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Abstract

This article presents a fast new numerical method for redistancing objective functions based on the Hopf–Lax
formula [1]. The algorithm suggested here is a special case of the previous work in [2] and an extension that applies
the Hopf–Lax formula for computing the signed distance to the front. We propose the split Bregman approach to solve
the minimization problem as a solution of the eikonal equation obtained from Hopf–Lax formula. Our redistancing
procedure is expected to be generalized and widely applied to many fields such as computational fluid dynamics, the
minimal surface problem, and elsewhere.

Keywords: Reinitialization, Level Set Method, Hopf-Lax formula, Hamilton-Jacobi equations, Split Bregman
Method.

1. Introduction

The level set framework [3] has been proven to be a successful technique for describing the motion of a front
Γ ∈ Rn represented by the zero level set of a continuous level set function φ : Rn → R. The main principle of the level
set method is that for the function φ defined everywhere in the domain Ω, the following evolution equation is solved:

∂φ

∂t
+ V · ∇φ = 0, (1)

where V is the velocity of the movement of the front. We can obtain the information of the designated time level
from the solution of (1). Depending on the meaning of V in (1), its applications can be a part of computational fluid
dynamics [4, 5, 6], the minimal surface problem [7], image processing [8, 9], etc.

Although it is well established, the level set function obtained as the solution of (1) suffers from distortion. This
unwanted phenomenon can be justified by the observation that the gradient of the level set function is too large or
too small in magnitude near the interface Γ. In such cases, the level set function may fail to hold enough regularity
near the front; that is, tremendous changes in the zero level set can arise from even small perturbations. Therefore,
it is reasonable to replace the level set function with a function that has better properties, i.e., the signed distance
function to the front. This process is called redistancing or reinitialization [4, 10]. There have been many studies
on redistancing a given function to a signed distance function. One of the famous attempts is to use the advantages
of the signed distance function: the signed distance function is uniquely determined as the viscosity solution of the
following eikonal equation [11] {

‖∇φ‖2 = 1
sgn(φ) = sgn(φ0) , (2)

where the magnitude of its gradient is always 1. Here, φ0 : Rn → R is the given initial level set function, sgn denotes
the signum function that is equal to 1, -1, and 0 when the input value is positive, negative, and 0, respectively. There are
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well-known algorithms for solving (2), e.g., the fast marching method [12] and fast sweeping method [13]. These two
methods differ in the updating order and the number of passes, but they are similar in sense that they solve the finite
difference approximation of (2) with a monotone Godunov Hamiltonian [14, 15], guaranteeing the convergence of a
discrete equation to the viscosity solution of (2) in [11]. Although these time-marching-type methods are simple and
sufficiently fast, these methods produce first-order accurate results only, which can affect the accuracy of important
geometric quantities such as the normals to the front and the mean curvature.

For this reason, the following higher order PDE-based redistancing procedure suggested by Sussman, Smereka,
and Osher [4] is well-used for the time-dependent problems.{

φt + sgn(φ0)(‖∇φ‖2 − 1) = 0
φ(·, 0) = φ0

. (3)

The solution of (3) is known to converge to the signed distance function as t → ∞ [16]. The signum term, sgn(φ0),
plays an important role in fixing the interface for correct positioning. This method has been successfully used for
many applications and modified in better ways [10, 17]. In spite of the success of redistancing based on (3), the
time-dependent PDE-based method has a trade-off between the computational cost and the accuracy. It converges to
a signed distance function for t increasing, with speed almost proportional to distance from the original level set. We
will produce a method here which is orders of magnitude faster, more accurate and is embarrassingly parallel.

From the point of view of previous approaches on reinitialization, we note that the redistancing procedures are
heavily related to Hamilton–Jacobi equation{

∂φ
∂t (x, t) + H(∇xφ(x, t)) = 0, in Rn × (0,∞)
φ(x, 0) = J(x) ∀x ∈ Rn . (4)

For efficient computation of the solution to Hamilton–Jacobi equation, we focus on a recent work [2] (see also [18]
for connections between Hamilton-Jacobi equations and optimization) related to the solution of (4) in an exact way
but fast, in which the authors suggest a method for solving the Hamilton–Jacobi equation by making use of the Hopf
formula [1] when J is convex

