling the community
assignment for each node uniformly at random from {1, . . . ,c}. We then sample the com-
munity assignments Sp for the state nodes such that a state node inherits the background
community assignment of the corresponding physical node with probability 1− λ and
otherwise its community assignment is sampled uniformly at random from {1, . . . ,c}.

Given the community assignments for the state nodes, we sample the intralayer edges for
the network independently from a block model, such that an edge between two state nodes
in the same layer and with the same community assignment is present with probability
pin and an edge between two state nodes in the same layer but with different community
assignment is present with probability pout . The ratio pout/pin determines the strength of
the community structure of the benchmark, where a small ratio indicates strong community
structure. The parameter λ controls the dependency between the layers; the layers have
identical community structure for λ = 0, and community structures in different layers are
progressively less related to each other with increasing λ .

In Fig. 2, we illustrate the ability of our local community-detection methods to recover
the planted structure as we vary pout and λ . We fix pin = 0.1, n = 1000, and l = c = 10.
We use local NCPs to identify communities in the following way. First, we select a state
node iα uniformly at random as a seed node for the local NCP. We then identify the best
community for iα as the community that achieves the minimum conductance

Smin(iα) = argmin
S⊂VM , iα∈S

φ(S) .

among all communities that contain the state node iα . This construction throws away
a lot of information, as local minima of a local NCP can reveal interesting aspects of
community structure. However, examining only globally optimal communities for a seed
node enables one to easily compare algorithmically-obtained community structure with the
planted structure. To compare the performance of the different random walks, we use the
Jaccard coefficient (Jaccard, 1912)

J (Sp(iα),Smin(iα)) =

∣∣Sp(iα)∩Smin(iα)
∣∣∣∣Sp(iα)∪Smin(iα)
∣∣

between the planted community and the best identified community for the seed node. (We
obtain the same qualitative results when we compute normalized mutual information.) In
Fig. 2, we show the distributions of the Jaccard coefficients for samples of 100 seed nodes.

As we can see from Fig. 2, the performances of the two different random walks are
comparable to each other; neither one is clearly better than the other. One interesting result
is that, as we increase λ , it is increasingly pronounced that there are “good” and “bad”
seed nodes for identifying community structure. For λ = 0, the variability in the Jaccard
coefficient for different seed nodes is fairly small, but as we increase λ , the number of
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Fig. 2: Recoverability of planted community structure using local NCPs. For each value
of pout/pin, we sample local NCPs for 100 uniformly-random seed nodes and compare
the best community Smin identified by the local NCP to the planted community Sp for the
seed node using the Jaccard coefficient. The curves indicate the median of the Jaccard-
coefficient distributions, the dark shaded regions indicate the second and third quartiles of
the distributions, and the light shaded regions indicate the bulk of the distributions. Markers
indicate outliers.
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outliers increases and we observe increasing variability in the distribution of the Jaccard
coefficients.

For small λ , strong interlayer coupling (i.e., for large values of ω or r, so that the
rate of switching layers is high) helps identify the planted partition. For large enough
values of λ , there is a range of pout for which community structure is sufficiently strong
that random walks with weaker interlayer coupling can outperform those with stronger
interlayer coupling. This is already true when λ = 0.1, and the difference becomes more
pronounced as one increases λ .

For strong interlayer coupling, the two types of random walks (i.e., the classical random
walk with ω = 10 and the relaxed walk with r = 1) lose their ability to identify the planted
structure as we increase λ in rather different ways. For small values of λ (in particular,
for λ = 0.1), the classical random walk identifies the background community structure
rather than the planted community structure. As one increases λ further, its performance
at detecting both background and planted community structure decreases gradually for all
seed nodes.

In contrast, the performance of the relaxed walk deteriorates in a different way. It loses
the ability to identify the planted structure for progressively more choices of seed nodes
as we increase λ , but it still performs remarkably well for some seed nodes even when
λ = 0.3.

4 Empirical Multiplex Networks

We now illustrate our methodology on two empirical multiplex networks.5 Our first exam-
ple is the European Airline Network (Cardillo et al., 2013), a multiplex transportation
network with 37 layers, where each layer includes the flights for a single airline. Our
second example is the Lazega Law Firm network (Lazega & Pattison, 1999; Lazega, 2001;
Snijders et al., 2006), a multiplex social network with three layers that represent advice,
friendship, and co-work relationships between partners and associates of a corporate law
firm. In Table 1, we highlight some key properties of these two networks.

