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ABSTRACT

We show seismic data can be described in a low dimensional manifold, and then propose

using a low dimensional manifold model (LDMM) method for extremely strong noise

attenuation. The LDMM supposes the dimension of the patch manifold of seismic

data should be low. In other words, the degree of freedom of the patches from seismic

data should be low. Under the linear events assumption on a patch, the patch can be

parameterized by the intercept and slope of the event, if the seismic wavelet is identical

everywhere. The denoising problem is formed as an optimization problem including a

fidelity term and an LDMM regularization term. We test LDMM on synthetic seismic

data with different noise levels. LDMM achieves better denoised results in comparison

with the Fourier, curvelet and nonlocal mean filtering methods, especially at strong

noise or low signal-to-noise ratio situation. We also test the LDMM on field records,

showing that LDMM is a potential method for handling relatively strong noise and

preserving weak features.
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INTRODUCTION

Background

Noise is unavoidable in seismic data acquisition. Strong background random noise is mainly

caused by the surface conditions in an area. Strong noise makes processing procedures

difficult, such as amplitude versus offset, amplitude versus azimuth, migration and inversion.

A more challenging scenario is microseismic monitoring, where very low amplitude data

are typically acquired with strong coherent and random noise, and display a low signal-to-

noise ratio (SNR) (Zhu et al., 2015). Accuracy and reliability of the location and other

event attributes derived from microseismic traces is influenced by this strong noise content

(Rodriguez et al., 2012).

Review on seismic noise attenuation methods

Typical time-domain methods include prediction (Abma and Claerbout, 1995) and stacking

(Liu et al., 2009). These methods perform well in low noise distortion situations, however

fail in low SNR situations (Harris and White, 1997). Various denoising methods have been

proposed for low SNR data in the transformed domain.

Methods based on the Fourier transform are widely used in seismic noise attenuation,

such as f − x deconvolution (Canales, 1984). However, in the presence of strong noise,

these methods actually struggle to denoise most of the frequencies. This shortcoming of the

Canales f − x denoising method is effectively overcome by the Naghizadeh’s f − k method

(Naghizadeh, 2012) using all frequencies to find the dominant dips in the data.

Wavelets and directional wavelets are utilized in seismic noise attenuation, such as the

curvelet transform (Candès and Donoho, 2004; Hennenfent and Herrmann, 2006), which

uses a window segmentation in the frequency domain to reveal multiscale and multidirec-

tional information. Seislet (Fomel and Liu, 2010) is a lifting wavelet based on prediction

and updating. Seislet is slope based, which makes the seislet transform based on PWD
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(PWD-seislet transform) occasionally fail in characterizing noisy signals with strong in-

terference. The velocity-dependent (VD) seislet transform (Liu et al., 2014) has better

resistance to strong random noise, which indicated the potential of VD seislets for random

noise attenuation under a 1D earth assumption. The physical wavelet frame (Zhang and

Ulrych, 2003) takes into account the characteristics of seismic data both in space and time,

it can successfully remove strong noise from the data.

Predefined transforms may wipe out the details in seismic data at low SNR, since they are

so structured (model driven). Dictionary learning methods were proposed for constructing

a set of adaptive basis from the data itself (data driven), aiming to better preserve details.

K-SVD (Aharon et al., 2006), sparse K-SVD (Rubinstein et al., 2010) and data driven

tight frame (DDTF) (Cai et al., 2014) methods have been used in seismic noise attenuation

(Beckouche and Ma, 2014; Liang et al., 2014; Yu et al., 2015, 2016; Zhu et al., 2015).

Rank reduction methods, such as singular spectrum methods (Sacchi, 2009), Cadzow

filtering (Trickett et al., 2008), or multichannel singular spectrum analysis (MSSA) (Oropeza

and Sacchi, 2011; Chiu, 2013), and low-rank constraint (or nuclear-norm minimization)

methods (Yang et al., 2013; Ma, 2013; Kumar et al., 2015) are also used. For instance, the

MSSA first arranges each frequency slice of the f−x spectrum of seismic data into a Hankel

matrix, then forces the Hankel matrix to be low rank to attenuate the noise. However, many

numerical experiments suggest that the random noise cannot be completely removed using

the MSSA algorithm. Huang et al. (2016) proposed a damped MSSA algorithm to handle

strong noise situation. In the extremely strong noise situation, if we stress a very low rank,

details will be wiped out by the global linear events.

