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Abstract. Learning the governing equations in dynamical systems from time-varying measurements is of
great interest across different scientific fields. This task becomes prohibitive when such data is moreover
highly corrupted, for example, due to the recording mechanism failing over unknown intervals of time.
When the underlying system exhibits chaotic behavior, such as sensitivity to initial conditions, it is crucial
to recover the governing equations with high precision. In this work, we consider continuous time dynamical
systems ẋ = f(x) where each component of f : Rd → Rd is a multivariate polynomial of maximal degree p;
we aim to identify f exactly from possibly highly corrupted measurements x(t1), x(t2), . . . , x(tm). As our
main theoretical result, we show that if the system is sufficiently ergodic that this data satisfies a strong
central limit theorem (as is known to hold for chaotic Lorenz systems), then the governing equations f can
be exactly recovered as the solution to an `1 minimization problem – even if a large percentage of the data is
corrupted by outliers. Numerically, we apply the alternating minimization method to solve the corresponding
constrained optimization problem. Through several examples of 3D chaotic systems and higher dimensional
hyperchaotic systems, we illustrate the power, generality, and efficiency of the algorithm for recovering
governing equations from noisy and highly corrupted measurement data.

1. Introduction

Discovering the underlying dynamical equations from time-dependent observations is of great interest
across many scientific fields. Examples include statistical learning theory [Vap13], manifold learning [RS00],
machine learning [JM15], physical modeling [Sch13], and system identification [Lju98, Lju10]. In those
examples, it is generally assumed that the governing equations can be expressed as a combination of terms
in an appropriate functional space [HTW15]. The selection of the important terms within this space is
obtained from regularization, pruning, shrinking or regression. An overview of reconstruction methods for
dynamical systems can be found in [SZL+95]. Indeed, it is shown that without additional information,
learning the governing equations from measurement data is intractable [CEW12], and may face the curse of
dimensionality [FSV12], regardless of how much data there is.

Identification of nonlinear dynamical systems is one of the most active areas in system identification and
one of the main topics in the rapid development of nonlinear dynamics [Lju10, AL09]. It is shown that simple
nonlinearities in the governing equations can lead to incredibly complicated behavior in the solutions of the
nonlinear systems, which is the so-called butterfly effect present in chaotic solutions, [Spr94, SL00, LCC04].
For example, the well-known three-variable Lorenz system [Lor63] has seven terms with only one nonlinear
term of quadratic type on the right hand side, and the Rössler system [Rös76] has six terms with only one
nonlinear term, yet their solutions exhibit chaotic behavior.

There have been many approaches to extract the underlying structures of chaotic systems from time-
dependent data. A review of major methods in modeling nonlinear dynamics and chaotic systems can
be found in[AL09]. One of the main directions is the reconstruction of state space from one-dimensional
realizations, [PCFS80, CM87, CEFG91, KBA92, Kug96]. Those methods rely on the estimation of the time
delay and the embedding dimension to reconstruct a state space which preserves the topological properties
of the original system. In [CM87, RS92], the authors use the singular value decomposition to determine the
appropriate dependent variables that will appear in the dynamical equations. The reconstruction guarantee
in the absence of noise, called the delay embedding theorem, is proved by [Tak81]. However, it is showed that
in some special choices of parameters, two different systems can produce the exact same time series of one
of their variables [Lai12].

Even with the availability of state-space data, it is challenging to recover the parameters in the governing
equations. In [SL09], the authors use symbolic regression to find both the parameters and the forms of the
equations simultaneously. In [BPK16], the authors recast the problem of recovering coefficients in a known
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basis as a linear regression, where the matrix for regression is built from the data. They moreover incorporate
thresholding in the regression to further promote sparsity in the recovered coefficients that govern the chaotic
systems.

Sparsity has been playing a significant role in the developments of compressed sensing, image processing,
optimization, and many others. Recently, sparse-inducing methods used in image processing and com-
pressed sensing have been applied to partial differential equations, dynamical systems and physical sciences
[WSWK12, SCHO13, CHZ13, BLK13, OLCO13, OLCO14, PBBK14, MSO14, BTBK14, COST15, TSFO15,
BPK16]. In these works, the authors study either the sparse property of the solutions in different contexts
or the sparse structures of the governing equations. In the latter direction, it turns out that many chaotic
systems have simple algebraic representations corresponding to a sparse representation in high dimensional
nonlinear functional spaces [Spr94, SL00, LCC04].

In this work, we bring together connections between compressed sensing, splitting optimization methods,
sparse representations of the governing equations, and the statistical properties of chaotic systems, to provide
exact recovery guarantees for classes of chaotic systems. In particular, we provide conditions and algorithms
for recovering the governing equations from possibly highly corrupted data generated from a class of Lorenz-
like systems which includes the classical Lorenz equations, and are known to be ergodic. Explicitly when the
underlying attractor of the flow has Hausdorff dimension greater than two, the flow satisfies
some mixing properties and the governing equation vector f has a sparse representations in the
space of multivariable polynomials, then the polynomial coefficients of f as well as the outlier
vectors can be exactly recovered as the unique solution to a partial `1-minimization problem
with high probability (depends on the number of measurements), as long as the number of
measurements is big enough and sparse level is low enough. We prove theoretical reconstruction
guarantees by combining the partial sparse recovery results [BSV11] with statistical behavior of the Lorenz-
like systems [AGP14, AMV15]. It is based on the observation that although individual trajectories are highly
unpredictable due to the sensitivity property to initial conditions of chaotic dynamic systems, their statistical
behavior is understandable and share many of the same properties of random sequences. We finally mention
that for our theoretical results, we do not necessarily require the system to be chaotic in the formal sense,
but rather we use certain ergodicity properties which are satisfied for a class of geometric Lorenz attractors
which are also known to be chaotic. Therefore, our theory can likely be generalized to other dynamical
systems with similar ergodicity properties.

The paper is divided as follows. In Section 2, we explain the problem setting. In Section 3, we first review
some results from compressed sensing and statistical properties of chaotic systems. Then we present our
theoretical reconstruction guarantees and state in which conditions the sparse solutions can be recovered.
The numerical implementations and results are described in Sections 4 and 5. Concluding remarks are given
in Section 6.

2. Problem Setting

In this work, we are interested in reconstructing the governing equations of a chaotic system from the
time-varying measurement data in which data is corrupted at unknown intervals of time. Here, we consider
chaotic systems of the form

(2.1)
d

dt
x(t) = f(x(t)),

where the column vector x(t) = (x1(t), x2(t), . . . , xd(t))
T represents the state of the system at time t and

the nonlinear function vector f(x) = (f1(x), f2(x), . . . , fd(x))T defines the dynamic motions. Even though
chaotic systems are deterministic, they exhibit stochastic behavior [Lor63]. Such behavior is commonly
referred as the butterfly effect, i.e., small differences in initial conditions will yield much larger differences in
the outcomes. Therefore, it is very important to recover the governing equations with high accuracy.