In Fig. 3, we show the NCPs of aggregated networks that we construct from our example
multiplex networks. We define the weight of an edge between two nodes in an aggregated
network as the number of edges in the corresponding multilayer network between the
associated state nodes. That is, the adjacency matrix Ā of the aggregate network has entries

Āi j = ∑
α∈L

A jα
iα .

The plots in Fig. 3 give a reference for the NCPs of the multilayer networks (see Figs. 4
and 5). At the aggregate level, the European Airline Network has an NCP that is suggestive
of a core–periphery structure (see (Csermely et al., 2013) for a review of such structure),
although one cannot conclude this with certainty because the network is small and the
conductance values are large. We do not observe any clear structure (and, in particular, no
clear community structure) in the Lazega Law Firm Network.

5 Note that for many multilayer networks (and, in particular, for the example networks that we
examine in this paper), data on the weights of interlayer edges are not explicitly available (Kivelä
et al., 2014).



ZU064-05-FPR local˙multiplex˙r1˙5b 24 May 2016 2:30

10 L. G. S. Jeub et. al.

Table 1: Example network data sets

nodes edges layers

European Airline Network
(Cardillo et al., 2013)

450 airports 3558 (undirected,
unweighted)

37 airlines

Lazega Law Firm Network
(Lazega & Pattison, 1999;
Lazega, 2001; Snijders et al.,
2006)

71 employees 2223 (directed,
unweighted)

3 (advice, friendship,
co-work)

100 101 102 103
10−1

100

number of nodes

co
nd

uc
ta

nc
e

(a) European Airline Network

100 101 102
10−1

100

number of nodes

co
nd

uc
ta

nc
e

(b) Lazega Law Firm Network

Fig. 3: Network community profiles (NCPs) of two aggregated empirical networks. We plot
the quality (as measured by conductance) of the best community of each size (as measured
by the number of nodes that are a member of the community). (a) The NCP of the aggregate
European Airline Network has a shape that one sees in networks with a core–periphery
structure. (b) The NCP of the aggregate Lazega Law Firm Network is slightly downward-
sloping, and the high minimum conductance indicates that the aggregate network has no
clear communities.

In Figs. 4 and 5, we explore the multilayer structure of the airline and law-firm networks.
An interesting aspect of multilayer networks is that one can use either physical nodes or
state nodes as seeds to sample local communities. We compare the results of these two
sampling procedures in Figs. 4 and 5. In these two networks, the two sampling procedures
produce very similar results. In some cases, sampling using physical nodes can result
in slightly better communities. (See the thick and thin solid blue curves in Fig. 4a for
community sizes between 102 to 103 state nodes.) In other cases, sampling using physical
nodes results in slightly worse communities. (See the thick and thin solid blue curves and
dashed red curves in panels (a) and (b) of Fig. 5.)

For directed networks (e.g., the network in Fig. 5), random walks are not necessarily
ergodic, so they might not have a unique stationary distribution. We use unrecorded edge
teleportation (Lambiotte & Rosvall, 2012; De Domenico et al., 2015) to ensure that the
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(a) Classical random walk
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(b) Relaxed random walk

Wizz Air

Ryanair

(c) Best community with 173 state nodes
for ω = 0.1 (physical node as seed)

SunExpress

Panagra Airways

Turkish Airlines

(d) Best community with 169 state nodes for
r = 0.1 (state node as seed)

