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Abstract. We study a truncated difference of l1 and l2 norms as a nonconvex metric for
recovering sparse vectors and low-rank matrices from linear measurements. By discarding large
magnitudes in penalization, the proposed metric, denoted as truncated l1−2, achieves a nearly
unbiased approximation of the vector sparsity and matrix rank. We establish exact and stable
recovery conditions of truncated l1−2 minimization under the restricted isometry property (RIP)
framework. Computationally, we develop a difference of convex functions algorithm to efficiently solve
truncated l1−2 minimization with guaranteed convergence. Experiments show that the proposed
method is on par with the state-of-the-art solvers for sparse vector recovery and matrix completion.
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1. Introduction. We address two related problems: sparse recovery and rank
minimization. Sparse recovery refers to recovering a sparse vector from a set of linear
measurements, which is one of the most fundamental issues in compressed sensing
(CS) [10, 18]. Mathematically, it can be expressed as

min
x∈Rn

‖x‖0 subject to Ax = y, (1.1)

where ‖x‖0 counts the number of nonzero entries of x, A ∈ Rm×n is called a sensing
matrix, and y ∈ Rm is a measurement vector. On the other hand, rank minimization
aims at recovering a low-rank matrix from its linear observations, which arises in many
areas of science and technology, including system identification [34], collaborative
prediction [47], and low-dimensional embedding [33]. This problem is formulated as
follows:

min
X∈Rm×n

rank(X) subject to A(X) = b, (1.2)

where A : Rm×n → Rp is a linear map and b ∈ Rp denotes a measurement vector.
A special case of (1.2) is to recover a low-rank matrix from a small number of its
entries, referred to as matrix completion, where A := PΩ samples entries from a
two-dimensional index set Ω. Problems (1.1) and (1.2) are closely related, considering
that the rank of a matrix is equal to the l0 metric of its singular vectors.

Computationally, both (1.1) and (1.2) are NP-hard. Recent breakthroughs in CS
[10, 18] and low-rank matrix recovery [46, 8] suggest that under certain conditions,
solutions of (1.1) and (1.2) can be obtained by solving their convex surrogates, where
the l0 metric is replaced by the l1 norm [49, 14] and the matrix rank is replaced by the
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nuclear norm (sum of the singular values) [22]. Over the years, various research efforts
have been devoted to solving l1 minimization efficiently, e.g., alternating direction
method of multipliers (ADMM) [4], split Bregman [25], fixed-point continuation (FPC)
[26], and fast iterative shrinkage-thresholding algorithm (FISTA) [1]. Many of them
have been extended to nuclear norm minimization, e.g., singular value thresholding
(SVT) [5], FPC with approximate SVD (FPCA) [39], and accelerated proximal gradient
algorithm [50].

Minimizing the l1 norm is a convex problem, thus computationally tractable.
However, it may sometimes yield suboptimal performance due to the biased approxi-
mation to l0 in the sense that l1 is dominated by entries with large magnitudes, unlike
l0 in which all nonzero entries have equal contributions. In this regard, nonconvex
metrics give closer approximations to l0, thus promoting sparsity better than l1. Some
popular nonconvex metrics include lq quasi-norm with 0 < q < 1 and its variants
[13, 12, 16, 54], capped-l1 [58], smoothly clipped absolute deviation (SCAD) [20], and
minimax concave penalty (MCP) [57]. Some of them have been extended to rank
minimization such as lq quasi-norm on singular values [42, 32] and matrix MCP [31].

Two closely related metrics to this work are truncated l1 [51, 29] and difference
of l1 and l2 norms [19, 35, 55], denoted as lt,1 and l1−2, respectively. The lt,1 metric
discards large magnitudes in penalization, thus achieving a better approximation to l0
than l1. This idea was incorporated into the iterative support detection (ISD) method
[51] of minimizing

∑
i/∈T |xi|, where T is a fixed set containing the indices of large

magnitude entries of the previous reconstruction. Recently, Lu et al. [38] proposed
to truncate x’s t largest magnitudes {|x|[i]}ti=1, instead of a fixed set in ISD, and
formalized a partial regularization framework

∑n
i=t+1 φ(|x|[i]) for a class of sparse

promoting metrics φ. The idea of truncated penalization has been extended to rank
minimization [29] and matrix decomposition of low-rank and sparse components [43].

The l1−2 metric, on the other hand, is defined as ‖x‖1−2 := ‖x‖1 − ‖x‖2. It was
first introduced in [19] as a sparsity penalty for nonnegative least squares problems
and was later applied to sparse recovery in [35, 55] with superior performance over
other existing metrics when the matrix A in (1.1) is highly coherent. In addition, l1−2

has shown advantages in various applications such as image restoration [37], phase
retrieval [56], and point source super-resolution [36]. One advantage of l1−2 over l1
is its unbiased characterization of one-sparse vectors, since ‖x‖1−2 = 0 if and only if
‖x‖0 ≤ 1; see [55] for more details. However, l1−2 becomes biased and behaves like
l1 as the number of leading entries (in magnitude) increases. This effect can be seen
from the fact that l1−2 tends to l1 through vector cloning, i.e., for any x ∈ Rn\{0}
and defining x(i) := [xT . . . xT ]T ∈ Rin, one has that limi→∞ ‖x(i)‖1−2/‖x(i)‖1 = 1.

Motivated by this observation and the idea of truncated penalization, we propose
a truncated l1−2 metric, denoted as lt,1−2, for sparse (vector) recovery and (matrix)
rank minimization. For the vector case, lt,1−2 is defined as follows: given x ∈ Rn and
t ≤ n,

‖x‖t,1−2 :=
∑

i/∈Γx,t

|xi| −
√ ∑

i/∈Γx,t

x2
i , (1.3)

where Γx,t ⊆ {1, . . . , n} with cardinality t is a set containing the indices of the entries
of x with the t largest magnitudes1, i.e., for any i /∈ Γx,t and j ∈ Γx,t, |xi| ≤ |xj |. In

1One can see that the value of ‖x‖t,1−2 is uniquely determined by x and is independent of the
choice of Γx,t, if not unique. Throughout the paper, if there are multiple choices of Γx,t, we will
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the matrix case, lt,1−2 is expressed in terms of singular values, i.e., given X ∈ Rm×n

and t ≤ m ≤ n,

‖X‖t,∗−F := ‖σ(X)‖t,1−2 =

m∑
i=t+1

σi(X)−

√√√√ m∑
i=t+1

σ2
i (X), (1.4)

where σ(X) := (σ1(X), . . . , σm(X)) is a vector composed of X’s singular values with
σ1(X) ≥ · · · ≥ σm(X) ≥ 0. It is clear that when t = 0, lt,1−2 reduces to l1−2, i.e.,
‖x‖0,1−2 = ‖x‖1 − ‖x‖2 and ‖X‖0,∗−F = ‖X‖∗ − ‖X‖F . The proposed lt,1−2 metric,
as a natural combination of l1−2 and lt,1, inherits their merits. On one hand, lt,1−2

enjoys the unbiasedness of lt,1 (Lemma 3.2 (d)), thus providing a better approximation
to l0 than l1−2. On the other hand, lt,1−2 maintains some nice properties of l1−2, such
as the sparse properties of local and global minimizers (Theorem 3.8) and the superior
performance over lt,1 on sparse recovery from coherent sensing matrices.

We consider both constrained and unconstrained formulations of lt,1−2 minimiza-
tion. The constrained minimization problems for sparse recovery and rank minimization
are expressed as

min
x∈Rn

‖x‖t,1−2 subject to ‖Ax− y‖2 ≤ τ, (1.5)

min
X∈Rm×n

‖X‖t,∗−F subject to ‖A(X)− b‖2 ≤ τ, (1.6)

where τ ≥ 0 is the magnitude of (possible) perturbations on the measurements. The
unconstrained formulations are given by

min
x∈Rn

λ‖x‖t,1−2 +
1

2
‖Ax− y‖22, (1.7)

min
X∈Rm×n

λ‖X‖t,∗−F +
1

2
‖A(X)− b‖22, (1.8)

where λ > 0 is a regularization parameter balancing the two terms. We shall focus on
theoretical analyses of the constrained models and numerical implementations of the
unconstrained ones.

The rest of the paper is organized as follows. Section 2 presents notations and a toy
example to examine various metrics for exact sparse recovery. In Section 3, we present
theoretical results of lt,1−2 minimization, including the unbiasedness property, exact
and stable recovery conditions, and sparse properties of local and global minimizers.
Section 4 applies the difference of convex functions algorithm (DCA) [44, 45] to solve
lt,1−2 minimization with guaranteed convergence, and proposes an adaptive selection
of t without requiring any knowledge of the true sparsity/rank. Experimental results
in Section 5 show advantages of our method over the state-of-the-art methods in sparse
recovery and matrix completion. Finally, conclusions are given in Section 6.

2. Notation and toy example. We introduce notations of the paper and give
a toy example to motivate the use of the proposed lt,1−2 metric.

2.1. Notation. We use boldface capital letters for matrices, e.g., A, capital letters
for sets, e.g., A, boldface lowercase letters for vectors, e.g., a, and lowercase letters for
scalars and matrix/vector entries, e.g., a, ai,j , ai. Given an index set T ⊆ {1, . . . , n},

always assume that Γx,t is fixed to one of them.
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denote |T | be the cardinality of T and T c be the complement of T . Given a vector
a ∈ Rn, let aT ∈ Rn be the vector whose ith entry is equal to ai if i ∈ T and 0 if i /∈ T
for 1 ≤ i ≤ n. Given a matrix A ∈ Rm×n (we assume that m ≤ n), let AT ∈ Rm×|T |

be the submatrix of A with column indices T . Let diag(a) ∈ Rn×n be the diagonal
matrix with the entries of a on its main diagonal, and diag(A) ∈ Rm be the main
diagonal of A. The support of a is denoted by supp(a) := {i | ai 6= 0} and any vector
with no more than s non-zero entries is called an s-sparse vector. The rank of A is
denoted by rank(A) and any matrix of rank no greater than r is called an r-rank matrix.
Inner products of two vectors a,b ∈ Rn and two matrices A,B ∈ Rm×n are denoted by
〈a,b〉 := aTb and 〈A,B〉 := tr(ATB), where tr(·) is the matrix trace. The Frobenius
norm of A is defined as ‖A‖F :=

√
〈A,A〉. The kernel and image of A are denoted

by ker(A) := {x ∈ Rn : Ax = 0} and im(A) := {x ∈ Rm : x = Ay,y ∈ Rn}. The
full singular value decomposition (SVD) of A is denoted by A = U[diag(σ(X)) 0]VT ,
where U ∈ Rm×m and V ∈ Rn×n are unitary matrices. If rank(A) = r, an economy
SVD is denoted by A = U1ΣVT

1 , where Σ = diag([σ1(A) . . . σr(A)]) and U1 ∈ Rm×r

and V1 ∈ Rn×r contain the first r columns of U and V, respectively. The 2-norm
and the nuclear norm of A are defined as ‖A‖2 := σ1(A) and ‖A‖∗ :=

∑
i σi(A),

respectively. The singular value thresholding operator (SVT) [5], i.e., the proximity
operator of the nuclear norm, is defined as SVT(A, a) := U1Σ1V

T
1 , where a is a given

threshold and Σ1 = diag([max(0, σ1(A)− a) . . . max(0, σr(A)− a)]).