In many chaotic systems inspired by physical and biological processes, the governing equations may
consist of only a few terms in a high dimensional nonlinear functional space [Lor63, Rös76, Spr94, SL00,
LCC04]. This observation also holds for many dynamical systems and partial differential equations where the
complicated system can be well-approximated by a simpler system with similar behavior [SCHO13, BPK16].
Explicitly, for many chaotic systems, the governing equations can be represented in the space of polynomial
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functions

(2.2) fj(x(t)) = cj0 +
∑
k

cj,kxk(t) +
∑
k,l

cj,k,l xk(t)xl(t) +
∑
k,l,n

cj,k,l,n xk(t)xl(t)xn(t) + . . .

where the coefficient vectors cj = (cj,0, cj,1, . . . , cj,d, cj,1,1, . . . , cj,d,d, . . .) are moreover sparse. Note that cj is
a vector of length

(2.3) r =

(
p+ d

d

)
≤
(
p+ d

d

)d
,

the maximal number of monomials of degree at most p in a multivariate polynomial in d variables. In fact,
many key dynamical systems arising from applications in biology and physics, such as the Lorenz system,
are in fact bilinear, so that p = 2.

For the rest of the paper, we denote d the dimension of the system, m the number of measurements and r
the cardinal of the basis for a given nonlinear functional space. Given a collection of data at different times
{x(t1), x(t2), . . . , x(tm)}, as in [BPK16], we construct the following matrices X, Ẋ and Φ(X) to store the
measurement data, the time derivative of the data and the dictionary built from the data:

X =

 | | |
X1 X2 . . . Xd

| | |

 =


x1(t1) x2(t1) . . . xd(t1)
x1(t2) x2(t2) . . . xd(t2)

...
... . . .

...
x1(tm) x2(tm) . . . xd(tm)


m×d

(2.4)

Ẋ =

 | | |
Ẋ1 Ẋ2 . . . Ẋd

| | |


m×d

=


ẋ1(t1) ẋ2(t1) . . . ẋd(t1)
ẋ1(t2) ẋ2(t2) . . . ẋd(t2)

...
... . . .

...
ẋ1(tm) ẋ2(tm) . . . ẋd(tm)


m×d

(2.5)

Φ(X) =

 | | | |
1 X XP2 XP3 . . .
| | | |


m×r

(2.6)

where for each positive integer k, XPk denotes the values of all monomials of total degree k at the times
t1, t2, . . . , tm. For example,

(2.7) XP2 =


x2

1(t1) x1(t1)x2(t1) . . . x1(t1)xd(t1) x2
2(t1) . . . x2

d(t1)
x2

1(t2) x1(t2)x2(t2) . . . x1(t2)xd(t2) x2
2(t2) . . . x2

d(t2)
...

... . . .
... . . .

...
x2

1(tm) x1(tm)x2(tm) . . . x1(tm)xd(tm) x2
2(tm) . . . x2

d(tm)


m×( d(d+1)

2 )

In the case of non-damaged data, [BPK16] observed that the problem of finding f of the form (2.2) in the case
of exact data X and Ẋ can be reformulated as finding the coefficient matrix C = [c1 c2 . . . cd]r×d such
that Ẋ = Φ(X)C. Thus, given noisy data, such as if Ẋ is approximated via finite differences of successive
values of X, they propose to solve for C via linear regression:

(2.8) C = argmin
C̃

1

2
‖Ẋ − Φ(X)C̃‖22

The authors moreover incorporate hard thresholding into the regression procedure to promote sparsity in C.
They illustrate the effectiveness of their algorithm for stably reconstructing the governing coefficients in the
presence of a small amount of noise, but do not provide theoretical performance guarantees. In particular,
there are no guarantees a priori that the matrix Φ(X) will be full-rank, which is necessary for uniqueness of
the recovered C. For example, the matrix Φ(X) will not have full rank if x(tk) = x(tk+1) is at a fixed point,
or if x(tk+L) = x(tk) is fixed at a cycle of length L < r more generally.

As a by-product of our main theorem, we provide conditions under which the regression algorithm from
[BPK16] is theoretically justified; namely, will show that for chaotic data, the columns are independent, and
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thus the matrix Φ(X) has full column rank and thus the polynomial coefficients generating the data is unique.
See Corollary 3.13 for more details. More generally, we are interested in the case when the data is might be
highly corrupted, such as over unknown intervals of time due to disruption of the measurement device.

Our set-up is as follows: consider data X◦ which is corrupted in the sense that some small fraction of the
m measurements x(t1), x(t2), . . . , x(tm) and ẋ(t1), ẋ(t2), . . . , ẋ(tm) are perturbed by bounded additive error:
xo(tj) = x(tj) + θj and ẋo(tj) = ẋ(tj) + θ′j . Exploiting that the corruptions are sparse, the matrix difference
E = Ẋ◦ − Φ(X◦)C will only have a small fraction of its rows which are non-zero. Thus, denoting the jth
row of E by E(j, :), the optimization problem of jointly recovering the polynomial governing coefficients and
locations of the corruptions can be posed as a sparse recovery problem:

(2.9)
min
(C,E)
‖{j : E(j, :) is non-zero }‖

subject to Φ(X◦)C + E = Ẋ◦.

Of course, this optimization problem is intractable, so we relax the objective function to be convex. To
enforce the group-sparsity with respect to the rows of E [FR08, Kow09, DYZ13], we consider the following
optimization model

(2.10)
min
(C,E)

‖E‖2,1 = min
(C,E)

m∑
j=1

‖E(j, :)‖2,

subject to Φ(X◦)C + E = Ẋ◦.

For more details, see Section 3. To enforce additional sparsity in the polynomial coefficient matrix C, we will
also consider the problem

(2.11)
min
(C,E)

‖E‖2,1 = min
(C,E)

m∑
j=1

‖E(j, :)‖2,

subject to Φ(X◦)C + E = Ẋ◦ and C is sparse.

For more details, see Sections 4 and 5.

3. Reconstruction Guarantee Analysis

In this section, we first recall some results from compressive sensing and in particular, partial sparse
recovery problems therein, as well as statistical properties of Lorenz-like systems. Then we present our
theoretical guarantees for the framework (2.10).

