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Abstract— Electroencephalography (EEG) signal has been
playing a crucial role in clinical diagnosis and treatment
of neurological diseases. However, it is very challenging to
efficiently reconstruct the brain image given sources from very
few scalp measurements due to high ill-posedness. Recently
some efforts have been devoted to developing EEG source
reconstruction methods using various forms of regularization,
including the `1-norm, the total variation (TV), as well as
the fractional-order TV. However, since high-dimensional data
are very large, these methods are difficult to implement. In
this paper, we propose accelerated methods for EEG source
imaging based on the TV regularization and its variants.
Since the gradient/fractional-order gradient operators have
coordinate friendly structures, we apply the Chambolle-Pock
and ARock algorithms, along with diagonal preconditioning. In
our algorithms, the coordinates of primal and dual variables
are updated in an asynchronously parallel fashion. A variety
of experiments show that the proposed algorithms have more
rapid convergence than the state-of-the-art methods and have
the potential to achieve the real-time temporal resolution.

I. INTRODUCTION

Electroencephalography (EEG) has been playing a cru-
cial role in detecting abnormal brain activities which are
responsible for various neurological diseases, e.g., epilepsy
and brain tumors. Different from Single Photon Emission
Computed Tomography (SPECT), Positron Emission Tomog-
raphy (PET) and functional Magnetic Resonance Imaging
(fMRI), EEG can record fast neural activity over millisec-
onds. As long as scalp measurements are available, EEG
source imaging estimates brain sources of high temporal
resolution by solving the corresponding inverse problem.
Under the assumption that the location and orientation of
dipoles are fixed, the EEG inverse problem is converted to
estimating amplitudes of distributed sources on the cortical
surface. In this case, there are much more unknowns than the
given measurements, so the problem is under-determined.
To address the ill-posedness of the EEG inverse problem,
a large number of methods based on various regulariza-
tion techniques have been proposed [1], [2], [3], [4], [5],
[6]. Although the source localization performance has been
significantly improved recently concerning accuracy and
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focalization error, computation efficiency is still a bottleneck
and hinders many methods from being applied in practice.
It is of high necessity to develop fast, high-resolution source
imaging methods which can not only localize sources but
also estimate the spatial extent of the sources.

In this paper, we develop a novel method for accel-
erated high-resolution EEG source imaging. The method
stems from our recent work but is significantly improved.
Our recent reconstruction model [7] for EEG sources uses
the regularization of graph fractional-order total variation
(gFOTV). gFOTV has a great potential to achieve the state-
of-the-art performance regarding accuracy, spatial resolution
as well as localization accuracy. However, since each of its
iterations solves a least squares subproblem, the computation
intensity of gFOTV grows very quickly as the number of
voxels increases. Inspired by the numerical performance of
the asynchronous coordinate updating scheme [8], we exploit
the coordinate-friendly structure of the gFOTV operator and
develop a very fast algorithm to solve it. It is important
to note that the proposed algorithm can be easily extended
toward other regularization models that involve the composi-
tion of the `1-norm and a coordinate-friendly operator, such
as those in the sparse source imaging (SSI) [9] and the spatial
Laplacian in [10].

The rest of the paper is organized as follows. Section
II introduces the EEG inverse problem and briefly reviews
the inverse EEG imaging models regularized by total vari-
ation and its variants. Section III describes the proposed
acceleration approach, as well as its numerical algorithm,
in detail. The numerical performance obtained on synthetic
data is reported in Section IV. A brief conclusion is drawn
in Section V.

II. REGULARIZED EEG INVERSE PROBLEM
The EEG inverse problem is to reconstruct spatial distri-

butions of currents in the form of a 3D brain image from a
very limited number of electrode measurements. To simplify
the discussion, we adopt the two widely used assumptions:
1) the dipole sources with fixed locations and directions are
distributed on the cortex surface, which is discretized as
a triangular mesh containing N voxels; 2) each dipole is
normally aligned perpendicular to the cortex surface. Thus
far, we only need to estimate the amplitudes of dipole
sources. Assume that there are M electrodes placed on the
scalp. Let b ∈ RM be the electrical potential on the scalp
measured by the electrodes, and u∈RN be the neural current
density at each dipole location. Then the potential b and the
neural current density u satisfy the equation

