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We use topological data analysis to study “functional networks” that we construct

from time-series data from both experimental and synthetic sources. Specifically,

we use persistent homology in combination with a weight rank clique filtration to

gain insights into these functional networks, and we use persistence landscapes to

interpret our results. Our first example consists of biological data in the form of

functional magnetic resonance imaging (fMRI) data that was acquired from human

subjects during a simple motor-learning task. Our second example uses time-series

output from networks of coupled Kuramoto oscillators. With these examples, we

demonstrate that (1) using persistent homology to study functional networks pro-

vides fascinating insights into their properties and (2) the position of the features

in a filtration can play a more vital role than persistence in the interpretation of

topological features, even though the latter is used more commonly to distinguish

between signal and noise1,2. We find that in particular, persistent homology can de-

tect differences in synchronisation patterns in our data sets over time giving insight

on changes in community structure in the networks, and on increased synchronisation

between brain regions forming loops in the functional network during motor-learning.

For the motor-learning data we also observe that persistence landscapes reveal that

the majority of changes in the loops of the network takes place on the second of three

days of the learning process.

Keywords: Persistent homology, networks, time series, fMRI, persistence landscapes,

functional networks, functional brain networks, nonlinear oscillators, Kuramoto

model, dynamical systems on networks
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Computational topology refers to a family of methods that are based on topo-

logical ideas (e.g., often from algebraic topology) and which give insights into

topological invariants such as connectedness or holes in high-dimensional data

sets3–5. Such efforts have come to be called topological data analysis, and a

method known as persistent homology has been particularly helpful for under-

standing shapes and their persistence over multiple scales6,7. Traditionally, it has

been applied to point-cloud data, though recently it has also been applied to

networks from many applications, ranging from granular materials (see, e.g.,8)

to functional brain networks9,10. In the present paper, we employ these topo-

logical tools, which are designed to yield global, “higher-order” insights that

go beyond insights from pairwise connections (which is the norm in network

science), in a study of functional networks constructed from both biological and

synthetic time series data. We use persistence landscapes to show that the topo-

logical tools can (1) capture dynamics of networks constructed from our data

(2) identify features that we related to community structure in the associated

functional networks. To help the reader best understand these insights, we also

we present an intuitive introduction to persistent homology and how to apply it

to networks.

I. INTRODUCTION

Analysis of neuronal networks is crucial for understanding the human brain11–15. The

human brain consists of approximately 100 billion neurons, whose major task is to receive,

conduct, and transmit signals. Every neuron consists of a cell body and one long axon, which

is responsible for propagating signals to other cells16. Neurons, or on a larger scale, different

brain regions can be regarded as nodes of a network, whose edges represent either structural

or functional connection between the nodes. Looking at neuronal data using a network

approach allows one to use mathematical tools such as graph theory to better understand

structural and functional aspects of neuronal interactions, identify key regions in the brain

that are involved in physiological and pathological processes, or compare the structure of

neuronal interactions to those of other complex systems. For example, data analysis using
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tools from graph theory has lead to the insight that the brain has an underlying modular

structure, in that it is organized in small subunits, which are able to carry out specific

functions while minimally influencing other parts of the network11,14,17.

Standard methods from network theory are based on pairwise connections, which one can

nevertheless use to study microscale, mesoscale, and macroscale structures18. An alternative

approach to study networks19 is to use methods from computational topology, which explic-

itly incorporates “higher-order” structures beyond pairwise connections and which includes

algorithmic methods for understanding topological invariants such as connectedness, loops,

or holes in high-dimensional data structures3–5. While one can represent such higher-order

structures using other methods such as hypergraphs20, see for example21, these do not give

information about shape or scale of these structures in the network.

Methods from computational topology enable one to understand global low-dimensional

structures in networks, and they have led to insights in an increasingly large number of

applications7 in diverse topics ranging from granular materials8 and contagions on networks22

to path planning23 and collective behavior in animals24. In particular, persistent homology, a

mathematical formalism to explore the persistence of topological structures in data sets, has

become increasingly prominent in neuroscience in the last few years9,10. Among other appli-

cations, it has been used to determine differences in brain networks of children with hyper-

activity disorders and autism spectrum25, to study the effect of the psychoactive component

of “magic mushrooms” (psilocybin mushrooms) on functional brain networks of humans26,

to analyze covariates that influence neural spike-train data27, and to study structural and

functional organization of neural microcircuits28. Other neuronal applications have included

the consideration of place cells in the hippocampus of rats during spatial navigation29–31, the

analysis of mathematical models of transient hippocampal networks32, and a demonstration

that topological features of networks of brain arteries in humans are correlated with their

age33. Persistent homology is however not the only topological method that has been used

to study the human brain. For example, Zeeman34 has used tolerance spaces and Vietoris

homology theory to study aspects of visual perception.

In our investigation, we use time-series data to construct so-called functional net-

works11,12,35,36. Functional brain networks consist of a set of nodes, usually brain regions,

and a set of weighted edges between nodes whose time series are similar according to a chosen

measure. The term is used in contrast to “structural networks”, which refer to underlying
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physical connections between nodes. For example, neurons are connected to each other in

structural networks, but one can analyze the similarity in their firing patterns through their

functional networks. We adopt the term “functional networks” in a more general way: by

constructing a matrix of similarities between coupled time series using some measure (and

enforcing the diagonal entries to be 0), one obtains a functional network whose weighted ad-

jacency matrix (sometimes also called an “association matrix”) Ã = (ãij)
N
i,j=1 has elements

that indicate the similarity between the time series of entities i and j. Studying functional

networks is common in neuroscience, and they are also used in a bevy of other applications

(e.g., finance37, voting among legislators38, and climate39). Importantly, the times series

can come either from empirical data or from the output of a dynamical system, and the

latter is helpful for validating methods for network analysis40. In our paper, we will consider

times series either from coupled oscillators (i.e., as the output of a dynamical system) or

from a set of spatially distinct brain regions defined by a fixed anatomical atlas. In the

context of functional brain networks, the adjacency-matrix element aij arises as a measure

of “functional connectivity” (i.e., behavioral similarity) between the time series for nodes

i and j. There are many different ways to measure similarity of times series12,41,42, and

that can be a major issue when it comes to interpreting results. Comparing the networks

that are arise from different similarity measures is beyond the scope of our work, so we

will simply use two common measures of time-series similarity (pairwise synchrony, wavelet

coherence). However, the methods that we employ can be applied to functional networks

that are constructed using any measure of similarity between time series.

