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Abstract. Phase retrieval plays an important role in vast industrial and scientific applications.
We consider a phase retrieval problem in which the magnitudes of the Fourier transform (or a general
linear transform) of a underling object are corrupted by Poisson noise, since any optical sensors
detect photons, and the number of detected photons follows the Poisson distribution. We propose
a variational model for phase retrieval based on a total variation regularization as an image prior
and maximum likelihood estimation of Poisson noise model, which is referred to as “TV-PoiPR”. We
also propose an efficient numerical algorithm based on alternating direction method of multipliers
(ADMM) and establish its convergence. Extensive experiments are conducted using both real and
complex valued images to demonstrate the effectiveness of our proposed methods.
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1. Introduction. Phase retrieval (PR) plays a very important role in vast in-
dustrial and scientific applications, such as in astronomical imaging [20, 35], crystal-
lography [27, 41], and optics [50, 48], etc. The goal is to reconstruct an object where
pointwise magnitudes of the Fourier transform (FT) of the object are available. Since
the phase of the FT is missing, this procedure is referred to as “phase retrieval”.

Throughout the paper, we consider PR in a discrete setting, i.e., an underlying
object u : Ω = {0, 1, · · · , n − 1} → C is of size n with n = n1 × n2, in which we
represent a 2-dimensional (2D) object with resolution n1 × n2 in terms of a vector of
size n by a lexicographical order. The measured data are magnitudes of the Fourier
transform of u, i.e., |Fu|2, where | · |2 denotes the pointwise square of the absolute
value of a vector, F : Cn → Cn denotes the discrete Fourier transform (DFT)

(Fu)(ω1 + ω2n1) :=
1

√
n1n2

∑
0≤tj≤nj−1,

j=1,2

u(t1 + t2n1) exp(−2πi(ω1t1/n1 + ω2t2/n2)),

∀ 0 ≤ ωj ≤ nj−1, for j = 1, 2, where i =
√
−1. In fact, DFT can be replaced with an

arbitrary linear operator, thus leading to a general phase retrieval problem [2, 49, 29],

(1.1) To find u ∈ Cn, s.t. |Au|2 = b,

where A : Cn → Cm is a linear operator in the complex Euclidean space and b :
Λ = {0, 1, · · · ,m− 1} → R+. In general, phase retrieval involves solving a quadratic
inverse problem, and it is ill-posed and yet challenging, since PR does not have a
unique solution without additional information.

The computational tools for phase retrieval can be classified into three categories.
One is based on alternative projection since a pioneer work of error reduction (ER) by

∗School of Mathematical Sciences, Tianjin Normal University, Tianjin, 300387, China,E-mail:
changhuibin@gmail.com
†Department of Mathematical Sciences, University of Texas at Dallas, Dallas, TX 75080, USA,

E-mail: yifei.lou@utdallas.edu
‡Center for Applied Mathematics, Tianjin University, 300072, China,E-mail:

yuping.duan@tju.edu.cn

1
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Gerchberg and Saxton [24], and its variants [22, 3, 4, 21, 34]; please refer to [39, 53]
and the reference therein. However, these methods are lack of theoretical guarantees
due to nonconvex constraint sets for alternative projection. Recently, a global conver-
gence for Gaussian measurements was theoretically analyzed by Netrapalli et al. [42],
while the convergence under general conditions was proved by Marchesini et al. [40].
Chen and Fannjiang [16] provided local and geometric convergence to a unique fixed
point for a Douglas-Rachford (DR) algorithm. In addition, gradient-type methods
[17] become popular. For example, a Wirtinger flow (WF) approach was proposed in
[10] by comprising of a careful initialization by spectral method and adaptive steps,
and was further improved by truncated Wirtinger flow (TWF) [17]. Gradient-based
approaches are often with first-order convergence, while a higher-order method was
proposed by Qian et al. [44] to accelerate the convergence in a ptychographic PR
problem. The third category is convex methods based on semi-definite program-
ming(SDP). For example, Candés et al. proposed PhaseLift [11] that formulates a
convex trace (nuclear) norm minimization by the lift technique of SDP. PhaseCut by
Waldspurger et al. [49] convexified the PR problem by separating phases and magni-
tudes. PhaseLiftOff, a nonconvex variant of PhaseLift by subtracting off Frobenius
norm from the trace norm, was proposed by Yin and Xin [55] to retrieve the phase
with less measurements than PhaseLift. The SDP-based methods were adopted to
solve a sparse phase retrieval problem [43, 33] in the sense that the reconstructed
object is sparse.

In addition to computational tools, researchers also devote to analyzing phase
retrieval theoretically by studying the injectivity (or uniqueness) of the quadratic
operator |A(·)|2. Denote a nonlinear mapping M : Cn → Rm+ as

(1.2) M(u) = |Au|2.

In general, there exist trivial ambiguities [48], such as global phase shift, conjugate
inversion, and spatial shift, so that the injectivity of M does not hold for Fourier
type of measurements without additional information. If u is further assumed to be
a d−dimensional real-valued vector, then 2d × n Fourier measurements are required
to ensure the injectivity of M [28]. Note that one often refers u as a 1D signal for
d = 1 and as a 2D image for d = 2. Since we focus on 2D image in this paper,
this translates to 4n measurements for uniquely recovering real valued images. The
number of measurements for unique recovery is relaxed for PR in general (not limited
to Fourier measurements). For example, the injectivity is guaranteed by collecting
m ≥ 2n − 1 [2] and m ≥ 4n − 4 [18] measurements for real u ∈ Rn and complex
u ∈ Cn signals respectively, provided that the transform A is generated by a generic
frame1. In particular, Shechtman et al. [48] showed that the lower bound 2n − 1
can be achieved with high probability by collecting full-spark random measurements.
Following the idea of holography, Candés et al. [8] proved unique phase retrieval from
3n Fourier measurements, in which the linear operator A can be expressed as

(1.3) Au =

 Fu
F(u+ Ds1,s2u)
F(u− iDs1,s2u)

 ,
1Generic frame means a K−element frame belongs to an open dense subset of the set of all

K−element frames in Rn or Cn [2]
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where

(Ds1,s2u)(t1 + t2n1) = exp

(
2πis1t1
n1

+
2πis2t2
n2

)
u(t1 + t2n1), 0 ≤ ti ≤ ni − 1,

with i = 1, 2 and integers s1, s2 coprime to n1, n2 respectively. However, they found
this amount of measurements is practically insufficient to recover u exactly and sta-
bly, and 7n measurements are suggested instead. In our preliminary work [15], we
demonstrated that 3n measurements with s1 = s2 = 1/2 can recover phase infor-
mation both theoretically and empirically. Furthermore, additional prior information
[30, 30, 11, 51, 47] is helpful to establish the uniqueness of M as well as to design
efficient PR algorithms. For example, Jaganathan et al. [30] proved that signals of
aperiodic support can be uniquely recovered with high probability if the DFT dimen-
sion is no less than 2n, while Wang and Xu [51] focused on the minimal number of
measurements required to deal with sparse signals in both the real and complex cases.