2.2. A toy example. We give a toy example to illustrate the behaviors of
sparsity promoting metrics l1, l1−2, l1/2, lt,1, and lt,1−2. Here lt,1 is defined as
‖x‖t,1 :=

∑
i/∈Γx,t

|xi| with Γx,t the same as in (1.3). Consider the following linear
system: 1 0 a 0

0 1 −2 0

0 1 0 −2

x =

1

1

1

 , (2.1)

where a 6= −2 is a parameter. The general solution of (2.1) is an one-dimensional affine
space characterized by k, i.e., (−ak + 1, 2k + 1, k, k), and the unique sparsest solution
is (1, 1, 0, 0) obtained by k = 0. We plot the objective values of each aforementioned
metric for three particular values of a in Figure 2.1. One can see that only l2,1 and
l1,1−2 success in finding k = 0 as the unique global minimizer in all cases, whereas the
other metrics fail in at least one case, having k = 0 as either a local minimizer or one
of non-unique global minimizers.

Further calculations give the ranges of a for different metrics to have a local/global
minimizer and the unique global minimizer at k = 0. As summarized in Table 2.1,
one can see that l1/2 has a looser condition than l1 and l1−2 to locate the sparsest
solution. Two truncated metrics lt,1 and lt,1−2 exhibit similar behaviors of local/global
minimizers. We observe that there exist critical values of t for both of them to yield
k = 0 as the unique global minimizer, e.g., t = 2 for lt,1 and t = 1 for lt,1−2. For t
smaller than the critical values, l0,1−2 yields a wider range of a than l1,1 to find the
sparsest solution, while l1,1 never succeeds in this regard due to the infinite number
of global minimizers. As shown in Section 3.3, lt,1−2 with t smaller than the critical
value always has finite global minimizers. For t larger than the critical values, both lt,1
and lt,1−2 have more than one global minimizers and hence fail to select the sparest
solution.
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Fig. 2.1. Objective values of different metrics when a = −3 (left), a = 3.5 (middle), and a = 0
(right) in the toy example (2.1). The global minimizers of different metrics are denoted by different
markers. We observe that only l2,1 and l1,1−2 can find k = 0 as the unique global minimizer in all
cases, whereas the other metrics fail in at least one case, having k = 0 as either a local minimizer or
one of non-unique global minimizers. Circles and diamonds in the last plot indicate that there are
infinite global minimizers of l1 and l1,1, meaning that they are unable to find the sparsest solution.

Table 2.1
Ranges of a for different metrics when k = 0 is a local minimizer, a global minimizer, and the

unique global minimizer. Here we assume that a 6= −2 and ∗ denotes approximated values.

Local minimizer Global minimizer Unique Global

minimizer

l1 or l0,1 [0, 4] [0, 4] (0, 4)

l1−2 or l0,1−2 (−4.83∗, 8.83∗) [−1.21∗, 3.08∗] (−1.21∗, 3.08∗)

l1/2 (−∞,∞) [−1.31∗, 5.70∗] (−1.31∗, 5.70∗)

l1,1 [−2, 2] [−1, 2] ∅
l2,1 (−∞,∞) (−∞,∞) (−∞,∞)

lt,1, t ≥ 3 (−∞,∞) (−∞,∞) ∅
l1,1−2 (−∞,∞) (−∞,∞) (−∞,∞)

lt,1−2, t ≥ 2 (−∞,∞) (−∞,∞) ∅

3. Theory of truncated l1−2 minimization. Theoretical analysis of lt,1−2

minimization is organized into three sections. Section 3.1 provides some preliminary
properties of lt,1−2, which are helpful to establish exact and stable recovery conditions
in Section 3.2. In Section 3.3, we analyze the sparse properties of local and global
minimizers for the sparse recovery problems (1.5) and (1.7).

3.1. Preliminary results. We want to show that lt,1−2, similarly to its non-
truncated origin l1−2, can be expressed as a difference of two convex functions. Given
an index set T , we denote ‖x‖T := ‖xT ‖1 + ‖xT c‖2. For x ∈ Rn and X ∈ Rm×n, we
define the following mixed norms:

‖x‖t,1+2 := ‖x‖Γx,t
= ‖xΓx,t

‖1 + ‖xΓc
x,t
‖2,

‖X‖t,∗+F := ‖σ(X)‖t,1+2 =

t∑
i=1

σi(X) +

√√√√ m∑
i=t+1

σ2
i (X),
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where Γx,t is defined in (1.3). Then lt,1−2 can be rewritten as

‖x‖t,1−2 = ‖x‖1 − ‖x‖t,1+2 and ‖X‖t,∗−F = ‖X‖∗ − ‖X‖t,∗+F . (3.1)

The following two lemmas give useful properties of the above defined mixed norms
and lt,1−2. More precisely, Lemma 3.1 (b) establishes the convexity of ‖ · ‖t,1+2 and
‖ · ‖t,∗+F , while Lemma 3.2 (d) states the unbiasedness of lt,1−2.

Lemma 3.1. The following statements hold:
(a) For any x ∈ Rn and T ⊆ {1, . . . , n} with |T | = t, one has ‖x‖T ≤ ‖x‖t,1+2.
(b) ‖ · ‖t,1+2 is a norm on Rn, and ‖ · ‖t,∗+F is a unitarily invariant norm2 on

Rm×n.
(c) Given unitary matrices U ∈ Rm×m and V ∈ Rn×n. Partition U as [U1 U2]

and V as [V1 V2], where U1 ∈ Rm×t and V1 ∈ Rn×t. Then for any matrix
X ∈ Rm×n, one has ‖UT

1 XV1‖∗ + ‖UT
2 XV2‖F ≤ ‖X‖t,∗+F .

Remark 3.1. Note that Lemma 3.1 (a) is a special case of Lemma 3.1 (c) if X is
a diagonal matrix and U = V are permutation matrices.

Lemma 3.2. Given x ∈ Rn and X ∈ Rm×n, the following statements hold:
(a) ([55, Lemma 2.1]) Suppose ‖x‖0 = s, then

(s−√s) min
i∈supp(x)

|xi| ≤ ‖x‖1 − ‖x‖2 ≤ (
√
s− 1)‖x‖2.

(b) Suppose rank(X) = r, then

(r −√r)σr(X) ≤ ‖X‖∗ − ‖X‖F ≤ (
√
r − 1)‖X‖F .

(c) If t ≤ n − 2, then ‖x‖t,1−2 ≥ (2 −
√

2) mini∈Γx,t+2
|xi|. If t ≤ m − 2, then

‖X‖t,∗−F ≥ (2−
√

2)σt+2(X).
(d) (unbiasedness) ‖x‖t,1−2 = 0 if and only if x is (t+1)-sparse, and ‖X‖t,∗−F = 0

if and only if X is (t+ 1)-rank.
Proofs of Lemmas 3.1 and 3.2 are given in Appendix A.

3.2. Exact and stable recovery. The exact and stable recovery theories of
lt,1−2 minimization are based on the restricted isometry property (RIP) [10] for vectors
and its extension to matrices [46]. RIP-based analyses have derived sufficient conditions
for sparse recovery and rank minimization using l1 [10, 9, 7, 46, 41, 8], l1−2 [55], and
lq [13, 16, 32]. To make our paper self-contained, the definitions of the vector and
matrix RIPs are given as follows.

Definition 3.3. Given a positive integer s, the restricted isometry constant of a
matrix A is the smallest number δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (3.2)

holds for any s-sparse vector x.
Definition 3.4. Given a positive integer r, the matrix-RIP constant of a linear

map A is the smallest number ρr such that

(1− ρr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + ρr)‖X‖2F (3.3)

holds for any r-rank matrix X.

2A matrix norm ‖ · ‖ is unitarily invariant if ‖X‖ = ‖UXV‖ for any unitary matrices U and V
and any X.
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We first give the following theorem establishing the existence of optimal solutions
of the proposed lt,1−2 models.

Theorem 3.5. If A and A satisfy the conditions δt+1 < 1 and ρt+1 < 1,
respectively, then each unconstrained model (1.7) and (1.8) has at least an optimal
solution. In addition, if the feasible sets in (1.5) and (1.6) are nonempty, then each
constrained model (1.5) and (1.6) has at least an optimal solution.

We then present two RIP-based theorems regarding sufficient conditions for the
constrained lt,1−2 models (1.5) and (1.6) to guarantee exact and stable sparse recovery
and rank minimization.

Theorem 3.6. Let x̄ be any s-sparse vector and let y := Ax̄ + e, where e ∈ Rm

is any perturbation with ‖e‖2 ≤ τ . The following statements hold:
(a) For t ≥ s− 1, if A satisfies the condition

δs+t+1 < 1, (3.4)

then any solution x to (1.5) obeys ‖x− x̄‖2 ≤ c1τ for some positive constant
c1 dependent on δs+t+1.

(b) For an arbitrary t, if s ≥ 2 and A satisfies the condition

δ2s+t < Φ(s), Φ(s) :=

√
s− 1√

2s+
√
s+
√

2− 1
, (3.5)

then any solution x to (1.5) obeys ‖x− x̄‖2 ≤ c2τ for some positive constant
c2 dependent on δ2s+t.