In many studies based on experimental data, functional networks are used to construct

binary graphs12. To do this, one typically applies a global threshold τ ∈ R+ to the weighted

adjacency matrix to obtain a binary adjacency matrix A = (aij)
N
i,j=1 associated with an

unweighted graph. The adjacency-matrix elements are then

aij =

1 , if ãij ≥ τ ,

0 , otherwise .
(1)

The choice of threshold has a large influence on the resulting graph, and it thereby exerts a

major influence on the structure of the associated graph12. Some approaches to address this

issue include determining a single “optimal” threshold, thresholding the weighted adjacency

matrix at different values43,44 and examining the network properties as a function of thresh-
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old, or not thresholding at all and considering the weighted adjacency matrix itself12,14. If

one is thresholding the data, there is no guarantee that there exists an interval of thresh-

olds that yield networks with qualitatively similar properties, and arbitrarily throwing away

data can be problematic even when such intervals do exist. For example, parameters such as

graph size (i.e., number of nodes) need to be taken into account when interpreting results on

thresholded networks45. An advantage of using persistent homology is that one can examine

a graph “filtration” (see Section II C) generated by multiple — ideally all — possible global

thresholds and systematically analyze the persistence of topological features across these

thresholds. Such a filtration can also be created using decreasing local thresholds.

Note that while we use functional networks and persistent homology for our examples,

one can also study coupled time series using a variety of different approaches46–48.

The remainder of our paper is organized as follows. In Section II, we give a brief and

intuitive introduction to persistent homology, the weight rank clique filtration, and persis-

tence landscapes. In Section III, we introduce our first example, the Kuramoto model of

nonlinearly coupled oscillators, and present the results from our application of persistent

homology to time-series data produced by coupled Kuramoto oscillators. In Section IV, we

introduce and analyze our second example, which consists of time-series functional magnetic

resonance imaging (fMRI) data from experiments of humans performing a simple motor task.

We discuss our findings in Section V, and we provide a more mathematical introduction to

persistent homology in Appendix A.

II. PERSISTENT HOMOLOGY

Persistent homology (PH)3–5 is a method from computational topology that quantifies

global topological structures (e.g., connectedness and holes) in high-dimensional data. One

can think of PH as looking at the shape of data in a given dimension using a set of different

lenses. Each lense conveys topological features inside data at a different resolution. One then

construes structures that persist over a range of different lenses to represent a significant

feature of the data. Structures that are observed only through a small number of lenses are

commonly construed as noise1,2, in particular in settings where the data is sampled from a

manifold. For real world data, this has so far not been shown to hold statistically and we

will see later in the paper that there are cases where such structures represent important
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properties and possibly geometry of the data.

In this section, we provide an intuitive introduction to the mathematical concepts behind

PH. In Appendix A, we give a mathematically more rigorous introduction (including precise

definitions).

A. Simplicial complexes

One can study the properties of a topological space49,50 by partitioning it into smaller and

topologically simpler pieces, which when reassembled include the same aggregate topological

information as the original space. The most trivial topological space X = {∅, x} consists of

the empty set ∅ and a single point. If we want to simplify the description of the topological

properties of X, we would simply choose a single node to represent it. However, a node or

even a collection of nodes does not allow us to capture the topological properties of more

complicated spaces, such as a 2-sphere or the surface of the earth. In this case, we need

a simple object that carries the information that the space is connected but also encloses

a hole. For example, we could use a tetrahedron, which is an example of a mathematical

object called a “simplex.”

The building blocks that one uses to approximate topological spaces are called k-simplices,

where the parameter k indicates the dimension of the simplex. Every k-simplex contains

k + 1 independent nodes: a point is a 0-simplex, an edge is a 1-simplex, a triangle

is a 2-simplex, and a tetrahedron is a 3-simplex. Observe that the lower-dimensional

simplices are contained in the higher-dimensional simplices. This allows one to build higher-

dimensional simplices using lower-dimensional ones. The lower-dimensional simplices form

so-called faces of the associated higher-dimensional objects.

One combines different simplices into a simplicial complex to capture different aspects of

a topological space. For every simplex that is part of the simplicial complex, we demand

that all of its faces are also contained in the simplicial complex. We also demand that two

simplices that are part of a simplicial complex only intersect in common faces. In Figure 1

we show examples of simplicial complexes.

We take the dimension of a simplicial complex to be the dimension of its highest-

dimensional simplex. One can use simplicial complexes to represent topological spaces if

there exists a continuous deformation that can stretch and bend the simplicial complex into
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(a) (b) (c) (d)

FIG. 1. Panels (a)–(c) give examples of simplicial complexes, and panel (d) gives an example

of an object that is not a simplicial complex. The blue color indicates a 2-simplex. Example (a)

illustrates that simplicial complexes are not necessarily also simplices. The three edges do not form

a 2-simplex; instead, they form a simplicial complex that consists of 1-simplices. In examples (b)

and (c), all 1-simplices and 2-simplices are connected by 0-simplices. Example (d) is a collection

of simplices that violates the definition of a simplicial complex, because the intersection between

the two triangles does not consist of a complete edge. Note that any combination of the three

simplicial complexes (a), (b), and (c) is again a simplicial complex.

the topological space and vice versa. Only then are topological properties of the topological

space preserved by the simplicial complex.

B. Homology and Betti numbers

If one is interested in the nature of a simplicial complex of dimension k, then one can either

consider the full complex, which can be very large, or one can examine different subsets of

simplices that are contained in the complex. For example, the set of all 1-simplices consists

of a collection of edges, some of which might be connected or even form a loop. However,

one may have different levels of interest in different topological features (e.g., a collection of

edges surrounding a hole or void could be more interesting than individual edges), and in

particular we seek features that are invariant if one squeezes or stretches the edges. Homology

is a formal way to quantitatively detect topological invariants in a given dimension that

gives insight into the nature of a topological space. Using homology, one can, for example,

distinguish a 2-sphere from a torus. For a simplicial complex of dimension k, one can define

a vector space known as the pth homology group for every dimension p ∈ {0, . . . , k}. For

dimension 1 we call the elements of the homology group “loops”. The elements of the

homology group can be divided into different homology classes, which each represent a hole
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in the topological space. For example in dimension 1, loops in the same homology class

all surround the same 1-dimensional hole. The homology classes yield a family of vector

spaces, whose dimensions are called Betti numbers, associated to a simplicial complex. One

can interpret the first three Betti numbers, β0, β1, and β2, to represent, respectively, the

number of connected components, the number of 1-dimensional holes, and the number of

2-dimensional holes in a simplicial complex.

C. Filtrations

Although homology gives information about a single simplicial complex, it is typically

more relevant to study topological features across sequences (called filtrations) of simplicial

complexes. A filtration1,2,4 of a simplicial complex Σ is a sequence of embedded simplicial

complexes,

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk = Σ , (2)

starting with the empty complex and ending with the entire simplicial complex. One can

use homology to study topological features such as 1-loops in every step of the filtration and

determine how persistent they are with respect to a given filtration. A topological feature

h is born at Σm if Σm is the first simplicial complex in the filtration to contain the feature.

Similarly, a topological feature dies in Σn if it is present in Σn−1 but not Σn. One then

defines the persistence p of the topological feature as

p = n−m.

