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Abstract 
We examine world migration as a social-spatial network of countries connected 

via movements of people. We assess how multilateral migratory relationships at 

global, regional, and local scales coexist (“glocalization”), divide (“polarization”), 

or form an interconnected global system (“globalization”). To do this, we 

decompose the world migration network (WMN) into communities—sets of 

countries with denser than expected migration connections—and characterize 

their pattern of local (i.e., intracommunity) and global (i.e., intercommunity) 

connectivity. We distinguish community signatures—"cave", "biregional", and 

"bridging"—with distinct migration patterns, spatial network structures, temporal 

dynamics, and underlying antecedents. Cave communities are tightly-knit, 

enduring structures that tend to channel local migration between contiguous 

countries; biregional communities are likely to merge migration between two 

distinct geographic regions (e.g., North Africa and Europe); and bridging 

communities have hub-and-spoke structures that tend to emerge dynamically 

from globe-spanning movements. We find that world migration is neither globally 

interconnected nor reproduces the geographic boundaries as drawn on a world 

map but involves a heterogeneous interplay of global and local tendencies in 

different network regions. We discuss the implications of our results for the 

understating of variability in today’s transnational mobility patterns and migration 

opportunities across the globe. 
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1. Introduction 

In the context of today’s transnational mobility, world migration can be viewed as 

a network of cross-border movements of people connecting multiple countries at 

various—e.g., regional, continental, or global—geographic scales. What is the 

structure of this network of migration between world countries? What is the 

interplay between movements at different spatial scales? What tendencies—e.g., 

global interconnectedness, regional fragmentation, and local heterogeneity—

have emerged over the latter part of the twentieth century? Did network 

structures evolve gradually or transform suddenly? What antecedents could have 

brought about one or another network structure and what are the implications for 

the variability of migration opportunities for people around the world? In this 

paper, we address the above questions through an empirical examination of 

heterogeneous network structures of world migration using theoretical insights 

and methods at the intersection of network (Wasserman and Faust, 1994, 

Newman, 2010) and spatial analysis (Batty, 2005, Barthélemy, 2011, Expert et 

al., 2011, adams et al., 2012).  

We represent world migration as a “social-spatial” network using the 

Global Bilateral Migration Database (Özden et al., 2011). A social-spatial network 

is defined as a set of nodes (e.g., societies, organizations, or individuals) located 

in geographic space that are connected to each other via a set of edges 

associated with length (and cost) (Barthélemy, 2011, Newman, 2010, 

Wasserman and Faust, 1994). The world migration network (WMN) is a set of 

world countries embedded in geographic space. The countries in the network are 

connected to each other via migration edges of various distances, and an edge 

represents the number of migrants from a sending country 𝑖 living in a receiving 

country 𝑗 at a particular point of time. The spatial aspect of the WMN comes both 

from the topographical position of nodes and from the geographic constraints on 
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edges. Although with the advancements in transportation and communication 

technologies, migration is unlikely to diminish with the increase of distance in a 

manner predicted by the “inverse-distance rule” (Ravenstein, 1885, Zipf, 1946), 

the length of migration edges is still associated with a cost (e.g., travel and 

information costs), so longer-distance migration bears a higher cost (Barthélemy, 

2011, Gastner and Newman, 2006). The WMN is directed (i.e., the edges have a 

direction that represents out- and in-migration) and weighted (i.e., edges have 

weights that represent, in our study, the volume of migrant stock between 

countries). The WMN is also temporal network, which we represent as a 

multilayer network (Mucha et al., 2010, Kivelä et al., 2014). Each layer 

represents bilateral migration stock between 226 world countries for one of the 

decades of 1960, 1970, 1980, 1990, and 2000. 

Three alternative patterns of world migration and associated mobility 

opportunities for people are articulated in the literatures on international migration 

and globalization. First, a growing body of migration literature (International 

Organization for Migration, 2003, Castles and Miller, 2009, Audebert and Doraï, 

2010), supported by recent network studies (Davis et al., 2013, Fagiolo and 

Mastrorillo, 2013), argued that post-1970 international migration has become 

more interconnected than it was before in response to increasing globalization. 

However, reports have pointed to a parallel tendency towards migration 

regionalization, estimating that about 80 percent of the movements in the 

developing world are between contiguous countries (e.g., Bangladesh to India) 

(Ratha and Shaw, 2007, Population Division of the Department of Economic and 

Social Affairs, 2013). Although one can view regionalization as a “stepping stone” 

to global integration (Dierks, 2001: 214), obstructed by restrictive migration 

policies (Hatton and Williamson, 2005), a skeptical view sees it as a sign of 

polarization between deterritorialized “nomads” that enjoy global long-distance 

mobility and local “poor” who are locked into geographic regions (Hirst and 

Thompson, 2000, Bauman, 1998, Wallerstein, 1974, Sassen, 2007). A third 

possibility, conveyed by the notion of “glocalisation” (Robertson, 1992, 

Robertson, 1995, Wellman, 2002), reconciles the tension between the idea that 
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local interactions are either declining (i.e., globalization) or subordinated to global 

processes (i.e., polarization) and suggests instead the possibility of coexistence 

of globe-spanning interactions and local regional interactions. 

Rather than examining a predominant pattern of world migration, we 

characterize the heterogeneity of world migration by uncovering latent network 

structures known as “communities” (also called “modules” or “cohesive groups”) 

(Newman and Girvan, 2004, Wasserman and Faust, 1994, Mucha et al., 2010, 

Porter et al., 2009, Fortunato, 2010). A migration community is a tightly-knit 

subnetwork of countries with dense migration connection internally (relative to a 

null model describing random connections) but sparse connections to and from 

other countries in the network (see Fig. 1).  

 

 
Fig. 1. An example of migration community structure in the WMN. The color of the nodes 
represents community membership. The position of the nodes indicates the geographic 
location of countries. The edges represent migratory movements between countries. We 
represent population size on the map in a gray scale (where darker countries indicate 
larger populations). We use code from Traud et al. (2009) and Jeub et al. (2015) in 
MATLAB to visualize the network, and we use the package ‘rworldmap’ in R (South, 
2011) to create the world map in the background. 

 

Detecting communities provides a means of delineating “functional 

regions” (Ratti et al., 2010) on the basis of empirical connectivity, which may 

differ from how regional boundaries are drawn on economic and geographic 

maps (Maoz, 2011: 37). Further, an arrangement of interactions into network 

communities typically cuts across the hierarchy of spatial scales (Knappett, 2011: 
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10–11), thus migration communities can encode various combinations of global, 

regional, and local migration. Third, as Simmel (1950[1908], Martin, 2009, 

Carrington and Scott, 2011) observed, once cohesive structures crystallize, they 

can maintain their own existence—and in this way, confront and enable further 

migration interactions—even if the reasons that brought them to life in the first 

place have vanished.  

To detect migration communities, we employ generalizations of a widely-

used method of modularity maximization (Newman and Girvan, 2004) to directed 

networks (Leicht and Newman, 2008, Arenas et al., 2007), temporal networks 

(Mucha et al., 2010), and spatial networks (Expert et al., 2011, Sarzynska et al., 

2015). Subsequently, we employ statistical techniques to identify significant 

migration community signatures––i.e., communities with similar pattern of global 

and local migration relationships. We advance prior research (Salt, 1989, Nogle, 

1994, DeWaard et al., 2012, Fagiolo and Mastrorillo, 2013) by extracting 

mesoscale structures in world migration in a way that simultaneously takes into 

consideration directionality, temporal dynamics, and geographic constraints on 

migration relationships.  

Our contribution extends beyond a descriptive portrayal of typologically 

different spatial network signatures of glocal migration patterns, as we also show 

that different migration community signatures are associated with distinct 

temporal dynamics and relational, social, and spatial antecedents, thereby 

having distinct implications for migration opportunities across the world. Our 

analytical framework enables an examination (and reconciliation) of conflicting 

views of global processes, and our findings may consequently contribute to the 

understanding of broader transnational interactions. 

Traditionally, research on international migration (and other cross-border 

relationships, such as international relations and trade), has considered each 

migratory movement between a dyad of countries as independent, attributing 

variations in migration outcomes to differences in the characteristics of origin-

destination pairs (Kim and Skvoretz, 2010, Lupu and Traag, 2013, Fagiolo and 

Mastrorillo, 2013). The dyadic-independence assumption appears to have been 
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largely applicable to the post-World War II bilateral migration until the 1970s as, 

in Vertovec’s (2010: 3–4) words, ‘large numbers [were] moving from particular 

places to particular places’ (e.g., Algeria–France, Turkey–Germany). Since the 

early 1980s, however, an increasing number of countries have been involved in 

migration (Audebert and Doraï, 2010: 203, Castles and Miller, 2009: 10), leading 

to a pattern of ‘small numbers moving from many places to many places’ 

(Vertovec, 2010: 3–4). Consequently, one is more likely to observe interactions 

between multilateral movements of people connecting countries at various 

geographic— i.e., local, regional, continental, global—scales over time. This 

increases the probability of extra-dyadic dependencies (Wasserman and Faust, 

1994, Newman, 2010) between movements, so a dyadic edge between a pair of 

countries could depend in part on the patterns of relationships between 

surrounding—in network and geographic space—countries (Malmberg, 1997).  

Prior research in geography (Hägerstrand, 1957, Kritz et al., 1992, 

Fotheringham, 1991), and more recently in network analysis, of internal (Maier 

and Vyborny, 2008) and international migration (Nogle, 1994, Davis et al., 2013, 

Tranos et al., 2012, Fagiolo and Mastrorillo, 2013) has examined extra-dyadic 

and meso-scale properties of migratory movements. Other studies have 

examined network properties of global migration in relation to global networks of 

short-term human mobility (Belyi et al., 2016), international trade (Fagiolo and 

Mastrorillo, 2014), and international flights and digital communication (Hristova et 

al., 2016). By integrating network and spatial considerations1 in the context of 

globalization theories, we wish to extend past research through an examination 

of spatial network structures that emerge from multilateral and multiscale 

movements of people, the way these structures are shaped by relational, social, 

and spatial antecedents, and the way in which, in turn, they distinctively shape 

migration opportunities across the globe.  

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  For an example of such integration in research on internal migration, see Lemercier and 
Rosental’s study (2010) of migration between villages in 19th century Northern France. 
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2. Structure, Dynamics, and Antecedents of the WMN 
Network analysis focuses on relationships between entities (e.g., people, 

institutions, or countries) in an interconnected system. It provides a vantage point 

from which one can capture macro-scale and meso-scale network structures that 

emerge from such relationships (Wellman and Berkowitz, 1988, Wasserman and 

Faust, 1994, Newman, 2010, Maoz, 2011) as well as sources of opportunities 

and constraints pertaining to one or another structure (Borgatti et al., 2009). A 

basic premise of our work is that world migration is an instance of an 

interconnected system. This system involves multiple cross-border movements of 

people that connect geographically dispersed locations, which give rise to 

enduring multilateral migration structures. What structures of world migration 

have emerged over the second half of the twentieth century?  