φ(x, t) = −min
v∈Rn
{J∗(v) + tH(v) − 〈x, v〉}, (5)

where J∗ : Rn → R ∪ {+∞} is the Fenchel–Legendre transform of a convex, proper, lower semicontinuous function
J : Rn → R ∪ {+∞} defined for any y ∈ Rn by [19]

J∗(y) := sup
x∈Rn
{〈y, x〉 − J(y)}. (6)

They proposed the split Bregman iteration [20] for solving the optimization problem in (5) to obtain the solution
of (4). However, the initial function J may not be convex in general, especially for reinitialization problems. This
leads us to choose an alternative, the Hopf–Lax formula, to obtain the solution of (4). The Hopf–Lax formula is a
formula that also gives an exact solution of (4) when H : Rn → R is convex but does not require the initial data J to
be convex.

Throughout this paper, we propose a totally different and new approach for redistancing the objective function
based on the Hopf–Lax formula. The outline of this article is as follows. In Section 2, we introduce an algorithm for
redistancing based on the Hopf–Lax formula as a special case of the Hamilton–Jacobi equation solver. A numerical
method—in particular, an optimization technique—will be presented and discussed in Section 3. Numerical experi-
ments will be presented to show the effectiveness and accuracy of our approach in Section 4. Finally, the conclusions
and the plans for future work will be discussed in Section 5.

2. An algorithm for redistancing and Hopf–Lax formula

In this work, we propose an algorithm for redistancing to a non-empty closed set Ω ⊂ Rn based on the level set
method [3] and the Hopf–Lax formula [1]. Let us consider the following eikonal equation

∂φ

∂t
(x, t) + ‖∇xφ(x, t)‖2 = 0, (x, t) ∈ Rn × (0,∞), (7)
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as a special case of the Hamilton–Jacobi equation, where the Hamiltionian is ‖ · ‖2. Here, ∂φ
∂t (x, t) and ∇xφ(x, t) denote

the partial derivatives with respect to time t and space x of φ at (x, t) ∈ Rn× (0,∞), respectively. Moreover, we assume
that we can find an initial data J such that

φ(x, 0) = J(x), (8)

where J : Rn → R satisfies 
J(x) < 0 x ∈ int Ω

J(x) > 0 x ∈ (Rn \Ω)
J(x) = 0 x ∈ (Ω \ int Ω)

, (9)

where int Ω denotes the interior of Ω. For a given t > 0, we define the set

Γ(t) = {x ∈ Rn | φ(x, t) = 0}, (10)

which represents all points that travel a distance t from the interface Γ(0) with a speed of 1 in the normal direction.
The set Γ(t) corresponds to all points that are at a distance t to Ω. We abuse notation and denote by t(x) the distance
of x to Ω.

In many fields where redistancing is required, x 7→ J(x) can be nonconvex and nonformulated data in general. In
this work, we only assume that a formula x 7→ J(x) describing the given data as a zero level set of J(x) can be found
such that J(x) can be computed.
For any x 7→ J(x), the following Hopf–Lax formula [1] gives the solution φ of the Hamilton-Jacobi partial differential
equation with initial data (4) and is given for any x ∈ Rn and t > 0 by

φ(x, t) = min
y∈Rn

{
J(y) + tH∗

( x − y
t

)}
. (11)

In our special case in (4), H = ‖ · ‖2, and H∗ : Rn → R ∪ {+∞} is known as the indicator function IΩ of the unit ball
that is defined for any v ∈ Rn by

IΩ(v) =

{
0 if ‖v‖2 ≤ 1
∞ otherwise . (12)

Now, we can express the solution φ to the system in (7)–(8) for any x ∈ Rn and t > 0 as

φ(x, t) = min
y∈Rn

{
J(y) + t IΩ

( x − y
t

)}
, (13)

or more explicitly,
φ(x, t) = min

y∈Rn, ‖y−x‖2≤t
J(y). (14)

With the aid of the Hopf–Lax formula, we can summarize our algorithm as follows. Define a level set function
x 7→ J(x) corresponding to the initial data x 7→ φ(x, 0). Solve the eikonal equation in (7) using the Hopf–Lax
formula in (13)–(14). Once we have the solution of (7), find t(x) satisfying (10) for each x ∈ Rn using any suitable
root finding method. Finally, properly change the sign of t(x) so that t(x) is the signed distance function of the set
{x ∈ Rn | φ(x, 0) = 0}.

The details of the numerical technique for each procedure are presented in the next section.

