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Abstract

Given a collection of entities (or nodes) in a network and our intermittent obser-
vations of activities from each entity, an important problem is to learn the hidden
edges depicting directional relationships among these entities. Here, we study causal
relationships (excitations) that are realized by a multivariate Hawkes process. The mul-
tivariate Hawkes process (MHP) and its variations (spatial-temporal point processes)
have been used to study contagion in earthquakes, crimes, neural spiking activities,
the stock and foreign exchange markets, etc. In this paper, we consider the case with
intermittent observations (and hence gaps.) We propose a variational problem for de-
tecting sparsely hidden relationships with a multivariate Hawkes process that takes
into account the gaps from each entity (MHPG). We bypass the problem of dealing
with a large amount of missing events by introducing a small number of unknown
boundary conditions. In the case where our observations are sparse (e.g. from 10%
to 30%), we show through numerical simulations that robust recovery with MHPG is
still possible even if the lengths of the observed intervals are small but they are chosen
accordingly. In these cases, the proposed MHPG outperforms the classical MHP in
parameter estimations. The numerical results also show that the knowledge of gaps is
very crucial in discovering the underlying patterns and hidden relationships.

1 Introduction

Point processes have demonstrated to be promising tools for extracting dynamic pat-
terns and discovering hidden relationships in event data. Variations of (spatial-temporal,
univariate, multivariate) point processes have been applied to event data from many
different fields in science. For instance, self-exciting point processes have been used
in seismology to model contagion of earthquakes [17, 18, 19, 26] , and in anthropol-
ogy to study the spread of crimes and violence acts [16, 14, 22, 21]. The multivariate
Hawkes process (a parametric version of the self-exciting point process) has been ap-
plied to financial data to study contagion and influential entities in financial networks
[1, 2, 4, 9, 8] , and also to social media networks [23, 27, 11, 15, 10]. The multivariate
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Hawkes process with inhibition has also been used in neuroscience to make inference
of functional connectivity from neural spiking activities [13, 20], among others. The
common assumption in these work is that all events over a long-enough time interval
of interest are observed. However, for reasons associated to the weather or the en-
vironment, etc., events are only observed intermittently. Thus the challenges are: 1)
how to recover robustly the underlying parameters in the presence of gaps; 2) how to
distribute the gaps for optimal recovery given the available resources.

In technical terms, let N be the number of entities (or nodes) within a network. For
each entity m ranging from 1 to N , let Em = {tm,i} be the set of observed events that
are contained in some interval of interest, say (0, T ]. Here each tm,i in (0, T ] (assuming
tm,i−1 < tm,i) represents a time-stamp when an event from entity m occurs. Consider
first the case where all events in (0, T ] from all entities are observed. We recall the
following definitions of point processes.

Definition 1 (Poisson Process [5]). For each entity m, denote the finite collection of
disjoint intervals in (0, T ] by {(cm,k, dm,k]}Km

k=1. Let N(cm,k, dm,k] be the number of
observed events from entity m that are contained in (cm,k, dm,k]. We say the collection
of observed events in Em follows a homogeneous Poisson process with some constant
intensity λm ≥ 0 if the following probability holds

P (N(cm,k, dm,k] = n) =
[λm(dm,k − cm,k)]ne−λm(dm,k−cm,k)

n!
. (1)

Suppose now instead of a constant λm, we have a positive (integrable) function λm :
(0, T ] → R+. Then we say the set of events Em follows an inhomogeneous Poisson
process with intensity function λm(t) if

P (N(cm,k, dm,k] = n) =
[Λm,k]

ne−Λm,k

n!
, (2)

where

Λm,k =

∫ dm,k

cm,k

λm(t) dt.

The interpretations of (1) (or (2)) are as follows:

1. The number of events in (cm,k, dm,k] follows a Poisson distribution with mean and

variance λm(dm,k − cm,k) (or
∫ dm,k

cm,k
λm(t) dt).

2. The number of events in disjoint intervals or from different entities are indepen-
dent random variables. In other words, an occurrence of an event from entity n
has no influence on future events from entity m or on entity n itself.

The multivariate Hawkes process introduces directional dependencies among entities
and events into the definition of the (conditional) intensity function λm(t). The word
‘conditional’ is used because λm(t) is conditioned on prior events.