 

2.1. Globalization, Polarization, and Glocalization   
Globalization theories (Beck, 2000, Giddens, 1990, Held et al., 1999) have 

emphasized the intensification of transnational interconnectedness across the 

globe, such that distant societies have been integrated in networks of 

relationships. As Sassen (2007: 137) argued, the increase of foreign direct 

investments and the export of manufacturing activities to developing areas (e.g., 

Asia and South America) have contributed to a densification of international 

capital flows and the formation of new migration pathways. Simultaneously, 

advancements in transportation and communication technology have shrunk or 

compressed geographic and cultural distances, a phenomenon known as “time-

space compression” (Harvey, 1989). Globalisation is viewed as constituting a 

‘new historical conjuncture’ (Glenn, 2007: 34, McGrew, 1998), in which, as 

Castells (2010: 440–448 [1996]) put it, the space of places has been replaced by 

space of flows of capital, goods, information, and people that are spanning 

across the globe. Under the “globalization of migration” hypothesis, migration 

scholars have emphasized the progressively increasing number of countries 

involved in migration (Castles and Miller, 2009: 7–12) and the diversification of 

origin and destinations since 1970s (Vertovec, 2010), and have observed that 
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major migratory movements are now globe-spanning (e.g., China to the USA) 

rather than, as in the recent past, exclusively between contiguous countries (e.g., 

Ireland to England) or bound by past colonial relationships (e.g., Bangladesh to 

Britain) and bilateral agreements (e.g., between Germany and Turkey) 

(International Organization for Migration, 2003: 4, Zlotnik, 1998: 465, Agnew, 

2009: 170, Castles and Miller, 2009: 7–12, King, 2002: 94). 

The world systems theory (Wallerstein, 1974) offers an alternative 

understanding of globalization. Instead of global integration, the theory has 

proposed that economic interdependencies have divided the world system into 

threefold-subordinated strata2 of core, semi-periphery, and periphery countries. A 

central tenet of the theory is that peripheral countries are disadvantaged not 

because of exclusion but because of their assimilation to the world system in a 

“structurally subordinate position” (Boli and Lechner, 2009: 326). Because of the 

dependence on restrictive policies of core countries, Hirst and Thompson (2000) 

argued, current globalization reduced opportunities for international mobility. 

According to Hirst and Thompson (2000), in the belle époque for 1890 to 1914, 

due to the “border openness” and the “empty lands”, flows of goods, investment 

capital, and labour migration were comparable in magnitude to or even greater 

than those in the latter half of the twentieth century. In this account, globalisation 

has neither flattened world stratification nor contributed to an overall increase in 

economic and mobility possibilities but widened the gap between rich countries 

and poor countries (Sassen, 1988, Hirst and Thompson, 1999), leading to 

polarization between constraint-free global mobility and local migrations trapped 

in bounded regions.  

The concept of glocalization conveys the idea of global and local 

tendencies as simultaneously present and mutually reinforcing (Robertson, 1992, 

1995). When defined in spatial terms, glocalisation refers to the coexistence of 

dense local connections and sparse global—i.e., long-distance—connections 

(Wellman, 2002). The concept of glocalization offers an alternative to the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  In Skeldon’s (1997) account, each stratum in the world system induces specific migration 
patterns.	
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understanding of globalization as a linear process towards global integration. 

Also, while the world systems theory (Wallerstein, 1974) emphasizes the 

differential distribution of movements across regions, glocalization highlights the 

possibility of a country to simultaneously maintain dense migration connections 

to neighbouring countries and disperse connections between continents.3  

 

2.2. Global and Local Cohesion 
To characterize the threefold patterns of interplay—globalization, polarization, 

glocalization—between global and local migration connectivity in world migration 

communities, we employ a community-scale conceptualization of Granovetter’s 

strength-of-weak-ties hypothesis (Granovetter, 1973: 1373) that was recently 

rejuvenated in the theoretical work of Borgatti and Lopez-Kidwell (2011: 42). In 

the context of international migration, the hypothesis states that if countries 𝑖 and 

𝑗 share a stronger migration edge (measured in terms of number of migrants), 

their neighborhoods are more likely to overlap. In other words, they are more 

likely to have migration connections to the same third countries, leading to strong 

local (intracommunity) cohesion. In contrast, weak migration edges are likely to 

perform a bridging role, thereby connecting countries with otherwise disjoined 

neighborhoods, contributing to strong global (intercommunity) cohesion. This 

framework allows us to arrange world migration communities on a continuum 

from communities with strong local (intracommunity) cohesion but weak global 

(intercommunity) cohesion and communities with weak local cohesion but strong 

global cohesion (see Fig. 2). We use the distribution of global and local cohesion 

to establish statistically significant migration community signatures.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  The coexistence of global and local (regional) migratory movements is discussed in Held et al. 
(1999) and was recently adopted in different contexts, for example, international trade (Zhu et al., 
2014).	
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Fig. 2. An example of migration communities that differ in local and global connectivity. 
The 226 nodes in the WMN are assigned to one of eight different communities. For 
visual purposes, we symmetrized and thresholded edges (darker edges indicate larger 
migratory movements). The brown community in the center of the network exemplifies 
strong global cohesion, whereas the blue community in the lower right corner 
exemplifies relatively strong local cohesion. We use code from Traud et al. (2009) and 
Jeub et al. (2015) in MATLAB to create the visualization. 
 

2.3. Community Evolution 
Compared to more transient forms of global human mobility, such as tourism 

(Belyi et al., 2016), migratory movements are characterized by an enduring 

pattern due to their tendency to self-perpetuate via migrant networks 

(Hägerstrand, 1957, Palloni et al., 2001). This observation is consistent with the 

world systems theory, which sees nothing unprecedented in the post-1945 

migratory movements compared to the early decades of that century. By 

contrast, globalization theories predict a marked change in global migration since 
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1970s. We study the evolution of world migration communities by tracking 

changes in their membership composition. 

 

2.4. Relational, Homophily, and Spatial Antecedents 
To account for the variability across migration community signatures, we 

consider a set of endogenous network, homophily, spatial, and economic 

mechanisms. We first consider local (e.g., dyadic, triadic) mechanisms, such as 

reciprocity. Reciprocity refers to the tendency of an edge from node 𝑖 to node 𝑗 to 

be accompanied by an edge in the opposite direction (Wasserman and Faust, 

1994, Butts, 2008). The tendency has been known in migration studies since 

Ravenstein (1885:199), who stated that ‘[e]ach main current of migration 

produces a compensating counter-current’. A related mechanism—triadic 

closure—refers to the tendency for an edge to occur between nodes 𝑖 and 𝑗 if 

they are already connected to a common third node 𝑘 (Davis, 1967, Wasserman 

and Faust, 1994, Easley and Kleinberg, 2010, Granovetter, 1973). Reasons for 

triadic closure in world migration can include exogenous forces such as 

homophily and geographic proximity as well as mechanisms that are generated 

in the process of migration—e.g., information transmission, migration policies, 

and migrant networks—and feed back into the WMN. Greater reciprocity and 

triadic closure typically contribute to strong local cohesion. 

A mechanism that can contribute to global cohesion in networks is hub 

formation. Hubs are countries that are disproportionately well-connected 

(Newman, 2010: 245, Slater, 2008) and could integrate a set of spokes. Hub-

and-spoke structures are likely to have an uneven distribution of connectivity of 

well-connected core ‘hubs’ and sparsely connected peripheral ‘spokes’ (Borgatti 

and Everett, 2000, Rombach et al., 2014). Hub-and-spoke migration structures 

could emerge endogenously as a function of cumulative advantage (de Solla 

Price, 1965). In international migration, cumulative advantage would suggest that 

already popular destinations are likely to attract more migrants from diverse 

destinations. Exogenous forces for hub-and-spoke structures include economic 

attractiveness and time-space compression. 
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Reciprocity and triadic closure are more likely to occur if the societies in 

question are similar along relevant characteristics. This is an example of 

“homophily” (McPherson et al., 2001, Lazarsfeld and Merton, 1954, Moody, 

2009). We consider two homophily mechanisms: former colonial4 relationships 

and language proximity (Fawcett, 1989, Portes and Böröcz, 1989, Pedersen et 

al., 2008, Mayda, 2010, Kim and Cohen, 2010, Breunig et al., 2012). In the 

context of world migration, homophily tendencies can facilitate local connectivity, 

and they can also form the basis for long-distance, cross-continental connections 

(e.g., the Commonwealths). 

 Once migration exchanges are initiated via homophily mechanisms or 

other mechanisms (e.g., bilateral agreements), they tend to self-perpetuate over 

time as a function of social processes that emerge in the course of migration 

(Massey et al., 1998: 42, Portes and Böröcz, 1989: 612, Massey, 1990). One 

such social process is “chain migration”, in which initial movers are followed by 

extended family, friends, and acquaintances who obtain access to resources and 

information about the destination in question through migrant networks 

(MacDonald and MacDonald, 1964, Gurak and Caces, 1992, Boyd, 1989, 

Massey et al., 1998). Chain migration can contribute to the formation of hubs in 

the WMN by channeling migratory movements to particular—and often long-

distance—destinations that are typically more costly and risky.  

We consider Gross Domestic Product (GDP) per capita as an indicator of 

economic prosperity. If processes of globalization are relatively evenly 

distributed, we should expect countries to increasingly involve long-distance 

movements regardless of their GDP per capita. However, if patterns of migratory 

movements reflect economic disparities, this would imply polarization.  

Migration exchanges can be affected by one or multiple constraints. For 

example, Martin (2009: 32–36) put forth the hypothesis that strong ties (e.g., 

friendship) are more likely to require proximity in both geographic space and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 	
  Former colonial relationships should be considered only as a proxy of possible social, 
institutional, and/or cultural similarities. These similarities may have or may have not materialized, 
and may vanish over time. There is a further complication as former colonial relationships can be 
also viewed as a network variable (i.e., past relationships between a set of countries).	
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homophily space. In contrast, weak ties (e.g., acquaintances), according to 

Martin (ibid. 36), follow an either/or logic, so two actors are likely to know each 

other if they are affected by either geographic space or homophily space. In the 

context of the WMN, where strong and weak ties refer to large and small number 

of migrants, respectively, Martin’s hypothesis would imply that a migration edge 

between a pair of countries is likely to be stronger if the countries are affected by 

both geographic space and homophily (e.g., similar language) space and weaker 

if they are affected by only one of the two. The hypothesis also suggests that 

communities with strong local cohesion are more likely to be induced by both 

spaces, whereas communities with strong global cohesion are likely to be 

independent of one of them.  