3.1. Theory from Compressive Sensing. The compressive sensing paradigm, in its most basic form as
introduced in [Don06, CRT06], considers, for an underdetermined linear system of equations y = Ax, the
NP hard minimization problem

(3.1)
x0 =argmin

z
‖z‖0 = |{j : |zj | > 0}|

subject to Az = y.

The convex relaxation of this problem is the `1 minimization problem

(3.2)
x1 =argmin

z
‖z‖1 =

n∑
j=1

|zj |

subject to Az = y.

Compressive sensing theory provides conditions on the underdetermined matrix A such that the solutions
x0 and x1 are equivalent and equal to x satisfying Ax = y whenever there exists such an x is sufficiently
sparse. The theoretical guarantees are also stable with respect to non-exact sparse solutions and robust with
respect to additive noise on the measurements y = Ax, but for simplicity we discuss only the case of exact
sparsity here. For a comprehensive overview of compressive sensing, we refer the reader to [FR13].

From here on out, we say that a vector x ∈ Rn is s-sparse. As shown in [Don06, CRT06, CDD09], a
certain null-space property for an m×n matrix A is a sufficient and necessary condition for sparse solutions
to be exactly recovered via `1 minimization.
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Proposition 3.1. Given a matrix A ∈ Rm×n, every s-sparse vector x is the unique solution of (3.2) with
y = Ax if and only if for every v ∈ Rn \ {0} in the null space of A, and for every set S ⊂ {1, 2, . . . , n} of
cardinality s, the following holds:

‖vS‖1 <
1

2
‖v‖2.

In words, the null space property means that all vectors in the null space of the measurement matrix
A should be sufficiently un-concentrated on any subset of its entries, or rather, sufficiently “far" from the
nonlinear set of sparse vectors.

More recently, a variant of compressive sensing theory has been developed for the theory of partial sparse
recovery. Although there is a rich literature on partial sparse recovery guarantees, we will use the results
from [BSV11] which are most closely related to the setting at hand.

We use the following definition and theorem for partial sparse recovery from [BSV11]:

Definition 3.2 (Partial null space property). A pair of matrices A = (A
l×(n−r)
1 , Al×r2 ) satisfies the null space

property (NSP) of order s− r for partially sparse recovery of size n− r with r ≤ s if A2 is full column rank
and if for every v1 ∈ Rn−r\{0} such that A1v1 ∈ R(A2), the range of A2, and for every set S ⊂ {1, . . . , n−r}
of cardinality s− r, the following holds

‖(v1)S‖1 <
1

2
‖A1v1‖1.

Proposition 3.3. A pair of matrices A = (A
l×(n−r)
1 , Al×r2 ) satisfies the NSP of order s − r for partially

sparse recovery of size n − r if and only if every v̄ = (v̄1, v̄2), such that v̄1 ∈ Rn−r is (s − r)-sparse and
v̄2 ∈ Rr such that A1v̄1 +A2v̄2 = y, is the unique solution to

min
v′1,v

′
2

‖v′1‖1 subject to A1v
′
1 +A2v

′
2 = y.

We will use this proposition in the particular case A1 = Idl×l. We state this special case explicitly for
clarity.

Corollary 3.4. Every (v, w) ∈ Rm+r satisfying v+Aw = y such that v ∈ Rm is (s− r)-sparse is the unique
solution to

min
ṽ,w̃
‖ṽ‖1 subject to ṽ +Aw̃ = y,

if and only if A ∈ Rm×r is full column rank and for every ṽ ∈ Rm\{0} such that ṽ ∈ R(A), the following
holds for every set S ⊂ {1, . . . ,m} of cardinality s− r:

‖ṽS‖1 <
1

2
‖ṽ‖1.

Note that a straightforward corollary of this corollary is that exact and unique recovery still holds if we
add any additional consistent linear constraints to the linear program.

Corollary 3.5. Under the same conditions as above, if for some pair of matrices (B1, B2) the solution vector
(v, w) satisfies additionally B1v + B2w = z, then under the same conditions (v, w) is the unique minimizer
to the program

min
ṽ,w̃
‖ṽ‖1 subject to ṽ +Aw̃ = y, B1ṽ +B2w̃ = z.

3.2. Statistical Behavior of Lorenz-like Systems. In this section, we are interested in 3D dynamical
systems, i.e., the dimension of the system is d = 3. We first recall the following notation. We denote by
C1+η(Ω) the Holder space consisting of those functions f having continuous derivative up to order 1 and
such that all partial derivatives are Holder continuous with exponent η:

‖f‖C1+η(Ω) := max
|β|∈{0,1}

sup
x∈Ω
|Dβf(x)|+ max

|β|=1
sup

x 6=y∈Ω

|Dβf(x)−Dβf(y)|
|x− y|η

,

where β ranges over multi-indices with |β| =
∑
i

|βi|.
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Recall the well-known classical Lorenz equations:

ẋ1 = a (x2 − x1)
ẋ2 = γx1 − x2 − x1x3

ẋ3 = x1x2 − b x3,

a = 10
γ = 28
b = 8/3

(3.3)

Note that the Lorenz equations are of the form ẋ(t) = f(x(t)) with polynomial governing equations f of
the form (2.2) of degree p = 2. With slight abuse of notation, we will go back and forth also between the
notation Ẋt = f(Xt).

The author in [Lor63] introduced these equations as a simplified model for weather forecast, and numerical
simulations indicated that in an open neighborhood of the chosen parameters, almost all points in phase space
tend to a chaotic attractor. One property of chaotic systems is sensitive dependence on initial conditions,
which implies that long term predictions based on such models are infeasible; on the other hand, another
property of chaos is that the statistical behavior of such systems is understandable, and chaotic systems
share many of the same statistical properties of random sequences. The Lorenz attractor, while easy to
visualize numerically, has proved extremely difficult to analyze rigorously. A proof of existence of the Lorenz
attractor was only provided only in 1999 [Tuc99], incorporating a computer-aided proof. Precisely, Tucker
proved that the Lorenz equations (3.3) support a compact, connected attractor Λ and the flow admits a
unique so-called “physical" measure µ with supp(µ) = Λ. An invariant probability measure µ for a flow
Xt := (x1(t), x2(t), x3(t)) on a compact Riemannian manifold M is called physical if the basin of µ, B(µ)
has positive Lebesgue measure. Recall that B(µ) is the set of points z ∈ M satisfying for all continuous
functions ψ : M → R

(3.4) lim
T→∞

1

T

∫ T

0

ψ(Xt(z))dt =

∫
Λ

ψ(z)dµ(z).