b = Au+n



where n∈RM is the noise. Here A∈RM×N is called the lead
field matrix, whose (i, j)-th entry represents the electrical
potential measured by the i-th electrode due to an unit
dipole source at the j-th voxel. The matrix A is obtained by
constructing a head model followed by solving the Maxwell’s
equations under quasi-static conditions. In practice, we have
M�N which implies there will be infinitely many solutions
to the under-determined linear system u = Au. In order to
obtain the unique solution, various regularization techniques
have been applied to impose geometric characterizations
on the solution. In this paper, we unify the total variation
regularization that was used in VB-SCCD and SVB-SCCD
[4], and one of its generalizations–the graph fractional-order
TV [7]. We consider the following variational model to
reconstruct the current density distribution on the cortical
surface

min
u

1
2
‖Au−b‖2

2 +λ‖Dα u‖1, (1)

where λ > 0 is a tuning parameter used to balance the
first data fidelity term and the second regularization term.
Here ‖·‖2 is the Euclidean norm and ‖x‖1 returns the sum
of absolute values of all components in the vector x. The
fractional-order difference matrix Dα is defined as follows.
Let d(vi,v j) be the number of voxels on the shortest path
connecting the voxels vi and v j, which is either in or close
to a geodesic passing through vi and v j. Given a path p =
(vi=m0 ,vm1 , . . . ,vmK ) where the shortest distance between the
voxels vm0 and vm j is j voxels, the fractional-order derivative
along p is defined to be

(Dα
p u)i :=Dα

p u(vi)= ∑
v∈p

wα(d(v0,v))u(v)=
K

∑
j=0

wα( j)u(vm j).

Then the discretized fractional-order TV of u is defined as
follows:

TVα(u) = ‖Dα u‖1 =
N

∑
i=1

∑
p∈P(i;K)

|(Dα
p u)i|, (2)

where P(i;K) is the set of all paths starting from the i-th
voxel with length K voxels. Here Dα is a matrix of the size
L×N with L = 3N ·2K−1. In particular, if α = 1, then K = 1
and Dα u reduces to the finite difference approximation of
gradient, which corresponds to the TV regularized model. As
suggested in [7], it is sufficient to choose K = 4 in practice.
Note that the proposed algorithms can be easily extended
when we replace Dα in (1) by another sparsifying matrix.
For example, if Dα is replaced by the identity matrix, then
(1) becomes the `1-norm regularized model [3], [9].

III. FAST NUMERICAL ALGORITHMS

In our previous work [7], we applied the alternating
direction methods of multipliers (ADMM) to derive an
algorithm, where one subproblem involves solving Mx = b
for an N×N matrix M. It is time-consuming even though we
used the Cholesky factorization; moreover, the computation
time will increase superlinearly when the number of voxels
N increases. Motivated by the desire to design a scalable

algorithm, we resort to the Chambolle-Pock algorithm [11].
The Chambolle-Pock algorithm is one of the first primal-
dual algorithms which solves the problem minx f (x)+g(Ax)
without inverting any matrices.

By defining

B =

(
A

Dα

)
, f (p,q) =

1
2
‖p−b‖2

2 +λ‖q‖1for
(

p
q

)
∈ RM+L,

Problem (1) can be rewritten as minu f (Bu). Then we can
apply the Chambolle-Pock algorithm with diagonal precon-
ditioning [12] to solve it. By introducing two dual variables
s ∈ RL, t ∈ RM , we obtain the following algorithm

uk+1 = uk−Σ(DT
α sk +AT tk)

sk+1 = Proj‖·‖∞≤λ (s
k +Γ1Dα(uk−2Σ(DT

α sk +AT tk)))

tk+1 = (I +Γ2)
−1(tk−Γ2b+Γ2AT (2uk+1−uk)).

(3)
Here Σ,Γ1,Γ2 are diagonal matrices controlling the step
sizes, which are defined by

Σii = (
L

∑
j=1
|(Dα) ji|+

M

∑
j=1
|A ji|)−1

(Γ1)ii = (
N

∑
j=1
|(Dα)i j|)−1

(Γ2)ii = (
N

∑
j=1
|Ai j|)−1.

The projection of x ∈ RL is defined componentwise as[
Proj‖·‖∞≤λ (x)

]
i
= min(λ ,max(−λ ,xi)).