 

3. Research hypotheses  
We formulate below three hypotheses that guide our empirical investigation.  

 

Globalization hypothesis: An increasing amount of global long-distance migratory 

movement has contributed to a more interconnected WMN. The globalization 

hypothesis implies an unprecedented change in the structure of the WMN, 

measured in terms of intercommunity density, as well as decoupling from spatial 

and/or homophily constraints. 

 

Polarization hypothesis: Global migratory movements have developed in a 

relative separation from local movements, contributing to a polarized WMN. The 

hypothesis implies that communities of local cohesion have not disappeared but 

are subordinated to communities of global cohesion. Local movements are likely 

to encounter multiple constraints, compared to relatively constraint-free global 

movements. 

 

Glocalization hypothesis: The co-presence of global and local migration in 

communities is likely to result in a glocal WMN. The hypothesis implies relatively 
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even distribution of global and local cohesion across the WMN over time as well 

as of constraining antecedents. 

 

4. Methods, Diagnostics, and Data 
In this section, we outline the methods, diagnostics, and data we employ to 

detect migration communities, characterize their structure, and account for their 

possible antecedents.  

 

4.1. Community Detection 
To extend modularity to networks that change over time, Mucha et al. (2010) 

developed a modularity function for multilayer networks, including ones that 

represent temporal networks.5 In the context of temporal networks, the layers are 

ordered, and it is common to include inter-layer edges only between contiguous 

layers (Kivelä et al., 2014: 15). To regulate the strength of coupling between time 

layers, the multilayer modularity function incorporates a temporal resolution 

parameter 𝜔 (Bassett et al., 2013). By varying the values of 𝑤!"#, the strength of 

the connection between node 𝑗  in layer 𝑙 (i.e., at time 𝑡!) and itself in layer 𝑟 (i.e., 

at time 𝑡!!!) changes. When 𝑤!"# = 0, each layer is independent as in the static 

version of modularity. As 𝑤!"# is increased, nodes have a stronger incentive to 

belong to the same community in 𝑡! as in 𝑡!!!. Communities are then likely to 

merge across temporal layers, particularly if empirical connectivity changes little 

over time. The formula for multilayer modularity (Mucha et al., 2010, Bassett et 

al., 2013) is 

 

 𝑄!"#$%#&'() =
1
2𝜇 {(𝑊!"# − 𝛾!

!"#$

𝑃!"#)𝛿!" + 𝛿!"𝜔!"#}𝛿 𝑔!" ,𝑔!" , 
(1) 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  The properties of multilayer modularity were studied further in Bassett et al. (2013) and Bazzi et 
al. (2016).	
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where 𝑔!" is the community of node 𝑖 in layer 𝑙 (and 𝑔!" is the community of node 

𝑗 in layer 𝑟), the Kronecker delta 𝛿 𝑔!",𝑔!" = 1 if vertices 𝑖 and 𝑗 are placed in the 

same community in layer 𝑙  and  layer  𝑟  and 𝛿 𝑔!",𝑔!" = 0  otherwise, 𝜔!"#  is the 

interlayer coupling used to control the strength of the connection between node 𝑗 

in layer 𝑟 and node 𝑗  in  layer  𝑙, the quantity 𝑊!"# is the element of the weighted 

adjacency array of layer 𝑙, the null model 𝑃!"# is the expected connectivity in layer 

𝑙, the quantity 𝛾! is the intralayer structural resolution parameter for layer 𝑙, and 

𝜇 = !
!

𝑘!"!"  is the total edge weight in the network and is a normalization factor 

that allows the modularity score 𝑄 of a partition of a network lies in the range 

between −1 (all edges are outside communities) to 1 (all edges are within 

communities). By considering connectivity across temporal layers, multilayer 

modularity helps capture dynamics that are obscured when temporal networks 

are represented as a sequence of static snapshots (Mucha et al., 2010).  

To factor out statistically unsurprising connectivity, one can implement 

different null models, depending on what constraints are hypothesized to have an 

effect on community formation (Newman, 2012, Expert et al., 2011). As edge 

directionality is an essential feature of the WMN, we employ a modularity null 

model for directed networks (Leicht and Newman, 2008, Arenas et al., 2007, 

Malliaros and Vazirgiannis, 2013). Using this null model, modularity estimates 

whether a partition has more edge weights within communities than expected in 

an associated empirical network with the same out- and in-strength sequence but 

with edge weights distributed at random (Newman, 2006). The Leicht–Newman 

(LN) null model (2008, Arenas et al., 2007) for directed networks is         

 

 
𝑃!"!" =

!!
!"#!!

!"

!
, 

(2) 

 

where 𝑠!!"#  and  𝑠!!" are out- and in-strength of node 𝑖 and node 𝑗, and w denotes 

the total weight in the network. 

 Similar to other spatial networks (Barthélemy, 2011), the nodes and the 

edges in the WMN have a location and cost, respectively. Therefore, any two 
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countries with similar out-migration strength sequences can have rather different 

probabilities to connect to a third country as a function of their location in 

geographic space. To account for the constraining role of geographic attributes, 

Expert et al. (2011) developed a spatial null model. When extended to directed 

networks, Expert et al.’s (2011) model is  

 

 𝑃!"
!"# =   𝑁!!"#𝑁!!"𝑓 𝑑!" , (3) 

where 𝑃!"
!"# is the expected migration stock between country 𝑖 and 𝑗, the quantity 

𝑁!!"#  and  𝑁!!"  measures the potential of origin 𝑖  and the attractiveness of 

destination 𝑗 (we use the total out- and in-migration for each 226 countries as an 

indicator for potential and attractiveness), and the ‘deterrence function’ 𝑓(𝑑!") 

measures the effect of distance. We compute the great-circle geographic 

distance between the capital cities of the 226 world countries (Furrer et al., 

2013). As in gravity models (Anderson, 2011, Haynes and Fotheringham, 1984), 

the intuition behind Expert et al.’s spatial null model is that 𝑁!!"#  and  𝑁!!"  are 

sources of opportunities (e.g., possible interactions between a pair of countries), 

and the distance 𝑑!" is a source of constraints. Expert et al. (2011) proposed the 

following deterrence function: 

 

 
𝑓 𝑑 =

𝐴!"{!,!|!!"!!}

𝑁!!"#𝑁!!"{!,!|!!"!!}
  .   

(4) 

 

In the context of the WMN, the deterrence function 𝑓 𝑑  is the weighted average 

of the probability !!"
!!
!"#!!

!" for a migration edge weight to exist from country 𝑖 to 

country 𝑗  at a certain distance range. The deterrence function uses bins to 

calculate the expected migration for a certain distance range. After examination 

of alternative values, we set the bin size to 500 km.  

A larger positive value for spatial modularity 𝑄!"#  indicates a higher 

density of edge weights inside communities than one would expect for the given 
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null model. Because this spatial null model is designed to allocate a larger 

contribution to edges between distant nodes than to edges between nearby 

nodes, the model tries to “factor out” spatial dependence in its detection of 

communities in the WMN in the hope of shedding light on the role that non-

spatial mechanisms (e.g., homophily) can play in their formation.  

Modularity maximization is NP-hard (Brandes et al., 2007), and it also has 

some well-studied limitations, such a resolution limit and extreme near-

degeneracy among local maxima with high modularities. The former limitation 

refers to the tendency of the modularity function to overlook communities that are 

smaller than some characteristic size (Fortunato and Barthelemy, 2007), 

although one can ameliorate the issue by incorporating of a resolution parameter 

𝛾 in the modularity function (Porter et al., 2009, Reichardt and Bornholdt, 2006). 

The latter issue refers to the numerous near degeneracies in the rugged 

landscape of the modularity function, and partitions with similar high-modularity 

scores can arise from rather dissimilar structures (Good et al., 2010). To take into 

account near-degeneracies in the modularity landscape, we identify consensus 

partitions (Lancichinetti and Fortunato, 2012, Bassett et al., 2013, Bazzi et al., 

2016, Sarzynska et al., 2015) across multiple optimizations (see Appendix A). 

The consensus partitions are robust to variation across optimizations, thereby 

ameliorating the issue of near-degeneracy. We optimize modularity using the 

generalized Louvain heuristic (Blondel et al., 2008, Jutla et al., 2011–2012).   

 

4.2. Diagnostics for Characterizing Migration Communities 
E-I Index for Weighted Networks 

The E-I index is a widely used measure of group embeddedness (Krackhardt and 

Stern, 1988, Hanneman and Riddle, 2011: 348, Borgatti et al., 2002) that we use 

to give a simple measure for the extent to which a migration community exhibits 

local (intracommunity edge strengths) and global (intercommunity edge 

strengths) cohesion. We generalized the E-I index to weighted networks  
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 E– I  index =
𝐸𝑊 − 𝐼𝑊
𝐸𝑊 + 𝐼𝑊. (5) 

 

The index compares the amount of internal weights 𝐼𝑊 to the amount of external 

weights 𝐸𝑊. The E-I index takes values between −1 to +1. As the value of the 

E-I index approaches −1 , most edge weights are internal to migration 

communities. As the index approaches +1, most edge weights are external to the 

communities. We apply the diagnostic to both the whole WMN and to each 

community individually.  

 

Neighborhood Overlap  

As Onnela et al. (2007) and Easley and Kleinberg (2010: 52) observed, the 

original strength-of-weak-ties hypothesis (Granovetter, 1973) imposes “sharp 

dichotomies”— edges can be either strong or weak and can either be local 

bridges or not bridges. They argued in favor of a continuous definition that 

captures the gradation in real-world data. They thus defined the neighborhood 

overlap 𝑂  of an edge between nodes 𝑖  and 𝑗  as the ratio of the number of 

neighbors that nodes 𝑖 and 𝑗 have in common to the number of neighbors of 

either 𝑖 or 𝑗 (Onnela et al., 2007: 7334, Easley and Kleinberg, 2010: 52). The 

neighborhood overlap 𝑂!"  ranges from 0 (edges that could serve as bridges 

between distinct communities) to 1 (edges that connect nodes with overlapping 

set of neighbors). 