Remark. Let Y(x, t) be the minimizer of (14). Then an easy calculation shows that

Y(x, t) = x − t
∇φ(x, t)
‖∇φ(x, t)‖2

= x − t~n(x, t) (15)

where ~n(x, t) is the unit normal to the level set function φ(x, t) = constant at x, t. This means that we can get the
normal for free from the Hopf-Lax formula :

~n(x, t) =
x − Y(x, t)

t
(16)
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3. Numerical method based on optimization techniques

3.1. Split Bregman method and eikonal equation
We propose the split Bregman solver [20, 21, 22, 23] for the optimization problem. Recall that the solution of

(7)–(8) is
φ(x, t) = min

y∈Rn

{
J(y) + t IΩ

( x − y
t

)}
from the Hopf–Lax formula. The split Bregman technique generates sequences (vk)k∈N (dk)k∈N and (bk)k∈N defined as
follows

vk+1 = arg min
v∈Rn

{
J(v) +

λ

2

∥∥∥dk − v − bk
∥∥∥2

2

}
, (17)

dk+1 = arg min
d∈Rn

{
IΩ

(
x − d

t

)
+
λ

2

∥∥∥d − vk+1 − bk
∥∥∥2

2

}
, (18)

bk+1 = bk + vk+1 − dk+1, (19)

or, in more simple form,

vk+1 = arg min
v∈Rn

{
J(v) +

λ

2

∥∥∥dk − v − bk
∥∥∥2

2

}
, (20)

dk+1 = arg min
d∈Rn,‖d−x‖2≤t

∥∥∥d − vk+1 − bk
∥∥∥2

2 , (21)

bk+1 = bk + vk+1 − dk+1, (22)

utilizing the definition of IΩ.
This splitting technique assures fast convergence for both sequences (vk)k∈N and (dk)k∈N to the same quantity, a

minimizer of (13). Note that (20) can cause problematic behaviors for convergence since the initial function φ(x, 0)
may not be convex in general. Even though the split Bregman method for a nonconvex optimization problem remains
an area of further research to understand, it is known that the split Bregman method works fairly well for some
practical problems such as phase retrieval [24], matrix completion [25, 26], and signal processing [27]. To avoid
problems due to the nonconvexity of J in (20), we choose λ to be sufficiently large so that (20) can be a convex
optimization problem.

A remarkable observation here is that the second step in (21) can be solved analytically. Indeed, it can be computed
as

dk+1 = x + z, (23)

where

z =

{
vk+1 + bk − x ‖vk+1 + bk − x‖2 ≤ t
t vk+1+bk−x
‖vk+1+bk−x‖2

otherwise (24)

from the following lemma, replacing z = d − x in (21).

Lemma 1. The minimizer zmin = arg min‖z‖2≤t ‖z − a‖2 is given by

zmin =

{
t a
‖a‖2

if ‖a‖2 > t
a otherwise

. (25)

Proof. Let us define f (z) = ‖z − a‖22 and g(z) = ‖z‖22 − t2. Then, the above minimization problem can be converted to
minimize f (z) subject to g(z) ≤ 0. Since the feasible region g(z) is bounded and the objective function f (z) is convex,
a unique global minimum must exist and satisfy the strong duality condition. Hence, we can find the minimizer of the
given problem using the following KKT conditions:

λ ≥ 0, (26)

λ(‖z‖22 − t2) = 0, (27)
2(zi − ai) + 2λzi = 0, f or i = 1, · · · , n, (28)

g(z) ≤ 0. (29)
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1. The case when λ > 0
In this case, we have ‖z‖2 = t from (27). From (28), we have (1+λ)zi = ai; that is, λ = ‖a‖2/‖z‖2−1 = ‖a‖2/t−1,
which tells us ‖a‖2 > t with the assumption λ > 0. Finally, the substitution of λ = ‖a‖2/t − 1 into (28) shows
that

zi = t
ai

‖a‖2
, f or i = 1, · · · , n.

2. The case when λ = 0
This case simply gives us the following by letting λ = 0 in (28):

zi = ai, f or i = 1, · · · , n.

Note that with the aid of Lemma 1, the second step in (21) can be immediately computed, and it can highly affect
the efficiency of the entire split Bregman procedure in (20)–(22).