In this paper, we consider the phase retrieval problem from the measurements
that are contaminated by the Poisson noise. It is very useful, since any optical sensor
detects photons, and the number of measured photons varies following the Poisson
distribution in the sense that the noise level depends on the ground-truth image,
i.e., stronger noise appears at lower intensity. Furthermore, when the intensity value
is high enough, the Poisson noise at this pixel behaves like a “Gaussian” noise and
therefore Poisson noise can be approximated by a Gaussian distribution via Anscombe
transformation[1, 38]. In order to denoise the data from such measurements, prior
information is important in the reconstruction procedure, and please refer to [32, 19,
56, 46, 25, 31] for various ways of imposing prior knowledge.

We formulate a variational model by introducing a total variation (TV) regular-
ization to enforce sparsity, which is widely used in image processing since the seminal
work of [45]. We extend our previous work [15] (focusing on holographic pattern for
real-valued images) to more general PR setting (1.1) and deal with the Poisson noise
in measurements for both real and complex valued images. We prove the existence
and uniqueness of the minimizer to our proposed model, and an efficient alternative
direction method of multipliers (ADMM) [26, 54, 5, 14] is designed with theoretical
convergence guarantees. Numerical experiments are based on Fourier measurements
generated by coded diffraction patterns (CDP) [9] and holographic pattern [11, 15]
as expressed in (1.3). We show that satisfactory PR results can be obtained from 2n
and 4n noisy measurements for real and complex images respectively, in consistent
with the theoretical results in [2, 18]. Furthermore, the proposed method can deal
with a large amount of downsampling; especially 0.4n measurements are shown to be
sufficient for natural images.

The rest of this paper is organized as follows. In Section 2, a TV regularized
model for Poisson noise removal in a phase retrieval problem, referred to as TV-
PoiPR, is established, where the existence of the minimizer to the proposed model is
obtained. Section 3 discusses an ADMM algorithm for TV-PoiPR with convergence
analysis. Section 4 devotes to a special case, in which TV is not present, referred to
as PoiPR. In this case, we can further prove the uniqueness of the solution. To the
best of our knowledge, PoiPR, as a method to deal with noise-free PR measurements,
is not systematically studied in the literature. Experiments are performed in Section
5 to demonstrate the effectiveness and robustness of the proposed methods for image
recovery from noisy and incomplete magnitude data. Conclusions and future works
are given in Section 6.
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2. Proposed Model.

2.1. Maximum likelihood Estimation. Poisson noise is one of the most com-
mon types of noise that occurs for photon-counting. Its name is stemmed from Poisson
distribution, defined as follows

Prµ(n) =
e−µµn

n!
, n ≥ 0,

where µ is mean and standard deviation. The number of photons measured at each
pixel, denoted as f(i), follows i.i.d. Poisson distributions with µ being the ground-
truth value, g(i), for i ∈ Ω, denoted as

(2.1) f(i)
ind.∼ Poisson(g(i)), ∀i ∈ Ω.

Given the measured data f , the denoising problem is then formulated via maxi-
mum likelihood estimation (MLE) of a clean image g, which can be expressed as
max Pr(g(i)|f(i)). By Bayes’ Law, we have

(2.2) Pr(g(i)|f(i)) =
Pr(f(i)|g(i))Pr(g(i))

Pr(f(i))
.

Therefore, max Pr(g(i)|f(i)) is equivalent to max Pr(f(i)|g(i))Pr(g(i)). It follows from
the definition of Poisson distribution that

(2.3) Pr(f(i)|g(i)) = Prg(i)(f(i)) =
e−g(i)g(i)f(i)

(f(i))!
,

which suggests to minimize the logarithm of the Pr(f(i)|g(i))Pr(g(i)) instead, i.e.

min
g≥0

∑
i∈Ω

− log Pr(f(i)|g(i))− log Pr(g(i))

= min
g≥0

∑
i∈Ω

(g(i)− f(i) log g(i))− log Pr(g(i)),
(2.4)

where the first term is related with the famous Kullback-Leibler (KL) divergence, and
define 0 log 0 = 0 and log 0 = −∞.

Regularization often plays an important role in noise removal. Following the
celebrated TV regularization, Le et al. considered a TV regularized model [32],

(2.5) min
g≥0

λTV(g) +
∑
i∈Ω

(g(i)− f(i) log g(i)),

where TV(g) = ‖∇g‖1 =
∑
j

√
|(∇xg)(j)|2 + |(∇yg)(j)|2, and ∇x and ∇y define the

x−direction and y−direction forward difference operators respectively. The model
(2.5) can be regarded as incorporating a prior distribution, Pr(g) = exp

(
− λTV(g)

)
,

into the MLE for Poisson noise removal. Efficient methods were proposed to solve the
above total variation regularized model, such as gradient descent [32], expectation-
maximization (EM) algorithm [6], mutigrid method [13], and fast splitting methods
[23, 7, 12, 52].
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2.2. TV-PoiPR. In this paper, we consider a phase retrieval problem in which
the measurements b = |Au|2 in (1.1) are corrupted by Poisson noise, that is,

f(i)
ind.∼ Poisson(b(i)), ∀i ∈ D,

with an undersampling set D ⊆ Λ. In the light of (2.5), we establish a minimization
problem, referred to as “TV-PoiPR”,

(2.6) min
u∈Cn

G(u) := λTV(u) +
1

2

∑
i∈D

(|(Au)(i)|2 − f(i) log |(Au)(i)|2).

where u ∈ Cn is an underlying image that we want to reconstruct from magnitude
data.

The rest of the section devotes to theoretical analysis of TV-PoiPR. In particular,
we prove existence of solutions to (2.6) under mild conditions. The uniqueness of
solutions to (2.6) with λ = 0 is studied in Section 4. Note that we only focus on
the discrete setting, while it is straightforward to extend the analysis to a continuous
setting using the compactness property of bounded variation (BV) space and lower
semi-continuity of the objective functional G.

Theorem 1. Assume that there exists a positive number β for the operator A,
such that

(2.7) β‖u‖2 ≤ ‖Au‖2,D, ∀u ∈ Cn,

with ‖z‖2,D =
√∑
i∈D

z(i)2, z ∈ Cm, then there exists a minimizer u∗ for (2.6), i.e.

u∗ = arg min
u∈Cn

G(u).