  

Community Change  

To examine community evolution over time, we compute a temporal 

autocorrelation function 𝐶(𝑡), which quantifies the overlap of community structure 

at time 𝑡!  with itself at time 𝑡!!!  (Palla et al., 2007). The community 

autocorrelation is  

 

 
𝐶 𝑡 ≡

𝐴 𝑡! ∩ 𝐴 𝑡! + 𝑡
𝐴 𝑡! ∪ 𝐴 𝑡! + 𝑡

, 
(6) 
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where the numerator |𝐴 𝑡! ∩ 𝐴 𝑡! + 𝑡 | is the number of nodes that belong to 

both community 𝐴 𝑡!  and community 𝐴 𝑡! + 𝑡 , and the denominator |𝐴 𝑡! ∪

𝐴 𝑡! + 𝑡 | gives the number of nodes that belong to at least one of the two 

communities. The output ranges from 0 to 1, where 0 indicates complete change 

in the community membership from 𝑡! to 𝑡!!!, and a score of 1 indicates that a 

community is identical at times 𝑡! and 𝑡!!!.      

 

4.3. Antecedents Shaping the Migration Community Signatures 

We operationalize below the set variables we use as input in Principal 

component analysis (PCA) (Jolliffe, 2002) and ANOVA to examine the differential 

impact of relational, homophily, and spatial mechanisms on the migration 

community signatures. To account for network dependencies and examine the 

relative importance of migration antecedents, we employ the multiple regression 

quadratic assignment procedure (MR-QAP) (Krackardt, 1987, Dekker et al., 

2007). We provide details about MR-QAP in Appendix B.  

 

Reciprocity  

We define reciprocity 𝑅  in the directed WMN as the fraction of reciprocated 

edges 𝑀/(𝑀 + !
!
), where M denotes mutual edges and A denotes asymmetric 

edges (Butts, 2008: 27). The reciprocity score for a network ranges between 0 

(none of the edges is reciprocated) to 1 (all edges are reciprocated). We consider 

as reciprocated pairs of edges in the weighted WMN that have migration ratio 

between them above the threshold of .5. 

 

Weighted Clustering Coefficient  

We employ weighted clustering coefficient to operationalize the concept of triadic 

closure. Over the last decade, several papers have generalised the topological 

formulations of clustering coefficient to weighted networks (Saramäki et al., 2007, 

Barrat et al., 2004). Onnela et al. (2005) extended the original local clustering 
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coefficient 𝐶! =
!!!

!! !!!!
 (Watts and Strogatz, 1998: 201, Newman, 2010) to 

weighted networks by replacing the number of triangles 𝑡! attached to a node 

with the sum of triangle weight intensities, yielding the expression 

 

 
𝐶! =   

2
𝑘!(𝑘! − 1)

(𝑤!"𝑤!"𝑤!")
!,!

!/!
, 

(7) 

 

where 𝑘!   is the degree of node 𝑖 and the weight intensities 𝑤!" are normalised 

values, obtained by dividing weights 𝑤!" by the maximum weight max(𝑤!") in a 

network. The contribution of each triangle is a function of all of its constituting 

edge weights, such that triangles with heterogeneous weights will have smaller 

contributions than triangles with balanced weights (Saramäki et al., 2007: 2). In 

our calculation, we employ a generalisation of Onnela et al.’s (2005) weighted 

clustering coefficient to directed networks (Fagiolo, 2007, Rubinov and Sporns, 

2010). We compute global weighted clustering coefficient 𝐶! =
!
!

𝐶!!
!!!  as the 

mean of the local clustering coefficients of all countries assigned to the 

respective community.   

 

Strength Inequality via Gini Coefficient 

To examine the inequality of the distribution of migration strengths in a 

community, we calculate the Gini coefficient (Kunegis and Preusse, 2012). To 

compute the Gini coefficient 𝐺!  of community 𝑐 , we sort the sequence of 

migration strengths 𝑠! of all countries in a community. The Gini coefficient is  

 

 
𝐺! =

2 𝑖𝑠!!
!!!

𝑛 𝑠!!
!!!

−
𝑛 + 1
𝑛 ,   𝑠! ≤ 𝑠! + 1, 

(8) 

 

where 𝑠! is the sorted strength of 𝑖!! country in a community (Kunegis, 2013). 

The Gini coefficient takes values between 0 in the case of total equality between 
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migration strengths and 1 in the case of total inequality (i.e., a perfect star 

community dominated by a single node).  

 

Community Homophily  

To measure community homophily 𝐻 , we multiply each cell in the binary 

community matrix of social attributes 𝑆! by the community weighted matrix 𝑊! of 

international migration for the respective community: 

 

 
𝐻!" =

𝑆!!"
  
!" 𝑊!!"

𝑊!!"!"
, 

(9) 

 

where 𝑆!!" = 1  when country 𝑖  and country 𝑗  share similar language, 𝑆!!" = 0 

otherwise. The measure ranges between 0 (lack of homophily) and 1 (perfect 

homophily). We apply the measure to language proximity 𝐿𝑃  and colonial 

relationships in the past 𝐶𝑅𝑃. The data come from the CEPII Geodesic Distance 

Database (Mayer and Zignago, 2006). For language proximity, we created a 

composite binary variable using two indicators in the database: official language 

and ethnic language (spoken by at least 9%). A cell in the language proximity 

matrix is 1 if either country A and B have similar official language or if at least 9% 

of the population in country A and B speak the same language, and 0 otherwise. 

For former colonial ties, we create another composite binary matrix, in which a 

dyad of countries are associated if either they have ever had a colonial link or 

have had a colonial relationship since 1945.  

 

Chain Migration  

Given the set of countries included in community 𝑖 at time 𝑡!, we are interested in 

what proportion of movements follow migration pathways that existed between 

the same set of countries in 𝑡!!!. The diagnostic ranges from 0 (none of the 

migratory movements in community 𝑖 at 𝑡! follows pathways that existed at 𝑡!!!) 

to 1 (all migratory movements in community 𝑖  at 𝑡!  followed pathways that 

already existed at 𝑡!!!). Only pathways that involve migration frequencies above 
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the mean for the respective community are considered. In this way, we discard 

small migration exchanges that do not fall under the definition of chain migration. 

We do not include chain migration (CM) in the PCA because we have less time 

points (1960 is only a reference year against which we compute chain migration 

for 1970).   

 

Expected Migration Distance  

We simultaneously account for geographic distance and migration stocks by 

computing the expected distance of a randomly selected migrant for each 

community. In particular, we weight distance between country 𝑖 and 𝑗 by the total 

number of migrants traveling between country 𝑖 and 𝑗 (out- and in-migration), and 

divide the product by the total in- and out-strength of country 𝑖:  

 

 
𝐷! =

𝑤!"𝑑!"!!!

𝑠!
, 

(10) 

 

where 𝑤!" denotes the total migration between countries 𝑖  and 𝑗, 𝑑!" denotes the 

geographic distance between the two counties, and 𝑠! denotes the strength of 

country 𝑖 . The community expected migration distance is measured as the 

average of the expected distance of all countries in community 𝑐!, which reads 

𝐷!! =
!
!

𝐷!!
!!! . The resulting expected score can also be interpreted as a 

weighted average distance.     

 

Economic Disparities 

To account for economic disparities in the WMN, we consider community gross 

domestic product (GDP) per capita. The source for the data about GDP per 

capita is from the World Development Indicators (World Bank, 2010). 

 

4.4. The Global Migration Database 
We construct the WMN from migration stocks for each decade from 1960 to 

2000, as recorded in the Global Bilateral Migration Database (Özden et al., 
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2011). Migrants are defined primarily on the basis of birth country, but other 

criteria—e.g., country of citizenship—have were also considered (Özden et al., 

2011). The database contains comprehensive information about migration stocks 

(i.e., number of people that were born in country 𝑖 and lived in country 𝑗) from 

national censuses and population registers for 226 countries, resulting in five 226 

× 226 matrices. National census surveys are typically carried out at the end of a 

decade, gathering information about the number of foreign-born people (or 

foreign citizens) that resided in a given country for at least one year during the 

preceding decade (UNDESA, 2013). The database reports aggregate migration 

stock for each decade between 1960 and 2000. Aggregate migration stocks can 

overlook differences among types of migration (e.g., labour or education) or 

dynamic forms of migration [e.g., “stepwise” migration (Paul, 2011)], we concur 

with Bilsborrow and Zlotnik (1994: 66) that in comparison to flow data, migration 

stocks represent “the long-term effects of migration and [are] thus a more stable 

component” of international movements. Because of these features, the stock 

data are instrumental in examining a spatial-network community structure in the 

WMN. 

 

5. Mapping the Landscape of the WMN 
The first step of our analysis is to detect migration communities using two 

different null models, for directed and spatial networks. The models yield different 

results, which we describe in 5.1 and 5.2, respectively.  

 

5.1. Communities Detected via Multilayer LN Modularity  
In Fig. 3, we show world maps6 of consensus community assignments for each 

decade from 1960 to 2000 obtained using the null model for directed networks. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  To create the “choropleth” maps, we employ the package ‘rworldmap’ in R for mapping global 
data (South, 2011).	
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We observe eight7 migration communities in 1960. We label communities with 

the code of the country that has the largest intracommunity migration strength. 
As one can see, geographic distance and regional boundaries play important 

roles in demarcating the structure of more than half of the migration communities. 

The geographic signature is imprinted in the communities centered on India 

(IND), the former Soviet Union (RUS), and China (CHN), as well as in those 

confined to Sub-Saharan Africa (COD) and West Africa (CIV).  
Two migration communities, grouped largely on the basis of ex-colonial 

relationships, are associated with the principle of homophily: France and 

countries in North Africa (FRA); and countries in South Europe, South America, 

and Angola in Africa (ARG). Although homophily is correlated predominantly with 

geographic proximity in the former community (FRA), the cross-continental 

grouping between the latter set of countries (ARG) is relatively independent from 

distance.  

 We identify cross-continental communities that overcome geographic 

constraints. This tendency occurs in the largest community in 1960 (USA), which 

includes North America, Australia, New Zealand, and the bulk of Western, 

Central, and Northern Europe. This community assignment is fairly unexpected 

because, in a period that precedes transportation advancements, it groups long-

distance migration between non-contiguous countries that are geographically 

dispersed. In addition to the USA community, the groupings of South America 

and Mediterranean countries in Europe (ARG) and of North Africa and France in 

1960 (FRA) suggest that cross-continental migration may have a statistically 

significant impact on migration communities. Thus, migration groupings need not 

be confined to the continental boundaries of the world (e.g., Salt, 1989).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  The consensus partitions tend to decompose a network into a smaller number of communities 
(and possibly more consistent) compared to the original partitions. 
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Fig. 3. Migration communities detected via multilayer LN modularity at a 
resolution of 𝛾 = 1. Color coding indicates community assignments. 
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Although the aggregate structure of communities has remained virtually 

intact in the following three decades (1970, 1980, and 1990), one change is 

worth noting. Since 1970, the global community (USA) involving Western, North, 

and Central Europe was extended to Eastern Europe and reached Turkey on the 

South, reflecting the increased migration exchanges between Germany and 

Turkey following the bilateral recruitment agreement between the two states 

signed in 1961 (King, 1993).   