Definition 2 (Multivariate Hawkes Process [12]). We say the collection of observed
events in Em,m = 1, · · · , N, follows a multivariate Hawkes process if for all t in (0, T ],
the conditional intensity function (CIF) λm(t) for entity m is given by

λm(t) = um +

N∑
n=1

am,n
∑

tn,j∈En,tn,j<t

bme
−bm(t−tn,j). (3)
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Here, the background um ≥ 0 is a homogeneous Poisson process, and it is included
here to promote independent random events. Since

∫∞
0 bme

−bmt dt = 1 for bm > 0, the
matrix a = (am,n)N×N with the entry am,n ≥ 0 depicts how an event tn,j from entity
n will trigger or excite future events from entity m. A multivariate Hawkes process
is stationary if and only if the largest eigenvalue of the matrix a in absolute value is
strictly bounded above by 1 [5]. 1/bm (the width of the exponential function) is the
timescale providing the likelihood when the next event from entity m occurs.

To incorporate inhibition into the multivariate Hawkes process, one allows am,n
to be negative [20]. However, in this paper we focus on the case where am,n is non-
negative.

It is possible to consider an inhomogeneous Poisson process for the background u,
and to have a different time scale or mode of excitation for each pair of entities. For
simplicity, we focus on the single mode of excitation case given by (3). Also, each event
tm,i may have a different mark or jump size Mm,i ≥ 0. Here we consider all events to
be the same, namely Mm,i = 1.

Remark 1. λm(t) in (3) satisfies the following mean-reverting dynamics

dλm(t) = bm(um − λm(t))dt+
N∑
n=1

am,nbmdNn(t), for t ∈ (0, T ], (4)

with the boundary condition λm(0) = um. In general, the solution to (4) has the form

λm(t) = um + (λm(0)− um)e−bmt +
N∑
n=1

am,n
∑

tn,j∈En,tn,j<t

bme
−bm(t−tn,j).

Figure 1 shows simulations of two univariate point processes (N = 1) in the interval
(0, T ], with T = 10. Figure 1-(a) shows a homogeneous Poisson process with constant
λ = 1, and figure 1-(b) shows a (univariate) Hawkes process with u = 1, a = 0.5 and
b = 2. Recall the CIF of a univariate Hawkes process (equation (3) with N = 1) is
defined as

λ(t) = u+ a
∑

0<ti<t

be−b(t−ti). (5)

Note the dynamics of λ(t) in figure 1-(b) as events (in blue spikes) evolve. Based on
the definition of a homogeneous Poisson process, we expect that events are uniformly
distributed (as evident in figure 1-(a).) The same phenomenon doesn’t hold for a
Hawkes process whenever ab > 0. This is evident in figure 1-(b) as events are more
clustered as a result of self-excitation and hence there are more bustiness in the intensity
function.

Figure 2 shows a simulation of a multivariate Hawkes process (N = 2) with u =(
0.1
0.1

)
, a =

(
0.25 0.75

0 0.25

)
, b =

(
10
1

)
. a1,2 = 0.75 implies that events from entity 2

is very contagious toward entity 1. On the other hand, events from entity 1 has no
influence on entity 2 since a2,1 = 0. These effects can be seen in the evolution of the
CIFs (in blue). An event from entity 2 creates a jump in the CIF of entity 1 which
causes a series of events to follow, but not vice versa.

MHP: Let N be the number of entities. In a complete observation setting, for
each entity m we are given the set of observed events Em = {tm,i} and the task is to
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(a) (b)

Figure 1: Simulations of two univariate point processes in the interval (0, T ], T = 10: (a):
Homogeneous Poisson process with constant intensity λ = 1, (b): A univariate Hawkes
process depicting the dynamic of λ(t) given in (5) as events (blue spikes) evolve. Here
u = 1, a = 0.5 and b = 2.

Figure 2: A simulation of a multivariate Hawkes process (N = 2): In this figure, entity 2 is
very influential toward entity 1 (since a1,2 = 0.75) and entity 1 has no influence on entity 2
(since a2,1 = 0.) Both entities have the same amount of self-excitation (a1,1 = a2,2 = 0.25.)
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learn the parameters u = (um)N×1, a = (am,n)N×N and b = (bm)N×1 that completely
describes the conditional intensity function λm(t) in (3). The common approach is to
minimize the (−)log-likelihood function [5]:

min
u,a,b

L(u, a, b) =
N∑
m=1

∫ T

0
λm(t) dt−

∑
tm,i∈Em

log(λm(tm,i))

+G(a)

 , (6)

with the constraint um ≥ 0 and bm ≥ 0. The second term G(a) is the prior or
regularization on the matrix a. For instance, to impose sparsity on interactions, one
can use the Lasso constraint [24] G(a) = µ

∑
m,n |am,n| for some µ > 0 .