Proof. Define a data fidelity for Poisson noise,

(2.8) J(u) =
∑
i∈D

(|(Au)(i)|2 − fi log |(Au)(i)|2).

Since

x− f(i) log x ≥ f(i)− f(i) log f(i),∀x ≥ 0, and i ∈ {i ∈ D : f(i) > 0},

we have

J(u) ≥
∑

{i∈D: f(i)>0}

(f(i)− f(i) log |f(i)|2), ∀u ∈ Cn,(2.9)

such that G(u) is bounded below. Therefore, we can choose a minimizing sequence
{un}, such that

G(u0) ≥ G(u1) ≥ · · · ≥ G(uj) ≥ · · · .

G(u0) ≥λTV(uj) +
∑
i∈D

(|zj(i)|2 − f(i) log |zj(i)|2)

≥
∑

{i∈D: |zj(i)|≥1}

|zj(i)|2 − ‖f‖∞
∑

{i∈D: |zj(i)|≥1}

log |zj(i)|2

=
∑

{i∈D: |zj(i)|≥1}

|zj(i)|2 − ‖f‖∞ log
∏

{i∈D: |zj(i)|≥1}

|zj(i)|2

≥
∑

{i∈D: |zj(i)|≥1}

|zj(i)|2 −m0‖f‖∞ log
( 1

m0

∑
{i∈D: |zj(i)|≥1}

|zj(i)|2
)

(2.10)
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where zj = Auj , and m0 = #{i ∈ D : |zj(i)| ≥ 1} ≤ m. Therefore, one readily
obtains that {‖Auj‖2,D} is a bounded sequence such that {‖uj‖} is also bounded by
(2.7). By the compactness of discrete L2 space, one can readily select a convergent
subsequence {ujk} ⊆ {uj}, such that limk→+∞ ujk = u∗. By the continuity of the
objective functional G, we have

lim
k→+∞

G(ujk) = G(u∗).

That concludes the proof.
Furthermore, we can relax the assumption (2.7) as

(2.11) ‖A1‖2,D 6= 0,

where 1 ∈ Cm whose elements are all equal to one, and obtain a similar results.
Proposition 2.1. If the assumption (2.11) holds, there exists a minimizer u∗

for (2.6), i.e.

u∗ = arg min
u∈Cn

G(u).

Proof. Since G(u) is bounded below by (2.9), we can choose a minimizing sequence
{un}, such that

G(u0) ≥ G(u1) ≥ · · · ≥ G(uj) ≥ · · · .

We will show the minimizing sequence is bounded. Rewrite

(2.12) uj = ûj + cj1,

where the constant cj =
∑
i∈Λ

uj(i)/m. Since it exists a positive constant C, such that

‖z − 1

m

∑
i∈Λ

z(i)1‖ ≤ CTV(z), ∀ z ∈ Cm,

we have the boundedness of {ûj}. By (2.10), we obtain the boundedness of ‖Auj‖2,D.
Since

|cj |‖A1‖2,D = ‖Aûj −Auj‖2,D
≤‖Aûj‖2,D + ‖Auj‖2,D
≤‖Aûj‖+ ‖Auj‖2,D
≤‖A‖‖ûj‖+ ‖Auj‖2,D,

(2.13)

with the help of assumption (2.11), one can see that {cj} is bouneded. It follows from
(2.12) that {uj} is bounded. Due to the lower semi-continuity of G, we can complete
the proof by similar analysis as in Theorem 1.

Remark 2.1. For any regularization term R(u) that is lower semi-continuous,
we can prove the existence of minimizer of

min
u∈Cn

R(u) + J(u),

where J(u) is a data fidelity term, defined in (2.8).
Remark 2.2. The assumptions of (2.7) and (2.11) are satisfied for some special

patterns as CDP and holographic pattern without undersampling, or, when D = Λ.
In general, it is difficult to show that a nonconvex minimization problem has a

unique solution. We will prove the uniqueness of the minimizer (2.6) without regu-
larization term i.e. λ = 0 in Section 4.
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3. Numerical Algorithms. We apply the ADMM algorithm [5] to solve the
proposed model (2.6), which is equivalent to

(3.1) min
u∈Cn

λ‖p‖1 +
1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2), s.t. z = Au, p = ∇u,

where ∇u = (∇xu,∇yu) denotes the gradient operator and we assume zero boundary
conditions for these two gradient operators. One can readily construct the augmented
Lagrangian as

Lr1,r2(u, z,p; v, q) := max
q,v

min
u,z,p

λ‖p‖1 +
1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2)

+Re〈z −Au, v〉+ Re〈p−∇u, q〉+
r1

2
‖z −Au‖2 +

r2

2
‖p−∇u‖2,

(3.2)

where 〈·, ·〉 denotes the complex inner product of two vectors, and v, q are called
Lagrange multipliers or dual variables. Alternative minimization for the above La-
grangian consists of solving three subproblems with respect to u, z,p, followed by
updating dual variables. Below we elaborate on how to solve for u, z,p.

3.1. u-subproblem. The u-subproblem is

min
u∈Cn

Re〈z −Au, v〉+ Re〈p−∇u, q〉+
r1

2
‖z −Au‖2 +

r2

2
‖p−∇u‖2,(3.3)

which can be simplified as

min
u∈Cn

r1

2
‖z + v/r1 −Au‖2 +

r2

2
‖p + q/r2 −∇u‖2.(3.4)

The operator A can be rewritten by the summation of two linear real operators
A = A1 + iA2. In a similar way, u = u1 + iu2 with ui ∈ Rn. One can obtain
Au = A1u1 −A2u2 + i(A1u2 +A2u1). Letting v0 = z + v/r1,p0 = p + q/r2, (3.4) is
equivalent to

r1

2
‖v0 −Au‖2 +

r2

2
‖p0 −∇u‖2

=
r1

2
‖A1u1 −A2u2 −Re(v0)‖2 +

r1

2
‖A1u2 +A2u1 − Im(v0)‖2

+
r2

2
‖Re(p0)−∇u1‖2 +

r2

2
‖Im(p0)−∇u2‖2.

(3.5)

By computing the derivative with respect to ui, one obtainsr1(AT1 A1 +AT2 A2)− r2∆ −r1(AT1 A2 −AT2 A1)

r1(AT1 A2 −AT2 A1) r1(AT1 A1 +AT2 A2)− r2∆

u1

u2



=

 r1(AT1 Re(v0) +AT2 Im(v0))− r2(∇ ·Re(p0))

r1(−AT2 Re(v0) +AT1 Im(v0))− r2(∇ · Im(p0))

 ,
(3.6)
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with suitable boundary condition for ui, where ∆u = ∇·(∇u), the divergence operator
∇(·) denotes the conjugate operator of gradient ∇. Readily we haver1(Re(A∗A))− r2∆ −r1(Im(A∗A))

r1(Im(A∗A)) r1(Re(A∗A))− r2∆

u1

u2


=

r1(Re(A∗v0))− r2(∇ ·Re(p0))

r1(Im(A∗v0))− r2(∇ · Im(p0))

 ,
(3.7)

since

(3.8) AT1 A1 +AT2 A2 = Re(A∗A), AT1 A2 −AT2 A1 = Im(A∗A).