The community structure of the WMN changed more noticeable in 2000. 

First, aside from the United Kingdom, all European countries (which were 

previously separated into two communities) are now assigned to one integrated 

community (DEU). This result is consistent with Salt’s (2001: 3) observation that 

a characteristic feature of European migration in the middle and late 1990s is 

‘[t]he increasing incorporation of Central and Eastern Europe into the European 

migration system as a whole’. However, European migration is not separated 

from other continental  ‘wholes’ but includes North African countries. Therefore, 

the delineation of the migration map according to geo-political divisions (e.g., the 

European Union) (e.g., Massey et al., 1998: 110) may not reflect empirical 

migration connectivity. Second, the United Kingdom, Australia, and New Zealand 

are no longer part of the largest migration community but instead formed a 

Commonwealth community that also includes countries in Southeast Africa 

(GBR). This community exemplifies the role of homophily in connecting 

geographically dispersed countries. 

 

5.2. Communities Detected via Multilayer Spatial Modularity  
Although the communities identified via LN modularity reflect some distant 

homophilous relationships, particularly in year 2000, the communities generated 

via spatial modularity captures more refined non-spatial structures along time. 

For example, while Europe appears increasingly integrated over time when using 

LN modularity, maximizing modularity using the spatial null model suggests the 

opposite tendency (see Fig. 4). In this case, European migration breaks into a set 

of small communities, particularly noticeable in the year 2000. This fragmentation 
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pattern exemplifies a key feature of spatial modularity. Because geographic 

space ‘glues’ nearby nodes together, the extraction of the effect of geographic 

distance leads naturally to spatially fragmented communities. The reason for this 

fragmentation is that migratory movements between nearby countries are likely 

to have lower contribution to modularity under the spatial null model. By 

implication, non-contiguous countries have higher probability to be assigned to 

the same community (e.g., France and Romania are part of the same spatially 

discontinuous community in 1960, 1970, and 1980). 
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Fig. 4. Migration communities detected by maximizing spatial modularity at a 
resolution of 𝛾 = 1. Color coding indicates community assignments. 

 

5.3. Geographically Contiguous versus Non-contiguous Communities 
Much of the previous research on meso-scale groupings in international 

migration was informed by the migration systems approach (Fawcett, 1989, Kritz 

et al., 1992). A migration system is defined as ‘a group of countries that 

exchange relatively large numbers of migrants with each other’ (Kritz and Zlotnik, 

1992: 2). Despite some disagreements about where to draw the boundaries in 

post-war European migration (Bonifazi, 2008: 123-125), there has been a 

general consensus on how to draw them. Migration systems were typically 

viewed as “geographically discrete” 8  (i.e., systems reflect well-delineated 

geographical areas), consisting of contiguous countries, and confined to the 

continental boundaries (DeWaard et al., 2012, Salt, 2001, Zlotnik, 1998, Massey 

et al., 1998: 110). Our findings suggest that (European) movements are not 

exclusively grouped into geographically distinct regions; rather, such groupings 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  Most network partitioning methods assign each node to a single community (Porter et al., 2009), 
and communities are hence ‘discrete’ in the sense that they do not share nodes with any other 
community. However, communities need not be discrete geographically (i.e., formed of 
geographically contiguous countries), and using methods that allow overlapping communities 
would be an interesting way to further explore such features.	
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are one empirical possibility among many (including non-contiguous 

communities). They also suggest that European countries are connected to 

areas (e.g., North and South Africa) outside of the continent in intercontinental 

communities that appear to be more stable over time than many intracontinental 

migration groupings.  

 

5.4. Processes of Fragmentation and Integration in the WMN 
The WMN has become marginally more integrated between 1990 and 2000, as 

reflected in the increasing E-I index computed for the whole network (see Fig. 5). 

Specifically, the proportion of intercommunity edge weights has increased since 

1990, resulting in a more interconnected network. Differences in the network-

scale E-I indices over time are more pronounced in the communities detected by 

maximizing spatial modularity—from −0.66 in 1960 to −0.36 in 2000—than LN 

modularity (−0.50 in 2000; −0.59 in 1960). Our results are consistent with recent 

findings reported by Davis et al. (2013) and Fagiolo and Mastrorillo (2013). 

Although the globalization hypothesis receives support at the network scale, the 

simultaneous presence of global and contiguous communities points to meso-

scale heterogeneity that we explore in the following sections.  

 To examine whether community detection can better specify boundaries 

between world regions than geographic classifications, we compare our 

community structures to the macroscale geographical areas (continents) and 

subregions (e.g., Northern Europe, Southern Europe) that are described in the 

United Nations (UN) Statistical Division.9 The E-I indices in Fig. 5 indicate that 

the communities that we obtain by maximizing modularity with either the LN null 

model or spatial null model outperform available geographic-based world 

divisions. By “outperform”, we simply mean that, the communities that we identify 

contain more migration weights within groupings rather than between groupings 

in comparison to the deterministic geographic-boundary specifications, and in 

that sense they provide a better way to set boundaries in the WMN.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  Retrieved on 15 August 2014 from http://unstats.un.org/unsd/methods/m49/m49regin.htm. 
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Fig. 5. E-I indices of the weighted WMN. The E-I index characterizes the relationship 
between intracommunity and intercommunity connectivity in the WMN.  
 

Because the intracommunity and intercommunity connectivity (which are 

mesoscale properties) can be conditioned on global properties, such as network 

density, we need a null model to give context to our computation of E-I indices. 

We perform a permutation test (with 1,000 permutations) and compute the 

number of times that the observed E-I index is significantly smaller than the 

expected E-I index measured in an ensemble of null-model WMNs in which rows 

(out-migration) and columns (in-migration) are simultaneously reshuffled. We find 

that the observed E-I index is significantly different (p-value < .01) from the 

expected E-I index across models (see Fig. 5). The distribution of intracommunity 

and intercommunity migratory movements is therefore less an artifact of global 

connectivity but reflect genuine meso-scale patterns of relationships in the WMN. 

 

6. Global and Local Cohesion in Migration Communities 
To begin to examine the modes of interplay between global and local cohesion— 

i.e., globalization, polarization, and glocalization—in migration communities, we 

first generate weighted community adjacency matrices 𝑊! for each decade (see 
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Fig. 6). We define 𝑊! as follows. For each time point, we sum over all migration 

edge weights between the 226 countries in the WMN depending on whether an 

edge remains within community 𝐴 or lies between a pair of communities 𝐵  and  𝐶. 

In the resulting community adjacency matrices 𝑊!, nodes represent migration 

communities. The edges that remain within communities appear on the main 

diagonal, and edges between communities appear off of the diagonal. Because 

the propensity of internal and external connectivity is constrained by the number 

of communities, their relative size, and edge density (Hanneman and Riddle, 

2011), we normalize the community adjacency matrices versus the mean 

intracommunity and intercommunity edge strengths. In this way, we control for 

heterogeneity in community size and edge density. 

As one can see from Fig. 6, stronger migration edges are more likely to 

remain within communities than between communities. Moreover, migration 

communities are differentiated on the basis of their internal edge strength. The 

communities centered on India, Russia, and China are characterized by relatively 

high intracommunity edge strength, irrespective of the null models that we 

employ when maximizing modularity. A different pattern of low intracommunity 

migration strength is encoded in communities centered on the USA, GBR, and 

France. 

 

 
Fig. 6. Normalized community adjacency matrices 𝑊!  of intracommunity and 
intercommunity migration edge strengths. Each element in the matrices represents 
whether migration edge strength remains within community 𝐴 or between communities 𝐵 
and 𝐶. The magnitude of edge strength ranges from weak (in blue) to strong (in yellow). 
We exclude communities of size 𝑁! ≤ 2 countries. 
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 We now consider edge neighborhood overlap (see Fig. 7). As expected, 

migration edges with a large neighborhood overlap are more likely than those 

with a small overlap to remain within communities than between communities. 

Instances of large intercommunity neighborhood overlap are rare and typically 

involve geographically close communities (e.g., India and China, and Uganda 

and Ivory Coast), indicating a negative relationship between distance and 

neighborhood overlap. Edge neighborhood overlap is differentially distributed 

across communities. For example, the communities centered on Russia, Ivory 

Coast, and India tend to exhibit greater neighborhood overlap than communities 

associated with the USA across all time layers. 

 

 

 
Fig. 7. Normalized community adjacency matrices of intracommunity and intercommunity 
edge neighborhood overlap.  
  

 To begin to identify migration community signatures, we first quantify the 

relationship between global (intercommunity weak ties) and local cohesion 

(intracommunity strong ties) by computing E-I indices—i.e., the proportion of 

external to internal edges—at the community scale for both edge strength (𝐸𝐼!") 

and edge-neighborhood overlap (𝐸𝐼!"). We then partition the two indices using 

agglomerative hierarchical clustering10 in order to identify sets of communities 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10	
  We employ Euclidian distance to determine pairwise (dis)similarities and then average linkage 
clustering (Newman, 2010: 388, Porter et al., 2009: 1084) to sequentially group communities into 
a dendrogram (i.e., trees that illustrate a community hierarchy). Using ANOVA tests to evaluate 
alternative numbers of factions, we find that a three-group partitioning maximizes intergroup 
variability and minimizes intragroup variability in both EI!"  (F!,!" ≈ 145.37, p < .001)  and EI!" 
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with characteristic patterns of distribution of 𝐸𝐼!" and 𝐸𝐼!". In Fig. 8, we show two 

dendrograms for the resulting three-group partitioning of migration communities 

that we detect by maximizing modularity with the LN and spatial null models. 

Despite some differences, the typology in the two dendrograms tends to agree: 

communities centered on the USA, France, Germany, and the United Kingdom 

are assigned to the left cluster; communities centered on Russia are assigned to 

the right cluster; and communities associated with India and China are placed in 

the center cluster. 