Persistence was first used as a measure to rank topological features by their lifetime3 within

a filtration in R3.

There are many ways to define simplicial complexes and filtrations on weighted graphs,

and the choice of filtration tends to be motivated either by the type of questions to be

answered or by the consideration of computational scaling.

1. Weight rank clique filtration

Although we focus on network data, note that PH has been applied much more often

to data in the form of point clouds1,2. The simplest way to create a sequence of embedded
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graphs (e.g., a filtration) from a weighted network is to filter by weights51. To do this, one

creates a sequence of embedded (binary) graphs by ranking all edge weights νt in descending

order. In filtration step t, we only retain edges whose weight is greater than or equal

to νt. To construct the filtration, one repeats this procedure until the graph is complete

in the last step. Using this method, only 0-simplicies (i.e., nodes) and 1-simplices (i.e.,

edges) are present in the filtration. The weight rank clique filtration (WRCF) 52, which

we will use in our analysis and which has been applied previously for examining weighted

neuronal networks26,31,52, extends this definition to include higher-dimensional simplices.

One constructs a WRCF as follows:

1. Define filtration step 0 as the set of all nodes.

2. Rank all edge weights {ν1, . . . , ντ}, where ν1 = νmax and ντ = νmin, where τ is the

number of distinct weights in the graph.

3. In filtration step t, threshold the graph at weight νt, where t ∈ {1, . . . , τ}, to create a

binary graph.

4. Find all maximal c-cliques for c ∈ N and define them to be c-simplices.

This is a valid simplicial complex: every (c+1)-clique in the graph guarantees the existence of

a c-face on that clique, because cliques are closed under both intersection and taking subsets.

Hence, they satisfy the requirements for a simplicial complex. This type of simplicial complex

on a graph is called a clique complex.

One can visualize the persistence of homology classes of a filtration of a simplicial complex

using barcodes1. A barcode for a given dimension is a collection of intervals {bl, dl}mi=1, where

every interval represents a topological feature l of the given dimension (Examples of such

features include connected components and loops), where bl gives the birth time of feature

l and dl gives its death time with respect to the filtration step. The length of the bar

measures the persistence of the feature. In Figure 2, we show an example of a weight rank

clique filtration and the corresponding barcode.
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Figure 4.1: Dodecagon filtration: We show the three holes recognised by the weight rank clique
filtration in colour.

Figure 4.1: Dodecagon filtration: We show the three holes recognised by the weight rank clique
filtration in colour.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

K0

U

K1

U

K2

U

K3

U K4

U K5

U

K6

U

Km =  K 

0-dimensional barcode (components) 1-dimensional barcode (loops)

b) c) d)

a), b) and c) are examples of simplicial complexes. The collection of simplices we show
in d) is not a simplicial complex. The colours are used to indicate 2-simplices.

We use the notation � � � to denote a face of� and � < � to denote a

proper face of � .

Remembering the building blocks we described in the beginning of this Section, we

can ask ourselves whether it is only possible to build shapes using 2-simplices (i.e.

triangles) or whether we could also combine these with higher- or lower-dimensional

simplices. The result such a combination is called a simplicial complex :

Definition 2.1.16 (simplicial complex) . A simplicial complex is a finite collection of

FIG. 2. Example of a weight rank clique filtration and the corresponding 0-dimensional and 1-

dimensional barcodes. The barcode of dimension 0 indicates the connected components in every

filtration step. When two components merge into one connected component, one of the bars

representing the original components dies in the barcode, while the other continues to the next

filtration step and now represents the newly formed component. In filtration step 0, every node is

a separate component, resulting in 12 bars in the barcode. The nodes are joined into two separate

components in filtration step 1, and they become a single component in step 2. In dimension 1, we

observe that as more edges are added to the filtration, the loop surrounding the blue hole that is

born in filtration step 2 is first divided into two holes and subsequently into three holes before it

is completely covered by 2-simplices and dies in filtration step 7. The colors of the bars indicate

which loop they represent.

D. Persistence landscapes

As an alternative topological summary to barcodes, one can use persistence land-

scapes53,54, which consist of piecewise linear functions in a separable Banach space. For

a given barcode interval (b, d), one defines the function

f(b,d) =


0 , if x /∈ (b, d) ,

x− b , if x ∈ (b, b+d
2

] ,

−x+ d , if x ∈ ( b+d
2
, d) .

(3)

For a barcode {bl, dl}mi=1 and q ≥ 0, the qth persistence landscape is given by the set of

functions

λq : R→ R , (4)

λq(x) = qth largest value of {f(bl,dl)(x)}ml=1 .
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If the qth largest value does not exist, then λq(x) = 0. One can think of the 0th persistence

landscape as being the outline of the collection of peaks created by the images of the collec-

tion of functions f associated to the barcode. To obtain the 1st persistence landscape, one

peels away this topmost layer of peaks and again considers the outline of the remaining col-

lection of peaks. This gives the 1st persistence landscape, and one continues in this manner

to obtain subsequent persistence landscapes. The persistence landscape λ of the barcode

{bl, dl}ml=1 is then defined as the sequence of the functions {λq}. Even though persistence

landscapes visualise the same information as barcodes and one can construct a one to one

correspondence between the two objects, they have distinct advantages over the latter. For

example, one can calculate the unique average landscape for a set of persistence landscapes.

This is not possible for barcodes as they are not elements of a Banach space. Note that for

an average landscape it is therefore not possible to find a corresponding average barcode.

One can also define Lp distances between two (average) landscapes and thereby use a range

of statistical tools53. This allows one to compare multiple groups of barcodes by calculating

a measure of pairwise similarity between them. Such calculations have been used to study

conformational changes in protein binding sites55.

E. Computational tools

For our persistent-homology calculations, we use Matlab codes that we construct using

javaPlex56,57, a software package for persistent homology. For the WRCF, we also use a

maximal clique-finding algorithm from the Mathworks library58 based on the Bron–Kerbosch

algorithm, which the most efficient algorithm known for this problem. For the analysis and

interpretation of our barcodes we apply the Persistence landscapes toolbox54.

III. EXAMPLE I: COUPLED KURAMOTO OSCILLATORS

A. The Kuramoto model

The Kuramoto model59–63 is a well-studied model for a set of coupled limit-cycle oscillators

with distinct natural frequencies that are drawn from a prescribed distribution. The model

was developed in the 1970s to understand collective synchronization in a large system of

oscillators. It has subsequently been used as a toy model by many neuroscientists (as
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well as many other scholars), as some of the characteristics of its synchronization patterns

resemble some of the ones in neuronal communities64–66. The Kuramoto model and its

generalizations have also been applied to numerous other applications in chemistry, biology,

and other disciplines61,62,67.