Theorem 3.7. Let X̄ be any r-rank matrix and let b := A(X̄) + e, where e ∈ Rp

is any perturbation with ‖e‖2 ≤ τ . The following statements hold:
(a) For t ≥ r − 1, if A satisfies the condition

ρr+t+1 < 1, (3.6)

then any solution X to (1.6) obeys ‖X−X̄‖F ≤ c1τ for some positive constant
c1 dependent on ρr+t+1.

(b) For an arbitrary t, if r ≥ 2 and A satisfies the condition

ρ3r+3t < Ψ(r, t), Ψ(r, t) :=

√
r − 1

2
√
r + t+

√
r +
√

2− 1
, (3.7)

then any solution X to (1.6) obeys ‖X−X̄‖F ≤ c2τ for some positive constant
c2 dependent on ρ3r+3t.

Proofs of Theorems 3.5, 3.6, and 3.7 are given in Appendix B. The following
remarks regarding Theorems 3.6 and 3.7 are worth noticing.

Remark 3.2. Theorems 3.6 and 3.7 suggest that under certain conditions, lt,1−2

minimization can guarantee exact recovery from noiseless measurements (τ = 0); and
stable recovery is possible within an error proportional to τ from noisy measurements.

Remark 3.3. We comment on the recovery conditions. By definitions of the RIPs,
one has that δs ≤ δs′ for s ≤ s′ and ρr ≤ ρr′ for r ≤ r′. The loosest cases of (3.4) and
(3.6) are δ2s < 1 and ρ2r < 1 at the critical values t = s− 1 and t = r− 1, respectively.
Note that these conditions for lt,1−2 are equivalent to the recovery conditions for l0
[10, Lemma 1.2] and matrix rank [46, Theorem 3.2], which suggests that lt,1−2 has
the same recoverability as l0 in theory. On the other hand, the loosest cases of (3.5)
and (3.7) are δ2s < Φ(s) and ρ3r < Ψ(r, 0), respectively, both achieved at t = 0, which
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can be considered as extensions of the recovery condition of l1−2 in [55]. Compared
with other metrics, conditions (3.5) and (3.7) are stronger than δ2s <

√
2 − 1 for l1

in [7] and ρ3r < 2
√

5− 4 ≈ 0.4721 for nuclear norm in [41], since Φ(s) <
√

2− 1 and
Ψ(r, t) < 1/3, and also stronger than those for lq [13, 32].

Remark 3.4. Conditions (3.5) and (3.7) are not tight. We believe that these
conditions can be further sharpened, such as the work by Cai and Zhang [6]. Although
lt,1−2 requires stronger assumptions in theory, we observe empirically that lt,1−2

consistently outperforms l1 and is comparable to some nonconvex metrics, as illustrated
by experimental results in Section 5.

3.3. Sparsity of local and global minimizers. We study the properties of
local and global minimizers of the sparse recovery problems (1.5) and (1.7). It has been
shown that a local minimizer of l1−2 [55] and lq [15] minimizations exhibits certain
sparsity, meaning that its support set corresponds to linearly independent columns of
A. For lt,1−2, this property only holds for global minimizers with nonzero objectives.

Theorem 3.8. Let x∗ be any vector satisfying ‖x∗‖t,1−2 6= 0. Denote Λ∗ :=
supp(x∗), Λ1 := Γx∗,t, and Λ2 := Λ∗\Γx∗,t. The following statements hold:

(a) If x∗ is a local minimizer of the constrained model (1.5), then the columns of
AΛ2 are linearly independent and im(AΛ1)∩ im(AΛ2) = {0}, where im(A∅) =
{0} is assumed.

(b) If x∗ is a global minimizer of the constrained model (1.5), then the columns
of AΛ∗ are linearly independent.

(c) If x∗ is a local (global) minimizer of the unconstrained model (1.7), both (a)
and (b) are true.

We have the following conclusions when the inequality constraint in (1.5) becomes
exact, i.e., τ = 0.

Corollary 3.9. If τ = 0 in (1.5), we have

(a) the number of local minima of the constrained problem (1.5) is finite;
(b) if the global minimum of the constrained model (1.5) is not zero, then the

number of global minimizers is also finite.

Please refer to Appendix C for proofs of Theorem 3.8 and Corollary 3.9.

Remark 3.5. Unlike l1−2 and lq, there may exist infinite local minimizers of
lt,1−2. But Corollary 3.9 (b) ensures that the number of global minimizers is finite, as
long as the global minimum of the objective function is not zero. Note that l1 and lt,1
may exist infinite global minimizers with nonzero objectives.

4. Numerical algorithm. In this section, we describe a numerical algorithm for
solving the unconstrained rank minimization problem (1.8). We begin with Section 4.1
for a difference of convex functions algorithm (DCA) [44, 45] that decomposes the
original nonconvex optimization problem into a series of convex subproblems, each of
which can be solved efficiently by alternating direction method of multipliers (ADMM)
[24, 23], as discussed in Section 4.2. We further develop in Section 4.3 an adaptive
selection of t without requiring any knowledge of the true sparsity/rank. At last, we
present some implementation details in Section 4.4. Note that all the discussions on
rank minimization can be applied to the sparse recovery problem (1.7), considering
that (1.7) is a special case of (1.8) by restricting X to be diagonal; e.g., see (B.11).
The details for sparse recovery are omitted here due to space limitation.
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4.1. Difference of convex functions algorithm. The DCA [44, 45] is a de-
scent algorithm for solving difference of convex functions (d.c.) optimization

min
X∈Rm×n

F (X) = G(X)−H(X),

where G and H are proper lower semicontinuous and strongly convex functions.
Starting from an initial point X0, the DCA iteratively constructs two sequences {Xk}
and {Yk}: {

Yk ∈ ∂H(Xk),

Xk+1 = arg minXG(X)− 〈Yk,X〉,
(4.1)

where Yk ∈ ∂H(Xk) means that Yk is a subgradient of H(X) at Xk. An important
property of the DCA iteration (4.1) is that it leads to monotonically decreasing
objective values {F (Xk}; see [44, 45] for theoretical analyses of the DCA.

Due to (3.1), it is natural to consider the following d.c. decomposition of the
objective in (1.8):

G(X) =
1

2
‖A(X)− b‖22 + λ‖X‖∗ + c‖X‖2F ,

H(X) = λ‖X‖t,∗+F + c‖X‖2F ,
(4.2)

where c is a positive constant to ensure strong convexity of G and H. Note that the
convexity of H is guaranteed by Lemma 3.1 (b). There is a closed-form solution of
Yk in (4.1). Denote Xk = U[diag(s) 0]VT as a full SVD of Xk and T := {1, . . . , t}.
Define d ∈ Rm by

di :=


1 if si > 0, i ≤ t,
si/‖sT c‖2 if si > 0, i > t,

0 if si = 0.

It is straightforward that d ∈ ∂‖s‖T . Using the definition of subgradient and Lem-
ma 3.1 (a), we have that for any s′ ∈ Rm,

‖s′‖t,1+2 ≥ ‖s′‖T ≥ ‖s‖T + 〈d, s′ − s〉 = ‖s‖t,1+2 + 〈d, s′ − s〉,
which implies that d ∈ ∂‖s‖t,1+2. Letting

Yk := λU[diag(d) 0]VT + 2cXk, (4.3)

we have that Yk ∈ ∂H(Xk) by [52, Theorem 2].
We conclude this section by the convergence analysis of the proposed algorithm.
Theorem 4.1. If A satisfies the condition ρt+1 < 1, then {Xk} generated by the

DCA (4.1) satisfies
(a) {F (Xk)} is monotonically decreasing and convergent.
(b) {Xk} is bounded and ‖Xk −Xk+1‖F → 0 as k →∞.
(c) Any limit point X∗ of {Xk} is a critical point satisfying

0 ∈ A∗(A(X∗)− b) + λ(∂‖X∗‖∗ − ∂‖X∗‖t,∗+F ),

where A∗ denotes the adjoint operator of A.
The results are straightforward by applying the convergence analysis of the general

DCA theory [45, Theorem 3.7], and hence the proof is omitted. It is worth noting
that the condition ρt+1 < 1 in Theorem 4.1 is used to ensure the coercivity of the
objective function (see the proof of Theorem 3.5), which implies the boundedness of
the sequence {Xk} generated by the DCA.

9



4.2. Solving the DCA subproblem. We elaborate on how to solve the DCA
subproblem in (4.1), i.e.,

min
X∈Rm×n

1

2
‖A(X)− b‖22 + λ‖X‖∗ + c‖X‖2F − 〈Y,X〉, (4.4)

where the superscript k is omitted without confusion. This is a convex problem, and
we apply the ADMM [24, 23] to find the optimal solution. In general, ADMM is
based on a variable splitting technique to resolve the original problem into several
subproblems, each of which can be solved efficiently. By introducing an auxiliary
variable Z ∈ Rm×n, we reformulate (4.4) as

min
X,Z∈Rm×n

1

2
‖A(Z)− b‖22 + λ‖X‖∗ + c‖Z‖2F − 〈Y,Z〉 subject to X = Z. (4.5)

The augmented Lagrangian function of (4.5) reads

L(X,Z,W) =
1

2
‖A(Z)− b‖22 + λ‖X‖∗ + c‖Z‖2F − 〈Y,Z〉+ β

2
‖X−Z + W‖2F , (4.6)

where W is a Lagrangian multiplier and β > 0 is a penalty parameter. Denote the
(inner) iteration index by l, ADMM iterates as follows:

Zl+1 = arg minZ L(Xl,Z,Wl),

Xl+1 = arg minX L(X,Zl+1,Wl),

Wl+1 = Wl + Xl+1 − Zl+1.

(4.7)

The minimizations with respect to Z and X have closed-form solutions:

Zl+1 = (A∗A+ (2c+ β)I)−1(A∗b + Y + β(Xl + Wl)), (4.8)

Xl+1 = SVT(Zl+1 −Wl,
λ

β
), (4.9)

where I denotes the identity operator. The convergence of ADMM for a convex
problem is guaranteed; see [27] for more details.