      

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(F!,!" ≈ 158.58, p < .001), where F is the ratio of inter-group variance to intra-group variance (see 
Field, 2009: 359) and the subscripts give the degrees of freedom. We use algorithms 
implemented in the Statistical Toolbox in MATLAB 2014b.	
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Fig. 8. Dendrogram of migration communities on the basis of E-I edge strength and E-I 
edge-neighborhood overlap for communities that we obtain by maximizing modularity 
using (a) LN modularity (38 communities) and (b) spatial modularity (27 communities). 
The color of the branches represents the three detected factions. We name the 
communities at the bottom of the dendrogram. 
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The strength-of-weak-ties hypothesis (Granovetter, 1973) asserts that edge 

strength should have an impact on neighborhood overlap: a stronger migration 

connection between a pair of countries increases the likelihood that the two 

countries will connect to similar third countries, forming a tightly-knit structure. A 

linear-regression model with an interaction term (between 𝐸𝐼!" and community 

signature) indicates (Adj.𝑅! ≈ 0.884)  that the variation in 𝐸𝐼!"  is reduced by 

about 88% when we take into account 𝐸𝐼!" , community cluster, and their 

interaction (see Fig. 9). The interaction model has more predictive power than a 

regression model that overlooks community cluster as a covariate (𝑅! ≈   0.566), 

suggesting that migration communities are typologically different with regard to 

their intracommunity and intercommunity cohesion, and these differences 

mediate the relationship between edge strength and edge-neighborhood overlap.  

 
Fig. 9. Relationship between E-I edge strength and E-I edge neighborhood overlap 
mediated by community signature. We include fitted regression lines for the 
corresponding community types. The ellipses in dash lines indicate the 95% confidence 
interval error for the corresponding community signature.  
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6.1.  Migration Community Signatures 
Using this novel approach to characterizing the structure of the WMN based on 

intracommunity and intercommunity dyadic strength and neighborhood overlap, 

we define a typology of migration community signatures.  

 

Cave communities 

We say that the cluster of communities with negative scores of E-I strength–

overlap indices are cave11  communities. For example, 14 cave communities 

constitute the blue cluster in Fig. 8. The communities centered on Russia and 

West Africa are examples of cave communities. The Russia-centered community 

falls under the cave category even when using the spatial null model, suggesting 

that this is the community that has the highest local cohesion, which is preserved 

even after we factor out geographic distance, one of the key mechanisms of local 

connectivity. 

 Cave communities are characterized by having both low  𝐸𝐼!" and low  𝐸𝐼!". 

The structure of cave communities is therefore characterized by strong local 

cohesion—i.e., densely clustered, strong migration ties—but weak global 

cohesion (i.e., lack of bridging weak ties across communities), resulting in tightly 

knit migration interactions that are largely fragmented from the rest of the WMN.  

 Given the structure of cave communities, they may be associated with 

distribution of regional migratory movements, while simultaneously providing very 

limited opportunity structures for intercommunity migration connectivity. 

Movements of people that originate from cave communities are largely 

constrained to remain within communities due to the limited amount of weak 

bridging edges that channel migration to other communities. 

 

Biregional communities 

We refer to the communities clustered in the middle of the E-I strength–overlap 

place as biregional communities (see the green cluster, which includes 29 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11	
  We draw the notion of ‘caves’ from Watts (1999) and Martin (2009). In the original ‘caveman 
graph’, caves refer to 𝑘-cliques. 



	
   37	
  

communities, in Fig. 8) because they are neither exclusively local nor exclusively 

global but rather often connect two distinct regions in the WMN. Examples of 

biregional communities include the one that connect Arab countries and South 

Asia (including Asia) and the one that connects France and countries from North 

Africa. Biregional communities tend to resemble cave communities in 𝐸𝐼!" but 

resemble bridging communities in 𝐸𝐼!"  (see Fig. 9). Because biregional 

communities encompass patterns of both local cohesion and global cohesion, 

they instantiate tendencies towards glocalization. 

 

Bridging communities 

We say that communities that occupy the positive end of the E-I strength–overlap 

continuum are bridging communities. For example, 22 bridging communities 

constitute the brown cluster in Fig 8. Example bridging communities are the 

following: the ones centered on France, Germany, the United Kingdom, and the 

USA. A characteristic feature of bridging communities is the predominance of 

edges that form bridges between regions in the WMN. As one can see from the 

circular plots12 in Fig. 10, the largest bridging community (USA) is simultaneously 

connected to communities DEU, GBR, IND, and CHN (LN null model), and 

communities DEU, GBR, IND, and CHN (Spa null model), some of which are 

relatively disconnected from one another. 

 Bridging communities tend to provide better opportunities than cave and 

biregional communities for both cross-community mobility and cross-continental 

exchanges, as they often group non-contiguous countries across continents. The 

classification of the Commonwealths as a bridging community suggests that 

communities of this type may reflect underlying homophilous relationships, a 

phenomenon that we explore further below. 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  For a recent use of circular plots to visualize global migration flows between geographic 
regions, see Abel and Sander (2014). 
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LN 2000 Spa 2000 

  
Fig. 10. Circular plots of migration community structures in 2000. The size of the ribbons 
corresponds to the amount of migration stock that remains in a community or is directed 
to other communities. The color of the ribbons indicates the source communities. We 
create the plots using Circos Table Viewer (Krzywinski et al., 2009), which is available at 
http://mkweb.bcgsc.ca/tableviewer/visualize/.  
 

7. Continuity and Change in Migration Communities 
Migration communities are involved in complex processes of emerging, splitting, 

merging, and dissolving. In Fig. 11, we map continuity and change in migration 

communities using alluvial diagrams (Rosvall and Bergstrom, 2010). Instead of 

processes of integration, we observe a split in bridging communities since 1960, 

with a noticeable effect in the last decade. However, there are also instances of 

merging of newly industrialized areas, e.g., the CHN community in 1960 joins the 

largest bridging community in 2000 (spatial null model). Such processes of 

consolidation are likely to result from direct foreign investments and 

manufacturing export, which induce relationships between distant regions (e.g., 

North America and South Asia) in a network of socio-economic relationships 

(Sassen, 2007, Castells, 1996). Cave communities (e.g., RUS, CIV) are relatively 

isolated from the temporal dynamics in the WMN.   
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Fig. 11. Temporal changes in migration communities that we detect by maximizing 
modularity with (left) the LN null model and (right) the spatial null model. 
 

To examine processes of continuation and change in the membership 

structure of migration communities, we compute community autocorrelation 𝐶 𝑡  

(Palla et al., 2007). Cave communities have a very stable structure C t ≈ 0.93, 

so on average fewer than one out of ten countries changes community 

membership from one time point to another. Simmel’s (1950[1908]) observation 

once social structures tend to have a life of their own once they emerge from 

social interactions is therefore of particular relevance to cave communities. By 

contrast, the countries in biregional and bridging communities in particular 

change much more. The estimated means for those community signatures are 

C t ≈ 0.61 and C t ≈ 0.67, respectively. An ANOVA multiple-comparisons test 

estimates that the autocorrelation means of cave communities are significantly 

different from those of bridging and biregional communities. The means of 

biregional and bridging communities are not significantly different.  

The size 𝑁! of communities may be a confounding variable. As Palla et al. 

(2007) determined, large communities tend to have a higher rate of change 

compared to small ones. We find limited ( 𝑟 ≈ −0.18)  evidence (of border 

significance level, 𝑝-value ≈ 0.1) in support of the hypothesis that community 

size 𝑁!  and community stability 𝐶 𝑡  are correlated. We find stronger and 
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significant (𝑝-value ≈ .005) negative correlations between C 𝑡  and 𝐸𝐼!" (𝑟 ≈ −.4) 

and between C 𝑡  and 𝐸𝐼!" (𝑟 ≈ −.43). Community stability therefore decreases 

with an increase of global cohesion.  

Our results do not fully support the observation that “the legacy of old 

communities tends to disappear in time” (Davis et al., 2013). Although 𝐶 𝑡  

scores differ somewhat across decades (particularly in 2000), neither a classic 

ANOVA test nor a non-parametric Kruskal–Wallis test found those differences to 

be significant. In other words, the mean (and median) differences in community 

autocorrelation in 1970, 1980, 1990, and 2000 do not differ significantly (1960 is 

a reference year against which we compute 𝐶 𝑡  for 1970). This finding has two 

implications. First, differences in the WMN appear to be more pronounced across 

spatial network community signatures than across time. Second, the structure of 

the WMN over the second half of the 20th century exhibits historical continuity. 

 

8. Relational, Homophily, and Spatial Antecedents 
What antecedents could have brought about the heterogeneity of migration 

community signatures? Drawing upon the insight that collectives that differ in 

macroscale properties will also differ in their microscale properties (Hedström 

and Bearman, 2009), we hypothesize that migration communities with distinct 

signatures are likely to arise from different underlying mechanisms. 

  

8.1. Community Signatures in Multidimensional Space 
We employ PCA (Jolliffe, 2002) to arrange our set of relational, homophily, and 

spatial mechanisms in a multidimensional space (see Fig. 12). Individual 

migration communities occupy particular locations in this space depending on 

how they are associated with one or another mechanism. We consider the first 

three principal components because they account for 78% of the total variation 

among the battery of community diagnostics.  
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Fig. 12. Three-component PCA. We show migration community signatures with blue 
dots (cave communities), green diamonds (biregional communities), and brown squares 
(bridging communities). Each vector corresponds to one of the original community 
diagnostics, and the length of the vector indicates the strength of the contribution. 
 

We find that communities with a similar migration signature—i.e., a similar 

pattern of local and global cohesion—appear near each other in the three-

dimensional principal component space. Further, different community signatures 

are arranged around different diagnostics. Bridging communities tend to sit 

together in the upper left corner, aligning with unequal strength distribution 

(measured via 𝐺! ), size, and distance. Cave communities are located 

predominantly in the lower right in association with clustering coefficient (𝐶!) and 

language homophily. Biregional communities occupy the middle ground, aligning 

with dyadic forces (reciprocity and ex-colonial homophily), associated with cave 

communities, and GDP per capita, associated with bridging communities.  

Do community signatures differ significantly in the relational, socio-

economic, and spatial mechanisms under study? A post-ANOVA multiple-

comparisons test establishes that mean differences between each pair of 

community signatures are significant for three diagnostics: weighted clustering 
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coefficient, reciprocity, and expected distance (see Fig. 13). For the clustering 

coefficient and reciprocity, cave communities have the largest scores  (bridging 

communities have the lowest). Biregional communities occupy a position in the 

middle. Further, we observe substantial differences in the expected distance 

between an origin and a destination for a migrant selected uniformly at random. 

This distance is about 1,500 km for cave communities, about 2,500 for biregional 

communities, and about 4,200 for bridging communities. Additionally, we have a 

statistically significant difference between the mean scores of bridging and cave 

communities in virtually all diagnostics (chain migration is the only exception), 

suggesting a pattern of polarization. Bridging communities differ systematically 

from biregional communities in all variables except ex-colonial and language 

homophily. 