For the case of all-to-all coupling, the Kuramoto model is most commonly written as60,62

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi) , i ∈ {1, . . . , N} , (5)

where θi denotes the phase of oscillator i, the parameter ωi is its natural frequency, K ≥ 0

parametrizes the coupling strength between different oscillators, and N is the number of

oscillators in the model. The normalization factor 1
N

ensures that the equations are bounded

as N → ∞. The distribution from which the frequencies ωi are drawn is usually assumed

to be unimodal and symmetric about its mean frequency, which can be set to 0 due to the

rotational symmetry of the model [because (5) is invariant under translation of θi]. The

parameter ωi then denotes the deviation from the mean frequency.

We simulate the basic Kuramoto model for all-to-all coupled oscillators using the Runge–

Kutta Matlab solver ODE45 (with integration time Tmax = 10 and time step ∆t = 0.02).

We also adapt Eq. (5) to create a network of N oscillators by introducing binary coupling

between the oscillators40,47,61,62,68. We consider the following generalized version of Eq. (5):

dθi
dt

= ωi +
N∑
j=1

κAij sin(θj − θi) , i ∈ {1, . . . , N} , (6)

where κ ≥ 0 denotes the normalized coupling strength and the entries of the coupling matrix

A = (Aij)
N
i,j=1 indicate whether oscillators i and j are coupled. That is, A is an adjacency

matrix, and Aij = 1 for coupled oscillators and Aij = 0 for uncoupled oscillators. The

coupling matrix A thereby imposes a structural network between the oscillators. One can

further generalize Eq. (6) by using heterogeneous coupling strengths κij or by considering

functions other than sine on the right-hand side.

We divide the oscillators into 862 separate communities69 of 16 distinct oscillators each,

and we suppose that every oscillator has exactly 14 connections, 13 of which are with oscil-

lators in the same community and 1 of which is to an oscillators outside the community. As

in40, we choose the coupling strength to be κ = 0.2, the number of oscillators to be N = 128,

and the natural frequency ωi ∼ N (0, 1) (i.e., it has a Gaussian distribution with mean 0
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and standard deviation 1). However, our network architecture differs somewhat from that

in40, where every oscillator had at least 13 connections inside its community and at least 1

connection outside its community.

We observe the system for M = 500 time steps in total (including the initial time step)

and obtain time series τi = (θi(t0), . . . , θi(t499)) as the output of the model for every oscillator

θi. Kuramoto oscillators with a similar imposed community structure have previously been

shown to initially synchronise rapidly within their communities, followed by a phase of

global synchronisation within the whole network40. To study the dynamics of the coupled

Kuramoto oscillators, we therefore partition the time series into two separate time regimes

k̂ = 1, 2 that consist of 250 time steps each.

To quantify the pairwise synchrony of two oscillators i and j, we use the local measure40,68

φk̂ij =
〈∣∣∣cos

(
τ k̂i − τ k̂j

)∣∣∣〉 , (7)

where the angular brackets indicate that we average over 20 simulations. In every simulation

we choose the initial values for ωi from a uniform distribution on [0, 2π] and draw the natural

frequencies from N (0, 1). We apply the same underlying coupling matrix A = (Aij)
N
i,j=1 for

all 20 simulations and then use the values φij to define the edge weights in the fully connected

weighted network of Kuramoto oscillators for both time regimes. We also study the network

based on one full time regime consisting of 500 time steps. In analogy to neuronal networks,

we call these networks “functional networks.”

In Figure 3, we illustrate our pipeline for creating a functional network from the Kuramoto

model.

B. Null models for the Kuramoto data

To assess whether our observations are a direct result of the dynamics of the Kuramoto

model or whether they can be explained by a random process, we consider two different null

models based on the time-series output. In the first null model, which we call the “simple null

model,” we reassign the order of the time series for every oscillator according to a uniform

distribution before computing the similarity measure with Eq. (7). The second null model is

based on creating surrogate data using a discrete Fourier transformation. This approach70

has the advantage of preserving not only the mean and the variance of the original time
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Imposed structural network Kuramoto data
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FIG. 3. We impose a structural network for the Kuramoto model by grouping the oscillators

into 8 separate communities. Oscillators are coupled predominantly to other oscillators in their

community and are coupled only very sparsely to oscillators outside their community. We then use

the time-series output of the model to create a functional network based on the similarity of the

time series.

series but also the linear autocorrelations and cross-correlations between the different time

series.

To obtain this null model, we start by taking the discrete Fourier transform

τ̂n =
1√
µ

µ−1∑
m=0

τme
2πinm
µ (8)

of a time-series vector τ = (θ(t0), . . . , θ(tµ)) of length µ. In our case µ = 250 and µ = 500,

depending on whether we are looking at two different time regimes or just one.

We then construct surrogate data by multiplying the Fourier transform by phases an

chosen uniformly from the interval [0, 2π) and satisfying a symmetry property: for every

n ≤ µ, there exists ñ such that an = −añ. This symmetry ensures that the inverse Fourier

transform yields real values. The surrogate data σ = (σ1, . . . , σµ) are thus given by

σm =
1√
µ

µ−1∑
n=0

eian τ̂ne
− 2πinm

µ . (9)

We call this null model the “Fourier null model.” Both null models have been used previously

on time series output of coupled Kuramoto oscillators and haven been observed to display

different dynamics than the Kuramoto oscillators40,71.
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C. Persistent homology applied to the Kuramoto model and null models

We apply the weight rank clique filtration to functional networks created from the output

of two time regimes of the Kuramoto model, one time regime for the Kuramoto model, the

simple null model, and the Fourier null model. We run the filtrations up to filtration step

1800 and 2000 for the two time regimes and up to filtration step 1100 for the cases in which

we only consider one time regime. The total number of edges in the network, and thus total

number of possible filtration steps is 8128. Thus this corresponds to an edge density in the

networks of 22%, 25% and 14%, respectively, and it thresholds them approximately in the

middle of the range of the edge-weight values. In the thesis that presents a precursor of this

work, Stolz72 applied PH to networks created from the Kuramoto model, such an example

was subsequently studied using Betti curves73.

In the first row of Figure 4, we show the 1-dimensional barcodes for the networks con-

structed from time regime 1 (i.e., the first 250 time steps of the dynamics) and time regime 2

(i.e., the second half of the dynamics) for the weight rank clique filtration of the Kuramoto

model. For both time regimes, the barcodes include several very short-lived bars in the

beginning of the barcode between filtration steps 50 and 300. For the second time regime,

we find more short bars for a longer filtration range at the beginning of the barcode. We

find that the 1-loops corresponding to these short bars are all formed within the highly syn-

chronized communities. In fact, in time regime 1 the first 44 bars in the barcodes represent

in-community loops, while in time regime 2 only the first 28 bars represent in-community

loops. As these strong intra-community edges are added to the simplicial complexes, they

start to cover the 1-loop with triangles (i.e., 2-simplices), and the loops disappear from the

filtration.

In the second row of Figure 4, we show the persistence landscapes that we construct from

the 1-dimensional barcodes, although we ignore any infinitely-persisting bars in the barcode

(we also studied persistence landscapes including the infinite bars as features with a death

time that corresponds to the maximum filtration value but did not find that this lead to

additional insights).