We discuss the computational complexity of ADMM. We exclude the complexities
for computing (A∗A + (2c + β)I)−1 and A∗b in (4.8), as they are precomputed
before the iterations. The complexities of (4.8) and (4.9) are O(m2n2) and O(m2n),
respectively, for computing a linear map of Rm×n → Rm×n and a SVD of an m× n
matrix (m ≤ n), so the total complexity per iteration is O(m2n2). We then discuss the
complexities for two special cases. The first one is the sparse recovery problem (1.7).
In this case, (4.8) reduces to a matrix-vector multiplication of an n× n matrix and an
n× 1 vector, which costs O(n2); and (4.9) reduces to a soft-thresholding operator on
an n × 1 vector, which costs O(n). Therefore, the total complexity per iteration is
O(n2). The second case is the matrix completion problem, i.e., A = PΩ in (1.2). Since
(4.8) reduces to an element-wise multiplication between m× n matrices, which costs
O(mn), and (4.9) remains unchanged, so the total complexity per iteration reduces to
O(m2n).

4.3. Adaptive selection of t. The selection of t plays a central role in the
effectiveness of the proposed models. Theoretically, taking t as the critical value, i.e.,
t = r − 1 for r-rank matrices, should give the best recovery results. However, the true
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rank is often unknown. In addition, it is found experimentally that fixing t as the
critical value does not work well for recovering approximately low-rank matrices that
contain very small but nonzero singular values, which is typical in real applications.
For these reasons, we propose a heuristic scheme for adaptively updating the value of t.
The main idea consists of initializing t with a small value and increasing it gradually,
similar to the idea of the increasing rank strategy in [53]. In particular, we choose tk

at the kth DCA iteration (4.1) as

tk :=

{
the maximal t such that

∑t
i=1 σi(X

k) ≤ ηk‖Xk‖∗, if k ≤ k0,

tk0 , if k > k0,
(4.10)

where k0 indexes the iteration number for the continuation on t and ηk is a thresholding
value at the kth iteration given by ηk := max(0, θ − µ(k0 − k)), in which 0 ≤ θ < 1
is the maximal thresholding and µ > 0 is the step length for the increasing of the
thresholding. Given parameters (k0, θ, µ), the proposed scheme can automatically
select the value of t without requiring any knowledge of the true rank. In addition,
convergence result of the DCA can be applied for this scheme, since t is fixed after
finite k0 iterations. We remark that the proposed scheme, although working well in our
experiments, is certainly not optimal. We believe that the selection of t can also benefit
from other sparsity/rank estimation schemes such as jump detection [51, 53, 32].

4.4. Implementation details. The pseudo-code of the overall algorithm includ-
ing the adaptive selection of t is summarized in Algorithm 1. Some implementation
details are explained below.

Details for the DCA. The DCA is initialized with X0 = 0. As a consequence,
we have that t0 = 0 from (4.10) and Y0 = 0 from (4.3). In other words, X1 is the
solution of the l1 minimization (with a small quadratic term), which produces a good
initialization for the subsequent iterations. It has been shown in Theorem 4.1 that
{F (Xk)} is monotonically decreasing and convergent and ‖Xk − Xk+1‖F → 0 as
k →∞, so we terminate the DCA if the following stopping criterion is satisfied:

(k = kmax) ∨
(

(k > k0) ∧max

(‖Xk −Xk−1‖F
‖Xk−1‖F

,
F (Xk)− F (Xk−1)

F (Xk−1)

)
≤ ε
)
, (4.11)

where kmax is the maximum number of iterations and ε > 0 is a given tolerance.
Details for ADMM. We adopt a warm-start scheme in ADMM to speed up

convergence. Specifically, X and W are initialized as their final results in the last
outer iteration. The stopping criterion for ADMM is given as follows:

(l = lmax) ∨
(

(l ≥ 1) ∧ ‖X
k,l −Xk,l−1‖F
‖Xk,l−1‖F

≤ ε
)
, if k ≤ k0,

(l = lmax) ∨
(

(l ≥ lmin) ∧ ‖X
k,l −Xk,l−1‖F
‖Xk,l−1‖F

≤ ε
)
, if k > k0,

(4.12)

where lmin and lmax are the minimum number and maximum number of iterations,
respectively. Here we impose lmin to prevent executing very few iterations, which helps
to stabilize the solution process.

5. Experiments. We test the performance of the proposed lt,1−2 minimization
on sparse recovery and matrix completion, i.e., a special case of (1.2) by taking
A := PΩ, and compare it with the state-of-the-art methods. All experiments are
conducted under Windows 7 and Matlab R2015b (Version 8.6.0.267246) running on a
desktop with an Intel(R) Core (TM) i7-6700 CPU at 3.40GHz and 16GB memory.
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Algorithm 1. The DCA for solving (1.8).

Input: A, b, λ, c, β, k0, θ, µ, kmax, lmin, lmax, and ε.

Initialization: Set X0 := 0, W0 := 0, and k := 0.

Outer loop: while stopping criterion (4.11) is not satisfied do

Compute tk from (4.10) and Yk from (4.3).

Initialization: Set Xk+1,0 := Xk, Wk+1,0 := Wk, and l := 0.

Inner loop: while stopping criterion (4.12) is not satisfied do

Compute Zk+1,l+1 by (4.7).

Compute Xk+1,l+1 by (4.7).

Update Wk+1,l+1 by (4.7).

Set l := l + 1.

End while and output Xk+1 := Xk+1,l and Wk+1 := Wk+1,l.

Set k := k + 1.

End while and output X := Xk.

5.1. Sparse recovery. We conduct five sparse recovery tests, as summarized in
Table 5.1. We consider two types of sensing matrix A ∈ Rm×n. One is independent
and identically distributed (i.i.d.) Gaussian random matrix, which is well-conditioned
for CS since it has incoherent columns and small RIP constants with high probability.
The other is over-sampled discrete cosine transform (DCT) matrix A = [a1, . . . ,an]
with

aj =
1√
m

cos

(
2jπξ

f

)
, j = 1, . . . , n,

where ξ ∈ Rm is a random vector whose entries are uniformly and independently
sampled from [0, 1] and f is a positive integer. Over-sampled DCT matrices are
considered as ill-conditioned for CS in the sense that their columns become coherent
as f increases. It has been shown in [21] that CS under coherent sensing matrices is
possible if the nonzeros of the true vector x̄ are sufficiently separated, referred to as
minimum separation. In our tests, we generate x̄ as sparse Gaussian signals, i.e., vectors
supported on a uniformly random index set with i.i.d. standard Gaussian entries. In
addition, we impose the minimum separation condition of mini,i′∈supp(x̄) |i−i′| ≥ 2f for
over-sampled DCT sensing matrices, while no such requirement for random Gaussian
sensing matrix. Given A and x̄, the measurement y is generated as

y := Ax̄ + α
‖Ax̄‖2
‖e‖2

e,

where e is Gaussian white noise and α is the noise level. The relative error (ReErr)
is defined as ‖x − x̄‖2/‖x̄‖2. Each test is repeated over independent trials. For
Tests 1 and 2, we record the success rates, where a trial is regarded as successful if
ReErr ≤ 10−3. For Test 3, we record the average execution time to reach the precision
ReErr ≤ 10−5. For Tests 4 and 5, we record the average ReErr values.

Parameter selection. Our algorithm involves a set of parameters: λ, c, t, k0,
θ, µ, lmin, β, kmax, lmax, and ε. The regularization parameter λ balances the data
fidelity and regularization terms in (1.7). For noiseless cases, it is set as a very small
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Table 5.1
Summary of sparse recovery tests. Here A is the sensing matrix of size m×n, s is the sparsity of

the true vector, α is the noise level on measurements, “Trials” is the number of random realizations,
and “Objective” is metric for comparison.

# A m n s α Trails Objective

1 Gaussian 64 256 10:2:32 0 100
Success

rate

2
Over-sampled

100 1500 5:2:35 0 100
Success

DCT with f = 20 rate

3 Gaussian 26, . . . , 212 4m m/8 0 10
Execution

time

4 Gaussian 64 256 15
0.01,0.03,

100
Average

0.05,0.10 ReErr

5
Over-sampled

100 1500 15
0.01,0.03,

100
Average

DCT with f = 10 0.05,0.10 ReErr

value depending on the required precision: λ = 10−6 in Tests 1 and 2 and λ = 10−8

in Test 3. For noisy cases, we tune λ empirically in Tests 4 and 5 to achieve the
lowest ReErr values on average. The positive parameter c introduced in (4.2) ensures
the strong convexity of G and H, which theoretically guarantees the convergence of
the DCA. We find experimentally that our algorithm still converges at c = 0 and a
larger c leads to slightly faster convergence but worse performance. So we choose
c = 0 in all tests. For the selection of t, we adopt the fixed scheme t = s − 1 for
Test 3 and the adaptive scheme introduced in Section 4.3 for the other tests. For
parameters k0, θ, and µ in the adaptive updating rule (4.10), we adopt a conservative
setting (k0, θ, µ) = (10, 0.95, 0.1) corresponding to a slow increase in thresholdings,
such that our algorithm is robust to handle vectors with large sparsity. For the
minimum iteration number lmin in (4.12), we set lmin = 0 in Test 3 for faster speed
and lmin = 1000 in the other tests for more stability. Other parameters in Algorithm 1
are chosen as β = 100λ, kmax = 50, lmax = 5000, and ε = 10−5, which are shown to
provide effective complexity/performance tradeoff.

Figure 5.1 plots the success rates of Algorithm 1 in Test 1, to investigate the
effects of different selections of t. We observe from the left plot of Figure 5.1 that
the adaptive scheme yields higher success rates than all fixed schemes, especially for
vectors with large sparsity. One possible reason is that our algorithm with the adaptive
scheme benefits from intermediate recovery results for t going from small to large
values, thus largely avoiding local minima, at which a fixed scheme is often being stuck.
On the other hand, the right plot of Figure 5.1 shows that the success rates of the
adaptive scheme rise as the maximal thresholding θ increases, which is consistent with
the fact that lt,1−2 with larger t leads to closer approximation to l0. We can draw the
conclusion that the adaptive scheme is more effective and stable than fixed schemes.