 
Fig. 13. Multiple comparisons of mean differences in network, socio-economic, and 
spatial diagnostics between community signatures. In each plot, we show community 
signatures for (top) cave, (middle) biregional, and (bottom) bridging communities. The 
lines indicate the interval of standard error, and the symbol in the middle of the interval 
indicates the mean. 
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An important global property of bridging communities is their greater 

inequality in strength distribution: if cave communities have a mean Gini 

coefficient of 𝐺! ≈ 0.64 , a score value that is similar to that of biregional 

communities (𝐺! ≈ 0.67), bridging communities reach a score of 𝐺! ≈ 0.83. The 

𝐺!  cores of cave and bridging communities have polarized. The strength 

distribution in bridging communities becomes less unequal over the decades 

(e.g., 𝐺! for the USA community is about 0.85 in 1960 and about 0.77 in 2000). At 

the same time, 𝐺! of the West African cave community surrounding Ivory Coast 

increases from 𝐺! ≈ 0.48 in 1960 to 𝐺! ≈ 0.57 in 2000. This tendency of change 

in opposing directions suggests that processes of polarization in the WMN are 

not an atavistic manifestation, as they also arise in the context of globalization.  

 

8.2. Relative Importance of Antecedents Shaping the WMN: MR-QAP   
What is the relative importance of migration antecedents? To address this 

question, we perform a MR-QAP (Krackardt, 1987, Dekker et al., 2007) using 

weighted migration stock matrices for the WMN, cave (RUS), biregional (IND), 

and bridging (USA) communities detected via LN modularity as response 

variables and a set of predictor matrices representing our relational, homophily, 

and spatial antecedents.  

We summarize our results here, and provide details about the model in 

Appendix B. First, our predictors tend to better explain variations in migration 

when applied at the scale of communities rather than the whole WMN, 

suggesting that community-scale MR-QAP regression accounts for heterogeneity 

in world migration. Second, the effects of relational antecedents on community 

signatures remain mostly significant after we control for homophily and spatial 

constraints. Relational effects are stronger for the bridging USA community and 

for the whole WMN than for the communities centered on India and Russia. 

Third, the MR-QAP model supports the hypothesis that cave communities are 

more likely to be affected by multiple spaces (language homophily and spatial 

proximity) while the bridging USA community follows either/or logic—it could be 

involved in either relational, homophily, or geographic space. Finally, our 
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predictors provide limited understanding of the evolution of the biregional IND 

community, merging the Gulf region with countries in South Asia (e.g., India) 

since 1990. The main reason should be the lack of global data on the role of 

states and migration policies (Zolberg, 1999). And while migration policies may 

often align with social and geographic proximity, the Gulf countries since 1970s 

recruited deliberately migrants from distant—in social and geographic space—

areas (Myron, 1982, Massey et al., 1998: 134–159). For this reason, our 

understanding of the evolution of this migration community is limited. Despite this 

limitation, the MR-QAP results highlight the heterogeneous structure of the 

WMN, such that antecedents that may have very little impact on one community 

signature (or the WMN as a whole) could have a distinct and strong impact on 

other community signature.  

 
9. Conclusion 
The foregoing analysis suggests that multiple transnational movements of people 

across the world, connecting dispersed countries at various geographic scales, 

have crystallized into heterogeneous—"cave", "biregional", and "bridging"— 

signatures with distinct patterns of global and local tendencies, temporal 

dynamics, underlying antecedents, and opportunity structures for future 

migration. 

Compared to related global flows of tourism (Belyi et al., 2016) and trade 

(De Benedictis and Tajoli, 2011) that have been reported to significantly increase 

interconnectivity over the latter decades of the 20th century, our findings suggest 

that world migration is neither globally interconnected nor reproducing the 

geographic map of the world. The WMN exhibits rather heterogeneous structure, 

with relatively well-defined and enduring migration community signatures. The 

increase interconnectedness of the WMN, also reported in previous studies 

(Fagiolo and Mastrorillo, 2013, Davis et al., 2013) and underpinning the 

globalization hypothesis, is concentrated in bridging communities. Possibly 

because of legal restrictions associated with long-distance movements (Massey, 

1999), global connectivity does not diffuse into cave communities, which are 
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relatively isolated from the rest of the WMN. Therefore, we observe a polarization 

tendency within the WMN, with migratory movements in bridging and cave 

community signatures manifesting opposing patterns and antecedents, which are 

not just a reminiscent from the past but continue also in the latter decades of the 

20th century. Biregional communities instantiate glocalization tendencies as 

global and local movements coexist in the same spatial environment. 

Our findings help to rethink key assumptions of current thinking about 

globalization. Globalization theories typically construe networks as emerging 

from the intensification of worldwide interconnectedness of markets, 

transportation, and communication, which ‘cut across the boundaries of the 

national state’ (Beck, 2000: 4) and compress the world to a single place, the 

globe (Giddens, 1990, Robertson, 1992, Castells, 2010). Our results, however, 

suggest that the WMN involves heterogeneous sub-structures, only some of 

which are interconnected in line with the globalization argument. Globalisation is 

local in a sense that global processes are specific to some regions of the network 

but do not operate in others. This is probably why globalization tendencies in 

world migration have not translated to a relatively integrated global labour market 

(Hirst and Thompson, 1999: 275). Certainly, globalisation scholars have already 

pointed to the variability of connectivity across localities (Dicken et al., 2001: 96). 

Our findings provide not only an empirical support of such suspicion but also a 

quantitative characterization of variations in connectivity.  

 Globalization theory conceptualizes networks as ontological forms that 

manifest a new type of liberating social organization, a “network society” 

(Castells, 2010), which is structured around “space of flows” replacing the 

hierarchical and bureaucratic structures of bounded nation-states (“space of 

places”). However, it has long been established that real-world network 

structures may not only enable given outcomes but could also constrain action or 

flows (Wellman and Berkowitz, 1988, Wasserman and Faust, 1994, Borgatti et 

al., 2009), a property that is particularly evident in fragmented networks 

(González-Bailón and Wang, 2016). Likewise, migration community signatures 
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can have not only a liberating effect but also important constraining implications 

hampering migration opportunities. 

 The world systems theory (Wallerstein, 1974) accounts for polarization 

and constraining effects arising endogenously from increasing interdependencies 

in global economy. Our results provide little support for the hypothesis that 

processes of polarization in the WMN are a function of economic dependencies 

rather than isolation. The most disadvantaged communities appear isolated, 

either politically or economically. At the same time, regions in Asia have become 

more interdependent into the world economy since 1970s when core capitalist 

countries (e.g., USA) relocated labour-intense manufacturing to periphery 

countries via foreign direct investments (Sassen, 2007: 36–37). This formed 

global economic links that eventually channelled long-distant migration (Sassen, 

2007). As a result, contrary to the world system theory prediction, economic 

interdependence has been translated into greater migration opportunities.  

 Globalization has often been viewed as a ‘new historical conjuncture’ 

(Glenn, 2007: 34, McGrew, 1998). By contrast, our investigation of spatial 

network community signatures in the WMN highlights processes of historical 

continuity. Although the WMN has indeed become more interconnected as a 

whole, the migration community signatures have not changed significantly over 

time. Cave communities are as much as isolated from the network in 2000 as in 

1960, an example of polarization. We acknowledge, however, that both our data 

(aggregate migration stocks) as well as methodology (community detection in 

spatial and temporal networks) favours continuity at the expense of change.  

 Our analysis can be extended in several ways. First, upon data 

availability, one could stratify the edges in the WMN by type of migration (e.g., 

highly skilled professionals, workers, students, refugees, and family unification) 

and construct a multilayer network (Kivelä et al., 2014) in which countries are 

connected via multiple types of migration. A network of highly skilled 

professionals would generate a different mapping of world migration compared to 

a network of workers, for example. Such an approach could shed light on the 

differential impact of migration policies on different types of migration. Second, 
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given the multilateral and multiscale nature of migration exchanges in the WMN, 

countries can belong to more than one community, pointing to the importance of 

methods that can discover overlapping communities (Gopalan and Blei, 2013). 

Third, our approach of tracing the interplay between local and global interactions 

will broaden if multiple flows of people, information, goods, and capital are 

considered. Recent studies (Belyi et al., 2016, Hristova et al., 2016) consider 

some of these flows and could provide a good platform for exploring 

heterogeneity in a wide range of global processes. Finally, the ubiquity of online 

information in the public domain provides an opportunity to collect data about 

human mobility, e.g., geolocated career records in LinkedIn (State et al., 2014), 

and thus redraw the map of local and global connectivity in world migration using 

self-reported instead of administrative data. To sum up, our approach of 

investigating heterogeneous—globalization, polarization, and glocalization—

world processes can be extended to multiple flows and data sources, and thus 

shed light on emerging transnational patterns of migration interactions and 

possibilities. 
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Appendix A: Consensus Partitions 
We employ the technique of consensus partitions (Lancichinetti and Fortunato, 2012, 
Bassett et al., 2013) to identify robust communities (i.e., communities that do not change 
substantially from run to run of the heuristic) and minimize the issue of near-degeneracy 
(Good et al., 2010) of the modularity function. The technique involves the following 
steps, as performed in Bassett et al. (2013: 13-14), Bazzi et al. (2015), and Sarzynska et 
al. (2015). First, we construct a new multilayer co-association tensor 𝐓, which includes 
the five migration matrices as individual layers. Each element of the tensor 𝑇!"# 
represents the number of times a country 𝑖 is assigned to the same community as 
country 𝑗. We performed the procedure at resolution 𝛾 = 1 for both the LN null model 
(Leicht and Newman, 2008) and the spatial null model (Expert et al., 2011). Consider an 
example of 100 partitions, in which country 𝑖 and 𝑗 are assigned eighty times to the same 
community in a given layer. The corresponding element in the tensor would be 𝑇!"# = 80 
and will appear in red in Fig. S1. Second, given the large number of possible pairwise 
associations in T, one needs to account for the probability of two countries being 
assigned to the same community by mere chance. In order to reduce the noise that 
could arise from possible false positives, we subtract from T the mean number (𝜇 ≈ 11) 
of co-associations in the tensor, referred to as a uniform null model (Bazzi et al., 2015).  
 
 

  
Fig. S1. Multilayer co-association tensors for the five time periods. We construct 
the co-association tensors on the basis of the numbers of times a pair of countries is 
assigned to the same community in 100 partitions obtained using the LN modularity (left) 
and spatial modularity (right) at resolutions of 𝛾 = 1 . Each tensor has five layers, 
corresponding to the five migration matrices from 1960 through 2000. The tensors are 
symmetric. Red colour indicates high association between a pair of nodes, whereas blue 
colour represents low association. High association in this context indicates that a pair of 
countries was assigned roughly more than 60 modularity maximisations (out of 100).  
 