Remark 2 (Spatial-Temporal Interpretation). Suppose each entity is a grid cell (m,n)
on a two dimensional rectangle, and the directional interaction that cell (m′, n′) has
toward (m,n) is determined by am−m′,n−n′. Then we can rewrite the CIF for the
Hawkes process in (3) as follows

λm,n(t) = um,n +
∑
m′,n′

am−m′,n−n′
∑

tm′,n′,j<t

bm,ne
−bm,n(t−tm,n,j), (7)

where tm,n,i is the event that falls inside grid (m,n). Let p = m−m′ and q = n− n′.
Here, the stability constraint becomes 0 ≤

∑
p,q ap,q < 1. Having ap,q = 0 whenever

d(p, q) :=
√
p2 + q2 > R for some R > 0 enforces each grid cell to only interact with

other grid cells that are at most a distance R from itself.

For reasons associated to the weather or the environment, one has intermittent
observations (and hence gaps in observations.) Figure 3 shows an example of inter-
mittent observations for a network of two entities. The shaded intervals represent the
observational gaps. We observe events in blue and do not observe events in red from
each entity. For this simulation, we use the same parameters as in figure 2.

For each entity m, let {(cm,k, dm,k]}Km
k=1 be the collection of disjoint observed in-

tervals (e.g. unshaded intervals in figure 3) that are contained in (0, T ], and let
Om = {tm,i} be the corresponding partially observed events (e.g. events in blue from
figure 3). Motivated by remark 1, for each t that belongs to one of the observed
intervals (cm,k, dm,k] we approximate the conditional intensity function for entity m as

λ̄m(t) = um + (λ̄m(cm,k)− um)e−bm(t−cm,k)

+

N∑
n=1

am,n
∑

tn,j∈On,cm,k≤tn,j<t

bme
−bm(t−tn,j),

where λ̄m,k := λ̄m(cm,k) are extra unknowns. By an abuse of notation, denote the
vector λ̄ := {λm,k}. To learn the underlying parameters u, a and b, we propose to solve
the following minimization problem (MHPG)

J(u, a, b, λ̄) =
N∑
m=1

Km∑
k=1

∫ dm,k

cm,k

λ̄m(t) dt−
∑

tm,i∈(cm,k,dm,k]

log
(
λ̄m(tm,i)

)
+G(a) + P (λ̄),
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Figure 3: A simulation (using the same parameters as in figure 2) showing the intermittent
observations for each entity. Blue spikes are observed events and red spikes are unobserved
events.

where G(a) and P (λ̄) are appropriate constraints or regularizations on the matrix a
and the vector λ̄.

Using simulated data for a network of two entities with the fraction of observation
p = 0.3, figure 4 shows that the proposed method MHPG is able to capture the under-
lying statistics better than MHP. See section 3 for further details and comparisons.

The paper is organized as follows. In section 2 we go over a formulation to in-
corporate the gaps into the modeling of the conditional intensity function λm(t) and
propose a variational model with appropriate regularizations and constraints to learn
the underlying parameters u, a and b. In section 3, we provide a numerical study using
simulated data to show that the proposed method robustly recovers the underlying
parameters in the presence of large amount of missing events (≥ 70%), and outper-
forms the classical MHP. Appendix A gives a detailed description of the numerical
implementation of the proposed model.

2 Mutivariate Hawkes Process with Gaps (MHPG)

Let Em be the complete set of events (including observed and unobserved) in (0, T ]
generated by entity m. Suppose now that we do not have complete observations, that
is let {(cm,k, dm,k]}Km

k=1 be the collection of disjoint observed intervals for entity m that
are contained in (0, T ], and let Om be the set of the corresponding partially observed
events.

Let t ∈ (cm,k, dm,k] and recall from (3), we have (assuming λm(0) = um)

6



Figure 4: Comparisons of the event count histograms of MHP and MHPG with the ground
truth for an interval of length 20 times the timescale of entity 1. See example 1 for further
details.

λm(t) = um +
N∑
n=1

am,n
∑

tn,j∈En,tn,j<t≤dm,k

bme
−bm(t−tn,j) (8)

= um +

N∑
n=1

am,n
∑

tn,j∈En,tn,j<cm,k

bme
−bm(t−tn,j) (9)

+

N∑
n=1

am,n
∑

tn,j∈En,cm,k≤tn,j<t≤dm,k

bme
−bm(t−tn,j). (10)

Since by (3),

λm(cm,k) = um +
N∑
n=1

am,n
∑

tn,j∈En,tn,j<cm,k

bme
−bm(cm,k−tn,j).

Substituting λm(cm,k) into (10), we get

λm(t) = um + (λm(cm,k)− um)e−bm(t−cm,k)

+
N∑
n=1

am,n
∑

tn,j∈En,cm,k≤tn,j<t≤dm,k

bme
−bm(t−tn,j).