3.2. Remarks on choosing the initial functions and conditions

3.2.1. The initial function J(x)
The only assumptions we require on the initial x 7→ J(x) in the Hopf–Lax formula in (11) is the continuity and

1-coercivity of J, i.e., lim‖x‖2→+∞
J(x)
‖x‖2

= +∞. Hence, we can choose the initial data suggested in [2] as

J(Rθ) =
1

2m

( R
W(θ)

)2m

− 1

 , (30)

where R ≥ 0, θ ∈ S n−1, and m is a positive integer. Here, we use the fact that any given closed bounded domain Ω

with non empty interior can be expressed in terms of Wulff shapes [28] by the function W : S n−1 → R as

Ω = {(Rθ) ∈ Rn | R ≥ 0, θ ∈ S n−1,R ≤ W(θ)}, (31)

where S n−1 = {x ∈ Rn | ‖x‖2 = 1} is the (n − 1) sphere.
From the algorithm suggested in Section 3.1, the zero level set of φ is traveling in its outward normal direction

as φ evolves along with (7). In this case, we can only have information related to the outside to the front Γ. In order
to obtain the inward normal directional information, we need a special treatment for the Hamiltonian H(∇φ) in (7).
However, changing the Hamiltonian can cause problems when solving (13) using (20)–(22) since another nonconvex
minimization may arise in the step in (21).

Thus, in this article, we suggest a proper modification of the initial level set function φ(x, 0) = J(x) rather than
changing the Hamiltonian in (7). On the region inside the given interface Γ, we define the flipped level set function
x 7→ J̃(x) 

J̃(x) > 0 x ∈ int Ω

J̃(x) < 0 x ∈ (Rn \Ω)
J̃(x) = 0 x ∈ (Ω \ int Ω)

(32)

so that the normal direction of the inside region to the front Γ is in the inward direction. With this simple modification,
we can solve (7) in the inside region of Γ with the split Bregman technique. Although the introduction of this modified
level set function may give rise to a nonconvex optimization problem in the step in (20), the selection of the proper λ
can easily overcome this problem. In our algorithm, we set J̃(x) = −J(x) when J(x) < 0.

3.2.2. The initial condition for the split Bregman technique
With the possibility of x 7→ J(x) being nonconvex in practical problems, we need to be concerned with choosing

the initial data for the split Bregman iteration in (20)–(22). In our setting, this occurs when we solve (7) in an interior
region of Γ, where J̃(x) = −J(x). Although our proposed split Bregman procedure in (20)–(22) seems to have no
problem with a sufficiently large λ, some potential problems reside in the solution form in (14) obtained by the Hopf–
Lax formula. Since (14) is a minimization problem over a ball centered at x with a radius of t, there is a possibility
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Figure 1: A graph of φ(x, t) = min‖y−x‖2≤t J(y) when J is not convex for some x, t.

that the split Bregman procedure in (20)–(22) converges to another local minimizer and not a solution depending on
the values x and t.

For a simple and concrete description of this behavior, see Figure 1. In the situation in Figure 1, if we choose a
point xi as an initial v0 or d0 for (20)–(22), the computed solution will converge to the point xa, which is the local
minimizer of J(y) over the given domain (designated by the dashed lines) but not the desired solution xb. This implies
that the ideal initial value for (20)–(22) must be chosen from the blue region in Figure 1 that is located to the right
of the maximizer xc of J(y). However, it is not an easy task to find the blue region in general, especially for the 3D
problems. To overcome this difficulty, we set the initial guess for the interior region of Γ utilizing an approximated
solution of (7) based on a finite difference approximation. For fixed time t f , solve (7) approximately to have φ(x, t f )
for all x ∈ Rn. Then set the initial guess v0 or d0 for (20)–(22) as x − ∇xφ

‖∇xφ‖2
t for each x and t. With this setting, we

can enforce our initial guess to be close enough to the global minimum of (14). Note that this technique can be used
when J(x) is nonformulated data, i.e., grid based data without any modification.
Since what we need is the approximated solution of (7), we solve (7) on a coarsen grid rather than solving on finest
grid for computational efficiency. Then we use an interpolant of this coarse approximated solution as in above con-
sideration. In this article, we use the first-order Euler method in time and the fifth-order WENO apporximation[29] in
the space discretization for the finite difference solution of (7).