 

The resulting co-association tensors have a characteristic pattern: certain pairs of 
countries are almost always assigned to the same community (dark red), while the 
remaining pairs of countries almost never appear in one community (dark blue) (see Fig. 
S1). High association indicates that a pair of countries appears in the same community 
because of their migration connectivity rather than as a side effect of the different runs of 
the algorithm. We subsequently use the tensors as an input to generalised Louvain 
heuristic instead of the original migration matrices. We generate in this way consensus 
communities, in which highly associated countries, marked in yellow-to-red, are more 
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likely to form part of the same community. In contrast to the original partitions, which 
differed from run to run, the consensus partitions are virtually identical across multiple 
runs at the same resolution 𝛾 level. 
 
 
Appendix B: Relative Importance of WMN Antecedents using MR-QAP 
 
MR-QAP  
We examine the relative importance of migration antecedents using multivariate-
regression quadratic assignment procedure (MR-QAP) (Krackardt, 1987, Dekker et al., 
2007). MR-QAP is a multivariate linear regression technique that adopts a non-
parametric procedure for testing statistical significance called the Quadratic Assignment 
Procedure (QAP) (Hubert, 1987). The MR-QAP is tailored to the dependencies in 
network data, such that the assumption of independence between observations—which 
is built in the classical parametric statistical significance tests—is not required 
(Krackhardt, 1988, Borgatti et al., 2013: 126–129). Several permutation techniques for 
multivariate regression have been proposed (e.g., Krackhardt, 1988). We used the semi-
partialling-permutation method that was developed in Dekker et al., (2007) and 
implemented in UCINET version 6.487 (Borgatti et al., 2002). The method has been 
reported to be more robust against correlations between the predictor variables 
(multicollinearity) (Dekker et al., 2007). 
 
Dependent and Independent Matrices 
We use weighted directed matrices of world migration stock for the WMN, cave (RUS), 
biregional (IND), and bridging (USA) communities at a given year as the response 
variable. Recall that a weighted matrix is defined as follows: an edge represents the 
number of migrants from a receiving country 𝑖 residing in a receiving country 𝑗 at a given 
decade. An edge does not exist (i.e., it is ‘0’) if there was no migration between the pair 
of countries. We took the natural logarithm of each element in the weighted matrix of 
world migration to control for positive skewness. We apply the same transformation to 
the other weighted matrices: distance and GDP per capita. 

We examine the effect of relational mechanism on the community structure of 
world migration by including reciprocity 𝑅 and geodesic edge betweenness centrality 𝐶!" 
as indicators of local and global cohesion, respectively. We construct reciprocity matrix 
by transposing the original directed matrix, as described in Borgatti et al. (2013: 132). To 
construct the еdge-betweenness centrality matrix, we employ an algorithm proposed in 
Brandes (2001) and implemented in MATLAB (Rubinov and Sporns, 2010). The 
betweenness centrality 𝐶!" of the edge 𝐸 is defined as the sum of the fraction of all 
shortest paths in the network that pass that edge. Edges that are involved in a large 
number of shortest paths gain higher betweenness centrality scores. Edge-betweenness 
centrality measures the extent to which an edge contributes to the global connectivity of 
the WMN.    
 We include two variables—language proximity and former colonial 
relationships—to measure homophily effects. In the matrix of language proximity we 
construct, ‘1’ signifies that country 𝑖 and country 𝑗 share the same official language or 
that at least 9% of the population in the dyad of countries speak the same language. 
Otherwise, the matrix element is set to ‘0’. We construct the matrix of common colonial 
past in a similar fashion. We place a ‘1’ if two countries have ever had a colonial link or 
have had a colonial relationship since 1945, and we otherwise place a ‘0’. We use CEPII 
Geodesic Distance Database (Mayer and Zignago, 2006).  
 To control for spatial effects, we use two variables: geographic proximity and 
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contiguity (common border). We compute geographic proximity as the great-circle 
distance (in kilometres) between the capital cities in country 𝑖 and country 𝑗, using the 
package ‘fields’ in R (Furrer et al., 2013). Recent studies on online social networks have 
utilised data on the frequencies of airline flights between pairs of places, thereby 
providing a more realistic approximation of socio-economic costs associated with spatial 
disparities compared to geographic distance per se (Takhteyev et al., 2012). However, 
historical data at a global scale is not available. In the contiguity matrix, we define as ‘1’ 
if country 𝑖  and 𝑗 share a border and ‘0’ otherwise. Finally, we define the GDP per capita 
matrix as the log difference between the GDP per capita of country 𝑖 and country 𝑗.  
Results 
Our predictors tend to better explain variations migration when applied at the scale of 
communities rather than the whole WMN, as indicated by the larger adjusted 𝑅! 
coefficients for migration communities, and the bridging USA community in particular 
(see Table S1). This is possibly because community-scale MR-QAP regression accounts 
for heterogeneity in world migration. 

Relational effects on community signatures are mostly significant after we control 
for homophily and spatial constraints, although their distribution is unequal. Relational 
effects are stronger for the bridging USA community and for the whole WMN than for the 
communities centered on India and Russia. For example, there is a significant negative 
relationship between geodesic edge betweenness centrality and migration edge strength 
for the whole WMN and the bridging USA community. This is consistent with the 
strength-of-weak-ties hypothesis (Granovetter 1973). The effect of edge betweenness is 
not significant for the cave and biregional communities that we study, suggesting that 
migration exchanges related to those communities contribute less to global connectivity.  

The impact of homophily mechanisms on migration exchanges tends to be 
significant at both network and community scales. The impact of ex-colonial 
relationships (and associated socio-cultural similarity) is higher than the impact of 
language similarities. This finding is consistent with the results reported in Mayda (2010). 
However, the effect of language is strong and significant for the cave community 
centered on Russia in 1960. It is even larger in 2000. 

The impact of economic disparities is pronounced in the bridging USA 
community, where migrants tend to prefer destinations with higher GDP per capita. The 
asymmetric movements from spokes to hubs in bridging communities are therefore 
explained partly by economic differences. By contrast, economic differences play a less 
important role in the WMN as a whole (particularly in 1960) and in cave and biregional 
communities. As spatial interaction models predict (Wilson and Oulton, 1983), 
movements between distant origin and destinations are associated with an expectation 
for greater economic differentials than one obtains from small-distance movements. 
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 Predictors 
 

WMN Cave 
RUS 

Biregional 
IND 

Bridging 
USA 

 
19

60
 

  

Relational     
Reciprocity 0.418*** 

(0.015) 
0.032 
(0.032) 

0.271* 
(0.153) 

0.478*** 
(0.047) 

Geodesic betweenness −0.948*** 
(0.092) 

0.137 
(0.135) 

0.491 
(0.836) 

−0.806*** 
(0.195) 

Social     
Ex-colonial Relationship  1.725***  1.359*** 

(0.466) 
0.000 1.305*** 

(0.388) 
Language Proximity 0.062 

(0.044) 
0.880* 
(0.406) 

−1.287 
(2.06) 

0.014 
(0.139) 

Economic     
Log (GDP per capita) 0.001*** 

(0.0001) 
 −1.258* 

(0.905) 
0.284** 
(0.103) 

Spatial     
Log (Distance) −0.329*** 

(0.050) 
−0.268** 
(0.376) 

0.797 −0.125 
(0.124) 

Contiguity 
 

1.313*** 
(0.159) 

0.747 
(0.528) 

2.781* 
(1.840) 

0.845 
(0.634) 

(Intercept) 6.211*** 11.013*** 2.795*** 3.106*** 
Observations (dyads) 7597 238 28 580 
Adj. 𝑅! 0.406 0.406 0.551 0.447 

 
20

00
 

    
 

 20
00

 
  

Relational     
Reciprocity 0.411*** 

(0.011) 
0.175** 
(0.071) 

0.051 
(0.050) 

0.515*** 
(0.030) 

Betweenness −1.213*** 
(0.063) 

−0.216 
(0.146) 

−1.696*** 
(0.497) 

−0.776*** 
(0.181) 

Social     
Ex-Colonial Relationship 1.527*** 

(0.129) 
2.025*** 
(0.538) 

0.000 
(0.000) 

1.031* 
(0.453) 

Language Proximity 0.154*** 
(0.035) 

0.996** 
(0.385) 

0.546* 
(0.280) 

0.414*** 
(0.074) 

Economic     
Log (GDP per capita) 0.147*** 

(0.013) 
–0.107 
(0.117) 

–0.001 
(0.122) 

0.233*** 
(0.042) 

Spatial     
Log (Distance) −0.403*** 

(0.032) 
−0.695** 
(0.278) 

−0.700*** 
(0.270) 

0.167* 
(0.083) 

Contiguity 1.409*** 
(0.119) 

0.358 
(0.462) 

1.430** 
(0.552) 

1.459*** 
(0.299) 

(Intercept) 5.996*** 13.019*** 12.617 −0.539 
Observations (dyads) 20039 272 506 3422 
Adj. 𝑅! 0.406 0.471 0.236 0.519 

*p < .05, **p < .01, ***p < .001.  
Table S1. Results of MR-QAP regression analysis of the WMN and selected migration 
communities for years 1960 and 2000. Standard errors are shown in parentheses. Note: 
the GDP data for community RUS are missing for 1960. 
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The MR-QAP model supports the hypothesis that cave communities—e.g., the 
community centered on Russia—are affected by multiple spaces. Both the effects of 
language homophily and spatial proximity are larger in 2000 than in 1960. By contrast, 
the bridging USA community follows either/or logic—it could be involved in either 
relational, homophily, or geographic space.  

Our model is inconclusive with respect to the biregional community centered on 
India. The community enlarges from 8 countries in 1960 to 23 countries in 2000, when it 
also includes oil-producing countries from the Persian Gulf (Bahrain, Kuwait, Oman, 
Qatar, and the United Arab Emirates). However, our model seems to account 
insufficiently for the mechanisms that have governed community evolution, as one can 
see from the low adj. 𝑅! = 0.236 in 2000 compared to adj. 𝑅! ≈ 0.551 in 1960. One 
possible reason is that our model does not consider the role of states and migration 
policies (Zolberg, 1999) because of the lack of comparative and longitudinal data for all 
226 countries. A body of literature, which discusses the proactive migration policies of 
the governments in the oil-producing states that surround the Persian Gulf since 1970s 
(Myron, 1982, Massey et al., 1998: 134–159), suggests that policies in the region aimed 
to attract short-term migration from distant—in social and geographic space—countries 
in South Asia and simultaneously restricted the entrance of migrants from geographically 
and socially close fellow Arab countries like Egypt and Lebanon. Inasmuch as policies 
successfully shifted migration patterns away from geographic and social proximity, our 
model provides a limited understanding of the processes that underlie the transformation 
of this community. 
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