The trade-off between regularization and detail preservation must be carefully consid-

ered, especially for strong noise situations. Removing strong noise requires strong regular-

ization. However two problems may occur. First, the noise may be fit as a basis, e.g., in the

sparsity promoting methods. Second, the local weak features may be wiped out. Patch and

nonlocal based method seem to be an alternative for extremely high noise level situations.
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An alternative way of denoising: patch based method

The nonlocal means (NLM) algorithm(Buades et al., 2005) was originally designed for image

processing. NLM is a random noise filter which utilizes the structure similarities (some kind

of redundancy) between the small windows (patches) of the image itself. Bonar and Sacchi

(2012) first used the NLM in seismic data denoising, which seems to handle curvature and

faults without losing the resolution of these features. NLM is achieved with the following

equations:

f̂(i) =
∑
j

w(i, j)v(j), (1)

w(i, j) =
1

Z(i)
exp

(
−D2(i, j)

h2

)
, (2)

where Z(i) is the normalizing factor, D(i, j) is the similarity between the pixels i and j

(between the neighborhood around the pixels). Reader may refer to (Bonar and Sacchi,

2012) for details.

The structure similarities means that pixels of the patches are not randomly distributed,

but restricted in less degrees of freedom (DOF). In the terms of mathematic, the patches

are points on a low dimensional manifold.

Osher et al. (2016) proposed a new regularization method for image processing based on

the patch manifold. The authors explained that patch manifolds of smooth images, cartoon

images and texture images are all close to low dimensional manifolds. The so-called low

dimensional manifold model (LDMM) achieves remarkable denoising results for low SNR

inputs. In our work, we first show that the patch manifold of seismic data is also close to

LDMM and then use the LDMM for seismic noise attenuation with extremely low SNR.

The remain sections are arranged as follows. The second section reviews the concept

of manifold, patch manifold and shows that the patch manifold of seismic data is of low

dimension. The third section gives the LDMM theory and algorithm. The fourth section

illustrates numerical results on synthetic and field data. The last section concludes this

paper.
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METHOD

Manifold and patch manifold

A manifold is a collection of points in Rn, locating on a subspace of Rn. The subspace

does not have to be linear. For instance, a sphere is a 2D manifold embedded in the 3D

space. The points on the sphere are parameterized by longitude and latitude. They can

not be obtained by linear combination of any other two points on the sphere. A manifold is

locally identical to Euclidean space everywhere. A manifold is a powerful tool for describing

natural images (Lee et al., 2003) and nonlinear dimensionality reduction (Tenenbaum et al.,

2000).

A patch px(f) of width τ extracted from data f ∈ L2([0, 1]2) around x ∈ [0, 1]2 is (Peyré,

2009)

∀t ∈ [−τ/2, τ/2]2, px(f)(t) = f(x+ t). (3)

where, the point x is the center of the patch px(f).

Suppose Θ ⊂ L2([0, 1]2) is a data set one is interested in. The patch manifold associated

to Θ is

M = {px(g)|x ∈ [0, 1]2, g ∈ Θ}. (4)

Figure 1 shows an illustration of a patch manifold from the sigmoid model. The seismic

data is shown on the left. Small patches (size: r× r) are extracted from the data and three

of them are shown in the middle. The entire set of the patches consists a patch manifold

in embedded Rr2 shown on the right. The patches are points on the manifold.

Low dimensional manifold model

The most important feature of the patch manifold is that it is close to a low-dimensional

manifold for many natural images. Osher et al. (2016) gives three examples, as we summa-

rized as follows.
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If f is a C2 function which corresponds to a smooth image, px(f) for a given x can be

approximated by a plane in Rd (d = m× n, where m and n are the size of the patch) with

three DOF. This fact implies that M(f) is close to a 3D manifold.

If f is a piecewise constant function which corresponds to a cartoon image, then, any

patch, px(f) is well approximated by a straight edge patch. The edge has two DOF. M(f)

is also close to a 2D manifold.