Comparison with other methods. We compare the proposed lt,1−2 minimiza-
tion with four state-of-the-art methods for sparse recovery: Lasso (unconstrained l1
minimization by ADMM) [4], l1−2 (unconstrained l1−2 minimization by the DCA)
[55], IRucLq-v (unconstrained lq minimization by improved iteratively reweighted
least squares algorithm) [32], and ISD (constrained truncated l1 minimization with
iterative support detection) [51]. We use the Matlab codes provided by the authors
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Fig. 5.1. Comparison between different selections of t for sparse recovery based on Test 1. Left:
Fixed schemes and the adaptive scheme with (k0, θ, µ) = (10, 0.95, 0.1). Right: The adaptive scheme
with (k0, µ) = (10, 0.1) and different θ values.
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Fig. 5.2. Comparison results of Tests 1-3. Left: Success rates in Test 1 using incoherent sensing
matrices. Middle: Success rates in Test 2 using coherent sensing matrices. Right: Execution time in
Test 3 using incoherent sensing matrices.

for these four methods and give some implementation details as follows. There is
a regularization parameter λ in Lasso, l1−2, and IRucLq-v. Same as lt,1−2, we set
λ = 10−6 in Tests 1 and 2, λ = 10−8 in Test 3, and optimize λ for each method
in Tests 4 and 5. For IRucLq-v, we set q to 0.5, the tolerance to 10−8, and the
maximum iteration number to 5000. We terminate all methods according to their
default stopping criteria, except for Test 3, where all methods are terminated once the
precision ReErr ≤ 10−5 is reached (the ReErr of ISD is about 10−14 when the support
of x̄ is correctly detected). All other settings of the competing methods are left to
their default ones.

Figure 5.2 compares the performances of different methods in Tests 1-3, i.e., the
noiseless cases. For Test 1 using incoherent sensing matrices, lt,1−2 is comparable to
IRucLq-v and ISD in recoverability, and these three methods are much better than
l1−2 and Lasso. For Test 2 using coherent sensing matrices, l1−2 and lt,1−2 are leading
methods in terms of success rates with l1−2 slightly better. In contrast, IRucLq-v
and ISD perform even worse than the convex Lasso method. Note that lt,1−2 is the
only method that achieves superior recoverability in both scenarios. Regarding the
execution time in Test 3, the last plot of Figure 5.2 shows that IRucLq-v is the fastest
for n ≤ 4096 and is on par with Lasso and l1−2 for larger n, while lt,1−2 is the slowest
in all cases. We remark that lt,1−2 is time consuming because it requires a large
number of ADMM iterations to solve the DCA subproblems to a high accuracy. We
will leave the speed-up of the proposed algorithm in the future.
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Table 5.2
Average ReErr values of different methods in Test 4 using incoherent sensing matrices and

Test 5 using coherent sensing matrices. The best result for each noise level is highlighted in bold.

# Noise level Lasso l1−2 IRucLq-v ISD lt,1−2

4

0.01 6.22e-2 2.31e-2 6.51e-3 1.23e-2 7.81e-3

0.03 1.07e-1 5.89e-2 2.33e-2 3.49e-2 2.38e-2

0.05 1.47e-1 9.15e-2 4.43e-2 6.11e-2 4.01e-2

0.10 2.26e-1 1.61e-1 1.17e-1 1.29e-1 8.71e-2

5

0.01 5.12e-2 1.76e-2 4.19e-2 4.81e-2 7.88e-3

0.03 1.30e-1 5.14e-2 7.16e-2 3.84e-1 2.45e-2

0.05 1.98e-1 9.41e-2 1.25e-1 6.67e-1 6.43e-2

0.10 3.24e-1 1.91e-1 2.42e-1 3.69e0 1.73e-1

Table 5.2 gives the average ReErr values of different methods in Tests 4 and 5,
i.e., the noisy cases. For Test 4 using incoherent sensing matrices, IRucLq-v and lt,1−2

are considered as the winners, as each of them yields the lowest ReErr values at two
noise levels. For Test 5 using coherent sensing matrices, lt,1−2 achieves the lowest
ReErr values at all noise levels. The phenomenon is consistent with [55, 35] that l1−2

performs better than lq only for coherent sensing matrices.

5.2. Matrix completion. We conduct four tests for matrix completion, sum-
marized in Table 5.3. Two types of testing matrix X̄ are used. One is exactly r-rank
matrix generated by X̄ := XLXR, where XL ∈ Rm×r and XR ∈ Rr×n are Gaussian
random matrices. The other is approximately low-rank matrix considered by Wen et al.
[53], which is generated by X̄ := U[diag(σ) 0]VT , where U ∈ Rm×m and V ∈ Rn×n

are random unitary matrices obtained by orthogonalizing Gaussian random matrices,
and the singular values σi for i = 1, . . . ,m are exponentially decaying, i.e., σi = e−0.3i.
We normalize the ground-truth matrix X̄ to have unit 2-norm for the sake of parameter
selection. For the linear map A, we sample an index set Ω consisting of p entries
uniformly at random and let A := PΩ. We define sampling ratio (SR) as p/(mn)
and degree of freedom ratio (FR) as r(m + n − r)/p. Introduced by Candès et al.
[11], FR is the ratio between the degree of freedom and the number of measurements
and a larger FR generally indicates a more difficult completion problem. Note that
if FR > 1, there exist infinite r-rank matrices with the given measurements, so a
successful recovery is not expected in this case. We obtain the measurement b as
b := A(X̄) + (α‖A(X̄)‖2/‖e‖2)e. The relative error (ReErr) for matrix is defined
using Frobenius norm, i.e., ‖X − X̄‖F /‖X̄‖F . Similar to sparse recovery, each test
is repeated over independent trials to record the success rates under the criterion
ReErr ≤ 10−3 (Test 6), the average execution time to meet the precision ReErr ≤ 10−5

(Test 7), and the average ReErr values (Tests 8 and 9).

Parameter selection. Parameters involved in our algorithm are λ, c, t, k0, θ, µ,
lmin, β, kmax, lmax, and ε. We fix λ = 10−6 in Tests 6 and 9, λ = 10−10 in Test 7, and
tune λ empirically in Test 8 to achieve the lowest ReErr values on average. Same as
sparse recovery, we choose c = 0 in all tests. We adopt the fixed scheme t = r − 1 for
Test 7 and the adaptive scheme for the other tests. We adopt an aggressive setting
(k0, θ, µ) = (5, 0.95, 0.2) leading to a rapid increase in thresholdings; this setting
provides sufficient robustness to both types of testing matrices. We set lmin = 0 in
Test 7 and lmin = 200 in the other tests. Other parameters in Algorithm 1 are fixed as
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Table 5.3
Summary of matrix completion tests. Here X̄ is the testing matrix of size m × n, “Exact”

denotes exactly low-rank matrix, “Approx.” denotes approximately low-rank matrix, r is the rank
of X̄, SR stands for sampling ratio, FR stands for degree of freedom ratio, α is the noise level on
measurements, “Trials” is the number of random realizations, and “Objective” is the metric for
comparison. Note that for Test 9, FR is calculated using r = 10.

# X̄ m (n = m) r SR FR α Trails Objective

6 Exact 100 15:1:29 0.5 0.56∼0.99 0 100
Success

rate

7 Exact 26, . . . , 212 m/16 0.5 0.24 0 10
Execution

time

8 Exact 100 15 0.5 0.56
0.01,0.03,

100
Average

0.05,0.10 ReErr

9 Approx. 500 500
0.04,0.08, 0.99,0.50,

0 50
Average

0.15,0.30 0.26,0.13 ReErr
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Fig. 5.3. Comparison between different selections of t for matrix completion based on Test 6.
Left: Fixed schemes and the adaptive scheme with (k0, θ, µ) = (5, 0.95, 0.2). Right: The adaptive
scheme with (k0, µ) = (5, 0.2) and different θ values.

β = 100λ, kmax = 50, lmax = 1000, and ε = 10−5 for tradeoff between complexity and
performance.

Figure 5.3 compares the performances of different selections of t in terms of
Algorithm 1’s success rates in Test 6. The left plot of Figure 5.3 illustrates that the
adaptive scheme gives nearly the same recoverability as the fixed schemes t = r − 2
and t = r − 1, whereas fixed schemes with t larger than r − 1 are unstable. We want
to point out that the adaptive scheme is more practical than the fixed ones, since it
does not require any knowledge of the true rank. On the other hand, the right plot of
Figure 5.3 shows that a larger value of the maximal thresholding θ results in better
performance, due to the closer approximation to the matrix rank.

Comparison with other methods. We compare lt,1−2 with three state-of-the-
art methods for matrix completion: FPCA (unconstrained nuclear norm minimization
by fix point iterative algorithm with approximate SVD) [39], LMaFit (low-rank
factorization by a nonlinear successive over-relaxation algorithm) [53], and IRucLq-M
(the matrix version of IRucLq-v) [32]. We use the Matlab codes provided by the
authors and detail the parameter setting for each method below. For FPCA, its code
offers two parameter settings: “easy” for faster speed and “hard” for higher precision.
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We adopt “hard” in all tests. As Test 7 concerns about computational time, we set
the maximum iteration number for the inner loop to 10 for efficiency. For LMaFit, we
set the tolerance to 10−5 and the maximum iteration number to 5000. For IRucLq-M,
we fix q to 0.5, the tolerance to 10−8, and the maximum iteration number to 2000;
we set the regularization parameter λ = 10−8 in Tests 6 and 9, λ = 10−10 in Test 7,
and optimize it in Test 8. IRucLq-M also provides an accelerated version in its code,
which is used only in Test 7 to record its best efficiency. Both LMaFit and IRucLq-M
require an estimation on the rank of X̄, which is set to the ground truth in Test 7
for both methods; in other tests, we adopt adaptively updating rank strategy, which
is shown to be robust to the testing matrices [53, 32]. In particular, an increasing
rank strategy is considered in LMaFit, which starts from a small initial guess rini and
increases the rank gradually until convergence or a maximal rank estimate rmax is
reached. We set (rini, rmax) = (5, b1.5rc) in Tests 6 and 8 and (rini, rmax) = (1, 50) in
Test 9. For IRucLq-M, a decreasing rank strategy is provided by the authors in its
implementation, which starts from a large initial guess rini and decreases the rank once
a big jump is detected between two adjacent singular values. Here a user-specified
minimum rank estimate rmin is imposed. We set (rini, rmin) = (b1.5rc, 5) in Tests 6
and 8 and (rini, rmin) = (50, 5) in Test 9. We adopt the default stopping criterion of
each method, except for Test 7, where all methods iterate until reaching the precision
ReErr ≤ 10−5. Other parameters in the completing methods are left to their default
settings.