3.3. Secant method

From the considerations in Section 2, once we have the solution φ of (13) using (20)–(22), we need to find t(x)
satisfying φ(x, t(x)) = 0 for x ∈ Rn. Unlike the case in [2], ∇xφ(x, t) cannot be immediately obtained from the split
Bregman procedure in our algorithm. Thus, we choose the secant method for finding the 0 of the function t 7→ φ(x, t)
as an alternative to Newton’s method in a previous work [2]. The secant method can expressed as

tn+1 = tn − φ(x, tn)
(

tn − tn−1

φ(x, tn) − φ(x, tn−1)

)
(33)

for two given initial values t0 and t1 > 0 and integers n > 0. In this work, we set t0 = 0 and t1 = 0.2.
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In summary, we present the entire redistancing algorithm in the following table.

Redistancing Algorithm Based on the Hopf–Lax Formula
Step 0 : Initialize J(x), whose zero level set is Γ.

Step 0-1 : Define J̃(x) = −J(x) when J(x) ≤ 0; otherwise, J̃(x) = J(x).
Step 0-2 : Set the initial values for the split Bregman iteration in (20)–(22) depending on the shape of J̃(x).

Step 1 : Set t0 = 0 and t1 to be a small time step, solve (20)–(22), and obtain the solution φ(x, t1) of (7).
Step 2 : While |tn+1 − tn| < δsm,

Step 2-1 : Update tn by (33).
Step 2-2 : Solve the split Bregman iteration in (20)–(22) to obtain φ(x, tn+1).

If |tn+1 − tn| < δsm, let t(x) = tn.
Step 3 : Set φ(x, t) = t(x) when J(x) ≤ 0; otherwise, φ(x, t) = −t(x).

4. Numerical Experiments

In this section, we will present some numerical results based on our novel proposed algorithm for redistancing
the given functions. All results are compared with data computed by PDE-based methods for reinitialization [4, 10],
widely used in many applications related to redistancing. Since our method proposes to make use of the computation of
the “exact” solution of an eikonal equation, the computing times will be presented as results rather than the accuracy.
For a comparable accuracy, we use the third-order TVD Runge–Kutta method in time and the fifth-order WENO
approximation in the space discretization for the comparison data from [10, 6]. All computation in this section is
performed on the uniform grid Ωh.

We are presenting two and three dimensional cases here to evaluate the efficiency of the point-wise updating
nature of the split Bregman technique. Moreover, in an Nx × Ny grid, the PDE-based method [10] is iterated
2 · max(Nx,Ny) times and 3 ·max(Nx,Ny,Nz) for an Nx×Ny×Nz grid with the fictitious time step τ = min(4x,4y)/5,
τ = min(4x,4y,4z)/5 for 3D, to assure its full convergence. As previously mentioned, we perform a finite differ-
ence approximation to solve (7) to obtain good initial guesses for the split Bregman iteration, which is important for
redistancing inside a region. The computational coarsen grid is Ω2h.

For all experiments, we set δsb = δsm = 10−8 as the tolerances for the split Bregman and secant methods. All
numerical tests were coded in C++ and compiled using Visual C++ while MATLAB is used for graphical purposes.
Computations are performed on a desktop personal computer with a 3.30-GHz Intel(R) i7-5820K CPU. All computa-
tions are performing using double floating point values. We did not use any multicore parallelization in our simulations
and focused on the efficiency of the algorithm itself.
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Figure 2: The initial function for Example 1: its graph (left) and contour (right)
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Our algorithm PDE-based method in [10]
Average computational time per point 1.6223e-05 (sec) 2.3943e-04 (sec)

Average computational time (128×128) 0.2699 (sec) 3.9844 (sec)

Table 1: Comparison of the computational times for our algorithm and the PDE-based method [10].

‖κ − κh‖1 order ‖κ − κh‖∞ order
16×16 3.48e-03 1.21e-03
32×32 1.06e-04 5.04 7.06e-05 4.10
64×64 2.92e-06 5.18 3.48e-05 4.34

128×128 1.04e-07 4.81 2.05e-06 4.08

Table 2: Accuracy results in computing the interface’s mean curva-
ture

‖
−→n − −→n h‖1 order ‖

−→n − −→n h‖∞ order
16×16 6.29e-04 2.56e-03
32×32 1.78e-05 5.14 1.06e-04 4.59
64×64 4.67e-07 5.26 5.88e-06 4.16

128×128 1.60e-08 4.86 3.54e-07 4.05

Table 3: Accuracy results in computing the interface’s normal vec-
tor

16×16 32×32 64×64 128×128
‖
−→n − −→n h‖∞ 4.9985e-07 4.9985e-07 4.9985e-07 4.9985e-07