Fig. 4: European Airline Network. Panels (a) and (b) show NCPs for this network. We
plot the quality (as measured by conductance) of the best community of each size (as
measured by the number of state nodes that are a member of the community). Sampling
using physical nodes (thin curves) versus using state nodes (thick curves) leads to very
similar results, and the thin curves are typically hidden underneath the thick curves in this
example. Panels (c) and (d) illustrate some of the communities that we obtain. We shade
the state nodes in a community from dark red to light gray based on their rank (of their
corresponding component) in the degree-normalized PPR-vector that we use to identify
the community. (See Appendix A for details.) The large arrows point to the seed nodes.
For small layer-jumping probability r in the relaxed random walk and small interlayer
edge weight ω in the classical random walk, the best communities tend to consist of
sets of similar types of airlines (e.g., they fly to the same airport, are low-cost airlines,
or share some other feature). The prominent dips in the NCPs in panel (b) for communities
consisting of two state nodes are the result of a spurious connection in the data set that
creates a bottleneck for the relaxed random walk. Even for r = 1, the relaxed walk still
predominantly identifies this type of community. By contrast, for large values of ω , the
classical random walk finds relatively geographically localized communities.
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(c) Best community with 19 state nodes for
ω = 0.1 (state node as seed)

advice
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co-work

(d) Best community with 19 state nodes for
r = 0.01 (state node as seed)

Fig. 5: Lazega Law Firm Network. Panels (a) and (b) show NCPs for this network. As with
the European Airline Network, when we use a small layer-jumping probability r in the
relaxed random walk and a small interlayer edge weight ω in the classical random walk,
we obtain similar results even though we consider two different dynamical processes. We
also again obtain similar results whether we use a state node or a physical node as a seed.
For both types of random walks, with our choice of interlayer connection probability, the
communities tend to be localized to a single layer. The prominent minimum in the NCPs at
71 nodes is the result of a community that contains all state nodes in the “co-work” layer.
The communities that we highlight in panels (c) and (d) are responsible for the other, less-
pronounced minima in the NCPs at 19 nodes. They contain the members of the firm who
are based in the Hartford office.

random walk is ergodic. This corresponds to replacing the stationary distribution of the
random walk in the definition of conductance (Eq. 7) by a PPR vector in which the seed
vector is proportional to the vector of in-degrees of the state nodes. That is,

piα(∞) = PPR(s,γ), siα =
∑ jβ∈VM A jβ

iα

∑iα∈VM ∑ jβ∈VM A jβ
iα

.



ZU064-05-FPR local˙multiplex˙r1˙5b 24 May 2016 2:30

A local perspective on community structure in multilayer networks 13

ad
vi

ce
fr

ie
nd

sh
ip

co
-w

or
k

(e
)B

es
tc

om
m

un
ity

w
ith

91
st

at
e

no
de

s
fo

rω
=

10
(p

hy
si

ca
ln

od
e

as
se

ed
)

(f
)B

es
tc

om
m

un
ity

w
ith

91
st

at
e

no
de

s
fo

rr
=

1
(p

hy
si

ca
ln

od
e

as
se

ed
)

Fi
g.

5
(c

on
t.)

:F
or

la
rg

e
ω

,t
he

cl
as

si
ca

lr
an

do
m

w
al

k
yi

el
ds

co
m

m
un

iti
es

th
at

ar
e

la
rg

el
y

“c
oh

er
en

t”
ac

ro
ss

la
ye

rs
:i

fa
st

at
e

no
de

is
a

m
em

be
ro

f
a

co
m

m
un

ity
,t

he
n

th
e

ot
he

rs
ta

te
no

de
s

as
so

ci
at

ed
w

ith
th

e
sa

m
e

ph
ys

ic
al

no
de

al
so

te
nd

to
be

in
th

at
co

m
m

un
ity

.B
y

co
nt

ra
st

,c
om

m
un

iti
es

fr
om

th
e

re
la

xe
d

ra
nd

om
w

al
k

ar
e

no
ta

s
co

he
re

nt
ac

ro
ss

la
ye

rs
.



ZU064-05-FPR local˙multiplex˙r1˙5b 24 May 2016 2:30

14 L. G. S. Jeub et. al.

For our results in Fig. 5, we use a teleportation rate of γ = 0.05. For weighted networks
in which intralayer weights are very different in different layers, one may also need to
rescale the edge weights appropriately (Cranmer et al., 2015) to obtain results that are not
dominated by a single layer (or small set of layers). However, this issue does not arise in
our example networks in the present paper.

As one can see from Figs. 4 and 5, the NCPs for the multilayer networks look very
different from those of the aggregated networks in Fig. 3. One exception are the NCPs for
the relaxed walk with rate r = 1; its shape resembles that of the NCPs for the aggregated
network. For each of these networks, the multilayer structure introduces bottlenecks to the
spreading of the random walks that are not present in the associated aggregated networks.
This is also reflected in the types of communities that underlie these bottlenecks.