It has been shown that the above choices make Algorithm (3)
converge fast.

By letting zk := (uk,sk, tk)T , (3) can be rewritten as

zk+1 = T zk.

As shown in [8], it is computationally advantageous to update
zk in the (block) coordinate fashion. Specifically, for every
iteration, we randomly update one coordinate of z in (3), say
zk+1

i = (T zk)i, and keep the rest coordinates unchanged, i.e.,
zk+1

j = zk
j for j 6= i. Furthermore, as shown in [8, Section 4.2],

we can plug the u update in Algorithm (3) to the t update,
and get a similar yet new algorithm:

uk+1 = uk−Σ(DT
α sk +AT tk)

sk+1 = Proj‖·‖∞≤λ (s
k +Γ1Dα(uk−2Σ(DT

α sk +AT tk)))

tk+1 = (I +Γ2)
−1
(tk−Γ2b+Γ2AT(uk−2Σ(DT

α sk +AT tk))),
(4)

which is more suitable for coordinate update. Algorithm (4)
is shown to be coordinate-friendly, which means updating
one coordinate of z is much cheaper than updating z entirely,
and the aggregate cost of updating all coordinates is similar
to updating the whole z. Moreover, one of the major advan-
tages of coordinate update is that it allows larger step sizes
than its full update counterpart. During the implementation
of the coordinate update of Algorithm (4), all the step-size



matrices Σ,Γ1,Γ2 are multiplied by a scaling factor s ≥ 1,
which empirically leads to faster convergence.

Furthermore, on computers and clusters equipped with
multiple cores, we are able to perform asynchronous parallel
update in (4), as described in [8, Section 4.4] and [13],
which greatly speeds up the convergence. On a multi-core
system, each core will randomly select one coordinate of z
to update, independent of other cores, and all cores update
the coordinate in parallel, while reading from and writing to
their shared memory. Asynchronous information delay and
lockless memory access are allowed. It is shown in [13], [8]
that if we relax the coordinate update as

zk+1
i = (1−ρ)zk

i +ρ(T zk)i, zk+1
j = zk

j, ∀ j 6= i, (5)

with a properly chosen factor ρ < 1, then this async-
parallel algorithm will yield a solution to Problem (1). We
empirically choose ρ = 0.5 in all experiments for stable
performance. Our numerical experiments show that the above
async-parallel version provides a nearly linear speedup to
Algorithm (4) as the number of working cores grows.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed algorithms by testing them on various simulation
data sets. In particular, We compare the randomized coor-
dinate update of Algorithm (4) and its multi-core version
with the ADMM-based algorithm [7] and the CVX toolbox
http://cvxr.com/cvx/. The toolbox has been used in
the state-of-the-art EEG methods [10], [6]. We apply the
fractional-order TV regularized model (2) with α = 1.6,
which consistently yields superior performance compared to
other related models in terms of accuracy [7]. It is worth
noting that as the number of voxels increases, the quality of
brain images reconstructed from this model can be further
enhanced.

A. Simulation Protocol

Our simulation uses the same sources as those in [7],
which we describe as follows. First, a center is seeded and
then its neighbors are gradually recruited to form a patch.
The current density is the strongest in the center, and then
gradually decays as it goes far from the center following
the shape of a Gaussian distribution. To represent sources
at different locations, we randomly select three sources
located in different lobes of the cortex surface. In addition,
to evaluate the performance of the proposed methods for
various source sizes, we simulated sources containing 50,
100, 150, 200, 250 voxels, corresponding to 1.0cm, 1.4cm,
1.7cm, 1.9cm, 2.1cm, respectively. To simulate the noise,
we impose random independent and identically distributed
(i.i.d.) Gaussian noise to each voxel and then add Gaussian
noise at a signal-to-noise ratio (SNR) of 20dB to each
channel. The simulated measurements are normalized to fall
between 10 µV to 100 µV , as suggested in [14]. Experi-
mental results show that the computation time only relies
on the number of voxels, the number of electrodes and the
regularization parameter λ , rather than the configuration of

noise and source. Here we choose the number of electrodes
as 68, 103 and 346, and the number of voxels as 10240,
16384 and 40960.