Roughly speaking, the existence of a physical measure for an attractor means that most points in a neighbor-
hood of the attractor have well defined long term statistical behavior. For the Lorenz equations (3.3), and
more generally, for any so-called geometric Lorenz-like system (see [AGP14] for definition and properties) of
a flow on a three-dimensional manifold, the ergodic basin B(µ) covers a full Lebesgue measure subset of the
topological basin of attraction Λ.

Property (3.4) of a physical measure shows that asymptotically, the time average of a continuous observable
of the flow equals its space average. It is natural to ask more quantitatively for the rate of convergence of
the time averages to the space average and moreover, if such ergodicity also holds for the time-1 map for the
flow, given by the discrete sequence {Xj}j∈Z. Following several results in this direction for certain classes
of so-called geometric Lorenz attractors which include the Lorenz equations (3.3), we state one of the most
recent results in this direction. Combining Theorems 5.2 and Theorem 7.1 from [AMV15] with Corollary 2.2
of [AM15], one can derive estimates on the rate of mixing in (3.4) for the discrete time-1 map in the form of
an almost sure invariance principle (ASIP) for the time-1 map of flows generated by the Lorenz equations
3.3 and, more generally, for the time-1 map of a vector field belonging to the following (quite technical) class:

Definition 3.6. Denote by U the class of C1+η uniformly hyperbolic skew product flows, subject to a uniform
nonintegrability condition, as defined by the condition UNI and properties (i)-(iv) from [AM15]. This class
includes the classical Lorenz attractor, and an open set of coefficients around the classical coefficients.

Proposition 3.7 (ASIP for time-1 maps). Fix η > 0. Let Xt be the flow generated by a vector field G ∈ U
starting from X0 = x ∈ Λ, and consider its time-1 map {X0, X1, X2, . . . , Xm}. Let ψ : R3 → R be a C1+η

function, and let Z be a standard normal random variable. Then there is a universal constant C1 > 0 and a
constant Cx,ψ ≥ 0 such that∣∣∣∣∣∣ 1

m

m−1∑
j=0

ψ(Xj)−
∫

Λ

ψ(z)dµ(z)− σ√
m
Z

∣∣∣∣∣∣ ≤ Cx,ψm−3/4(log(m))1/2(log log(m))1/4,

for µ-almost all x ∈ Λ,

and the variance is bounded by σ2 ≤ C1‖ψ‖2C1+η(Λ).
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Remark 3.8. Note that the ASIP implies the Central Limit Theorem (CLT): in the same setting as above,

1√
m

m−1∑
j=0

ψ(Xj)−m
∫

Λ

ψ(x)dµ(x)

 −→ N (0, σ2) as m→∞,

where the convergence is in distribution.

For our purposes, it will be useful to state a more uniform version of Proposition 3.7. Consider the
function

(3.5) Fτ,η(x) = sup
ψ:‖ψ‖C1+η≤τ

Cx,ψ.

By Proposition 3.7, Fτ (x) is finite for µ-almost all x. Thus, given any ε > 0, there exists a constant κε,τ,η
and a subset Λε,τ,η ⊂ Λ of measure µ(Λε,τ,η) ≥ 1− ε such that Fτ,η(x) ≤ κε,τ,η uniformly for all x ∈ Λε,τ,η.
In terms of this constant, we can state the following corollary.

Corollary 3.9. Fix η > 0 and ε > 0. Let Xt be the flow generated by a vector field G ∈ U . Draw x ∈ Λ from
the measure dµ, and consider the flow Xt generated by such a vector field originating at X0 = x, and its
time-1 map {X0, X1, X2, . . . }. There is a universal constant C1 > 0 and a constant κε,τ,η ≥ 0 such that with
probability exceeding 1 − ε with respect to the draw of x, the following holds uniformly over all ψ : R3 → R
satisfying ‖ψ‖C1+η ≤ τ :∣∣∣∣∣∣ 1

m

m−1∑
j=0

ψ(Xj)−
∫

Λ

ψ(z)dµ(z)− σ√
m
Z

∣∣∣∣∣∣ ≤ κε,τ,ηm−3/4(log(m))1/2(log log(m))1/4,

and the variance is bounded by σ2 ≤ C1τ
2.

For any G ∈ U , the corresponding attractor Λ will be compact, i.e., there exists some finite BΛ > 0 such
that

max
(x,y,z)∈Λ

{|x|, |y|, |z|} ≤ BΛ.

For the Lorenz equations (3.3) in particular, Λ is a fractal, and has measured Hausdorff dimension 2.06± .01
[Vis04].

3.3. Recovering Polynomial Dynamics from Chaotic Data. Fix number of measurements m. Fix Θ
and Θ′ ∈ Rm×3, arrays of sparse corruptions such that ‖Θ(:, l)‖0, ‖Θ′(:, l)‖0 ≤ s, and are uniformly bounded,

(3.6) sup
j
{‖Θ(j, l)‖∞, ‖Θ′(j, l)‖∞} ≤ BΘ, l = 1, 2, 3.

Suppose that we observe corrupted iterations of the time-1 map of a flow Xt = (x1(t), x2(t), x3(t)) satisfying
the conditions of Corollary 3.9:

(3.7) Given: U t = Xt + Θt, V t = Ẋt + Θ′t, t = 0, 1, 2, . . . .

Our measurements U j = (u1(j), u2(j), u3(j)) and V j = (v1(j), v2(j), v3(j)) satisfy the linear equations

(3.8) V − ΦC = E ,

where
• Φ has rows Φ(j, :) = (1, u1(j), u2(j), u3(j), u1(j)u2(j), . . . )
• E = (e1, e2, e3) ∈ Rm×3 has a sparse number of nonzero rows, with ‖E‖0 ≤ 6s,
• C = (c1, c2, c3) ∈ Rr×3 is the matrix of polynomial coefficients.

Notice that by turning the matrices V, C, E into tall column vectors v, c, e and turning Φ into the augmented
matrix

A =

 Φ, 0, 0
0,Φ, 0
0, 0,Φ

 ,
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we can equivalently write equation (3.8) as v − Ac = e. The range space R(A) corresponds to vectors
Ac = (Φc1,Φc2,Φc3) ∈ R3m×3 of the form

(Φcl)j =
∑

α:|α|≤p

cl(α)u1(j)α1u2(j)α2u3(j)α3

=
∑

α:|α|≤p

cl(α)x1(j)α1x2(j)α2x3(j)α3 +Rl(j), l = 1, 2, 3,(3.9)

where ‖Rl‖0 ≤ 2s and, in light of the assumption (3.6), is bounded by

(3.10) |Rl(j)| ≤ (BΘ +BΛ)d‖cl‖1, l = 1, 2, 3.