For the airline network, the best communities identified by random walks with weak
interlayer coupling tend to contain all state nodes from a given layer or a set of layers.
Effectively, the local communities are identifying sets of similar airlines that share many
common destinations. However, as we illustrate in Fig. 4, the exact communities identified
by the classical random walk and relaxed random walk can be very different. Once the
interlayer coupling becomes sufficiently strong, the nature of the communities identified
by the classical random walk changes completely. The best communities identified by the
classical random walk with strong interlayer coupling tend to be localized geographically
and span all layers. The relaxed random walk, however, still predominately identifies sets
of airlines even when r = 1 (i.e., when the interlayer coupling is maximal). In fact, the
communities identified by the relaxed random walk with r = 1 are often rather similar to
those identified with r = 0.1.

For the Lazega Law Firm Network, the layer structure also results in bottlenecks to the
random walks when the interlayer coupling is weak. This is the cause for the sharp minima
in the NCPs in Fig. 5 for community sizes of 71 state nodes. At smaller community sizes,
one can identify layer internal structures—most notably a community in the “co-work”
layer that consists of the members of the firm that work in the Hartford office. Unlike for the
airline network, in the case of the Lazega Law Firm Network, both types of random walk
predominantly identify communities that span all layers when the interlayer coupling is
sufficiently strong. However, the two types of random walks explore the law-firm network
in rather different ways. The classical random walk explores the different layers of the
network in a “coherent” manner when the interlayer coupling is strong. That is, if a state
node associated with a particular physical node is included in a community, then the other
state nodes of that physical node (i.e., its manifestation in the other layers) tend to also
belong to the community. However, as we illustrate in panels (e) and (f) of Fig. 5, the
communities identified by the relaxed random walk tend to be less coherent across layers
than those identified by the classical random walk.

To understand the difference in behavior between the relaxed and classical random walks
at high layer-switching rates (i.e., for r ≈ 1 and for large ω), it is important examine the
behavior of the two dynamical processes that are induced on the aggregated networks. The
dynamical process induced on the aggregated network by the relaxed random walk with
r = 1 is simply a standard random walk. However, the process induced by the classical
random walk for large ω explores the aggregated network much more slowly than a stan-
dard random walk, as most of the transitions are between state nodes that represent the
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same physical node. This results in a downward shift of the NCPs as one increases ω .
This has a similar effect as introducing a self-loop at each node. (As discussed in Arenas
et al. (2008), introducing self-loops is one way to introduce a resolution parameter in the
modularity quality function.)

5 Discussion and Conclusions

We have seen using example synthetic networks that bottlenecks of random walks on a
multilayer network can reveal nontrivial multiplex community structure in which com-
munity structure in different layers of a network is related but not identical. We explored
two types of random walks — a classical random walk and a relaxed random walk — for
identifying structure in our synthetic benchmarks, and we found that they can behave rather
differently from each other in some situations. Consequently, different random walks give
different community structures in a network, and one thus also expects to observe (although
we did not test this directly) different community structures in different global methods
(e.g., based on optimizing a quality function) based on the two different types of random
walks. Similar results have been noted previously in other contexts (Lambiotte et al., 2009;
Lambiotte et al., 2015).

As we saw in Section 4, the behavior of the random walks on a multilayer network is in
general very different from the behavior of a random walk on a corresponding aggregated
network. Consequently, examining a multilayer network can reveal important information
that is not visible in a corresponding aggregated network. In particular, bottlenecks to ran-
dom walks on a multilayer network can reveal structures, such as sets of related layers and
communities confined to a single layer, that are impossible to see in aggregated networks.