(11)

The boundary value λm,k := λm(cm,k) is an extra unknown since it may depend on the
unobserved events that are contained in the gap (dm,k−1, cm,k]. The third term on the
right-hand side of the last equation is summing over (observed and unobserved) events
from entity n that are contained in (cm,k, dm,k]. Clearly, if m and n have the same
observed intervals, then we have

{tn,j ∈ En : cm,k ≤ tn,j ≤ dm,k} = {tn,j ∈ On : cm,k ≤ tn,j ≤ dm,k}. (12)
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In general, we consider the following approximation of the CIF for entity m:

λ̄m(t) = um + (λm(cm,k)− um)e−bm(t−cm,k)

+
N∑
n=1

am,n
∑

tn,j∈On,cm,k≤tn,j<t≤dm,k

bme
−bm(t−tn,j).

(13)

Note that the representation of λ̄m(t) in (13) is exactly equal to λm(t) in (11) whenever
(12) holds. For the general case where the observed intervals for m and n have some
overlapping, then (13) provides an approximation to λm(t). In section 3, we show that
by taking the intersection of the observed intervals and remove events that do not
belong to this intersection, one can achieve better reconstruction.

MHPG: Denote λ̄m,k := λm(cm,k) and by an abuse of notation let λ̄ = {λ̄m,k}. We
propose to learn the parameters u, a, b and λ̄ by minimizing the following functional:

J(u, a, b, λ̄) =

N∑
m=1

Km∑
k=1

∫ dm,k

cm,k

λ̄m(t) dt−
∑

tm,i∈(cm,k,dm,k]

log
(
λ̄m(tm,i)

)
+G(a) + P (λ̄),

(14)

where G(a) and P (λ̄) are priors (or regularizations) on a and λ̄ respectively. If all
entities have the same observed intervals, then using techniques from [5], one can show
that J from (14) is the (−)log-likelihood function. From the graph/network point of
view, the LASSO constraint [24] on the matrix a,

G(a) = µ

N∑
m,n=1

|am,n|, (15)

enforces sparsity on a. In other words, each entity only interacts with a few other
entities within the network. Theorem 4.1 from [6] provides theoretical results for the
marginal distributions of {λm(t)}t>0. The (-)log of these distributions can be used to
define P (λ̄). Given the complicated forms of these distributions, we consider instead
the following constraint on λ̄m,k:

um ≤ λ̄m,k ≤ Cum, (16)

for some C ≥ 1. This can be viewed as having λ̄m,k following a uniform distribution
on [um, Cum].

Remark 3. Theorem 4.1 from [6] provides theoretical results for the marginal distri-
butions of {λm(t)}t>0. The (-)log of these distributions can be used to define P (λ̄).
Given the complicated forms of these distributions, we consider instead the uniform
distribution and hence equation (16).

Although equation (11) can be derived directly from equation (4) for t ∈ (cm,k, dm,k],
the technique described in equation (8)-(10) can be applied to a much more general
case. Denote g(t) = be−bt for b, t > 0. Transforming equation (8) to equation (13)
is possible because of the fact that e−bt satisfies the semi-group property. The same
technique can also be used for g(t) = Q(t)s(t), where Q(t) is a polynomial and s(t)
is any function satisfying the semi-group property (namely s(t1 + t2) = s(t1)s(t2).)
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By approximating a power-law function with a sum of exponentials, this technique
can also be applied there. Indeed, let g(t) = cbte

−bt, where cb is chosen such that∫∞
0 g(t) dt = 1. For simplicity consider the univariate self-exciting point process with
λ(t), t ∈ (0, T ], given by

λ(t) = u+ a
∑

0<ti<t

g(t− ti) = u+ a
∑

0<ti<t

cb(t− ti)e−b(t−ti). (17)

Take t ∈ (ck, dk] and assuming ti 6= ck, (17) becomes

λ(t) = u+ a
∑

0<ti<ck

cb(t− ti)e−b(t−ti) + a
∑

ck<ti<t

cbcb(t− ti)e−b(t−ti). (18)

Let A = a
∑

0<ti<ck
cb(t− ti)e−b(t−ti), then

A = a
∑

0<ti<ck

cb(t− ck + ck − ti)e−b(t−ck+ck−ti)

= a
∑

0<ti<ck

cb(ck − ti)e−b(ck−ti)
[
e−b(t−ck)

]
+ a

∑
0<ti<ck

cbe
−b(ck−ti)

[
(t− ck)e−b(t−ck)

]
.

Apply the last equation to (18), we get

λ(t) = u+ (λ(ck)− u)e−b(t−ck) + (λ̃(ck)− u)
[
(t− ck)e−b(t−ck)

]
+ a

∑
ck<ti<t

cbcb(t− ti)e−b(t−ti), for t ∈ (ck, dk],
(19)

where λ̃(ck) = u+ a
∑

0<ti<ck
cbe
−b(ck−ti) has the form of a univariate Hawkes process.