Note that there is a unique solution to the u−subproblem, as characterized in Theo-
rem 2.

Theorem 2. The linear equations (3.7) admit a unique solution.
Proof. Let

(3.9) B :=

r1(Re(A∗A))− r2∆ −r1(Im(A∗A))

r1(Im(A∗A)) r1(Re(A∗A))− r2∆

 .
We show that the linear operator B is strictly positive definite. For this purpose, we
calculate

〈B(u1, u2)T , (u1, u2)T 〉 = 〈r1Re(A∗A)u1 − r2∆u1, u1〉 − 〈r1Im(A∗A)u2, u1〉
+ 〈r1Im(A∗A)u1, u2〉+ 〈r1Re(A∗A)u2 − r2∆u2, u2〉

= 〈r1Re(A∗A)u1 − r2∆u1, u1〉+ 〈r1Re(A∗A)u2 − r2∆u2, u2〉
= r1 (〈Re(A∗A)u1, u1〉+ 〈Re(A∗A)u2, u2〉) + r2 (〈−∆u1, u1〉+ 〈−∆u2, u2〉) .

Since the operator ∆ is negative definite with the difference scheme of zero boundary
condition and Re(A∗A) is semi-positive by (3.8), we have

〈B(u1, u2)T , (u1, u2)T 〉 > 0,

for (u1, u2) 6= 0. Therefore the positivity of B guarantees the uniqueness of the
solution to u-subproblem (3.7).

Remark 3.1. We can simplify the solution of u-subproblem if the matrix A
involves Fourier measurements with masks {Ij}kj=1 as

(3.10) Au =


F(I1 ◦ u)
F(I2 ◦ u)

...
F(Ik ◦ u)

 ,
where ◦ denotes the pointwise multiplication, Ij is a (mask) matrix indexed by j, each
of which is represented by a vector in Cn in a lexicographical order. Therefore we
have A∗A =

∑
j

I∗j ◦ Ij , which is a real-valued matrix. For such pattern, we can obtain

u = u1 + iu2 as

u1 = (r1(Re(A∗A))− r2∆)
−1

(r1Re(A∗v0)− r2∇ ·Re(p0)) ,

u2 = (r1(Re(A∗A))− r2∆)
−1

(r1Im(A∗v0)− r2∇ · Im(p0)) ,
(3.11)
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by solving the following block-diagonal equation

r1Re(A∗A)− r2∆ 0

0 r1Re(A∗A)− r2∆

u1

u2

 =

r1Re(A∗v0)− r2∇ ·Re(p0)

r1Im(A∗v0)− r2∇ · Im(p0)

 .
(3.12)

A simplified forms can be written as

u = (r1Re(A∗A)− r2∆)
−1

(r1A∗v0 − r2∇ · p0) .

As the positivity of the coefficient matrix of the above equation in the proof of The-
orem 2 is shown, one can use conjugate gradient methods to solve it efficiently and
few iterations are needed in practice. Similar calculation reveals that the matrix B
corresponding to the holographic pattern has a block-diagonal form as well.

Remark 3.2. We consider the case of real signal u ∈ Rn, and real auxiliary
variables p, q ∈ R2n; in other words, we solve the minimization problem on a real-
valued space. The Euler equation to the subproblem (3.3) with respect to real-valued
u and p is obtained by

(r1Re(A∗A)− r2∆)u = r1Re(A∗v0)− r2∇ · p0.

3.2. z-subproblem. We rewrite the z-subproblem as

min
z∈Cm

1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2) +
r1

2
‖z −Au+ v/r1‖2.(3.13)

It is straightforward that the minimization with respect to z is equivalent to mini-
mizing with respect to each entry z(i) independently and for i ∈ Λ \ D, an optimal
solution is z∗(i) = (Au)(i)− v(i)/r1.

As for i ∈ D, we can decompose the minimization problem with respect to z(i),

z∗(i) = arg min
z(i)∈C

1

2
(|z(i)|2 − f(i) log |z(i)|2) +

r1

2
|z(i)− (Au)(i) + v(i)/r1|2,∀i ∈ D.

(3.14)

into two subproblems, i.e., |z(i)| and sign(z(i)) for sign(z(i)) =
z(i)

|z(i)|
. One can readily

obtain sign(z∗(i)) = sign((Au)(i)−v(i)/r1). To minimize the subproblem with respect
to |z∗(i)|, we have

|z∗(i)| = arg min
ρ∈R+

1

2
(ρ2 − f(i) log ρ2) +

r1

2

(
ρ− |(Au)(i)− v(i)/r1|

)2
,

which has a closed-form solution,

|z∗(i)| = r1|(Au)(i)− v(i)/r1|+
√
r2
1|(Au)(i)− v(i)/r1|2 + 4(1 + r1)f(i)

2(1 + r1)
.

Letting w = Au− v/r1, we arrive at a simplified expression of

z∗(i) =
r1|w(i)|+

√
r2
1|w(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
sign(w(i)), ∀ i ∈ D.
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3.3. p-subproblem and overall algorithm. At last, we consider the p-subproblem

min
p∈C2n

λ‖p‖1 +
r2

2
‖p−∇u+ q/r2‖2,(3.15)

The solution is a soft shrinkage of variable ∇u− q/r2 as

p∗ = Threshλ/r2(∇u− q/r2)

with

Threshη(q) = max {0, |q| − η} sign(q).

In summary, a pseudo code of ADMM for solving TV-PoiPR is provided in Algo-
rithm I.

Algorithm I: ADMM for TV-PoiPR (2.6)

1. Initialization: Set q0 = 0, v0 = 0, u0 is randomly generated, z0 =
Au0,p0 = ∇u0. j = 0.

2. Solve uj+1 = uj+1
1 + iuj+1

2 by solving the following equations as

B

uj+1
1

uj+1
2

 =

r1Re(A∗vj0)− r2∇ ·Re(pj0)

r1Im(A∗vj0)− r2∇ · Im(pj0)

 ,
with vj0 = zj + vj/r1,p

j
0 = pj + qj/r2, and the operator B defined in

(3.9).
3. Solve zj+1 and pk+1 in parallel by

(3.16)

zj+1(i) =


r1|wj(i)|+

√
r2
1|wj(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
sign(wj(i)),∀ i ∈ D,

wj(i), ∀i ∈ Λ \D,

with wj = Auj+1 − vj/r1, and

(3.17) pj+1 = Threshλ/r2(∇uj+1 − qj/r2).