Figure 5.4 compares the performances of different methods in Tests 6 and 7 using
exactly low-rank matrices. It is shown on the left plot of Figure 5.4 that lt,1−2 achieves
the highest success rates with nearly 100% recoverability for r ≤ 28 (FR ≤ 0.96).
FPCA is the second best, which is largely attributed to an approximated SVD scheme;
see [39] for more discussion on this phenomenon. Regarding the execution time in
Test 7, we observe from the right plot of Figure 5.4 that LMaFit is the fastest, since
its algorithm avoids the expensive SVD computation that is required by all other
methods. On the other hand, lt,1−2 is the slowest among the three SVD-required
methods, which is mainly due to a large number of ADMM iterations.

Table 5.4 reports the average ReErr values of different methods in Test 8 using
exactly low-rank matrices and Test 9 using approximately low-rank matrices. We
observe that for Test 8, lt,1−2 and IRucLq-M achieve comparable ReErr values, which
are better than other methods. For Test 9, lt,1−2 and LMaFit are the winners for
low and high SR cases, respectively. We conclude that lt,1−2 is the only method that
achieves leading performance in both scenarios.

6. Conclusions. We have presented a truncated l1−2 metric for sparse recovery
and rank minimization. Compared with its predecessor l1−2, the truncated version
lt,1−2 significantly neutralizes the bias incurred by leading entries/singular values,
thus more effectively recovering sparse vectors and low-rank matrices. Theoretical
results of lt,1−2 have been established, including exact and stable recovery conditions
and sparse properties of local and global minimizers. We have developed a numerical
scheme based on the DCA to efficiently solve lt,1−2 minimization with guaranteed
convergence. Numerical experiments have shown that lt,1−2 is highly effective and
comparable to state-of-the-art methods in sparse recovery and matrix completion.
Future works include speeding-up the numerical algorithm of lt,1−2 minimization and
applying the lt,1−2 methodology to various applications such as image processing
[59, 60, 17, 48, 30, 40].
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Fig. 5.4. Comparison results of Tests 6 and 7 using exactly low-rank matrices. Left: Success
rates in Test 6. Right: Execution time in Test 7.

Table 5.4
Average ReErr values of different methods in Test 8 using exactly low-rank matrices and Test 9

using approximately low-rank matrices. The best result for each noise level or SR is highlighted in
bold.

Test 8

Noise level FPCA LMaFit IRucLq-M lt,1−2

0.01 1.09e-2 1.71e-2 9.93e-3 1.00e-2

0.03 3.32e-2 4.99e-2 3.06e-2 3.00e-2

0.05 6.82e-2 8.47e-2 5.15e-2 5.04e-2

0.10 1.69e-1 1.73e-1 1.03e-1 9.99e-2

Test 9

SR FPCA LMaFit IRucLq-M lt,1−2

0.04 4.40e-1 5.12e-1 5.67e-1 2.56e-1

0.08 1.05e-1 2.36e-2 2.77e-1 2.26e-2

0.15 5.50e-2 1.32e-4 3.77e-2 2.25e-3

0.30 2.75e-2 2.10e-5 3.27e-3 5.52e-5

Appendix A. Proofs of Lemmas 3.1 and 3.2. To prove Lemma 3.1, we need
the following lemma to show that a pinching, or diagonal cell operator, reduces all
unitarily invariant norms; see, e.g., [28, 3].

Lemma A.1. Let ‖ · ‖ be a unitarily invariant norm and let

A :=

[
A11 A12

A21 A22

]
and B :=

[
A11 0

0 A22

]
,

then one has ‖A‖ ≥ ‖B‖.
Proof of Lemma 3.1. It is straightforward that (a) is true if T = Γx,t. If

|T\Γx,t| = t1 > 0, we denote T\Γx,t = {i1, . . . , it1} and Γx,t\T = {j1, . . . , jt1}. Then
for any i ∈ T\Γx,t and j ∈ Γx,t\T , we have that i 6= j and |xi| ≤ |xj |. We define
Tk := (T ∩ Γx,t) ∪ {j1, . . . , jk, ik+1, . . . , it1} for any k ∈ {0, . . . , t1}, then we have
T = T0 and Γx,t = Tt1 . Simple calculation gives that

‖x‖Tk
− ‖x‖Tk+1

=
x2
ik+1
− x2

jk+1

|xik+1
|+ |xjk+1

| +
x2
jk+1
− x2

ik+1√
‖xS‖22 + x2

jk+1
+
√
‖xS‖22 + x2

ik+1

≤ 0,

holds for any 0 ≤ k ≤ t1 − 1, where S := T c
k ∩ T c

k+1. Therefore, we have that
‖x‖T0

≤ ‖x‖T1
≤ · · · ≤ ‖x‖Tt1

, which implies that ‖x‖T ≤ ‖x‖t,1+2.
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For (b), to prove that ‖ · ‖t,1+2 is a norm, it only needs to show the triangle
inequality. For any x,y ∈ Rn, we have that ‖x + y‖t,1+2 ≤ ‖x‖Γx+y,t

+ ‖y‖Γx+y,t
≤

‖x‖t,1+2 + ‖y‖t,1+2, where the last inequality follows from (a). Note that ‖ · ‖t,1+2 is
also a symmetric gauge function [28, Definition 3.5.17], i.e., a norm that is invariant
with respect to sign-changes and entry-permutations. Since ‖X‖t,∗+F = ‖σ(X)‖t,1+2,
we deduce that ‖ · ‖t,∗+F is a unitarily invariant norm by [28, Theorem 3.5.18].

For (c), we have that

‖UT
1 XV1‖∗ + ‖UT

2 XV2‖F = ‖σ(UT
1 XV1)‖1 + ‖σ(UT

2 XV2)‖2

≤ ‖[σ(UT
1 XV1) σ(UT

2 XV2)]‖t,1+2 =

∥∥∥∥[UT
1 XV1 0

0 UT
2 XV2

]∥∥∥∥
t,∗+F

≤
∥∥∥∥[UT

1 XV1 UT
1 XV2

UT
2 XV1 UT

2 XV2

]∥∥∥∥
t,∗+F

= ‖X‖t,∗+F ,

where the two inequalities follow from (a) and Lemma A.1, respectively.

Proof of Lemma 3.2. A proof of (a) can be found in [55, Lemma 2.1], and
(b) can be obtained by applying (a) to the vector of singular values of X. For (c)
and (d), it is sufficient to prove the vector cases. For (c), we assume without loss of
generality that |x1| ≥ |x2| ≥ · · · ≥ |xn| and xt+2 6= 0. Denote T1 := {t+ 1, t+ 2} and
T2 := {t+ 3, . . . , n}. Then we have that

‖x‖t,1−2 ≥ ‖xT1
‖1 + ‖xT2

‖1 − ‖xT1
‖2 − ‖xT2

‖2 ≥ ‖xT1
‖1 − ‖xT1

‖2 ≥ (2−
√

2)|xt+2|,

where the last inequality follows from (a). For (d), the statement naturally holds for
t ≥ n − 1. Suppose t ≤ n − 2. If ‖x‖t,1−2 = 0, (c) implies that mini∈Γx,t+2

|xi| = 0,
and thus x is (t+ 1)-sparse. The other direction is trivial.

Appendix B. Proofs of Theorems 3.5, 3.6, and 3.7.
Proof of Theorem 3.5. For brevity, we only prove the case of the unconstrained

rank minimization model (1.8); the other three models are analogous.
First of all, if t ≥ m−1, we have that ‖X‖t,∗−F = 0 and then (1.8) has at least one

optimal solution A†(b), where A† denotes the Moore-Penrose pseudoinverse of A. We
then discuss the case of t ≤ m− 2. Let F (X) denote the objective in (1.8). It follows
from (3.1) and Lemma 3.1 (b) that F (X) is proper and continuous. Let {Xk} be a
sequence such that {F (Xk)} is bounded. We want to show that {‖Xk‖F } is bounded,
thus leading to the coercivity of F (X). For each k, we express Xk in full-SVD form:
Xk = Uk[diag(sk) 0](Vk)T . Let T := {1, . . . , t+ 1}, Xk

1 := Uk[diag(skT ) 0](Vk)T , and
Xk

2 = Xk −Xk
1 , then

F (Xk) =
1

2
‖A(Xk)−b‖22+λ‖Xk‖t,∗−F ≥

1

2
(‖A(Xk

1)‖2−‖A(Xk
2)−b‖2)2+λ(2−

√
2)skt+2,

where the last inequality is due to Lemma 3.2 (c). Since {F (Xk)} is bounded, we
have that {skt+2}, or {‖Xk

2‖2}, is bounded and hence {‖Xk
2‖F }, {‖A(Xk

2)− b‖2}, and
{‖A(Xk

1)‖2} are bounded. Since ρt+1 < 1, the definition of matrix-RIP suggests that
{‖Xk

1‖F } is bounded, and thus {‖Xk‖F } is bounded. We complete the proof by using
the Weierstrass’ theorem [2], which guarantees that a proper, continuous, and coercive
function has at least one minimizer.

The proofs of Theorems 3.6 and 3.7 generally follow the approaches in [9, 46, 41,
8, 55]. For brevity, we present the proof of Theorem 3.7 in detail, while providing
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some key steps in proving Theorems 3.6. To prove Theorem 3.7, we need the following
four lemmas.

Lemma B.1 ([46, Lemma 2.3]). Let A and B be matrices of the same dimensions.
If ABT = 0 and ATB = 0, then ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗.

Lemma B.2 ([8, Lemma 3.3]). For all X, X′ obeying 〈X,X′〉 = 0, and rank(X) ≤
r, rank(X′) ≤ r′, one has |〈A(X),A(X′)〉| ≤ ρr+r′‖X‖F ‖X′‖F .

Lemma B.3. Let A,B ∈ Rm×n with rank(A) ≤ r. Consider a matrix C :=
A−PBQ, where P ∈ Rm×m, Q ∈ Rn×n, and rank(P) = rank(Q) = t with r+ t < m.
Then one can find a full SVD of C, denoted as C = USVT , such that the last m−r−t
columns of U are orthogonal to columns of P and the last n− r − t columns of V are
orthogonal to rows of Q.