Our approach is very general, and a suite of other dynamical processes can also used to
develop a diverse family of local community-detection methods. In addition to considering
other processes, in advancing our work further, it will also be interesting to exploit trans-
formations between ordinary random walks and other types of random walks (Lambiotte
et al., 2011; Yan et al., 2016). Another interesting extension of our approach would be to
use it as the seed-set-expansion part of a seed-centric algorithm (Kanawati, 2014; Hmimida
& Kanawati, 2015; Whang et al., 2016) for detecting communities in multilayer networks.
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def ACLcut(P,v,S0,γ,ε) :

for iα ∈VM : set up seed vector

if iα ∈ S0 :
siα = 1/|S0|

else :
siα = 0

p = APPR(P,v,s,γ,ε) compute ε-approximate PageRank vector
φ ,S = SweepCut(P,v, p/v) normalized sweep cut
return φ ,S return conductance and communities

Fig. A 1: ACLcut method for sampling local communities. The inputs are the transition
tensor P of the random walk, a seed set S0 of state nodes, and a vector v of node volumes
— which is proportional either to the stationary distribution of P or (when considering
teleportation) to a PageRank vector. The resolution of the method is controlled by the
teleportation parameter γ and the truncation parameter ε .

def APPR(P,v,s,γ,ε) :
γ̃ = (1− γ)/(1+ γ) convert to equivalent lazy-walk teleportation

for iα ∈VM :
piα = 0 initialize PageRank vector
eiα = siα initialize residual

Q = {iα : eiα ≥ εviα} keep track of nodes to update

while Q 6= /0 :
iα = pop(Q) select a node to update
ẽ = eiα
piα = piα + γ̃ ẽ push probability mass to PageRank vector
eiα = (1− γ̃)ẽ/2

for jβ ∈ { jβ : Piα
jβ > 0} :

e jβ = e jβ +(1− γ̃)Piα
jβ ẽ/2

Q = {iα : eiα ≥ εviα} check iα and its neighbors to update Q

return p return ε-approximate PageRank vector

Fig. A 2: APPR procedure for computing ε-approximate PageRank vectors using only local
information. See Fig. A 1 for a description of the input arguments.

A Sampling Network Community Profiles (the ACLcut method)

We use the ACLcut method (Andersen et al., 2006; Leskovec et al., 2009; Jeub et al., 2015)
to sample local communities and network community profiles (NCPs). In this appendix,
we briefly discuss how we apply this procedure to identify communities using a general
random walk on a multilayer network.

The key idea behind the ACLcut method is the use of a “push” procedure (Andersen
et al., 2006), which pushes probability mass from the residual vector e to the PageRank
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def SweepCut(P,v, p) :
N = RankOrder(VM , p) return state nodes in descending order of p
S = /0
c = 0
vol = 0

for k ∈ {1, . . . , |N|} :
iα = N(k) get the next state node to consider
c = c−∑ jβ∈S P jβ

iα v jβ +∑ jβ /∈S Piα
jβ viα update conductance

vol = vol + viα
S = S∪ iα
φk = c/vol
S (k) = S

return φ ,S return conductance values and sweep sets

Fig. A 3: SweepCut procedure for identifying communities based on a ranking vector p for
the state nodes.

vector p while preserving the invariant p = PPR(γ,s− e). We describe the different parts
of the ACLcut method in Figs. A 1–A 3. In addition to the teleportation parameter γ , the
ACLcut method also depends on a truncation parameter ε . The ACLcut method terminates
once the residual is small enough so that eiα < εviα for all state nodes iα ∈ VM , where
the quantity v denotes a vector of node volumes. We set v = |VM|× p(∞), where p(∞) is
either the stationary distribution of the random walk or (when considering teleportation)
it is a PageRank vector. The rescaling is purely for computational convenience, as from
a theoretical perspective the results are invariant under rescaling of the node volumes
(because one also rescales ε).

To sample an NCP, we use the ACLcut method to sample communities for different
values of ε and different seed nodes, and we take the lower envelope of the conductance
values. To sample a local NCP, we only vary ε and use the seed set of the local NCP as
a seed set for the ACLcut method. We use 20 logarithmically spaced values for ε in the
interval [1/max(v),1/∑v], and we fix γ = 0.998. For each value of ε , we initially set the
sample set S of potential seed nodes to be either the set of all state nodes (i.e., S = VM)
or the set of all physical nodes (i.e., S = V ). We then sample seed nodes uniformly at
random without replacement from S until S is empty. To avoid excessive computations for
small values of ε , we remove nodes from S once they have been included in the best local
community returned by the ACLcut method 10 times. This sampling procedure allows one
to estimate an NCP in a time that scales almost linearly with the number of state nodes
while ensuring good coverage of the structure of a network.
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Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014).
Multilayer networks. Journal of Complex Networks, 2(3), 203–271.