4. Update multipliers as

vj+1 = vj + r1(zj+1 −Auj+1),

qj+1 = qj + r2(pj+1 −∇uj+1).
(3.18)

5. If some stopping condition is satisfied, stop the iterations and output
the iterative solution; else set j = j + 1, and goto Step 2.

3.4. Convergence analysis. We then discuss a convergent behavior of the pro-
posed algorithm. We show that the algorithm converges to a saddle point by satisfying
Karush-Kuhn-Tucker (KKT) conditions, which is a typical situation for nonconvex
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problems. The KKT conditions for the Lagrangian Lr1,r2(u, z,p; q, v) in (3.2) are
defined as follows,

(3.19)



∂uLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂zLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂pLr1,r2(ũ, z̃, p̃; ṽ, q̃) 3 0,

∂vLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0,

∂qLr1,r2(ũ, z̃, p̃; ṽ, q̃) = 0.

for any saddle point (ũ, z̃, p̃, ṽ, q̃). Since the Lagrangian Lr1,r2(u, z,p; q, v) is noncon-
vex with respect to u, z,p, we detail the KKT conditions corresponding to these three
variables:

B

ũ1

ũ2

=

r1Re(A∗z̃ + ṽ/r1)− r2∇ ·Re(p̃ + q̃/r2)

r1Im(A∗z̃ + ṽ/r1)− r2∇ · Im(p̃ + q̃/r2)

 ,(3.20)

z̃(i) =


r1|w̃(i)|+

√
r2
1|w̃(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
sign(w̃(i)),∀ i ∈ D,

w̃(i),∀ i ∈ Λ \D,
(3.21)

with w̃ = Aũ− ṽ/r1,{
0 3 λ∂p1‖p̃1‖1 + r2

(
p̃1 −∇ũ1 + Re(q̃)/r2

)
,

0 3 λ∂p2‖p̃2‖1 + r2

(
p̃2 −∇ũ2 + Im(q̃)/r2

)
,

(3.22)

z̃ = Aũ,(3.23)

p̃ = ∇ũ,(3.24)

where ũ = ũ1 + iũ2 and p̃ = p̃1 + ip̃2.
Theorem 3. Assume that the successive differences of the two multiplies {vj −

vj−1}, {qj−qj−1} converge to zero and {uj} is bounded, then there exists an accumu-
lation point of a subsequence of iterative sequences of Algorithm I that satisfies KKT
conditions of the saddle point problem (3.2).

Proof. We complete the proof in two steps. First, we show the boundedness of all
the variables. Due to the update of two multipliers (3.18) and the assumption that
their successive differences converge, one can derive that

(3.25) lim
j→+∞

zj −Auj = 0, lim
j→+∞

pj −∇uj = 0,

which implies the boundedness of {zj} and {pj}. By (3.16), we have

|zj+1(i)| =


r1|wj(i)|+

√
r2
1|wj(i)|2 + 4(1 + r1)f(i)

2(1 + r1)
, ∀ i ∈ D,

|wj(i)|, ∀ i ∈ Λ \D,

which demonstrates that {wj} is bounded and so is {vj} since wj = Auj+1 − vj/r1.
By (3.17), we have

|pj+1| = max
{

0, |∇uj+1 − qj/r2| − λ/r2

}
≥ |∇uj+1 − qj/r2| − λ/r2

≥ |qj |/r2 − |∇uj+1| − λ/r2,

(3.26)
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which gives the boundedness of {qj} due to the boundedness of {uj} and {pj}.
The boundedness of all variables guarantees that there exists a subsequence

{(ujl ,pjl , zjl , vjl , qjl)} ⊂ {(uj ,pj , zj , vj , qj)} and (ũ, p̃, z̃, ṽ, q̃), such that

lim
l→+∞

(ujl ,pjl , zjl , vjl , qjl) = (ũ, p̃, z̃, ṽ, q̃).

We then prove that the point (ũ, p̃, z̃, ṽ, q̃) satisfies the KKT conditions. It follows
from (3.25) that the KKT conditions with respect to z and p, i.e., (3.23) and (3.24), are
satisfied. Since B is a linear operator in a finite dimensional space, it is straightforward
to prove (3.20). By the continuity of (3.16), (3.21) is obtained. Finally one can obtain
that

p̃ = Threshλ/r2(∇ũ− q̃/r2),

which implies (3.22). Hence the proof is completed.

4. A special case. We consider a special case of TV-PoiPR by setting λ = 0 in
(2.6), referred to as “PoiPR”,

(4.1) min
u∈Cn

H(u) :=
1

2

∑
i∈D

(|(Au)(i)|2 − f(i) log |(Au)(i)|2).

It reduces to a phase retrieval problem from noise-free measurements. In this case,
we can prove that there exists a unique solution to (4.1) under some conditions.
Particularly, the existence of the solution is given in Theorem 1, while the uniqueness
is based on the work of Conca et al. [18]. To make our paper self-contained, we
include an important result from their paper. Define a m−element complex frame
Φ = {φ0, φ1, · · · , φm−1}, and a linear operator AΦ generated by the frame Φ in the
sense of (AΦu)j = 〈φj , u〉. The following lemma gives the injectivity of phase retrieval
for a generic frame Φ.

Lemma 4.1. [Conca et al. [18]] If m ≥ 4n − 4, the mapping M(u) = |AΦu|2 is
injective for a generic frame Φ.

Using this lemma, we can prove the uniqueness of the solution to (4.1).
Theorem 4. Under the same assumptions in Lemma 4.1 and D = Λ, f ∈

Range(M), then the minimizer to (4.1) is unique.
Proof. We consider a minimization problem with respect to w as follows,

(4.2) w∗ = min
w(i)∈R+

1

2

∑
i∈Λ

(w(i)− f(i) logw(i)),

which can be solved pointwisely. Particularly for each entry w(i), the minimization
problem has a unique solution, i.e.,

w∗(i) = min
ρ∈R+

{
ρ− f(i) log ρ

}
= f(i).

Therefore f is the unique minimizer to (4.2). Furthermore, since f ∈ Range(M),
there exists a vector u ∈ Cn such that f = M(u). The uniqueness of such u is
guaranteed by Lemma 4.1, which completes the proof.

Computationally, one can construct the augmented Lagrangian for PoiPR, simi-
larly to (3.2),

max
v

min
u,z

1

2

∑
i∈D

(|z(i)|2 − f(i) log |z(i)|2) + Re〈z −Au, v〉+
r

2
‖z −Au‖2.(4.3)
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Following a similar procedure of solving TV-PoiPR, we obtain an ADMM-based al-
gorithm for PoiPR. The pseudo-code is summarized in Algorithm II, which is much
simpler compared to Algorithm I (for solving TV-PoiPR).