If f is an oscillatory function corresponding to a texture image. f(x) = a(x) cos θ(x),

where a(x) and θ(x) are both smooth functions. ThenM(f) is approximately a 6-dimensional

manifold.

In this paper, we care about seismic data. In seismic data f , suppose the parameters of

the seismic wavelet are constants everywhere, and each patch px(f) consists of at most n

events with two DOF for each. Then M(f) is 2n-dimension. If the amplitude and frequency

of the wavelet not constrained, then M(f) is 4n-dimension. If there exist a fault, the data

can be regarded as two texture image plus a straight edge.

We give examples to illustrate the manifold dimension of the cartoon image and seismic

image. Left of Figure 2 shows the patches from a cartoon image, with lines indicating the

boundary of the different regions. The lines are parameterized by the intercept and the

angle, shown in the middle bottom figure. So the patch manifold of a cartoon image is 2D.

The middle top figure shows a seismic Ricker wavelet. We convolve the patches on the left

with the Ricker wavelet only on the vertical directional to obtain the patches on the right,

which corresponding to patches from seismic data. This indicates the patch manifold of

seismic image is also 2D with the linear events assumption on patch scale.

Low dimensional manifold model for denoising

Suppose the data acquisition model is

y = Φf + n (5)
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where Φ is the observation system, n is Gaussian noise, f is the original data and y is the

degraded data. Φ = I for the application of denoising. We want to recover the original

data such that the dimension of its patch manifold is as small as possible.

Figure 3 illustrates the dimension of the patch manifold from the data in Figure 1. The

x−axis stands for the manifold dimension we use to approximate the patch manifold. The

y−axis measures the residual between the approximation and the original patch manifold.

Different marks stand for different noise level. This figure is generated with Isomap (Tenen-

baum et al., 2000). For the noiseless situation, the residual changes litter after the dimension

is larger than 7, which means that the patch manifold is approximately 7-D. Considering

the fault in the data, we suppose each patch contains at most 2 events. Also we suppose

the seismic wavelet changes across different patches. From the theoretical analysis in the

previous section, the patch manifold should be 8-D, which is approximately consistent with

the result in Figure 3. As the noise level increases, the residual also increases, since the

noised patch manifold can not be approximated by low dimensional patch manifold.

The low dimensional manifold assumption formally gives the following optimization

problem:

min
f

dim(M(f)) + λ‖y − Φf‖22, (6)

where dim(·) is the dimension of the manifold, λ is a balancing parameter. The optimization

problem in equation 6 is very nonlinear and non-convex. An alternative direction method

is utilized to solve it. First, fix the manifold M and update the data f . Then, the data is

fixed and update the manifold, which is done by directly applying the patch operator on

the data f . The derivation of the algorithm for the first step is achieved by replacing the

dimension term with a coordinate function, then turning into an Laplace-Beltrami equation

and finally using a point integral method to approximately solve it. We highly recommend

interested readers to (Osher et al., 2016) for details.
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NUMERICAL RESULTS

In this section, we test LDMM on synthetic and field seismic records. As a comparison, we

present results with global filtering methods based on the Fourier transform, local filtering

method based on curvelet transform, and patch filtering method based on NLM. For the

parameters needed, we run experiments with different parameters and select those that

achieve the highest SNR values. All tests were carried out on a personal laptop, with

Matlab on Windows 10 operation system, 8G RAM and Intel Core i-7 CPU. The SNR

value that is used to judge the quality of the noise attenuation is defined as follows

SNR = 10 log10

(
‖X∗‖2F

‖X∗ −X‖2F

)
where X∗ and X denote the original data and its recovery, respectively. ‖ · ‖F is the

Frobenious norm.

Figure 4a shows a synthetic seismic record, with 200 time samples and 256 space samples.

Figure 4b shows the SNR obtained with different methods at different noisy levels (from

SNR = -9.32 to SNR = 8.68). It is obvious that LDMM achieves much higher SNR,

especially at low SNR situation. At lower noise situations, LDMM obtains similar SNR to

the curvelet and NLM methods. Figure 4b shows that LDMM has a potential advantage

of handling seismic data with extremely low SNR. Figure 5 shows some noise attenuation

results corresponding to Figure 4b. The first to the fifth rows correspond to noisy data, with

recovery results from the Fourier, curvelet, NLM and LDMM methods. Different columns

correspond to different input noise levels. When the input noise level is low, all methods

achieve pleasant results. However, at higher noise levels, the limitations of each method

are obvious, especially at extremely high noisy situations. The Fourier method can hardly

recover the sine function like events. The curvelet method fits part of the strong noise as

small curvelet element, distributed all across the data. The artifacts from the NLM method

degrade the result a lot. The LDMM achieves the best result both visually and with the

highest SNR. However, due to the intense noise, the fault is smoothed by LDMM.