Lemma 3.10. Let η ≥ 0. Suppose that the underlying attractor Λ for the flow at hand has Hausdorff
dimension greater than two, and consider the function ψc = ψ(c1,c2,c3) : R3 → R given by

ψc(x) =

3∑
l=1

∣∣∣ ∑
α:|α|≤p

cl(α)xα1
1 xα2

2 xα3
3

∣∣∣1+η

.

Then

inf
c∈R3r:‖c‖1=1

∫
Λ

ψc(x)dµ(x) ≥ D > 0.

Proof. Since Λ has Hausdorff dimension strictly greater than 2, it is not contained in the zero set of any
algebraic polynomial. Thus, for any fixed nonzero c ∈ R3r,

G(c) :=

∫
Λ

m∑
j=1

∣∣(Axc)j∣∣1+η
dµ(x) > 0.

Since the set c ∈ R3r : ‖c‖1 = 1 is compact and non-empty, we may apply the extreme value theorem: any
continuous real-valued function over the space is bounded below and attains its infimum. In particular, this
implies

inf
c∈R3r:‖c‖1=1

G(c) > 0.

�

Theorem 3.11 (Main theorem). Fix η > 0, ε > 0, and maximal degree p. Let Xt = x(t) = (x1(t), x2(t), x3(t))
be the flow generated by a vector field G ∈ U whose governing equation f : R3 → R3 in ẋ(t) = f(x(t)) is
a multivariate algebraic polynomial of degree at most p, and suppose we observe corrupted measurements of
the time-1 map

U t = Xt + Θt, V t = Ẋt + Θ′t, t = 0, 1, 2, . . . ,m

where (Θ,Θ′) ∈ R6m is sparse such that ‖(Θ,Θ′)‖0 ≤ 2s, and the sparse level s is greater or equal than(
p+d
d

)
, the maximal number of monomials of degree at most p. Also, assume that the underlying attractor

for the flow has Hausdorff dimension greater than two.
Then there are constants C,C ′ depending only on Λ, p, BΘ, η, and ε such that if

m ≥ C, s ≤ C ′m1/(1+η),

then the following holds with probability exceeding 1 − ε − e−d3 log(3m) with respect to the initial condition
X0 = x ∼ dµ: The polynomial coefficients of f , as well as the outlier vectors (Θ,Θ′), can be exactly recovered
from the unique solution to the partial `1-minimization problem

min
c,e
‖e‖1 subject to v −Ac = e.

We turn to the proof of Theorem 3.11 shortly. First, we provide a corollary of the theorem in case we
observe measurements of the time-∆ map, for ∆ < 1.
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Corollary 3.12. Fix η > 0, ε > 0, L ∈ N such that ∆ = 1
L , and degree p. Let X

t = x(t) = (x1(t), x2(t), x3(t))

be the flow generated by a vector field G ∈ U whose governing equation f : R3 → R3 in ẋ(t) = f(x(t)) is
a multivariate algebraic polynomial of degree at most p, and suppose we observe corrupted measurements of
the time-∆ map

U j = X∆j + Θj , V j = Ẋ∆j + Θ′j , j = 0, 1, 2, . . . ,mL

where (Θ,Θ′) ∈ R6m is sparse and ‖(Θ,Θ′)‖0 ≤ 2sL.
Then for the same constants C,C ′ as in Theorem 3.11, once

m ≥ C, s ≤ C ′m1/(1+η),

then the following holds with probability exceeding 1− ε− e−d3 log(3m) with respect to x ∼ dµ: The polynomial
coefficients of f , as well as the outlier vectors (Θ,Θ′), can be exactly recovered as the unique solution to the
partial `1-minimization problem

min
c,e
‖e‖1 subject to v −Ac = e.

Proof of Corollary 3.12. Consider the subsequences

U jk = ULj+kk , V jk = V Lj+k, k = 0, 1, . . . , L− 1, j = 0, 1, 2, . . . ,m.

Each of these L subsequences represents a corrupted measurement vector for a time-1 map of the flow Xt.
By the pigeonhole principle, one of these subsequences is sparsely corrupted, having associated corrupted
vector of sparsity level ‖(Θk,Θ

′
k)‖0 ≤ s. Thus we may apply Theorem 3.11, using Corollary 3.5 in place of

Corollary 3.4. �

Proof of Theorem 3.11. We break the proof into several parts.

First, consider a fixed polynomial coefficient vector c = (c1, c2, c3) ∈ R3r of unit norm ‖c‖1 = 1, and the
corresponding vector vc(x) = (vc1(x1, x2, x3)), vc2(x1, x2, x3), vc3(x1, x2, x3)) whose components are given by

vcl (x1, x2, x3) =
∑

α:|α|≤p

cl(α)xα1
1 xα2

2 xα3
3 .

Consider the corresponding C1+η observable ψ = ψc : R3 → R given by

(3.11) ψc(x) = |vc1(x)|1+η + |vc2(x)|1+η + |vc3(x)|1+η.

Combining the chain rule, Holder’s inequality, and that ||x|η − |y|η| ≤ ||x|− |y||η by concavity, we bound the
C1+η norm of ψ by

‖ψc‖C1+η ≤ max
|β|≤1

sup
x∈Λ
|Dβψc(x)|+ max

|β|≤1
sup
x∈Λ
|Dβψc(x)|

≤ 2‖c‖1(1 + η)p
(
(BΛ)2p−1

)η
= 2(1 + η)p

(
(BΛ)2p−1

)η
=: Cη,Λ,p.

In particular, ‖ψc‖C1+η is bounded above by a constant which is independent of the number of measurements
m. Indeed, this bound holds uniformly over all observables corresponding to c : ‖c‖1 = 1:

(3.12) max
c:‖c‖1=1

‖ψc‖C1+η ≤ Cη,Λ,p.

We also have a uniform lower bound on a related quantity by Lemma 3.10: let D = Dη,Λ,p > 0 be the lower
bound in Lemma 3.10. Then

(3.13) min
c:‖c‖1=1

∫
Λ

ψc(x)dµ(x) ≥ Dη,Λ,p.

Recall thatm is our number of meausurements. In order to apply a variant of Corollary 3.9 uniformly over all
observables {ψc : ‖c‖ = 1}, we first discretize the set {c : ‖c‖1 = 1} using covering lemmas, and then apply
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a large deviations result. By a well-known result in the literature on covering numbers (see, e.g.,[FR13][
Appendix C.2]), there exists a finite set of points Q in {c : ‖c‖1 = 1} such that

max
c:‖c‖1=1

min
q∈Q
‖c− q‖1 ≤ 1/m,

of cardinality
|Q| ≤ (3m)3r.