Algorithm II: ADMM for PoiPR (4.1)

1. Initialization: Set v0 = 0, u0 is randomly generated, z0 = Au0 and
j = 0.

2. Solve uj+1 = uj+1
1 + iuj+1

2 by solving the following equations as

(4.4)

Re(A∗A) −Im(A∗A)

Im(A∗A) Re(A∗A)

uj+1
1

uj+1
2

 =

Re(A∗vj0)

Im(A∗vj0)

 ,
with vj0 = zj + vj/r.

3. Solve zj+1 by (3.16).
4. Update the multiplier as

(4.5) vj+1 = vj + r(zj+1 −Auj+1).

5. If the some stopping condition is satisfied, stop the iterations and
output the iterative solution; else set j = j + 1, and goto Step 2.

Similar theoretical results of PoiPR can be obtained from the analysis of TV-
PoiPR. In particular, we can prove that there exists a unique solution of u−subproblem
(4.4) and Algorithm II converges to a stationary point, as characterized in Theorem-
s 5-6 respectively. The proofs are omitted here.

Theorem 5. Assume that the operator Re(A∗A) is positive, then the linear
equations (4.4) admit a unique solution vector.

Remark 4.1. Note that the assumption in Theorem 5 holds for the Fourier
measurements (3.10) without undersampling, since each entry of

∑
j

I∗j ◦Ij is nonzero.

Note that it also holds for holographic pattern (1.3).

Theorem 6. Assume that the successive differences of the multiplier {vj−vj−1}
converge to zero and {uj} is bounded, then there exists an accumulation point of
a subsequence of iterative sequences of Algorithm II satisfies KKT condition of the
saddle point problem (4.3).

5. Numerical experiments. Although the proposed approaches are suitable
for phase retrieval in general with arbitrary linear operator A, we only focus on
Fourier type measurements in the experimental section. In particular, we consider two
different types of linear operators A: coded diffraction pattern (CDP) with random
masks and holographic pattern [11] with deterministic masks. For coded diffraction
pattern, we use octanary CDPs; specifically each element of Ij in (3.10) takes a
value randomly among the eight candidates, i.e., {±

√
2/2,±

√
2i/2,±

√
3,±
√

3i}. For
holographic pattern, the linear operator A is given in (1.3). Following our previous
work [15], we choose s1 = s2 = 1/2, which is shown to give better phase retrieval with
less measurements than s1, s2 taking integer values suggested by Candés [8].

The amount of Poisson noise at each pixel depends on its intensity value, as
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η r r1 r2 λ
0.01 5 5 5× 104 200
0.02 2 2 5× 104 200
0.05 2 2 5× 104 200
0.1 2 2 2× 104 100

Table 1
Parameters of the proposed algorithms for recovering real-valued images from CDP measure-

ments and results are shown in Figure 2.

discussed in the introduction section. Therefore, we introduce a scale factor η ∈ (0, 1]
to control the scale of the image intensities (or the number of photons), which is
inverse proportional to the amount of noise added to the data. Let uη = ηu, and the
measured data is expressed as

f(i)
ind.∼ Poisson(|(Auη)(i)|2), ∀i ∈ D.

Signal-Noise-Ratio (SNR) is used to measure the reconstruction quality from noisy
measurements

SNR(u, ug) = −10 log10

∑
j∈Ω

|u(j)− ug(j)|2∑
j∈Ω

|ug(j)|2
,

where ug is the ground truth image of size n1 × n2 and u is the reconstructed image.

5.1. Effectiveness of TV regularization. We first show the effectiveness of
TV regularization when measurements from CDP or holographic patterns are cor-
rupted by Poisson noise. We conduct experiments to compare PR results with and
without TV.

We start with phase retrieval of real-valued images from CDP measurements with
k = 2 in (3.10) such that two groups of data are measured, i.e.,

(5.1) Au =

[
F(I1 ◦ u)
F(I2 ◦ u)

]
.

In this setting, the operator M takes 2n measurements and hence its uniqueness to
reconstruct a real signal is guaranteed [2]. We then consider η = 0.01, 0.02, 0.05, 0.1 to
generate four different scales ground truth images in the sense that the smaller η is, the
more noisy the image exhibits. The testing images are “Flower” with resolution 256×
256, “Leaf” with resolution 363× 378, and “Cameraman” with resolution 256× 256,
as shown in Figure 1, and the PR results using Algorithm I (with TV) and Algorithm
II (without TV) are present in Figure 2. Readily one can infer TV’s effectiveness
in Poisson noise removal in that the SNR values are increased at least 3dB and the
reconstructed images have sharper edges, cleaner background, and higher contrast
than the non-TV version. Improvement of TV over non-TV is more obvious for a
smaller η, which corresponds to larger amount of noise in the data or lower amount
of photon counts. The parameters for this set of examples are recorded in Table 1,
and the choices of parameters are discussed in Section 5.3.

We then consider phase retrieval of a complex-valued image, called “Goldballs”,
which is used in [53, 8]. We set k = 4 in (3.10) to guarantee the uniqueness of phase
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(a) Flower (b) Maple (c) Camerman

Fig. 1. Ground truth real-valued image (a) Flower with resolution 256 × 256, (b) Maple with
resolution 363 × 378, and (c) Cameraman with resolution 256 × 256.

retrieval for complex data [18], and we choose the parameters as λ = 200, r1 = r =
5, r2 = 5.0 × 104. Figure 3 shows the phase retrieval results, which again illustrates
the improvement of using TV regularization over the non-TV version by increasing
at least 5dB in SNR values.

Finally we look at holographic patterns and set s1 = s2 = 1/2 in (1.3), in which
the uniqueness is given in our preliminary work [15]. The parameter setting for this
example is listed in Table 2 and we stop Algorithm I and Algorithm II after 500
iterations since it seems to require more iterations for such kind of deterministic
masks than the ones for CDP. The results are given in Figure 4, which shows that
Algorithm II produces a lot of artifacts, such as ringing artifacts and distortions,
unlike the case of CDP as in Figure 2 and Figure 3. These severe artifacts inherited
from noisy measurements are removed by the use of TV regularization, shown on the
second row of Figure 4.

η r r1 r2 λ
0.01 5 5 2× 105 200
0.02 2 3 1× 105 200
0.05 1 1 8× 104 200
0.1 0.5 1 1× 104 200

Table 2
Parameters of the proposed algorithms for recovering real-valued images from holographic pat-

tern measurements and results are shown in Figure 4.