In this case the extra unknowns are {λ(ck)} and {λ̃(ck)}. In general, for g(t) = Q(t)e−bt

with Q(t) being a polynomial of degree M , there will be M+1 extra unknown boundary
values to solve.

3 Numerical Results

In this section we compare the performance of MHP and MHPG given in (6) and (14)
respectively using (15) for the regularization on the matrix a, and (16) for the constraint
of λ̄m,k. We use the following algorithm to generate observed intervals (ck, dk] for each
entity.

Algorithm 1 (Algorithm for generating observed intervals). Given a fraction of ob-
servation 0 < p < 1, and 0 < τ1 < τ2 representing the lower and upper bound for the
lengths of the observed intervals.

1. Set c1 = 0 and d1 = e1 where e1 is a uniform random number in (τ1, τ2).

2. Suppose ck−1 and dk−1 are computed.

3. Set ck = dk−1 + nk, where nk is a uniform random number in ( τ12p ,
τ2
2p).

9



4. Set dk = ck + ek, where ek is a uniform random number in (τ1, τ2).

5. Proceed until either ck ≥ T or dk ≥ T .

In all of the following examples we consider a simple network of two entities with
the true parameters

u =

(
1
1

)
, a =

(
0.5 0.5
0 0.5

)
, b =

(
10
5

)
. (20)

In this case, the eigenvalues of a are its diagonal entries. To obtain the set of observed
events for each entity, we generate the events using the algorithm from [7]. For each
entity m we then select only the events that are contained in the observed intervals
(cm,k, dm,k] for entity m. The timescales for entities 1 and 2 are 1

10 and 1
5 respectively.

Here, we pick T = 500, which means that we are picking a period of 5000 times the
timescale of entity 1. If we view 1/b1 as one minute, then T = 500 is approximately
half a week.

In the numerical results below, examples 1-2 show the importance of knowing pre-
cisely the observed intervals for each entity. Example 2 shows that the uncertainty
in parameter estimation increases as we observe less overall (e.g the fraction of obser-
vation is p = 0.1.) The best scenario for MHPG in (14) is when all the entities in
consideration have the same observed intervals. Example 3 shows that effect when this
assumption is violated. A solution to deal with this violation is taking the intersection
of the observed intervals and remove events that do not belong to this intersection
(which we call biased events). Example 4 shows that by removing biased events, one
obtains a slightly better reconstruction of the parameters. In example 5, we use the
same fraction of observations as in example 1, but the lengths of the observed in-
tervals are decreased. As a result, we see a slight increase in the uncertainty of the
reconstructed parameters.

Example 1. In this example, we consider the case where all entities have the same
collection of observed intervals {(ck, dk]} generated using algorithm 1 with p = 0.3,
τ1 = 1/b1 and τ2 = 30/b1. For instance, if 1/b1 represents one minute, then the lengths
of the observed intervals would range from 1 to 30 minutes. For each simulation,
there are 1100 total events on average. Figure 5-(i) shows a simulation of a Hawkes
process using the parameters in (20). Here observed events are in blue and red events
in shaded intervals are unobserved. Both entities have the same distribution of gaps.
Boxplots from figure 5-(ii)-(iv) show the reconstruction performance of MHP in (6)
and MHPG in (14) using algorithm 2 for 100 simulations. We observe that both
MHP and MHPG can recover the timescale variable b fairly well. However, MHPG
provides beter reconstruction for the background u and the relationship matrix a. The
reconstructed parameters can then be used to forecast the number of events that each
entity may anticipate within a certain time window. Using the median values of the 100
reconstructions for u, a and b for each model, figures 6-(i)-(iv) compare the histograms
of event counts for two intervals of lengths 5 and 20. In both cases, the histograms
of event counts using the reconstructed parameters from MHPG closely match with
the histograms of event counts using the true parameters. Since the estimations of the
background parameter u from MHP are significantly smaller than the true background,
the forecasts produce less events.

10



(i)

(ii) (iii)

(iv)

Figure 5: (i): A simulation of a Hawkes process using the true parameters in (20); shaded
intervals represent gaps in observations (here p = 0.3). Boxplots in (ii),(iii) and (iv) show
estimation of u, b and a respectively using MHP in (6) and MHPG in (14). See (20) for the
ground truths.