The input SNRs and output SNRs for Figure 5 are summarized in Table 1. The last
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column of Table 1 also shows the elapsed time for different methods. LDMM is much more

time consuming than the other three methods, which is a sacrifice for higher SNR. It is

important to improve the efficiency of LDMM to handle high dimensional seismic data.

Input 8.68 -3.59 -8.49 Time (s)

Fourier 13.62 4.10 1.14 0.01

Curvelet 16.62 7.86 4.00 0.26

NLM 16.85 6.85 4.64 4.67

LDMM 16.78 10.22 6.76 30

Table 1: SNR and elapsed time

Figure 6a shows a seismic record with more complex structures. This record consists

of 256 times samples and 256 space samples. We add strong noise (SNR = -7.35) to test

LDMM. The events are barely notable in Figure 6b. Two circles stress where the results

are easily comparable. The Fourier method (SNR = 2.73) in Figure 6c leaves notable noise

in the recovery result and can hardly recovery the details. The curvelet method (SNR =

5.38) recovers features in the left circle well. However there are lots of artifacts caused by

incorrect fitting of the noise with curvelets, as shown in Figure 6d. Also the details in the

middle circle are not preserved. NLM (SNR = 5.53) can not recover the details at relatively

low amplitude, as shown in Figure 6e. LDMM (SNR = 5.56) in Figure 6f achieves a little

higher SNR compared to the curvelet and NLM methods. However, LDMM produces much

better results visually. The details in the two circles are well preserved and the events seem

very continuous. In order to compare the abilities of amplitude preservation by different

methods, we give the recovery residual (i.e., recovery trace - clean trace) for a single trace in

Figure 7. Figure 7a shows the original (solid blue) and noisy trace (dahsed green) from the

data in Figure 6a and 6b (distance = 1000m). Figure 7b shows the recovery residual of the

Fourier, curvelet, NLM and LDMM methods from top to bottom. In the green rectangles,

it is clear that the residual of LDMM is the smallest among the four methods, showing the

good behavior of LDMM in amplitude preservation.
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Figure 8a shows a field record with strong distortion. The goal is to remove the distortion

and preserve the structure of the events as much as possible. At the bottom of the two

circles, the events shows jumping arches like features. The Fourier and curvelet methods

(Figure 8b and 8c) smooth the arches too much. The patch based methods: NLM and

LDMM (Figure 8d and 8e) preserve the arches much better. However NLM wipes out the

energy of events with relatively low amplitude. LDMM eliminates the distortion in the

record at the same time preserving the detailed structures. Figure 9 shows the comparisons

of recovery for a single trace at distance = 1000m. LDMM achieves the closest amplitude

to the original data, as shown in the red circles. It is understandable that all methods

attenuate the amplitude of the trace to some extent, since there is noise in the original

data.

DISCUSSION

As we mentioned, the trade-off between regularization and details preservation must be

carefully considered, especially for strong noise situation. We will discuss the trade-off in

different methods.

The f − x deconvolution method is achieved with auto regression for each slice of the

f−x spectrum. The trade-off is controlled by the length of the regression operator (Canales,

1984). If we have a long regression operator, the details may be also degraded along with

the noise.

The f − k domain or other sparse transform based methods usually obtain the recovery

data from an optimization problem, including a fidelity term and a sparsity term. The trade-

off is controlled by the weights between these two terms (Trad et al., 2002; Naghizadeh and

Innanen, 2011). When we have higher weights for the sparsity term, the noise may be seen

as a basis and the weak features may be wiped out.

Dictionary learning methods are split into two steps. In the training step, a parameter

controls the sparsity of the data expanding on the learned dictionary. With more weight
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on the sparsity term, the trained filter is more structured, leading to more regularization

in the sparsity promoting step. The sparsity promoting step is the same as the fixed basis

method. However, as we mentioned, dictionary learning is difficult to learn valid dictionary

in strong noise situations.