5.2. Oversampling and undersampling. We examine the performance of the
proposed algorithms with respect to oversampling in the sense that one collects noisy
data with different number of masks, i.e. k = 1, 3, 5 and 7, which acts as an over-
sampling factor. Figure 5 shows that the more data we have (larger k), the better
the phase retrieval results by either Algorithm I or Algorithm II. When comparing
TV-PoiPR results for different k values, there is a diminishing gain in terms of SNR
when the oversampling factor is increasing.

The amount of undersampling is controlled by the subset D. In particular, we
define the undersampling ratio as rs = |D|/m. The sampling subsets D are randomly
generated, and please refer to [37] for details about various choices of the sampling
masks. In this paper, we consider a random sampling mask D by using probability
density function for 2D random sampling pattern with polynomial variable density
sampling [36]. For different undersampling ratios rs = 0.1, 0.2, 0.4, 0.8, we show one
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(a) SNR=3.89 (b) SNR=9.92 (c) SNR=18.56 (d) SNR=24.61

(e) SNR=20.04 (f) SNR=23.00 (g) SNR=27.19 (h) SNR=30.67

(i) SNR=3.07 (j) SNR=10.98 (k) SNR=19.62 (l) SNR=25.60

(m) SNR=19.03 (n) SNR=22.80 (o) SNR=27.69 (p) SNR=30.72

(q) SNR=4.33 (r) SNR=10.23 (s) SNR=18.86 (t) SNR=24.93

(u) SNR=18.11 (v) SNR=20.80 (w) SNR=24.99 (x) SNR=29.75

Fig. 2. Performances of Algorithm I for TV-PoiPR (with TV) and Algorithm II for PoiPR
(without TV) to recover three real-valued images in Figure 1 from CDP measurements. 1st, 3rd
and 5th rows: results by Algorithm II for PoiPR; 2nd, 4th and 6th rows: results by Algorithm I for
TV-PoiPR. From left to right: η = 0.01, 0.02, 0.05, 0.1 (the smaller η is, the more noisy the image
exhibits.)
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(a) Magnitude (b) Real Part (c) Imaginary Part

(d) SNR=2.71 (e) SNR=4.20 (f) SNR=9.41 (g) SNR=15.73

(h) SNR=11.00 (i) SNR=12.09 (j) SNR=15.78 (k) SNR=21.51

Fig. 3. Performances of Algorithm I for TV-PoiPR and Algorithm II for PoiPR with ground
truth complex-valued image “Goldballs” of resolution 256×256. First row: magnitude of the ground-
truth image (a), real part (b) and imaginary parts (c). Second row: Resulted magnitudes by Algo-
rithm II for PoiPR; Third row: Resulted magnitudes by Algorithm I for TV-PoiPR. For the second
and third rows: η = 0.08, 0.1, 0.2, 1 (from the left to right).

realization of each corresponding mask in Figure 6, and the PR results are given
in Figure 7 with k = 2, η = 0.05 and the algorithmic parameters being r = r1 =
2, r2 = 2.0 × 104, λ = 200. Large improvements of Algorithm I over Algorithm II
are observed both visually and in terms of SNR. Figure 7 also demonstrates that TV
can give satisfactory results at 20% undersampling ratio. As k = 2, the number of
measurements at rs = 20% is 0.4n, which is below the theoretical limit capped at 2n
for real signal recovery.

5.3. Discussion on the proposed algorithms. We will illustrate some prop-
erties of the proposed algorithms based on numerical simulation studies.

Impact by parameters. The parameters λ, r1, r2 in Algorithm I and r in Al-
gorithm II are chosen by hand in order to obtain visually satisfactory results; and
heuristically we stop the iterations of the proposed Algorithm I and II after 50 itera-
tions as a default stopping condition.

We now discuss the impact of r for Algorithm II and r1, r2 for Algorithm I when
the amount of Poisson noise is at η = 0.02. Particularly, we choose r from {r0 ×
2−l, r0 × 2−l+1, · · · , r0 × 2l−1, r0 × 2l} with l = 7, r0 = 2 and plot the corresponding
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(a) SNR=10.22 (b) SNR=13.05 (c) SNR=14.59 (d) SNR=16.17

(e) SNR=17.54 (f) SNR=19.10 (g) SNR=22.76 (h) SNR=27.10

Fig. 4. Performances of Algorithm I for TV-PoiPR and Algorithm II for PoiPR with ground
truth image “Cameraman” in Figure 1 (a) from measurements of holographic patterns. First row:
results by Algorithm II for PoiPR; Second row: results by Algorithm I for TV-PoiPR. From left to
right: η = 0.01, 0.02, 0.05, 0.1.

(a) SNR=7.11 (b) SNR=14.80 (c) SNR=17.61 (d) SNR=19.27

(e) SNR=19.00 (f) SNR=22.52 (g) SNR=23.80 (h) SNR=24.46

Fig. 5. Performances with respect to oversampling factor k = 1, 3, 5 and 7 (from left to right).
First row: results by Algorithm II for PoiPR; Second row: results by Algorithm I for TV-PoiPR

SNRs of the reconstructed images in Figure 8, where we include the results of running
Algorithm II 1000 iterations (red plus) versus default 50 iterations (blue dots). It
seems that the parameter r only affects the convergence rate of proposed Algorithm
II, and Algorithm II for solving a non-convex PR problem is rather insensitive to the
parameter r in the range of [1, 100].

As for Algorithm I, the impact of r1, r2, and λ are illustrated in Figure 9, in
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(a) rs = 10% (b) rs = 20% (c) rs = 40% (d) rs = 80%

Fig. 6. Sampling masks D with respect to undersampling ratios rs.

which we fix λ ∈ {100, 200, 400} and vary the parameters (r1, r2) ∈ {r0
1 × 2−l1 , r0

1 ×
2−l1+1, · · · , r0

1×2l1−1, r0
1×2l1}×{r0

2×2−l2 , r0
2×2−l2+1, · · · , r0

2×2l2−1, r0
2×2l2} with

r0
1 = 2, r0

2 = 5 × 104, and l1 = l2 = 7. For the sake of better visualization, we raise
the negative SNR values to zeros in Figure 9, which shows that Algorithm I is less
sensitive to λ than r1, r2. Two groups tests are performed to study the impact of
parameters r1, r2 by two different stopping condition as 50 and 1000 iterations in the
first row and second row in Figure 9 respectively. One can see that the parameters
r1, r2 affect the convergence rates of Algorithm I, and we should prevent selecting the
values, in which Algorithm I diverges. For each λ = 100, 200, or 400, we show the
best result among various combinations of r1, r2 in Figure 9. One can see that large
λ leads to over-smoothed image recovery, and hence a moderate λ should be chosen
for the best results. In addition, we observe heuristically that Algorithm II is less
sensitive to parameters than Algorithm I, as the TV regularization in Algorithm I
introduces a non-differential term, which mysteriously interacts with the non-convex
fidelity term. It is helpful to determine optimal parameters automatically, which will
be left as a future work.