Proof. We decompose P = P1+P2 by the orthogonal projection onto im(C), where
im(P1) ⊆ im(C) and im(P2)⊥im(C). Letting r1 := rank(C) and r2 := rank(P2), we
write an economy SVD of C as C = U1S1V

T
1 , where U1 ∈ Rm×r1 , and let U2 ∈ Rm×r2

be a matrix whose columns form an orthonormal basis of im(P2). Then we deduce
that im(U1)⊥im(U2) from im(U1) = im(C), im(U2) = im(P2), and im(C)⊥im(P2).
Since

r1 + r2 = rank([C P1 + P2]) = rank

(
[A P]

[
I 0

−BQ I

])
≤ r + t,

one can find matrices U3 ∈ Rm×(r+t−r1−r2) and U4 ∈ Rm×(m−r−t) such that U =
[U1 U2 U3 U4] is a unitary matrix. Then

im(U4) ⊆ (im(U1)+im(U2))⊥ = (im(C)+im(P2))⊥ ⊆ (im(P1)+im(P2))⊥ = (im(P))⊥,

where (·)⊥ denotes the orthogonal complement, which implies that im(U4)⊥im(P).
Similarly, by considering the matrix CT = AT −QTBTPT , we can extend the columns
of V1 to a unitary matrix V such that the last n− r − t columns of V are orthogonal

to rows of Q. Thus C = U
[
S1 0

0 0

]
VT is the desired full SVD of C.

The following lemma is a variant of [46, Lemma 3.4] and establishes a key decom-
position for proving Theorem 3.7.

Lemma B.4. Let A,B ∈ Rm×n with rank(A) ≤ r. Consider matrices Ac :=
A−UUTAVVT and Ba := UUTBVVT , where U ∈ Rm×t, V ∈ Rn×t, and UTU =
VTV = I. Then one can find Bb and Bc such that

(a) B = Ba + Bb + Bc,
(b) rank(Bb) ≤ 2r + 2t,
(c) AT

c Bc = 0 and AcB
T
c = 0,

(d) 〈Ba,Bb〉 = 0, 〈Ba,Bc〉 = 0, and 〈Bb,Bc〉 = 0.
Moreover, given an integer k > 0, one can find l matrices {Bi}li=1 such that

(e) Bc =
∑l

i=1 Bi,
(f) rank(Bi) ≤ k for 1 ≤ i ≤ l and σ1(Bi+1) ≤ σk(Bi) for 1 ≤ i ≤ l − 1,
(g) BT

i Bj = 0 and BiB
T
j = 0 for 1 ≤ i, j ≤ l, i 6= j,

(h) 〈Ba,Bi〉 = 0 and 〈Bb,Bi〉 = 0 for 1 ≤ i ≤ l.
Proof. The proof follows the idea in [46, Lemma 3.4]. If r + t ≥ m, it is easy

to check that Bb := B − Ba and Bc := 0 satisfy (a)–(d). If r + t < m, it follows
from Lemma B.3 that there exists a full SVD Ac = [U1 U2] [ S 0

0 0 ] [V1 V2]T satisfying

UT
2 UUT = 0, where U2 ∈ Rm×(m−r−t). Let B̂ := [U1 U2]T (B − Ba)[V1 V2] and

partition B̂ as B̂ =
[
B̂11 B̂12

B̂21 B̂22

]
, where B̂11 ∈ R(r+t)×(r+t). It is easy to verify that Bb
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and Bc defined as

Bb := [U1 U2]

[
B̂11 B̂12

B̂21 0

] [
VT

1

VT
2

]
and Bc := [U1 U2]

[
0 0

0 B̂22

] [
VT

1

VT
2

]
,

satisfy (a)–(c) and 〈Bb,Bc〉 = 0. Moreover, one has that 〈Ba,Bc〉 = 0 from UT
2 UUT =

0, and then 〈Ba,Bb〉 = 〈Ba,B−Ba〉 = 0.
For (e)–(h), we assume that Bc 6= 0; otherwise, one can set l = 1 and B1 = 0.

Let B̂22 = Ûdiag(σ̂)V̂T be an economy SVD of B̂22. For each i ≥ 1, define the index

set Ii := {k(i− 1) + 1, · · · , ki} ∩ {1, . . . , rank(B̂22)}. Assuming that there are l such
nonempty sets, we define, for i = 1, . . . , l,

Bi := [U1 U2]

[
0 0

0 Ûdiag(σ̂Ii)V̂
T

] [
VT

1

VT
2

]
.

It is easy to check that {Bi}li=1 satisfy (e)–(h).
Then we proceed to prove Theorem 3.7.
Proof of Theorem 3.7. For (a), we have ‖X̄‖t,∗−F = 0, due to r ≤ t + 1 and

Lemma 3.2 (d). Let X be a solution to (1.6), then X satisfies ‖A(X) − b‖2 ≤ τ
and ‖X‖t,∗−F = 0. So X must be (t + 1)-rank. Let R := X − X̄, then R is
(r + t+ 1)-rank and ‖A(R)‖2 ≤ 2τ . Since ρr+t+1 < 1, the matrix-RIP of A gives that
‖R‖F ≤ 1/

√
1− ρr+t+1‖A(R)‖2 ≤ c1τ , where c1 := 2/

√
1− ρr+t+1 > 0.

Next we prove (b). Let X be a solution to (1.6), then ‖A(X) − b‖2 ≤ τ and
‖X‖t,∗−F ≤ ‖X̄‖t,∗−F . Let R := X − X̄, one has that ‖A(R)‖2 ≤ 2τ . Unlike (a),
there is no upper bound of rank(R). We decompose R into a series of matrices, each
with an upper bound on rank so that the matrix-RIP can be applied. We write a full
SVD of X as X = [U1 U2]S[V1 V2]T , where U1 ∈ Rm×t and V1 ∈ Rn×t. Denote
Ra := U1U

T
1 RV1V

T
1 , X̄a := U1U

T
1 X̄V1V

T
1 , and X̄c := X̄− X̄a. Using Lemma B.4

with k = r, one can find Rb, Rc, and {Ri}li=1 satisfying the following properties:
(P1) R = Ra + Rb + Rc,
(P2) rank(Rb) ≤ 2r + 2t,
(P3) X̄T

c Rc = 0 and X̄cR
T
c = 0,

(P4) 〈Ra,Rb〉 = 0, 〈Ra,Rc〉 = 0, and 〈Rb,Rc〉 = 0,

(P5) Rc =
∑l

i=1 Ri,
(P6) rank(Ri) ≤ r for 1 ≤ i ≤ l and σ1(Ri+1) ≤ σr(Ri) for 1 ≤ i ≤ l − 1,
(P7) RT

i Rj = 0 and RiR
T
j = 0 for 1 ≤ i, j ≤ l, i 6= j,

(P8) 〈Ra,Ri〉 = 0 and 〈Rb,Ri〉 = 0 for 1 ≤ i ≤ l.
Using UT

1 XV2 = 0 and UT
2 XV1 = 0, direct calculations give that

‖UT
2 XV2‖∗ =

∥∥∥∥U [ 0 UT
1 XV2

UT
2 XV1 UT

2 XV2

]
VT

∥∥∥∥
∗

= ‖X̄c + Rb + Rc‖∗, (B.1)

‖UT
2 RV2‖F ≤

∥∥∥∥U [ 0 UT
1 RV2

UT
2 RV1 UT

2 RV2

]
VT

∥∥∥∥
F

≤ ‖Rb‖F + ‖Rc‖F . (B.2)

According to Lemma B.1, (P3) and (P7) imply that

‖X̄c + Rc‖∗ = ‖X̄c‖∗ + ‖Rc‖∗, (B.3)

‖Rc‖∗ =

l∑
i=1

‖Ri‖∗. (B.4)
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Using the above analyses, we deduce that

‖X̄‖∗ − ‖X̄‖t,∗+F = ‖X̄‖t,∗−F ≥ ‖X‖t,∗−F = ‖UT
2 XV2‖∗ − ‖UT

2 XV2‖F
(B.1)
= ‖X̄c + Rb + Rc‖∗ − ‖UT

2 (X̄ + R)V2‖F
(B.3,B.2)

≥ ‖X̄c‖∗ − ‖Rb‖∗ + ‖Rc‖∗ − ‖UT
2 X̄V2‖F − ‖Rb‖F − ‖Rc‖F

= (‖X̄c‖∗ + ‖X̄a‖∗)− (‖X̄a‖∗ + ‖UT
2 X̄V2‖F )− ‖Rb‖∗ + ‖Rc‖∗ − ‖Rb‖F − ‖Rc‖F

≥ ‖X̄‖∗ − ‖X̄‖t,∗+F − ‖Rb‖∗ + ‖Rc‖∗ − ‖Rb‖F − ‖Rc‖F ,

where the last inequality follows from ‖X̄a‖∗ = ‖UT
1 X̄V1‖∗ and Lemma 3.1 (c). So

we obtain the following inequality:

‖Rc‖∗ − ‖Rc‖F ≤ ‖Rb‖∗ + ‖Rb‖F . (B.5)

Let R0 := Ra + Rb + R1, then rank(R0) ≤ 3r + 3t and 〈R0,Ri〉 = 0 for i = 2, . . . , l.

Next we set upper bounds of
∑l

i=2 ‖Ri‖F and ‖R‖F using ‖R0‖F . Using (P6)
and Lemma 3.2 (b), we have that for i ≥ 2, σ1(Ri) ≤ σr(Ri−1) ≤ (‖Ri−1‖∗ −
‖Ri−1‖F )/(r −√r), then

‖Ri‖F ≤
‖Ri−1‖∗ − ‖Ri−1‖F√

r − 1
. (B.6)

Putting things together, we obtain the following upper bounds:

l∑
i=2

‖Ri‖F
(B.6)

≤
∑l−1

i=1 ‖Ri‖∗ −
∑l−1

i=1 ‖Ri‖F√
r − 1

(B.4)

≤ ‖Rc‖∗ − ‖Rc‖F√
r − 1

(B.5)

≤ ‖Rb‖∗ + ‖Rb‖F√
r − 1

(P2)

≤
√

2r + 2t+ 1√
r − 1

‖Rb‖F
(P4,P8)

≤
√

2r + 2t+ 1√
r − 1

‖R0‖F = c0‖R0‖F , (B.7)

where c0 := (
√

2r + 2t+ 1)/(
√
r − 1), and

‖R‖F =

√√√√‖R0‖2F +

l∑
i=2

‖Ri‖2F ≤

√√√√‖R0‖2F +

(
l∑

i=2

‖Ri‖F
)2

(B.7)

≤
√

1 + c20‖R0‖F .