Table 4: Accuracy results in computing the interface’s normal vector

4.1. Example 1 - Circle
In this example, we consider the reinitialization of the initial function φ(x, 0) = J(x) = 1

2 (
∑n

i=1 x2
i − ( 1

2 )2) whose
zero level set is a circle with a radius of 1/2. Figure 2 shows the graph and contours of the initial function J(x). From
the considerations in Section 3.2.1, we define J̃(x) = −J(x) when J(x) < 0. Note that J̃(x) is nonconvex in the inside
region of the front. We choose λ = 5 for this example. In addition, we set the initial condition v0 = b0 = (0, 0), and
d0 = (0, 0) in the exterior region of the front and d0 = x− ∇xφ̃

‖∇xφ̃‖2
t, in the interior region, for the split Bregman iteration

in (20)–(22). Here, φ̃ is a finite difference approximated solution of (7). The numerical results are shown in Figure
3 for the graph and contours. We can see that the results agree with the desired signed function with a high accuracy
as an “exact” solution. For ensuring the accuracy of our approach, we compute the interface’s mean curvature and
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normal, which are closely related with the smoothness of the objective function. In the recent work in [30], they
proposed a high-order reinitalization scheme to get an accurate computation of geometric quantities such as curva-
ture and normal to the front. Their method can compute the curvature with second-order accuracy using a standard
central differencing and compute normal with third-order accuracy with a standard fourth-order approximation. In
this example, we present an accuracy test on computing the geometric quantities as in in [30] but using higher-order
approximations to emphasize that our method computes the exact signed distance function. In order to obtain higher-
order accurate results, all geometric quantities of the interface are approximated with a standard fourth-order accurate
central difference formula. The errors of computing the normal and curvature are given at Table 2 and 3. This result
demonstrates that our method gives fourth-order accuracy for the computation of the interface’s curvature and normal.
In addition, we present numerical results for computing the normal based on formula (16) in Table 4. This shows that
our method can compute the normal very accurately up to the errors of order 10−7.
Table 1 summarizes the computational time per point and a comparison with the results from the PDE-based method
in [10]. Even if our method computes the “exact” signed distance function, the results in Table 1 indicate that our
approach is fifteen times faster than the PDE-based method [10].
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Figure 4: The initial function for Example 2: its graph (left) and contour (right).
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Figure 5: After redistancing the function in Figure 4 by our algorithm. Its graph (left) and contour (right).

Our algorithm PDE-based method in [10]
Average computational time per point 2.2535e-05 (sec) 2.3862e-04 (sec)

Average comtpuational time (128×128) 0.3750 (sec) 3.971 (sec)

Table 5: Comparison of the computational times for our algorithm and the PDE-based method [10].

4.2. Example 2 - Ellipse

In this example, we perform redistancing of the initial φ(x, 0) = J(x) = 1
2 (

∑n
i=1

x2
i

a2
i
− 1), whose zero level set is

an ellipse. We set a1 = 0.8 and a2 = 0.4 for this example as in Figure 4. Owing to the properties of an ellipse, it is
expected that the signed distance function of the ellipse has a segment with multiple gradient values. This singularity
makes it more difficult to compute the signed distance function of the ellipse on the basis of an optimization technique
since the split Bregman procedure shares the solution’s gradient information, which leads to converge to the wrong
solution. In contrast, our algorithm is not affected by the singularity in the solution owing to the Hopf–Lax formula
in (11). This can be verified by the numerical results in Figure 5. We set the initial values v0, d0, and b0 to be same
as those in Example 4.1, and λ = 30 so that the objective function in (20) is convex. We can see a good result from
Table 5, which indicates that our algorithm is about 10 times as fast as its comparison data. Figure 5 shows the graph
and contour after redistancing.

4.3. Example 3 - Union of circles

The third example is the reinitialization of a more complex shape that can be represented as the union of circles.
We note that there are many points having nonsingularities in the gradients of the initial function J(y) from Figure
6. In this example, we set λ = 5 and the initial values v0, d0, and b0 are chosen as same as the previous examples.
Figure 7 shows the contour and graph after reinitialization, and Table 6 summarizes the computational efficiency,
which is almost 12 times faster than the comparison data. We can see that our algorithm works very well with the
initial function with nonsingular gradients.
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Figure 6: The initial function for Example 3: its graph(left) and contour(right).
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Figure 7: After redistancing the function in Figure 6 by our algorithm: its graph(left) and contour(right).