ZU064-05-FPR local˙multiplex˙r1˙5b 24 May 2016 2:30

A local perspective on community structure in multilayer networks 19

Kloster, K, & Gleich, D F. 2015 (Mar.). Seeded pagerank solution paths. arXiv:1503.00322v2
[cs.SI].

Kuncheva, Z, & Montana, G. (2015). Community detection in multiplex networks using locally
adaptive random walks. Pages 1308–1315 of: Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015. ASONAM ’15. New
York, NY, USA: ACM.

Lambiotte, R, & Rosvall, M. (2012). Ranking and clustering of nodes in networks with smart
teleportation. Physical Review E, 85(5), 056107.

Lambiotte, R, Delvenne, J-C, & Barahona, M. (2009). Laplacian dynamics and multiscale modular
structure in networks. arXiv:0812.1770v3 [physics.soc-ph].

Lambiotte, R., Sinatra, R., Delvenne, J.-C., Evans, T. S., Barahona, M., & Latora, V. (2011). Flow
graphs: Interweaving dynamics and structure. Physical Review E, 84(1), 017102.

Lambiotte, R., Delvenne, J.-C., & Barahona, M. (2015). Random walks, Markov processes and
the multiscale modular organization of complex networks. Transactions on Network Science and
Engineering, 1(2), 76–90.

Lazega, E. (2001). The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers
in a Corporate Law Partnership. Oxford, UK: Oxford University Press.

Lazega, E., & Pattison, P. E. (1999). Multiplexity, generalized exchange and cooperation in
organizations: A case study. Social Networks, 21(1), 67–90.

Leskovec, J., Lang, K. J., Dasgupta, A., & Mahoney, M. W. (2009). Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1), 29–123.

Leskovec, J, Lang, K J, & Mahoney, M W. (2010). Empirical comparison of algorithms for network
community detection. Pages 631–640 of: Proceedings of the 19th International Conference on
World Wide Web. ACM.

Mihail, M. (1989). Conductance and convergence of Markov chains — A combinatorial treatment
of expanders. Pages 526–531 of: Proceedings of the 30th Annual Symposium on Foundations of
Computer Science. IEEE.

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure
in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876–878.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford, UK: Oxford University Press.

Peixoto, T. P. (2015). Inferring the mesoscale structure of layered, edge-valued, and time-varying
networks. Physical Review E, 92(Oct), 042807.

Porter, M A, Onnela, J-P, & Mucha, P J. (2009). Communities in networks. Notices of the American
Mathematical Society, 56(9), 1082–1097, 1164–1166.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of the United States of
America, 105(4), 1118–1123.

Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory
in network flows and its effects on spreading dynamics and community detection. Nature
Communications, 5, 4630.

Salehi, M, Sharma, R, Marzolla, M, Magnani, M, Siyari, P, & Montesi, D. (2015). Spreading
processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2(2),
65–83.

Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for
exponential random graph models. Sociological Methodology, 36(1), 99–153.

Wasserman, S, & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge,
UK: Cambridge University Press.

http://arxiv.org/abs/1503.00322
http://arxiv.org/abs/0812.1770


ZU064-05-FPR local˙multiplex˙r1˙5b 24 May 2016 2:30

20 L. G. S. Jeub et. al.

Whang, J J, Gleich, D F, & Dhillon, I S. (2016). Overlapping community detection using
neighborhood-inflated seed expansion. IEEE Transactions on Knowledge and Data Engineering,
28(5), 1272–1284.

Yan, X, Teng, S-H, Lerman, K, & Ghosh, R. (2016). Capturing the interplay of dynamics and
networks through parameterizations of Laplacian operators. PeerJ Computer Science, 2(May),
e57.

Yang, J, & Leskovec, J. (2012). Defining and evaluating network communities based on ground-
truth. Pages 3:1–3:8 of: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.
New York: ACM.


	1 Random Walks on Multilayer Networks
	2 Local Communities and Network Community Profiles
	3 Synthetic Benchmark Multiplex Networks
	4 Empirical Multiplex Networks
	5 Discussion and Conclusions
	A Sampling Network Community Profiles (the ACLcut method)
	References