As we expect from the barcodes, the landscapes show a group of small peaks early in

the filtration for both time regimes, which cover a longer filtration range in the second time

regime before more persistent loops appear. We also observe that some of these short peaks
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Time regime I Time regime II
Kuramoto weight rank clique filtration (dimension 1)
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FIG. 4. Dimension-1 barcodes and persistence landscapes for the weight rank clique filtration for

the two time regimes of the Kuramoto model time series. The horizontal axis in both the bar-

codes and landscapes represents the filtration steps. The vertical axis in the persistence landscape

captures the persistence of the features in the barcode. In the first row, we show the barcodes for

dimension 1. In the second row, we show persistence landscapes (although we ignore infinitely-

persisting bars in the barcodes). The short peaks in the beginning of the filtration in the persistence

landscapes indicated by the red ellipses represent loops formed within communities.

become larger, with peaks reaching heights around 100, whereas the peaks are half as high

(less persistent) in the first time regime. Other peaks in this group on the other hand stay

at a similar hight as in the first time regime.

In general, the persistence landscapes show more persistent 1-loops for the second time

regime, and there also appears to be a clearer separation between the group of the very early

short peaks and a second group of medium sized peaks towards the end of the filtration.

For this second group of medium sized peaks, we can see a larger absolute increase in

persistence in the second time regime than for the shorter peaks in the beginning of the

filtration. These observations reflect the dynamics of the two time regimes in the Kuramoto

model40: In time regime 1 we have strong synchronisations within the communities, which

are reflected by the appearance of short-lived in-community 1-loops in the beginning of the

filtration corresponding to the short peaks in the persistence landscapes. In the second time

regime, the global synchronisation increases and in addition to in-community loops some

of the peaks in the beginning of the filtration now represent inter-community loops, which

are more persistent than the loops within communities. Moreover, as some of the peaks

corresponding to the inter-community loops have shifted to the beginning of the filtration,

the gap between the initial peak group and the group of medium sized peaks in the end
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of the filtration increases. In general we see an increase in the persistence of the peaks in

the landscapes due to the stronger synchronisation between the communities. We note that

these observations are much easier visualised by the persistence landscapes than they were

in the barcodes. We also compare the Kuramoto model to the two null models. To do this,

we construct a functional network by considering a single time regime that consists of all 500

time steps. In Figure 5, we show the weighted adjacency matrices of the three functional

networks, and we also show their corresponding persistence landscapes based on WRCFs

of the functional networks. One can observe clearly that there is stronger in-community

synchronization for the Kuramoto times series than for the null models, as there is a very

distinct group of short peaks in the beginning of the filtration similar to the analysis of the

two separate time regimes.

Kuramoto data
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FIG. 5. (Top row) Functional networks for (left) the Kuramoto model, (center) the simple null

model, and (right) the Fourier null model. (Bottom row) Dimension-1 persistence landscapes for

the WRCF of (left) the Kuramoto model, (center) the simple null model, and (right) the Fourier

null model using one time regime and ignoring infinitely-persisting bars.

Again, the corresponding loops are within communities. The peaks in the Kuramoto

landscape appear to be separated from a second group of short peaks further along in

the filtration. In between the two peak groups we observe two significantly higher peaks

corresponding to more persistent loops. These persistent loops appear to be formed by

connections between different communities. For both null models, we also observe groups of

short peaks at the beginning of the filtration, but these are less persistent and less clearly

separated from other peaks than for the Kuramoto model. Indeed, we see that for the

Fourier null model, which exhibits a much weaker in-community synchronisation than the

simple null model, we don’t see any separation at all. Moreover the persistence landscape

for the Fourier null model appears to be more “noisy” as the majority of the peaks in the
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landscape are of similar persistence and appear in similar areas of the filtration.

For both null models we see more medium-size and long persisting features compared to

the Kuramoto data. These features appear in parts of the filtration where the Kuramoto

data exhibits a smaller number of peaks. They consist of inter-community loops and are a

symptom of the weaker intra-community and stronger inter-community synchronization.

For the Kuramoto model we find that PH can detect the dynamics of the system and

the landscapes show a clear difference between the Kuramoto model and the null models.

In fact, we can even distinguish between the two null models. In contrast to1,2, we do not

find that the persistence of the topological features in this case distinguishes between signal

and noise: We find that the short bars in the beginning of the filtration of the Kuramoto

model carry important information on the dynamics, while the medium persistent peaks

in the Fourier null model are a symptom of the weaker in-community and stronger inter-

community synchronisation in the Fourier null model. We therefore suggest that the position

of features in the barcode is equally important for their interpretation in this context as their

persistence. The landscapes alone do however not provide enough information to assess the

dynamics. It is only when we combine them with the information on the loops that are

represented by certain groups of peaks that we can obtain information on in- and inter-

community synchronisation.

IV. EXAMPLE II: TASK-BASED FMRI DATA

A. Human brain networks during learning of a simple motor task

We use a data set of time-dependent functional brain networks from experiments that

were first analyzed in74. It consists of functional magnetic resonance imaging (fMRI) time-

series data from 20 healthy subjects who are undertaking a motor-learning task on three days

(during a five-day period). An “atlas” of 112 brain areas was monitored while the subjects

were performing a simple motor-learning task (similar to a musical sequence), which they

executed using four fingers of their non-dominant hand. The fMRI data consists of 2000 time

points for each day and these were subsequently used to create functional networks based

on the wavelet coherence between the activity of every pair of brain regions. The weighted

adjacency matrices for the functional networks were then corrected for a false-discovery rate,
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as matrix elements under a certain threshold (which represents a correlation amount that

one expects to occur at random) were set to 0. The other matrix elements were retained.

These networks were previously studied using community detection74. The results indi-

cated that there is a significant segregation of the nodes in the functional networks into a

small number of different communities with densely-weighted connections inside the com-

munities and sparsely-weighted connections to nodes in other communities. Within these

communities, certain nodes appeared to remain in the same community during the experi-

ment, whereas others (the “flexible” ones) often switch between different communities.

Networks from a similar experiment but with medium-term learning including training

sessions have also been studied75,76. These networks exhibited a noticeable core–periphery

organization, with the sensimotor and visual regions of the brain being grouped in a temporal

stiff core of nodes, whose connectivity in contrast to the nodes in the flexible periphery

region do not change over the course of the learning task75. It was later also shown that

the interaction between primary and secondary sensorimotor regions and the primary visual

cortex decreases as the regions presumably become more autonomous with task practice76.

As we observed short-lived 1-dimensional loops in the beginning of the filtrations for the

Kuramoto model in a simulated community setting, we will explore whether the fMRI data

exhibits similar features during the 3 observation days.