Our algorithm PDE-based method in [10]
Average computational time per point 1.9764e-05 (sec) 2.3790e-04 (sec)

Average comtpuational time (128×128) 0.3289 (sec) 3.959 (sec)

Table 6: Comparison of the computational times of our algorithm and the PDE-based method [10].

4.4. Example 4 - 3D example : sphere

In this example, we are presenting the redistancing of the initial function φ(x, 0) = J(x) = 1
2 (

∑n
i=1 x2

i − (0.7)2)
whose zero level set is a sphere with radius 0.7. We set λ = 5 and the initial values v0, d0, and b0 are chosen as
similar as the ones of 2D examples. Note that coarsening approximated solver of (7) is relatively more efficient in
3D cases than in 2D cases. The cross-sectional(z = 0) contours and graphs of J(x) and after redistancing are given
by Figure 8, 9, respectively. Table 7 indicates that our algorithm is 40 times as fast as its comparison data. As in
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example 1, accuracy results in computing the interface’s geometric quantities are given in Table 8 and 9. These results
demonstrate that the computed signed distance function from our algorithm is very accurate. Also, we can deduce that
extending dimension seldom affect the point-wise update nature of the split bregman while the PDE-based method
based on the finite diffence approximation does.
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Figure 8: The initial function for Example 4: its graph(left) and contour(right).
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Figure 9: After redistancing the function in Figure 8 by our algorithm (cross section at z = 0): its graph(left) and contour(right).

Our algorithm PDE-based method in [10]
Average computational time per point 1.342e-05 (sec) 5.6548e-04 (sec)

Average comtpuational time (128×128×128) 28.8093 (sec) 1213.924 (sec)

Table 7: Comparison of the computational times of our algorithm and the PDE-based method [10].
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‖κ − κh‖1 order ‖κ − κh‖∞ order
163 8.33e-04 2.27e-03
323 3.21e-05 4.70 1.61e-04 3.82
643 1.99e-06 4.01 9.97e-06 4.02

1283 1.25e-07 3.99 6.31e-07 3.98

Table 8: Accuracy results in computing the interface’s mean curva-
ture

‖
−→n − −→n h‖1 order ‖

−→n − −→n h‖∞ order
163 2.64e-04 5.92e-04
323 9.23e-06 4.84 2.85e-05 4.37
643 3.03e-07 4.93 1.73e-06 4.04
1283 1.90e-08 3.99 1.10e-07 3.98

Table 9: Accuracy results in computing the interface’s normal vec-
tor

4.5. Example 5 - 3D example : ellipsoid

Our final example is an ellipsoid given φ(x, 0) = J(x) = 1
2

(∑n
i=1

x2
i

a2
i
− 1

)
where a1 = 0.9, a2 = 0.4, a3 = 0.5. Figure

10 shows its cross-sectional(z = 0) contour and graphs. λ is set to be 30 for this example and the initial values v0, d0
and b0 are choosed to be same as Example 4.4. Numerical results after reinitializing are given in Figure 11. We can
verify that our algorithm is about 20 times as fast as the PDE-based method from Table 10.
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Figure 10: The initial function for Example 5: its graph(left) and contour(right).
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Figure 11: After redistancing the function in Figure 10 by our algorithm (cross section at z = 0): its graph(left) and contour(right).

Our algorithm PDE-based method in [10]
Average computational time per point 2.7057e-05 (sec) 5.7042e-04 (sec)

Average comtpuational time (128×128×128) 58.0833 (sec) 1224.528 (sec)

Table 10: Comparison of the computational times of our algorithm and the PDE-based method [10].

5. Conclusion and Future Works

In this work, we have developed a fast, accurate algorithm for redistancing the objective function based on the
Hopf-Lax formula. The numerical results showed that our algorithm can compute the signed distance function of
the given initial data fast and ’exact’ way in terms of not using any finite difference approximation. Also, our new
algorithm is seldom affected on the curse of dimensionality from its pointwise update nature. Lastly, using the split
Bregman and secant method for redistancing enables us to apply parallel computing without any efforts.

However, although we can choose good initial guess for the split bregman method when J(x) is grid based data,
it still remains to construct resonable initial J(x) for non-formulated data with complex shape in general situation.
In future work, we will consider applying this algorithm to the problem with non-formulated data and modify our
algorithm more efficiently, for example, combined with the localization technique in [31] for the practical usage.
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