(B.8)
Using the matrix-RIP of A, we get

(1− ρ3r+3t)‖R0‖2F ≤ ‖A(R0)‖22 = 〈A(R0),A(R)〉 −
l∑

i=2

〈A(Ra + Rb) +A(R1),A(Ri)〉

≤ ‖A(R0)‖2‖A(R)‖2 + (ρ3r+3t‖Ra + Rb‖F + ρ2r‖R1‖F )

l∑
i=2

‖Ri‖F

≤ 2τ
√

1 + ρ3r+3t‖R0‖F +
√

(ρ2
3r+3t + ρ2

2r)(‖Ra + Rb‖2F + ‖R1‖2F )

l∑
i=2

‖Ri‖F

≤ 2τ
√

1 + ρ3r+3t‖R0‖F +
√

2c0ρ3r+3t‖R0‖2F ,
(B.9)
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where the second inequality uses Lemma B.2, the third inequality uses ‖A(R)‖2 ≤ 2τ ,
and the last inequality uses ρ2r ≤ ρ3r+3t and (B.7). Note that condition (3.7) implies
that 1− (1 +

√
2c0)ρ3r+3t > 0, then (B.9) reads

‖R0‖F ≤
2
√

1 + ρ3r+3t

1− (1 +
√

2c0)ρ3r+3t

τ. (B.10)

Finally, combining (B.8) and (B.10), we obtain the desired result ‖X − X̄‖F ≤ c2τ ,
where c2 := 2

√
(1 + c20)(1 + ρ3r+3t)/(1− (1 +

√
2c0)ρ3r+3t) > 0.

We briefly mention the proof of Theorem 3.6. Note that (1.5) can be considered
as a special case of (1.6) if X is diagonal, i.e.,

min
X∈Rn×n

‖X‖t,∗−F subject to X is diagonal and ‖A(X)− b‖2 ≤ τ, (B.11)

whereA(X) = Adiag(X). If both X and X̄ are diagonal, Theorem 3.6 (a) can be proved
by the same argument in the proof of Theorem 3.7 (a). Similarly, for Theorem 3.6 (b),
we let all the components in the decomposition of R be diagonal matrices whose main
diagonals have mutually disjoint support sets. Then (P2) becomes rank(Rb) ≤ s.
By setting the maximum rank of Ri as s, we have that rank(R0) ≤ 2s+ t. Letting
c0 := (

√
s+ 1)/(

√
s− 1) and c2 := 2

√
(1 + c20)(1 + δ2s+t)/(1− (1 +

√
2c0)δ2s+t) > 0,

we obtain the desired result ‖x− x̄‖2 = ‖X− X̄‖F ≤ c2τ .

Appendix C. Proofs of Theorem 3.8 and Corollary 3.9.
Proof of Theorem 3.8. Since ‖x∗‖t,1−2 6= 0, Lemma 3.2 (d) suggests that |Λ2| ≥ 2

and Λ1 = Λ∗\Λ2. To prove (a), it is sufficient to show that rΛ2
= 0, for any vector r

satisfying r ∈ ker(A) and supp(r) ⊆ Λ∗. Since x∗ is a local minimizer, there exists
ε > 0 such that for any x satisfying ‖x − x∗‖2 ≤ ε and ‖Ax − b‖2 ≤ τ , we have
‖x‖t,1−2 ≥ ‖x∗‖t,1−2. We scale r such that

‖r‖2 < min

{
min
i∈Λ∗
|x∗i |, ε

}
. (C.1)

Therefore, for any index i ∈ Λ∗, we have that |ri| < |x∗i | and

|x∗i + ri|+ |x∗i − ri| = 2|x∗i |. (C.2)

Denote x1 := x∗+r and x2 := x∗−r, then we have that ‖x1+x2‖1 = ‖x1‖1+‖x2‖1 from
(C.2). In addition, both x1 and x2 are feasible vectors and satisfy ‖x1‖t,1−2 ≥ ‖x∗‖t,1−2

and ‖x2‖t,1−2 ≥ ‖x∗‖t,1−2. Therefore, we obtain that

‖x1‖t,1−2 + ‖x2‖t,1−2 ≥ 2‖x∗‖t,1−2 = ‖x1 + x2‖t,1−2 = ‖x1‖1 + ‖x2‖1 − ‖x1 + x2‖Λ1

≥ ‖x1‖1 + ‖x2‖1 − ‖x1‖t,1+2 − ‖x2‖t,1+2 = ‖x1‖t,1−2 + ‖x2‖t,1−2,

where the last inequality uses Lemma 3.1 (a). Hence, we have the following equalities:

‖x∗‖t,1−2 = ‖x1‖t,1−2 and ‖x∗‖t,1−2 = ‖x2‖t,1−2, (C.3)

‖x1 + x2‖Λ1
= ‖x1‖Λ1

+ ‖x2‖Λ1
, (C.4)

‖x1‖Λ1
= ‖x1‖t,1+2 and ‖x2‖Λ1

= ‖x2‖t,1+2. (C.5)

Note that (C.2) also implies that

2‖x∗Λ1
‖1 = ‖x∗Λ1

+ rΛ1
‖1 + ‖x∗Λ1

− rΛ1
‖1. (C.6)
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Subtracting (C.4) with (C.6) gives that

‖(x∗Λ2
+ rΛ2

) + (x∗Λ2
− rΛ2

)‖2 = ‖x∗Λ2
+ rΛ2

‖2 + ‖x∗Λ2
− rΛ2

‖2,

which implies that x∗Λ2
+ rΛ2 and x∗Λ2

− rΛ2 are collinear, and thus x∗Λ2
and rΛ2 are

collinear. Since x∗Λ2
6= 0, there exists k such that kx∗Λ2

= rΛ2 , and (C.3) becomes

‖x∗‖t,1−2
(C.5)
= ‖x1‖1 − ‖x1‖Λ1

= ‖x∗Λ2
+ rΛ2

‖1 − ‖x∗Λ2
+ rΛ2

‖2 = |1 + k|‖x∗‖t,1−2,

and similarly ‖x∗‖t,1−2 = |1− k|‖x∗‖t,1−2. Since ‖x∗‖t,1−2 6= 0, we have that k = 0
and thus rΛ2

= 0, which concludes the proof of (a).
For (b), it remains to show that the columns of AΛ1 are linearly independent,

since a global minimizer x∗ is also a local minimizer that satisfies (a). We prove by
contradiction. Suppose there exists r ∈ ker(A)\{0} with supp(r) ⊆ Λ1. Since r 6= 0,
one can find j1 ∈ Λ1 such that rj1 6= 0. We choose any j2 ∈ Λ2 and scale r so that

|x∗j1 + rj1 | < |x∗j2 |. (C.7)

Denote x′ := x∗ + r, Λ′1 := (Λ1\{j1}) ∪ {j2}, and Λ′2 := (Λ2\{j2}) ∪ {j1}, then
Λ′1 = Λ∗\Λ′2. Using (C.7), Lemma 3.1 (a), and x∗Λ2\{j2} 6= 0, we have that

‖x′‖t,1−2 ≤ ‖x′‖1 − ‖x′‖Λ′1 = ‖x∗Λ2\{j2}‖1 −
‖x∗Λ2\{j2}‖

2
2

|x′j1 |+
√
‖x∗Λ2\{j2}‖

2
2 + (x′j1)2

< ‖x∗Λ2\{j2}‖1 −
‖x∗Λ2\{j2}‖

2
2

|x∗j2 |+
√
‖x∗Λ2\{j2}‖

2
2 + (x∗j2)2

= ‖x∗‖t,1−2,

which contradicts the assumption that x∗ is a global minimizer.
Finally, assume that x∗ is a local (global) minimizer of the unconstrained model

(1.7). Using the same argument in the proof of [55, Theorem 2.4], one can show that
x∗ is also a local (global) minimizer of the following constrained problem:

min
x∈Rn

‖x‖t,1−2 subject to Ax = Ax∗.

Thus, (a) and (b) also hold for x∗.

Proof of Corollary 3.9. For (a), let X ⊂ Rn be the set of local minimizers of (1.5)
with τ = 0 and Y := {‖x‖t,1−2 | x ∈ X} be the corresponding local minima. For any
Λ ⊆ {1, . . . , n}, define

XΛ := {x | x ∈ X, supp(x) = Λ} and YΛ := {‖x‖t,1−2 | x ∈ XΛ}.

Then |Y | ≤ ∑Λ⊆{1,...,n} |YΛ|. Since the number of Λ is finite, it remains to show

that |YΛ| < ∞ for every Λ. For a fixed Λ, if |Λ| ≤ t + 1, we have that YΛ = {0}. If
|Λ| ≥ t+ 2, for any T ⊂ Λ with |T | = t, define

XΛ,T := {x | x ∈ XΛ, |xi| ≥ |xj |,∀i ∈ T, j /∈ T} and YΛ,T := {‖x‖t,1−2 | x ∈ XΛ,T }.

Then |YΛ| ≤
∑

T⊂Λ |YΛ,T |. Since the number of T is finite, we just need to show that
|YΛ,T | <∞ for every T . In fact, we have |YΛ,T | ≤ 1. If not, there exists x̂, x̌ ∈ XΛ,T
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satisfying ‖x̂‖t,1−2 6= ‖x̌2‖t,1−2, which implies that x̂Λ\T 6= x̌Λ\T . Consider r := x̂− x̌,
one has r ∈ ker(A), supp(r) ⊂ Λ, and rΛ\T 6= 0, which contradicts Theorem 3.8 (a).

For (b), redefine X ⊂ Rn be the set of global minimizers of (1.5) with τ = 0 and
XΛ := {x | x ∈ X, supp(x) = Λ} for any Λ ⊂ {1, . . . , n}. Since the global minimum is
not zero, it is straightforward that |XΛ| ≤ 1 for every Λ from Theorem 3.8 (b), which
completes the proof.
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