B. Persistent homology applied to the task-based fMRI data

We run the weight rank clique filtration until filtration step 2600, where 42% of the edges

are present in the network. We find that larger filtration steps lead to very long compu-

tational times. We construct persistence landscapes for dimension 1 (omitting infinitely

persisting 1-loops). In Table 6, we summarize our results for one particular subject and

the whole data set. The subject was chosen as an example representative for the particular

landscape features which we are observing.

Similar to the Kuramoto case, we find a group of small peaks at the beginning of the

filtration (between filtration steps 1 and 200). We can see this group very clearly both by

zooming into the landscape of individual subjects and in the average landscape, where the

hight of the peaks is only slightly lower than for the peaks in the individual landscapes; this

indicates that there is a group of short peaks arising in the beginning of the filtration in
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FIG. 6. Persistence landscapes for dimension 1 of the weight rank clique filtration applied to the

human brain networks. (First row) Persistence landscapes for subject 9 based on filtration steps

1–2600 for days 1, 2, and 3. (Second row) Persistence landscapes for subject 9 based on filtration

steps 1–200 for days 1, 2, and 3. (Third row) Average persistence landscapes over all subjects for

days 1, 2, and 3.

the majority of the barcodes. We expect these peaks to be associated with the communities

in the networks, which have been observed previously using other methods74. We observe

in particular, that these short peaks undergo changes on day 2: during filtration steps 20

to 60 we see that some of the peaks that are present in the landscapes for day 1 and 3

vanish while between filtration step 80 and 200 we observe more persistent peaks than on

the other two days. We suggest that this implies a change of the community structure taking

place on day 2 with either very strong synchronisation strengths in some of the communities

leading to very short lived 1-loops or very strong individual differences between the subjects

leading to the vanishing of peaks in the average landscapes for the first 50 filtration steps.

The more persistent peaks on day 2 could either represent persistent loops between different

communities or loops occurring due to sparse in-community connections.

We calculate the pairwise L2-distances between all dimension-1 persistence landscapes.

The L2 distance has been previously used to compare persistence landscapes in a biological

context55. We create distance vectors, which we use as an input for k-means clustering and

average linkage clustering for k = 3. Using both methods, we obtain the same results: we

find that 9 of the 20 distance vectors corresponding to persistence landscapes from day 1

cluster in one common group (together with very few landscapes from days 2 and 3), while 11

and 10 landscapes from days 2 and 3 cluster together into a separate group. We summarize
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Cluster 1 Cluster 2 Cluster 3

Day 1 9 6 5

Day 2 5 4 11

Day 3 5 5 10

TABLE I. Results for k-means clustering and average linkage clustering of pairwise L2-distance

vectors of persistence landscapes for k = 3.

our results in Table I.

We also consider the average landscapes based on dimension 1 of weight rank clique

filtration steps 1–2600 and calculate the L2-distances between them. We show the results of

these calculations in Figure 7.
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FIG. 7. Visualization of average persistence landscapes for days 1, 2, and 3. We observe that the

distance between the landscape for day 1 and the other two landscapes is larger than the distance

between the landscapes for days 2 and 3. (The L2 distances between them are 5200 between days

1 and 2, 5000 between days 1 and 3, and 3500 between days 2 and 3.) We also observe a shift to

the left of the landscape peak during the three days, indicating that the more persistent 1-loops in

these networks arise earlier in the filtration for the later days. In other words, they are formed by

edges with a higher edge weight and indicate that there is stronger synchronization between the

brain regions involved.

The large distances between day 1 and the subsequent days of the experiment indicate
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that the weight rank clique filtrations are able to detect changes in the functional networks

across the filtration range, most of these changes happening between the first and the second

day. We also observe that the main peak of the average landscapes is shifting to the left over

the course of the three days. This implies that the edge weights between the brain regions

giving rise to persistent 1-loops increase over the three days due to stronger synchronisation.

Brain regions synchronising in a 1-loop in a network could be an indication of an interesting

neurobiological communication pattern that in this case also gets stronger over the course

of the learning process. We suggest to study the brain regions involved in these loops in

order to investigate their biological role in learning a motor-learning task and in particular

to investigate changes in the loops occurring on day 2.

As in other biological contexts where PH has been applied successfully and lead to new

insights, for example in26,28–31,33, we find that PH and WRCF in particular lead to insights

about the dynamics of our studied systems. We not only find that we can detect symptoms

of previously observed community segregation, but we also find differences between a set up

with a strong community structure such as in the Kuramoto model and weakly synchronised

communities in the null models. For the task-based fMRI data we also find that we can

detect changes in the community structure over the three days as well as changes in the

1-dimensional loops appearing in the functional network. The majority of these changes

appear to take place on the second day of the learning task. We in particular observe effects

of stronger synchronisation between brain areas forming loops in the network throughout

the three days of the motor-learning task. The findings on the 1-dimensional loops in the

network provide novel insight and would be difficult to study using other methods.

V. CONCLUSION AND DISCUSSION

We have illustrated applications of persistent homology to functional networks con-

structed from the output of the Kuramoto model, null models constructed from the Ku-

ramoto time series, and task-based fMRI data from human subjects. In all cases, we ob-

served that non-persistent 1-loops occur at the beginning of the filtration. Although this is

commonly construed as noise in topological data analysis1,2, we observed that these features

appear to be consistent with prior segregations of the studied networks into communities of

densely-connected nodes. In one case we even found that more persistent features appeared
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to be linked to a network with a weak intra-community synchronisation (Fourier null model)

and represented noise. Our results match previous observations for synthetic examples where

barcodes consisted of short intervals which would commonly be regarded as noise, but the

differences between the corresponding persistence landscapes for the various spaces were

statistically significant54. For weighted networks, we therefore suggest that when using a

filtration based on edge weights, the birth and death times with respect to the filtration of

features such as 1-loops needs to be considered in addition to their persistence to be able to

decide whether they should be considered as noise or signal. In particular, loops appearing

early in a filtration could give important insights on the geometry of the studied data.

We also found, using both average persistence landscapes and when measuring the pair-

wise distances between separate landscapes, that persistence landscapes for dimension 1 of

the weight rank clique filtration were able to capture the changes in the studied functional

brain networks during the process of learning a motor-task. Because we did not consider

infinitely-persisting features and only included filtration steps 1–2600 when creating the

landscapes, our result also suggests that the medium-lived (when compared to the the full

filtration length) persistent 1-loops are able to capture changes in the network, so it is not

always necessary to consider a full weigh rank clique filtration to study the dynamics of

a system. This observation is similar to a finding in Bendich et al.33, who observed that

medium-scale barcode features were significant in distinguishing human brain artery net-

works from different age groups. This again suggests that the persistence should not be

the only measure of signal versus noise when applying PH. Moreover, we found that the

persistent features that dominate the middle part of the filtration appear in earlier filtration

steps on days 2 and 3 of the experiment than they do on day 1, which further points to

interesting dynamics in synchronisation patterns in the network being captured by medium

persistent bars in the middle of the barcode.