11



(i) (ii)

(iii) (iv)

Figure 6: Comparisons of event-count histograms of MHP and MHPG with the ground
truths for two intervals of length 5 and 20 times the timescale 1/b1. MHPG (in green) fits
the ground truth (in blue) much better then MHP (in yellow).
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Example 2. Clearly, when we observe less our uncertainty of parameter estimation
increases. In this example, the setup is the same as in example 1, but now p = 0.1.
As a result, there are 300 total events on average for each simulation. The boxplots in
figures 7-(ii)-(iv) show a greater variation in the estimated parameters. However, the
median values of the 100 reconstructions are still close to the ground truths. This is
evident from the results in figure 8.

Example 3. The set up is the same as in example 1 but now for each entity m we
generate a separate collection of observed intervals {(cm,k, dm,k]} using algorithm 1 with
p = 0.3, τm,1 = 1/bm and τm,2 = 30/bm. For each simulation, there are 1100 total events
on average. 9-(i) shows a simulation of a Hawkes process using the parameters in (20).
Here observed events are in blue and red events in shaded intervals are unobserved.
Both entities have different distribution of gaps. The boxplots in figure 9-(iv) shows
that in this case MHP increases the self-excitation components am,m and decreases
the mutual-excitation components am,n,m 6= n. A similar phenomenon happens for
MHPG but with less deviations form the ground truths. Note that since entity 2 is
not influenced by entity 1, the gaps from entity 1 do not effect the computation of
a2,2. As seen in figures 9-(ii)-(iv), the reconstructions of u2, b2 and a2,2 using MHPG
via algorithm 2 are as accurate as in example 1. However, the reconstructions for
u1, b1, a1,1 and a2,1 are less accurate. These inaccuracies are shown in figures 10-(i) and
(iii), where the histograms of event counts for entity 1 using MHPG deviates slightly
(but still less than MHP) from the histograms of event counts using the ground truth
parameters. Again, here we use the medians of the 100 reconstructed parameters to
simulate the events.

Example 4. In this example, we first generate the observed intervals as in example
3 with p = 0.3. We then take the intersection of the observed intervals of the two
entities, and consider only events that belong to this intersection. After taking the
intersection, the fraction of observation becomes p = 0.15 on average which is larger
than the fraction of observation in example 2. In figure 11: (i) shows the histogram
(very non-uniform) of the resulting lengths of the observed intervals, and (ii) shows
a snapshot of the resulting intervals and the observed events (in blue). Boxplots in
(iii)-(v) show the reconstruction of u, a and b using MHP and MHPG via algorithm
2. The performance for MHPG is better than results from example 3. Figures 12
compares the histograms of event counts of MHP and MHPG with the ground truths
for two intervals of length 5 and 20 times the timescale 1/b1. MHPG provides a better
histogram fit than MHP. However, the performance of MHPG is not as good as in
example 2 even though the fraction of observation is larger. The presence of too many
small observed intervals doesn’t improve the parameter estimation.

Example 5. In this example, we reduce the lengths of the observed intervals so that
τm,1 = 1/b1 and τm,2 = 20/b1 with p = 0.3. As seen in figures 13 and 14, MHPG still
provides a good estimate of the truth parameters. In comparison with example 1, here
we get a slightly larger variation (uncertainty) in the estimated parameters as depicted
by the boxplots in figure 13. Using the medians of the 100 reconstructed parameters,
figure 14 shows that MHPG still provides a better histogram fit than MHP.

In conclusion, we present here a simple technique for modeling the CIF of a mul-
tivariate Hawkes process that incorporates observational gaps in (13). The proposed

13



(i)

(ii) (iii)

(iv)

Figure 7: (i): A simulation of a Hawkes process using the true parameters in (20); shaded
intervals represent gaps in observations (here p = 0.1.) Boxplots in (ii),(iii) and (iv) show
estimation of u, b and a respectively using MHP in (6) and MHPG in (14). See (20) for the
ground truths.
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(i) (ii)

(iii) (iv)

Figure 8: Comparisons of event-count histograms of MHP and MHPG with the ground
truths for two intervals of length 5 and 20 times the timescale 1/b1. MHPG (in green) fits
the ground truth (in blue) much better then MHP (in yellow).
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(i)

(ii) (iii)

(iv)

Figure 9: (i): A simulation of a Hawkes process using the true parameters in (20); shaded
intervals represent gaps in observations (here p = 0.3). Boxplots in (ii),(iii) and (iv) show
estimation of u, b and a respectively using MHP in (6) and MHPG in (14). See (20) for the
ground truths.
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(i) (ii)

(iii) (iv)

Figure 10: Comparisons of event-count histograms of MHP and MHPG with the ground
truths for two intervals of length 5 and 20 times the timescale 1/b1. MHPG (in green) fits
the ground truth (in blue) much better then MHP (in yellow).