B. Computing Platform

All numerical experiments are performed in a machine
with an Intel R© Xeon R© CPU E5-2650 v4 @ 2.2GHz and
64GB RAM in double precision. The CPU has 12 physical
cores and each core has 2 logical processors. The ADMM
and CVX are called in Matlab 2016a running on Windows
10. The async-parallel coordinate update algorithm is written
in C++ based on the toolbox [15], and runs on Ubuntu
16.04LTS. We compare only the computing time of the
three algorithms. The core optimization algorithm of CVX
is written in C and called in Matlab through MEX; the
ADMM subproblems are solved using basic linear algebra
operations in Matlab, which are highly optimized. Therefore
the comparison is considered fair despite the difference of
platforms.

C. Performance Comparison

To make a fair comparison, we let each algorithm run until
it achieves the same objective function value, which implies
the same accuracy and focalization degree. The scaling factor
s for the step size matrices in (5) is tuned between 5 and
11 to achieve the best performance. In addition, we fix the
regularization parameter λ = 20 for all tests, as it works well
consistently. Let p be the number of threads in our algorithm.

Fig. 1 shows all the brain images reconstructed from
various data sets by randomized coordinate update of Al-
gorithm (5) running one thread. As the triangular mesh
gets finer, the reconstructed sources become more focused.
The increase of electrodes also helps shrink the extent of
sources and thereby localize sources more accurately. In
Columns 3-6 of Table I, we compare the computation times
of single-threaded CVX, ADMM and coordinate update
of (5) running one thread and 16 threads. Here we manually
change the precision in CVX to achieve the same accuracy.
In ADMM, the algorithm terminates when it reaches either
1000 iterations or the tolerance of 10−3 for the relative error
between two consecutive results. In our method, we tune the
scaling factor s and the number of epoches for each data set,
and then fix them for both single-threaded and multi-threaded
versions of Algorithm (5). One can see that for large-scale
data sets, e.g., the case with 346 electrodes and 40960 voxels,
coordinate update algorithm (5) shows superior performance
over ADMM and CVX in terms of computation time.

Furthermore, to study the speedup behavior of Algo-
rithm (5), we use various numbers of threads p= 1,2,4,8,16
and fix the number of epoches as 5000 and the scaling factor
s = 6. We define the speedup ratio by

running time using 1 thread
running time using p threads ,

which measures the reduction of running time due to the
growth of threads. In Fig 2, we plot the speedup ratio
against the number of threads. One can see that the async-
parallel coordinate update algorithm achieves an (almost)
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Fig. 1: Reconstructed brain images for various data sets.

m n CVX ADMM p = 1 p = 16
68 10240 52.78 67.36 40.30 4.90
68 16384 95.00 237.80 74.46 8.46
68 40960 311.71 2015.79 242.42 25.45
103 10240 62.37 64.21 33.00 3.84
103 16384 108.16 175.31 56.19 6.35
103 40960 393.23 1639.51 194.48 19.77
346 10240 370.63 51.02 45.14 5.21
346 16384 476.16 135.12 66.45 7.59
346 40960 2720.28 1200.10 177.15 19.70

TABLE I: Computation time in seconds. Columns 3 to 6 list
the computation times of single-threaded CVX, ADMM and
the proposed algorithm (5) with one thread and 16 threads,
respectively.

linear speedup as the number of threads grows. The above
comparisons show that multi-threading significantly shortens
the computation time: for the 346×40960 test, it is reduced
from over twenty minutes (ADMM or CVX) to less than
twenty seconds (see Table I).

V. CONCLUSIONS

In this paper, we propose a fast and high-resolution EEG
source imaging method, which significantly accelerates the
numerical solutions of TV and gFOTV regularized EEG
reconstruction methods. Specifically, by utilizing the coordi-
nate friendly structure of the gradient and the fractional-order
gradient operators, we derive the proposed algorithm by ap-
plying the primal-dual method and diagonal preconditioning
technique. Numerical experiments show that the proposed
method running multiple threads on a multi-core system
exhibits superior performance in terms of both computation
time and solution accuracy over the state-of-the-art methods.
The proposed approach can be generalized to accelerate
other regularized models involving the `1-norm. It also has
a great potential to achieve real-time temporal resolution,
which can potentially bring tremendous convenience and
broad influence to clinical applications.
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Fig. 2: Multi-threading speedup of computation.
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