Using methods from topological data analysis for network approaches has the advan-

tage that these methods are mathematically well founded and generalisable. It is however

necessary to include information on specific nodes forming part of topological features for

biological interpretation. Moreover, the interpretation of the results and importance of per-

sistence versus position of a topological feature in the barcode could change depending on

the filtration that is used. Note that different topological features can also have different

relevance for different dynamical systems. For example, the occurrence of many medium
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persistent features in the persistence landscape for the Fourier null model was a symptom of

the weak synchronisation in the communities while for the task-based fMRI data the medium

persistent bars captured increasing synchronisation in 1-loops. We suggest to apply WRCF

to different synthetic networks with underlying communities, for example using planted-

partition models, to investigate this further and include both persistence and position of

topological features in the analysis. It would also be beneficial to combine topological tools

with additional methods, such as persistence images77, to determine the exact topological

features responsible for the detected differences between the persistence landscapes of the

different network groups.

In conclusion, we have shown that persistent homology and persistence landscapes can

be applied successfully to functional networks (from both experimental data and time-series

output of models), and they can lead to fascinating insights, such as segregation of a network

into communities and changes of network structure over time.
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Appendix A: Topological background and definitions

We give a brief introduction to the mathematical concepts behind persistent homology.

(We adapt and summarize the discussion from B. Stolz’s masters thesis72.)

1. Simplicial complexes

One can represent the underlying structures of topological spaces by partitioning the space

into smaller and topologically simpler pieces, which carry the same aggregate topological

information as the original space when they are assembled back together. One can choose
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either to use a small number of complicated pieces or to use a large number of simple pieces.

From a computational point of view, the latter is preferable5.

A simple example for such a construction is the tetrahedron in Euclidian space. The

tetrahedron consists of four triangular faces that are each bounded by three edges (which

each connect two points). One can view the tetrahedron as a simplified version of a 2-sphere,

as it carries the same topological properties (e.g., connectedness and the enclosure of a hole)

as the sphere. Similarly, one can imagine using triangles as building blocks to build more

complicated constructions (e.g., ones that resemble a torus or some other manifold).

To mathematically grasp these concepts, we need a few definitions. For concreteness, we

frame our discussion using the space Rd with dimension d ∈ N.

Definition A.1 (affine combination and affine hull). Let U = {u0, u1, . . . , uk} be points in

Rd. A point x ∈ Rd is an affine combination of the points ui ∈ U , with i ∈ {0, . . . , k}, if

there exist λi ∈ R such that

i. x =
∑k

i=0 λiui ;

ii.
∑k

i=0 λi = 1 .

The set of all affine combinations of U is called the affine hull of U .

To ensure uniqueness of the affine combination, we introduce the following definition.

Definition A.2 (affinely independent). Let U = {u0, u1, . . . , uk} be points in Rd. The k+ 1

points in U are said to be affinely independent if the vectors {ui − u0 : 0 ≤ i ≤ k} are

linearly independent.

For example, any two distinct points in R2 are affinely independent. Similarly, any three

points in R2 are affinely independent as long as they do not lie on the same straight line.

Convex combinations and hulls are a special case of affine combinations.

Definition A.3 (convex combination and convex hull). An affine combination x =
∑k

i=0 λiui

is a convex combination if λi ≥ 0 for all i ∈ {0, . . . , k}. The set of all convex combinations

of the points in U is called the convex hull of U .

Example A.1. A triangle spanned by three points u0, u1, u2 ∈ R2 is the convex hull of these

points.

We can now define a k-simplex.
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Definition A.4 (k-simplex ). A k-simplex σ = [u0, u1, . . . , uk] is the convex hull of the k+1

affinely independent points u0, u1, . . . , uk ∈ Rd. One calls k the dimension of the simplex.

Example A.2. In Figure 8, we show examples of simplices for the first few dimensions: a

point is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex, and the tetrahedron

is a 3-simplex.

FIG. 8. Examples of (left) a 0-simplex, (second) a 1-simplex, (third) a 2-simplex, and a (right)

3-simplex. The examples and figure are adapted from5.

The lower-dimensional simplices from example A.2 are contained in the higher-dimensional

simplices, because subsets of affinely independent points are also affinely independent. More-

over, the lower-dimensional simplices form so-called faces of the higher dimensional objects.

Definition A.5 ((proper) faces and cofaces). A face τ of a k-simplex σ is the convex hull

of a subset V ⊆ U . Additionally, the face is proper if the subset relationship is a proper one.

If τ is a (proper) face, then σ is called a (proper) coface of τ .

Remark 1. We use the notation τ ≤ σ to denote a face of σ, and we use τ < σ to denote

a proper face of σ.

Recalling the building blocks that we described at the beginning of this appendix, we can ask

whether it is only possible to build shapes using 2-simplices (i.e., triangles) or whether we

one can also combine these simplices with higher-dimensional or lower-dimensional simplices.

A (permissible) shape built from a combination of simplices is called a simplicial complex.

In order to construct a simplicial complex one needs to follow a set of minimal rules:

Definition A.6 (simplicial complex ). A simplicial complex is a finite collection of simplices

Σ such that

i. if σ ∈ Σ and τ ≤ σ, it follows that τ ∈ Σ ;
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(a) (b) (c) (d)

FIG. 9. Panels (a), (b), and (c) gives examples of simplicial complexes. The collection of simplices

in panel (d) is not a simplicial complex. We use colors to indicate 2-simplices.

ii. if σ, σ̃ ∈ Σ, it follows that the intersection of both simplices is either the empty set or

a face of both.

In Figure 9, we show examples of simplicial complexes. Example (a) illustrates that

simplicial complexes are not necessarily the same as simplices. The three edges do not form

a 2-simplex, but they do form a simplicial complex that consists of 1-simplices. In examples

(b) and (c), all 1-simplices and 2-simplices are connected by 0-simplices. Example (d) is

a collection of simplices that violates the definition of a simplicial complex, because the

intersection between the two triangles does not consist of a complete edge. Note that any

combination of the three simplicial complexes (a), (b), and (c) is again a simplicial complex.

We take the dimension of Σ to be the dimension of its highest-dimensional simplex. One

can use simplicial complexes to represent topological spaces if there exists a homeomorphism

between the simplicial complex and the topological space. Only then can one be sure that

topological properties such as connectedness are preserved.

2. Homology and Betti numbers

Homology is a formal way of quantitatively detecting holes in various dimensions to give

insight into the connectivity of a topological space. These holes are quantified by classifying

the space, e.g. loops, surrounding them. For example, one can distinguish a 2-sphere from a

torus by capturing the fact it is possible to contract any 1-dimensional loop on the sphere to

a point, whereas there are two distinct loops on the torus surface that cannot be continuously

deformed into each other. These loops also cannot be contracted to a point, because they

surround different holes.
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Although homology is not the only and most detailed formalism that can be used for the

distinction between two shapes, thus far it has the fastest algorithms5. Homology groups,

which are topological invariants of a space, and Betti numbers (which are derived from

them) play a key role in this endeavour. Homology groups detect holes in a topological

space, whereas Betti numbers give a way to count the number of holes or distinct loops

in that space. We start constructing the homology groups by looking at formal sums of

simplices.