17



(i) (ii)

(iii) (iv)

(v)

Figure 11: A simulation of a Hawkes process using the true parameters in (20). (i) shows
the histogram of the lengths of the observed intervals. (ii) shows a snapshot of the observed
intervals. Boxplots in (iii)-(v) show the reconstructed parameters using MHP and MHPG.
See (20) for the ground truths.
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(i) (ii)

(iii) (iv)

Figure 12: Comparisons of event-count histograms of MHP and MHPG with the ground
truths for two intervals of length 5 and 20 times the timescale 1/b1. MHPG (in green) fits
the ground truth (in blue) much better then MHP (in yellow).
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(i)

(ii) (iii)

(iv)

Figure 13: (i): A simulation of a Hawkes process using the true parameters in (20); shaded
intervals represent gaps in observations (here p = 0.3.) Boxplots in (ii),(iii) and (iv) show
estimation of u, b and a respectively using MHP in (6) and MHPG in (14). See (20) for the
ground truths.
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(i) (ii)

(iii) (iv)

Figure 14: Comparisons of event-count histograms of MHP and MHPG with the ground
truths for two intervals of length 5 and 20 times the timescale 1/b1. MHPG (in green) fits
the ground truth (in blue) much better then MHP (in yellow).
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minimizing energy (14) simplifies the problem of having a large amount of missing
events by introducing a much smaller number of unknown boundary values, e.g. λm,k.
In our numerical study, a constraint such as (16) is sufficient for a stable reconstruc-
tion of the underlying parameters u, a and b. We also show that MHPG provides a
better reconstruction by only considering events that belong to the intersection of the
observed intervals from each entity. The experiments show that the uncertainty of
parameter estimations depends both on the fraction and persistence of observations.
Theoretically, it is still an open problem to determine the quantitative relationships
between the underlying parameters of the Hawkes process and the distribution of in-
termittent observed intervals. From the graph/network point of view, the constraint
such as (15) on the matrix a enforces sparsity on the interactions among the entities.
In other words, weak causal links are removed from the network. For analyzing spatial-
temporal event data, modeling the CIF as in (7) with some smoothing on a can be
used. To incorporate gaps, one can then proceed as in (13).

A Numerical Implementation

Denote λ̄m,k,i = λ̄m(tm,i) for some tm,i ∈ (cm,k, dm,k]. Also, let

Λ̄m,k =

∫ dm,k

cm,k

λ̄m(t) dt.

We have

Λ̄m,k = um(dm,k − cm,k) +
λ̄m,k − um

bm

(
1− e−bm(dm,k−cm,k)

)
+

N∑
n=1

am,nBm,n,k, and

λ̄m,k,i = um + (λ̄m,k − um,k)e−bm(tm,i−cm,k)

+
N∑
n=1

am,nAm,n,k,i,

where

Am,n,k,i =
∑

cm,k≤tn,j<tm,i≤dm,k

bme
−bm(tm,i−tn,j)

= Am,n,k,i−1e
−bm(tm,i−tm,i−1)

+
∑

cm,k≤tm,i−1≤tn,j<tm,i

bme
−bm(tm,i−tn,j),

(21)

which can be computed recursively and

Bm,n,k =
∑

cm,k≤tn,j≤dm,k

(
1− e−bm(dm,k−tn,j)

)
.
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The minimizing energy we are interested in is:

J(u, a, b, λ̄) =
N∑
m=1

Km∑
k=1

Λ̄m,k −
∑

tm,i∈[cm,k,dm,k]

log(λ̄m,k,i)


+ µ

N∑
m,n=1

|am,n| = L(u, a, b, λ̄) +G(a),

(22)

with the constraint that um ≤ λ̄m,k ≥ Cum.
The functional J in (22) is not convex, in particular, with respect to b. There

are numerous successful numerical schemes that have been proposed to compute a
minimizer for non-convex functionals. See for instance the numerical scheme PALM
[3], or Block Prox-Linear Method [25], among others. The method we use here follows
PALM but instead of using gradient descend which is very slow in practice we use the
fixed point method.

Computing um: We have

∂J

∂um
=

Km∑
k=1

∂Λ̄m,k
∂um

−
∑

tm,i∈[cm,k,dm,k]

1

λ̄m,k,i

∂λ̄m,k,i
∂um

 ,
where

∂Λ̄m,k
∂um

=
1

bm

[
bm(dm,k − cm,k)−

(
1− e−bm(dm,k−cm,k)

)]
=

1

bm

[
e−bm(dm,k−cm,k) − (1− bm(dm,k − cm,k)

]
,

and
∂λ̄m,k,i
∂um

=
(

1− e−bm(tm,i−cm,k)
)
.