We now apply Corollary 3.9 of Theorem 3.7 uniformly over the observables ψq : q ∈ Q. Draw an initial
condition X0 = x from the measure dµ. The following holds with probability 1− ε with respect to the draw
of x:

min
q∈Q

∣∣∣∣∣∣
m−1∑
j=0

ψq(Xj)

∣∣∣∣∣∣
≥ min

q∈Q

∣∣∣∣m ∫
Λ

ψq(x)dµ(x)

∣∣∣∣−max
q∈Q

∣∣∣√C1Cη,Λ,p
√
mZq

∣∣∣−max
q∈Q

κε,p,ηm
1/4(log(m))1/2(log logm)1/4)

≥ mDη,Λ,p −
√
m
√
C1Cη,Λ,p max

q∈Q
|Zq| − κε,p,ηm1/4(log(m))1/2(log logm)1/4),

where Zq denotes a standard normal random variable. We now bound max
q∈Q
|Zq|. First, recall the Chernoff

bound for a standard Gaussian random variable Z:

P (|Z| ≥ t) ≤ 2e−t
2/2, ∀t ≥ 0.

Recalling that |Q| ≤ (3n)3r, the union bound then gives

P (∃q ∈ Q : |Zq| ≥ t) ≤ 2(3m)3re−t
2/2 ≤ 2e3r log(3m)−t2/2, ∀t ≥ 0.

In particular,
P (∀q ∈ Q : |Zq| ≤ 2

√
3r log(3m)) ≥ 1− 2e−3r log(3m).

All together, we find with probability exceeding 1− ε− 2e−3r log(3m) with respect to X0 ∼ dµ,

min
q∈Q

∣∣∣∣∣∣
m−1∑
j=0

ψq(Xj)

∣∣∣∣∣∣ ≥ mD −
√
m log(m)C − κm1/4(log(m))1/2(log logm)1/4,

where the constants D,C, and κ depend only on ε, η,Λ, and p. Thus, for a sufficiently large constant
C ′ = C ′(ε, d, η) and sufficiently small constant C ′′ = C ′′(ε, d, η), and using the inequality ‖v‖1 ≥ ‖v‖1+η,
the following uniform lower bound holds with probability exceeding 1 − ε − 2e−3r log(3m) with respect to
X0 ∼ dµ: if the number of measurements satisfies

(3.14) m ≥ C ′,
then

min
q∈Q

m−1∑
j=0

|vq1(x)|+ |vq2(x)|+ |vq3(x)|

 ≥ (C ′′m)1/(1+η).(3.15)

Recall now by (3.9) that
3m∑
j=1

|(Aq)j | =
m−1∑
j=0

ψq(Xj) +

m∑
j=1

3∑
l=1

|Rl(j)|.

Assuming (3.14) and with the same probability, and using the bound (3.10) on ‖Rl‖∞ and that ‖Rl‖0 ≤ 2s,

min
q∈Q

3m∑
j=1

|(Aq)j | ≥ (C ′′m)1/(1+η) −
m∑
j=1

3∑
l=1

|Rl(j)|

≥ (C ′′m)1/(1+η) − 6s(BΘ +BΛ)d.
10



We now use a continuity argument to pass this lower bound from the discrete net Q to the entire sphere
{c : ‖c‖1 = 1}. Fix c ∈ {c : ‖c‖1 = 1} and let q ∈ Q be such that ‖c − q‖1 ≤ 1/m, which exists by
construction of Q. By Holder’s inequality,

‖A(c− q)‖1 ≤ 3mBdΛ‖c− q‖1 + s(BΛ +BΘ)d‖c− q‖1

≤ 3BdΛ + 3
s

m
(BΛ +BΘ)d.(3.16)

Thus,

min
c:‖c‖1=1

‖Ac‖1 ≥ (C ′′m)1/(1+η) − C ′′′s(BΛ +BΘ)d.

At the same time, for a subset S ⊂ {1, 2, . . . ,m} of size s, we have the immediate and uniform upper
bound ∑

j∈S
|(Ac)j | ≤ sBdΛ‖c‖1.

Thus, there is a constant C ′′′′ depending on only ε, p, η, and BΘ) such that if s ≤ C ′′′′m1/(1+η), then
uniformly over c : ‖c‖1 = 1, and uniformly over subsets S ⊂ [3m] of size s,

(3.17) ‖(Ac)S‖1 <
1

2
‖Ac‖1.

and in particular, ‖Ac‖1 > 0 for all c : ‖c‖1 = 1, implying that the columns of A are linearly independent.

The theorem follows for c 6= 0 of arbitrary `1 norm by normalizing both sides of the expression (3.17). The
theorem follows by application of Corollary 3.4. �

As a consequence of our proof, we also provide theoretical guarantees for the algorithm of [BPK16] in the
noiseless case.

Corollary 3.13. Under the same conditions as in Theorem 3.11, the matrix Φ constructed from uncorrupted
measurements of the time-∆ map Xj = X∆j is full rank, provided that m ≥ C ′.

4. Numerical Method

In this section, we explain how to solve our proposed model (2.10) numerically by using augmented
Lagrangian/Bregman distance and alternating minimization method. Recall our proposed model:

min
(C,E)

‖E‖2,1 = min
(C,E)

m∑
j=1

‖E(j, :)‖2,

subject to Φ(X◦)C + E = Ẋ◦ and C is sparse.

The corresponding augmented Lagrangian is of the form

(4.1)
(Ck+1, Ek+1) = min

(C,E)

m∑
j=1

‖E(j, :)‖2 +
µ

2
‖Φ(X◦)C + E − Ẋ◦ + bk‖2F ,

bk+1 = bk + Φ(X◦)Ck+1 + Ek+1 − Ẋ◦.

Now we can apply the alternating minimization method to solve problem (4.1).
• The C-subproblem:

Ck+1 = min
C
‖Φ(X◦)C + Ek − Ẋ◦ + bk‖2F , s.t. C is sparse.

• The E-subproblem:

Ek+1 = min
E

m∑
j=1

‖E(j, :)‖2 +
µ

2
‖Φ(X◦)Ck+1 + E − Ẋ◦ + bk‖2F .
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Notice that the C-subproblem is a least-squares problem for an over-determined system. The sparsity of
C is a property of the system itself, therefore we enforce the sparsity of C by applying the hard-thresholding
operator after obtaining the least-squares solution:

Ck+1 = Sh

(
(Φ(X◦))−1(Ẋ◦ − Ek − bk), λ

)
,

where

Sh(u, γ) := u · I|u|≥γ =

{
u if |u| ≥ γ
0 otherwise.