Definition A.7 (p-chain). Let Σ be a a simplicial complex, let p be a given dimension, and

let G be an Abelian group. A p-chain

c =
∑
i∈I

aiσi (A1)

is mathematically a formal sum of p-simplices in Σ, where ai ∈ G are coefficients, σi are

p-simplices, and I is an index set.

In computational topology, the commutative group G is usually Z/2Z, which has the advan-

tage that one can regard p-chains as subsets of the set of all p-simplices in Σ by assigning the

coefficient 1 to simplices that form part of the subset and the coefficient 0 to those not in the

subset. Moreover, because Z/2Z is also a field, one can also think of p-chains as elements of

a vector space. We use Cp = Cp(Σ) to denote the set of all p-chains of a simplicial complex

Σ.

One defines the summation of two p-chains, c =
∑

i∈I aiσi and c′ =
∑

i∈I biσi, on Σ in a

component-wise manner:

c+ c′ =
∑
i∈I

(ai + bi)σi . (A2)

It then follows that p-chains form an Abelian group. Observe when working with coefficients

from Z/2Z that the sum of two p-chains results in the sum of all p-simplices in which the two

original p-chains differ. The p-simplices that the two p-chains have in common is present in

the sum twice, and it therefore vanishes by the properties of addition on Z/2Z.

The following definition will help relate the different p-chain groups of a simplicial com-

plex.

Definition A.8 (boundary of a p-simplex). The boundary ∂pσ of a p-simplex σ = [u0, u1, . . . , up]
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is the formal sum of its (p− 1)-dimensional faces:

∂pσ =

p∑
j=0

[u0, . . . , ûj, . . . , up] , (A3)

where ûj denotes the point that is not included when spanning the simplex.

We can naturally extend this definition to p-chains by defining the boundary of a p-chain

c =
∑

i∈I aiσi as ∂c =
∑

i∈I ai∂σi.

We can now construct a family of boundary homomorphisms ∂p between the different

groups of p-chains of a simplicial complex by mapping p-simplices to their boundaries:

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . .
∂1−→ C0 ,

c 7−→ ∂c .

By construction, taking the boundary of a p-chain satisfies the property ∂p(c + c′) = ∂pc +

∂pc
′. Therefore, ∂p is a homomorphism. Such a sequence of chains and homomorphisms is

called a chain complex. One can show5,79 that the following theorem holds for boundary

homomorphisms in a chain complex:

Theorem A.1. Let d ∈ Cp+1. It follows that

∂p∂p+1d = 0 . (A4)

For simplicity, we often denote the boundary homomorphism by ∂. In other words, we

omit the specification of p. Two subgroups of (Cp,+), together boundary homomorphisms

and their property stated in Theorem A.1, now form the main ingredients in constructing

the homology group of a simplicial complex.

Definition A.9 (p-cycle). A p-cycle is a an element of Zp = ker ∂p, where ker ∂p denotes

the kernel of ∂p.

Denote the set of p-cycles as Zp, and observe that (Zp,+) is a subgroup of (Cp,+).

Definition A.10 (p-boundary). A p-boundary is an element of Bp = Im ∂p+1, where Im ∂p+1

denotes the image of ∂p+1.

Denote the set of p-boundaries as Bp, and notice that (Bp,+) is a subgroup of (Cp,+). Using

Theorem A.1, we can now relate the subgroups to each other: From Theorem A.1, it follows

that ∂p(Im ∂p+1) = 0, so Bp ⊆ Zp. One can then show that Bp is indeed a subgroup of Zp.
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Note that 1-dimensional loops behave differently from other 1-edges. The latter are

mapped to their end nodes by ∂1, but every node in a 1-loop occurs as the boundary of two

edges and thus sums to 0 over Z/2Z. We have now come very close to our goal of being able

to count holes and loops. We have thus far identified the subgroup to which such loops will

belong, but this subgroup still also contains the boundaries of higher-dimensional chains.

To distinguish the two subgroups, we need to define the pth homology group of a simplex.

Definition A.11 (pth homology group). The pth homology group Hp of a simplicial complex

Σ is the quotient group of the group of p-cycles Zp modulo the group of boundaries Bp. That

is,

Hp = Zp/Bp .

Two p-cycles in the pth homology group are regarded as different if they differ by more

than just a boundary. Otherwise, the quotient group treats them as belonging to the same

homology class. Every hole of dimension p in a simplicial complex is surrounded by at

least one p-cycle in the homology group. Counting the number of classes in Hp thus gives

an estimate of the number of p-dimensional loops of a simplicial complex. However, loops

that surround the same hole are counted separately. A solution to this problem is to count

the minimal number of elements that are needed to generate the group. This leads to the

definition of pth Betti number.

Definition A.12 (pth Betti number). The pth Betti number βp of a simplicial complex is

βp = rank Hp .

Recall that we are working with coefficients from Z/2Z. This turns the set of p-cycles into

a vector space, so we can think of the homology group Hp as a quotient vector space. The

pth Betti number is then given by the dimension of this vector space. One can interpret the

first three Betti numbers (β0, β1, and β2) to represent, respectively, the number of connected

components, the number of 1-dimensional loops, and the number of 2-dimensional holes in

a simplicial complex.

3. Filtrations

We first define what we mean by a “subcomplex” of a simplicial complex Σ.
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Definition A.13 (subcomplex of a simplicial complex). A subcomplex of a simplicial complex

is a subset of simplices that satisfy the properties of a simplicial complex.

We can now build sequences of simplicial complexes that form subcomplexes of each other.

Definition A.14 (filtration). A filtration of a simplicial complex Σ is a nested sequence

of subcomplexes starting with the empty complex ∅ and ending with the entire simplicial

complex:

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk = Σ . (A5)

Observe that one can define natural inclusion maps ij : Σj ↪−→ Σj+1 along the filtration.

In a filtration, we are interested in determining (1) when prominent features (e.g., a

homology class) first appear and (2) if and when those features disappear.

Definition A.15 (birth and death of a homology class, persistence). A homology class

h ∈ Hp(Σ) is born at Σm if h is an element of Hp(Σm) but is not in the image of the

inclusion map im−1 : Σm−1 ↪−→ Σm.

A homology class g ∈ Hp(Σ) dies entering Σn if g is an element of Hp(Σn−1) but is not in

the image of the inclusion map in−1 : Σn−1 ↪−→ Σn.

Let mh denote the filtration step at which h is born, and let nh denote the filtration step at

which h dies. One then defines the persistence of a homology class h ∈ Hp(Σ) as

ph = nh −mh .
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