Setting ∂J
∂um

= 0, we see that a minimizer um must satisfies

um =

[
Km∑
k=1

um
λ̄m,k,i

∂λ̄m,k,i
∂um

]
/

[
Km∑
k=1

∂λ̄m,k
∂um

]
. (23)

Computing am,n: We have

∂L

∂am,n
=

Km∑
k=1

∂λ̄m,k
∂am,n

−
∑

tm,i∈[cm,k,dm,k]

1

λ̄m,k,i

∂λ̄m,k,i
∂am,n

=

Km∑
k=1

Bm,n,k −
∑

tm,i∈[cm,k,dm,k]

Am,n,k,i

λ̄m,k,i

=

Km∑
k=1

Bm,n,k −
1

am,n

∑
tm,i∈[cm,k,dm,k]

am,nAm,n,k,i

λ̄m,k,i
.
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Setting

ām,n =

 ∑
tm,i∈[cm,k,dm,k]

am,nAm,n,k,i

λ̄m,k,i

 /[Km∑
k=1

Bm,n,k

]

We then solve
am,n = shrinkµ (ām,n) . (24)

Computing bm: We have

∂J

∂bm
=

Km∑
k=1

 ∂λ̄k
∂bm

−
∑

tm,i∈[cm,k,dm,k]

1

λ̄m,k,i

∂λ̄m,k,i
∂bm

 ,
where

∂λ̄k
∂bm

= (λ̄m,k − um)
[
− 1

b2m
(1− e−bm(dm,k−cm,k))

+
1

bm
(dm,k − cm,k)e−bm(dm,k−cm,k)

]
+

N∑
n=1

am,n
∂Bm,n,k
∂bm

.

and

∂λ̄m,k,i
∂bm

= −(λ̄m,k − um)(tm,i − cm,k)e−bm(tm,i−cm,k)

+
N∑
n=1

am,n
∂Am,n,k,i
∂bm

where

∂Am,n,k,i
∂bm

=
∑

cm,k≤tn,j<tm,i≤dm,k

e−bm(tm,i−tn,j)

− bm
∑

cm,k≤tn,j<tm,i≤dm,k

(tm,i − tn,j)e−bm(tm,i−tn,j)

=
∂A

(1)
m,n,k,i

∂bm
− bm

∂A
(2)
m,n,k,i

∂bm
.
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Thus,

∂J

∂bm
=

Km∑
k=1

∂λ̄m,k
∂bm

−
Km∑
k=1

∑
tm,i∈[cm,k,dm,k]

1

λ̄m,k,i
·

−(λ̄m,k − um)(tm,i − cm,k)e−bm(tm,i−cm,k) +

N∑
n=1

am,n
∂A

(1)
m,n,k,i

∂bm



− bm

Km∑
k=1

 ∑
tm,i∈[cm,k,dm,k]

(∑N
n=1 am,n

∂A
(2)
m,n,k,i

∂bm

)
λ̄m,k,i


= A1 −A2 − bmA3.,

Setting ∂J
∂bm

= 0 implies that a minimizer bm must satisfies,

bm =
A1 −A2

A3
. (25)

Computing λ̄m,k:

∂J

∂λ̄m,k
=

1

bm
(1− e−bm(dm,k−cm,k))−

∑
tm,i∈[cm,k,dm,k]

1

λ̄m,k,i
e−bm(tm,i−cm,k).

Setting ∂J
∂λ̄m,k

= 0 implies that a minimizer λ̄m,k must satisfies

λ̄m,k = bm

 ∑
tm,i∈[cm,k,dm,k]

λ̄m,ke
−bm(tm,i−cm,k)

λ̄m,k,i

 / [1− e−bm(dm,k−cm,k)
]
, (26)

with the constraint um ≤ λ̄m,k ≥ Cum, for some C ≥ 1.

Algorithm 2 (Algorithm for parameter estimation). Given Em = {tm,i} ⊂ ∪Km
k=1(cm,k, dm,k],m =

1, · · · , N , some µ > 0 and dt = small.

1. Initial guess: u0
m = 1, a0

m,n = 0.5/N, bm = 1000, ¯̄λ0 = {λ̄0
m,k = u0

m}.

2. Suppose u`, a`, b` and ¯̄λ` are known.

3. While not convergent

(a) Compute u`+1 using u`, a`, b` and λ̄` via (23).

(b) Compute a`+1 using u`+1, a`, b` and λ̄` via (24).

(c) Compute b`+1 using u`+1, a`+1, b` and λ̄` via (25).

(d) Compute λ̄`+1 using u`+1, a`+1, b`+1 and λ̄` via (26) using the constraint (16)
with C = 20.

4. End while.
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