It is also discussed in [BPK16] that the mentioned method is robust to noise in recovering the true coefficients
C.

The solution for E is given explicitly

Ek+1 = S2

(
Ẋ◦ − bk − Φ(X◦)Ck+1, µ

)
,

where

S2(uj , γ) = max

(
1− 1

γ‖uj‖2
, 0

)
uj ,

for each row uj of u.
Below is the summary of the algorithm for problem (4.1).

Algorithm
Given: E0, b0, tol and parameters λ, µ.

while ||Ek − Ek−1||∞ > tol do

Ck+1 = Sh

(
(Φ(X◦))−1(Ẋ◦ − Ek − bk), λ

)
Ek+1 = S2

(
Ẋ◦ − bk − Φ(X◦)Ck+1, µ

)
bk+1 = bk + Φ(X◦)Ck+1 + Ek+1 − Ẋ◦

end while

5. Numerical Results

In this section, we apply the method from previous section to various chaotic systems including the
well-known Lorenz system and Rössler system. Moreover, our proposed reconstruction method also works
numerically for systems exhibiting so-called hyperchaos whose dimension is greater than three, which suggests
that our reconstruction guarantee may extend to higher dimensional systems. We reiterate that chaotic
systems are not only well-suited for theoretical reconstruction guarantees, but also regimes where it is
of upmost importance to recover the governing equations with high precision, in light of the property of
sensitivity to initial conditions. Therefore, we define the following relative error formula for the coefficients

(coefficient) error := max

 max
Ctrue(i)6=0

∣∣∣∣Crecovered(i)− Ctrue(i)

Ctrue(i)

∣∣∣∣ , max
Crecovered(i)6=0,
Ctrue(i)=0

|Crecovered(i)|

 .

In words, the coefficient error measures the maximal relative recovery error over the different polynomial
coefficients. Throughout this section, error stands for coefficient error, unless otherwise stated.

In practice, we will not observe the derivative information Ẋo. Instead, we can approximate the rate
of change in the system from the state space measurements using first-order, second-order or higher-order
approximations. Explicitly, given x(t) ∈ Rn, the rate of change in x can be approximated as

ẋ(t) =
x(t+ dt)− x(t)

dt
+O(dt), (first-order approximation)

ẋ(t) =
x(t+ dt)− x(t− dt)

2 dt
+O(dt2), (second-order approximation)
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To get better accuracy, we use the second-order approximation of rate of change for our optimization model.

We first show some numerical results for the Lorenz system

(5.1)


dx1

dt = 10(x2 − x1)
dx2

dt = x1(28− x3)− x2

dx3

dt = x1x2 − 8
3x3,

with different percentages of corruption. To simulate the measurement data, we first solve the Lorenz system
(5.1) using the fourth-order Runge-Kutta method with dt = 0.0005. Then we randomly assign locations
where the data is corrupted over intervals of time, and add Gaussian noise with standard deviation σ to the
data at those corrupted intervals. The bandwidth of corruption ranges from 5 to 50. From the simulated
data, we build the matrix X◦, compute the time derivative Ẋ◦ using the second-order approximation of
derivatives, and build the dictionary Φ(X◦). We verify our algorithm for the integration (from t = 0 to
t = 20, dt = 0.0005) of 40000 measurements with different percentages of corruption. The results are shown
in Figure 1 and Figure 2. In all cases, our algorithm can detect exactly the locations of the outliers and
recover the coefficients in the polynomial equations with very high accuracy. Notice that our model can
tolerate a high percentage of corruption as long as the size of the data is sufficiently large.

ẋ1 ẋ2 ẋ3

1 0 0 0
x1 -9.999947 27.9995 0
x2 9.999949 -0.9999 0
x3 0 0 -2.666648
x2

1 0 0 0
x1x2 0 0 0.999993
x1x3 0 -0.999986 0
x2

2 0 0 0
...

...
...

...
x4

3 0 0 0

Figure 1. Left: Lorenz system (5.1), with 19.19% corrupted data, Tfinal = 20, dt = 0.0005,
hard-thres = 0.1, row-thres = 0.0125, tol = 0.005. Right: the recovered coefficients. The model
recovers the coefficients within 0.0096% error and detect exactly the locations of the outliers after
22 iterations.

We also examine our proposed scheme for the Lorenz system over a shorter interval of time. In Figure
3, 5000 measurements are given with 22.55% and 71.89% corrupted, corresponding to dt = 0.0005 and
Tfinal = 2.5. All other parameters remain the same as in the previous example. The model recovers the
coefficients within 0.0317% and 0.0477% errors, respectively, and detects exactly the locations of outliers
after 24 iterations. If the number of measurements is smaller, for example if Tfinal ≤ 2, then the scheme
does not work as well, illustrating the importance of observing the system over a critical minimal amount of
time.

Finally, we verify our proposed scheme for the Lorenz system over a much longer interval of time time,
in order to gauge whether the butterfly effect (sensitivity to initial conditions) begins to interfere with the
recovery conditions. In Figure 4, 200000 measurements are taken with 19.75% corruption, corresponding
to dt = .0005 and Tfinal = 100 and the other parameters as in previous examples. The model recovers
the coefficients within 0.0097% error and detect exactly the locations of the outliers after 29 iterations. In
the next step, we show the robustness of our model to a small amount of additional additive noise. After
simulating the corrupted data from the Lorenz system, we add Gaussian noise to the entire data. From
the noisy data, we build the dictionary and approximate the time derivative. To test the robustness of our

13



0 5 10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

0 5 10 15 20 25 30 35
10-4

10-2

100

102

104

106

Figure 2. Left: Lorenz system (5.1), with 49.53% corrupted data, Tfinal = 20, dt = 0.0005, hard-
thres = 0.1, row-thres = 0.0125, tol = 0.005. The error between the recovered coefficients iterates
and the true ones (middle) and the error between two consecutive E (right) versus the number
of iterations (in logarithmic scale for the vertical axis). The model recovers the coefficients with
0.0096% error and detect exactly the locations of the outliers after 31 iterations.

Figure 3. Lorenz trajectories with 22.55% corruption (left) and with 71.89% corruption (right),
associated with the system (5.1), Tfinal = 2.5, dt = 0.001, hard-thres = 0.1, row-thres = 0.0125,
tol = 0.005. The model detects exactly the locations of the outliers in both data and recovers the
coefficients with the errors 0.0317% and 0.0477%, respectively.