The low rank methods first arrange each frequency slice of seismic data into a Hankel

matrix, then force the Hankel matrix to be low rank to attenuate the noise. In theory, the

rank is equal to the number of events under a linear event assumption. The selection of

the desired rank plays a role similar to the length of the prediction error filter in classical

f − x deconvolution (Oropeza and Sacchi, 2011). In strong noise situations, if we stress a

very low rank, details will be wiped out by the global linear events.

For window strategies, details can not be preserved if the window is too big. If the size

of the window is too small, the regularization will not work (Trad, 2014).

NLM filters one patch with the weighted average of the similar patches. The trade-off

is controlled by the number of the patches utilized. When more patches are utilized, more

noise is filtered. However, more patches with not so similar structures will destroy the

structure of the desired patch.

LDMM first forms an optimization problem, including a fidelity term and a LDMM

regularization term. The trade-off is controlled by the weights between these two terms.

For strong noise situation, we should enlarge the weight of the LDMM regularization term.

However, there exist a lower limitation of the dimension=2n (n is the maximum number of

events in the patches), as we discussed. So no over regularization exists, which is an advan-

tage for preserving the details. Actually there is no obviously trade-off between removing

the noise and preserving the details. The weighting parameter just controls how much noise

is removed, since large weight almost does not smooth the original details. This can be

better understood from Figure 3. Suppose we have obtained an approximately clean data

from the noisy data by LDMM, where we may have reached dimension = 7 of the most

bottom line. If we continue enlarging the weight for the low dimensional regularization
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term, the dimension may decrease. However, the residual gap between dimension 7 and 6

is much larger than that after dimension > 7. So it is difficult to reduce the dimension any

more, unless we impose a very large weight for the low dimensional regularization term.

What’s more, it is much more difficult to reach even lower dimension.

CONCLUSION

We introduce a novel conception, low dimensional patch manifold, for seismic data pro-

cessing. LDMM assumes that the patches of a seismic records consists of a set which is a

subset of a low dimensional patch manifold. LDMM utilizes nonlocal information to wipe

out the noise in the record. We use LDMM for noise attenuation at extremely low SNR

situation. The numerical results show that LDMM eliminates the strong distortion in the

record while at the same time preserving the detailed structures. LDMM over performs

the Fourier, curvelet and NLM methods, especially at low SNR situations. LDMM has

many potential applications in seismic data processing, such as integrating in the POCS

frame for interpolation, microseismic monitoring where very low amplitude data are typi-

cally acquired with strong coherent and random noise. Improving the efficiency of LDMM

for application in industry is also a very important future direction.
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Figure 1: Illustration of the construction of a patch manifold from seismic patches. Left:

the sigmoid seismic data. Middle: three patches from the seismic data. Right: a patch

manifold composed by all the patches from the seismic data.

* =

Figure 2: Illustration of the DOF of the seismic patches.
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Figure 5: Denoise on a synthetic record. 1st-5th rows: noisy data, recovery results from

the Fourier, curvelet, NLM, LDMM methods. 1st-3rd columns, different noise levels.
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Figure 6: Noise attenuation on a seismic record with complex structures. (a) Clean data.

(b) Noisy data (SNR = -7.35). Recovery results with (c) the Fourier method (SNR = 2.73),

(d) the curvelet method (SNR = 5.38), (e) NLM (SNR = 5.53) and (f) LDMM (SNR =

5.56).
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Figure 7: Comparisons of residual for a single trace (distance = 1000m). (a) The original

(solid blue) and noisy trace (dahsed green). (b) From top to bottom: recovery residual of

the Fourier, curvelet, NLM and LDMM methods.
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Figure 8: Noise attenuation on a field record. (a) A field record. (b)-(e) Recovery results

from the Fourier, curvelet, NLM and LDMM methods.



23

0.2 0.4 0.6 0.8 1 1.2

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

A
m

p
lit

u
d
e

 

 

Original

Fourier

Curvelet

NLM

LDMM

Figure 9: Comparisons of recovery for a single trace (distance = 1000m).