Convergence. We empirically demonstrate the convergence of the proposed
algorithms by plotting objective functional values G(uj) and H(uj) as well as relative

errors ‖u
j−uj−1‖
‖uj‖ with respect to the iteration number j in Figure 10. The test image

in this example is “Cameraman” as shown in Figure 1 (c) and noise level is at η = 0.1.
We consider both CDP and holographic measurements, each with default parameters
in Table 1 and Table 2 respectively. As illustrated in Figure 10 and Figure 11, all
the curves are monotonically decreasing, which validate the convergence. In addition,
we observe that 30∼50 iterations are sufficient to obtain a satisfactory recovery result
from noisy CDP measurements, while more iterations are required for holographic case
to converge. Note that the convergence of Algorithm II for noise free measurements
is further examined in Figure 14, and please refer more details in Section 5.4.

5.4. Comparison to the state-of-the-art. We compare our proposed algo-
rithms with three PR methods, error reduction (ER) algorithm [24], Wirtinger flow
(WF) [10] and truncated Wirtinger flow (TWF) [17]. The Matlab implementation
of WF and TWF can be found on authors’ website2, while we implement the ER by
ourselves, which consists of the following three steps [15]:

Step 1. Initialize u0, z0 := Au0, which satisfies |z0|2 = b, and set k := 0.

2WF: http://www-bcf.usc.edu/~soltanol/WFcode.html and TWF: http://web.stanford.edu/

~yxchen/TWF/code.html
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10% 20% 40% 80%

SNR=3.13 SNR=3.54 SNR=4.39 SNR=14.97

SNR=15.07 SNR=21.19 SNR=24.22 SNR=26.52

SNR=1.58 SNR=1.68 SNR=1.83 SNR=9.60

SNR=6.62 SNR=12.17 SNR=24.43 SNR=27.03

SNR=3.26 SNR=3.63 SNR=4.55 SNR=15.60

SNR=13.62 SNR=18.50 SNR=21.40 SNR=24.11

Fig. 7. Performances with respect to different sampling masks D shown in Figure 6 (using
the same examples in Figure 1 and η = 0.05). 1st, 3rd and 5th rows: results by Algorithm II
for PoiPR; 2nd, 4th,and 6th rows: results by Algorithm I for TV-PoiPR. From the left to right:
rs = 10%, 20%, 40%, 80%.
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10-2 10-1 100 101 102 103
0

2

4

6

8

10

12

50 Iterations
1000 Iterations

Fig. 8. The performance of Algorithm II with respect to r stopped after 50 iterations in blue
dots and after 1000 iterations in red plus. The y-axis gives the corresponding SNR values.
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Fig. 9. The performance of Algorithm I with respect to r1, r2 for λ = 100, 200, and 400 (from
left to right). 1st-2nd row: the SNR values with respect to r1, r2 for each λ stopped after 50 iterations
in 1st row and 1000 iterations in 2nd row and bottom row: the image recovery results corresponding
to the highest SNR.

Step 2. Update u by solving the following least square problem

uk+1 = arg min
u∈Rn

‖Au− z̃k‖2,

where z̃k(i) =
√
b(i)zk(i)/|zk(i)|, 0 ≤ i ≤ m− 1.

Step 3. Update z as zk+1 = Auk+1. If some stopping condition is satisfied, stop and
output uk+1 as the final result; Otherwise, set k := k + 1 and goto Step 2.
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Fig. 10. Convergence analysis of Algorithm I and Algorithm II for CDP by plotting objective
functional values and relative errors to the ground-truth image with respect to the iteration number.
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Fig. 11. Convergence analysis of Algorithm I and Algorithm II for holographic pattern by
plotting objective functional values and relative errors to the ground-truth image with respect to the
iteration number.
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(a) SNR=18.79 (WF) (b)SNR=20.84(TWF)

(c) SNR=21.08 (ER) (d) SNR=21.41 (II) (e) SNR=25.63 (I)

Fig. 12. Comparison of noisy phase retrieval from CDP measurements (3.10) with more masks
k = 12 with WF in (a), TWF in (b), ER in (c). The proposed methods are labeled by “I” and “II”,
short for Algorithm I (with TV) and Algorithm II (without TV) respectively.

(a) SNR=10.48 (ER) (b) SNR=10.73 (II) (c) SNR=21.05 (I)

Fig. 13. Comparison of noisy phase retrieval from CDP measurements (3.10) with less masks
k = 2 with ER only, as neither WF nor TWF gives satisfactory results. The proposed methods are
labeled by “I” and “II”, short for Algorithm I (with TV) and Algorithm II (without TV) respectively.

We first test on noisy measurements of CDP (3.10) with the number of masks
k = 12 and η = 0.02. As shown in Figure 12, ER, WF and TWF are even worse
than the proposed method without TV; and with the help of TV regularization, the
improvement is about 4dB in SNR values over the non-TV version. The results of
similar setting but less number of masks k = 2 are shown in Figure 13, in which WF
and TWF are not present as they can not give satisfactory results. In the case of
less amount of measurements (2n) and same amount of noise (η = 0.02), TV shows
its effectiveness in noise removal; specifically the SNR value of the TV reconstructed
image is almost doubled compared to the ones given by ER and non-TV version.
In summary, our proposed methods outperform the state-of-the-art phase retrieval
methods.

It is true that ER, WF and TWF are not designed to deal with Poisson noise.
So we consider the noise free data of “Cameraman” and only compare the non-TV
version (PoiPR and Algorithm II) with ER, WF and TWF methods. When the
noise is not present, all the methods are able to find the ground-truth image. We
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Fig. 14. Convergence curves of Algorithm II (II in short) in comparison to ER, WF, and TWF
for noise free data “Cameraman” with k = 12 masks.

plot the convergence curves in Figure 14, which shows that the proposed Algorithm
II converges the fastest among all. In addition, a linear convergence rate is observed
practically, while theoretical analysis on convergence rate will be studied in the future.
As all these algorithms are of “first-order” convergence, higher-order algorithms [44]
will be exploited in the future.

6. Conclusion. In this paper, we proposed a total variation regularization model
“TV-PoiPR” to recover an image (taking real or complex values) from its partial and
noisy magnitude measurements. We proved that there exists one and only one solution
for proposed models. Numerically, an efficient ADMM was designed with guaranteed
convergence, which was also validated by numerical experiments. Experiments further
demonstrated the effectiveness of our proposed methods over the the state-of-the-art
methods. One future direction will be patch based sparse modeling [19, 46, 25] in
order to further improve image recovery from magnitude data.
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