Standard Deviation of Noise # Times (out of 100) Outliers Detected Exactly Coefficient Error (%)
0.4*dt 89 min = 0.0009,max = 0.0525
0.6*dt 87 min = 0.0006,max = 0.9395
0.8*dt 65 min = 0.0012,max = 1.57

Table 1. Different noise levels and the recovery results associated with the Lorenz system, Tfinal
= 20, dt = 0.0005, hard-thres = 0.1, row-thres = 0.0125, tol = 0.005 and around 20% corrupted.

model, we simulate 100 sets of data and check how many times our model can detect exactly the locations
of outliers. The summary is shown in Table 1.

Next, we examine the Rössler system

(5.2)


dx1

dt = −x2 − x3

dx2

dt = x1 + 0.2x2

dx3

dt = 0.2− 5.7x3 + x1x3,
14
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Figure 4. Left: Lorenz system (5.1), with 19.75% corrupted data, Tfinal = 100, dt = 0.0005,
hard-thres = 0.1, row-thres = 0.0125, tol = 0.01. The error between the recovered coefficients
iterates and the true ones (middle) and the error between two consecutive E (right) versus the
number of iterations (in logarithmic scale for the vertical axis). The model recovers the coefficients
with 0.0097% error and detect exactly the locations of the outliers after 29 iterations.

ẋ1 ẋ2 ẋ3

1 0 0 0.2012
x1 0 0.9994 0
x2 -1.0021 0.1948 0
x3 -1.0044 0 -5.7009
x2

1 0 0 0
x1x2 0 0 0.00
x1x3 0 0 1.0009
x2

2 0 0 0
...

...
...

...
x4

3 0 0 0

Figure 5. Left: Rössler system (5.2) with 10.2% corrupted data, Tfinal = 50, dt = 0.0005, hard-
thres = 0.05, row-thres = 0.025, tol = 10−5. Right: the recovered coefficients. The model recovers
the coefficients with 0.6% error and detect exactly the locations of the outliers after 160 iterations.

with different percentages of corruption. We simulate the data in the same way as for the Lorenz system. Our
algorithm can detect exactly the locations of outliers in all such cases, and recover the constant coefficient
as well as other coefficients with very high accuracy. The numerical results are shown in Figure 5 to Figure
7.

In our final example, we apply our model to the following hyperchaos [Ros79]

(5.3)


dx1

dt = −x2 − x3

dx2

dt = x1 + 0.25x2 + x4

dx3

dt = 3 + x1x3

dx4

dt = −0.5x3 + 0.05x4

As discussed in [Ros79], the variable x3(t) serves to check the growth of the flow (x1, x2, x4) from time to time.
We numerically solve the system (5.3) using the fourth Runge-Kutta method with dt = 0.001, T final = 100.
The flow of the three-dimensional subspace (x1, x2, x4) is presented in Figure 8 along with the remaining
variable x3 plot. Now we randomly assign the locations where the data is corrupted, and add Gaussian noise
to the data at those corrupted intervals. The numerical result is shown in Figure 9.
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ẋ1 ẋ2 ẋ3

1 0 0 0.2007
x1 0 1.0017 0
x2 -1.0019 0.1975 0
x3 -1.0049 0 -5.7142
x2

1 0 0 0
x1x2 0 0 0.00
x1x3 0 0 1.0025
x2

2 0 0 0
...

...
...

...
x4

3 0 0 0

Figure 6. Left: Rössler system (5.2) with 20% corrupted data, Tfinal = 50, dt = 0.0005, hard-thres
= 0.05, row-thres = 0.025. Right: the recovered coefficients. The model recovers the coefficients
with 1.25% error and detect exactly the locations of the outliers after 160 iterations.

ẋ1 ẋ2 ẋ3

1 0 0 0.1947
x1 0 1.0002 0
x2 -0.9922 0.2010 0
x3 -1.0203 0 -5.7
x2

1 0 0 0
x1x2 0 0 0.00
x1x3 0 0 0.9982
x2

2 0 0 0
...

...
...

...
x4

3 0 0 0

Figure 7. Left: Rössler system (5.2) with 40% corrupted data, Tfinal = 50, dt = 0.0005, hard-thres
= 0.05, row-thres = 0.025. Right: the recovered coefficients. The model recovers the coefficients
with 2% error and detects exactly the locations of the outliers after 314 iterations.

6. Conclusion and Discussion

Using statistical properties of Lorenz-like chaotic systems and partial sparse recovery guarantees from
compressive sensing, we provide conditions for recovering the governing equations from possibly highly
corrupted measurement data. In addition, a stable numerical scheme is presented to recover the coefficients
of the underlying equations in the space of multivariable polynomials with high accuracy and exactly identify
the outliers, despite being in a regime of sensitivity to initial conditions. Our method might be useful for
recovering the governing equations more generally, when the governing equations do not necessarily have a
polynomial form. Explicitly, by doing our method "locally," we can approximate the Taylor series expansion
to the governing equations (assuming they are sufficiently smooth), and then "piece together" the recovered
polynomial Taylor expansions to approximate smooth governing equations more generally. In the future, we
also would like to adjust the numerical scheme and theoretical guarantees to handle data with much higher
level of noise in addition to outliers. We are also interested in extending theory and algorithm to settings
where we observe snapshots of an observable of phase space (rather than the phase space measurement in
its entirety) in the presence of outliers, as well as explore the sparsity structures in other high dimensional
nonlinear functional spaces such as the space of Legendre polynomials [RW12] and higher dimensional spaces.
Finally, the constants in our theorem such that m ≥ C and s ≤ C ′m1/(1+η) are not explicit. This follows
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Figure 8. Left: Plot of trajectory flow in (x1, x2, x4) subspace, right: Plot of x3 along time
associated with the hyperchaos (5.3). Tfinal = 100, dt = 0.001.
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ẋ1 ẋ2 ẋ3 ẋ4

1 0 0 2.9998 0
x1 0 0.99999 0 0
x2 -0.99999 0.24999 0 0
x3 -0.99999 0 0 -0.49999
x4 0 0.99999 0 0.04999
x2

1 0 0 0 0
x1x2 0 0 0 0
x1x3 0 0 0.99999 0
x1x4 0 0 0 0
...

...
...

...
...

x4
4 0 0 0 0

Figure 9. Left: Rössler hyperchaos system (5.2) with 10.25% corrupted data, Tfinal = 100, dt =
0.001, hard-thres = 0.01, row-thres = 0.0125. Right: the recovered coefficients. The model recovers
the coefficients and detect exactly the locations of the outliers after 201 iterations.

because the constants are not explicit in the current theory for dynamical systems. So perhaps our work can
motivate researchers in dynamical systems to make the associated constants more explicit.
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