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Abstract

In this paper we describe a subspace based preconditioner for the linear systems of equations
arising during the application of the kernel ridge regression technique. Computational results
are presented that demonstrate the efficacy of the preconditioner when used in conjunction
with the method of preconditioned conjugate gradients.



1 Introduction

Kernel ridge regression is a technique that can be used to construct approximations of the
form

φ~α(~x) =
N∑
j=1

αjK(~xj, ~x) (1)

to functions F : V → R where V is a normed space. In the approximation K is the kernel
operator and {~xj}Nj=1 are samples associated with a training set. A common choice for

the kernel operator are Gaussians, e.g. K(~xj, ~x) = e−||~xj−~x||
2/σ2

, or more generally functions
of ||~xj − ~x|| that have a shape similar to Gaussians. The vector of coefficients of this
approximation, ~α, are determined as the minimizer of

||
N∑
i=1

φα(~xi)− yi||2 + λ||~α||M, (2)

where yi = F(~xi), λ > 0 is a regularization parameter, M is the “kernel matrix” whose
(i, j)th entry, mi,j, is given by mi,j = K(~xj, ~xj), and ||~α||M =< ~α,M ~α >. The solution to
this minimization problem can be obtained as the solution to the linear system

[M + λI ] ~α = A~α = ~y (3)

The matrix M of (3) is symmetric, and for commonly used kernels, is positive-definite.
However, M can be very close to being singular as training data that are not well separated
lead to columns of M that are nearly identical. The inclusion of the regularization parameter
λ insures that the matrix A will have a minimal eigenvalue larger than λ and thus the
solution to the matrix problem (3) can be reliably computed using standard computational
linear algebra methods. Since M is in general a dense matrix, popular choices are direct
(non-iterative) methods such as compact Choleksy factorization or, in cases where extra
stability of the solution process is required, Gaussian elimination with partial pivoting.

While direct methods are popular there may be applications where an iterative solution
of (3) is desired. For example, when the size of the training data is large, the amount of
memory required to store the dense matrix may necessitate using distributed clusters of
machines to solve (3). With high performance libraries available [1] for the implementation
of matrix vector products on distributed architecture machines, implementing an efficient
solution technique using iterative methods is likely to be far easier than implementing a
direct method solution technique. Another desirable aspect of iterative methods is that the
matrix [M + λI ] is not overwritten during the solution process and thus it’s possible to utilize
iterative methods for different values of λ without having to reconstruct the kernel matrix
M.

With the inclusion of the regularization parameter the matrix A of (3) is symmetric
positive-definite and the method of Conjugate-Gradients is a natural choice as an iterative
method. Unfortunately, the convergence of the Conjugate-Gradient method can be very
slow and, consequently one incurs a high computational cost to obtain a solution. In order
to improve the convergence behavior one seeks a good preconditioner — a matrix Ã that
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approximates A and whose inverse can be applied to a vector efficiently. Good precondition-
ers are those that lead to rapidly converging iterative methods when Conjugate-Gradients is
applied to the equivalent preconditioned system

Ã−1/2A Ã−1/2α = Ã−1/2 ~y, (4)

The form of the preconditioned system (4) is chosen so that symmetry is preserved, and,
although it appears that the computation of Ã−1/2 is required, this is not the case. As
discussed in [2, p. 651], when implementing Conjugate-Gradients for the preconditioned
system (4) it is possible to rewrite the expressions of the method so that only the application
of Ã−1 to a vector is required.

In the following sections we present a preconditioner that is easy to construct and signifi-
cantly improves the rate of convergence of the method of Conjugate-Gradients when applied
to (4). The general idea behind the preconditioner is to use an approximation to A that
consists of A projected onto it’s “dominant subspace”; a subspace associated with the largest
eigenvalues of A. The remarkable fact is that the construction of a good approximation to
the dominant subspace that is satisfactory for use as a preconditioner requires just a one
or two applications of the kernel matrix M to a collection of vectors with random entries.
There is no need to find particularly accurate approximations to the subspace associated
with the largest eigenvalues of A. In the following section we present the preconditioner and
discuss the motivation for it’s use. This section is then followed by a computational example
where we demonstrate the utility of subspace preconditioning to improve the convergence
rate of Preconditioned Conjugate-Gradients and also present results that demonstrate the
effects that parameter choices associated with construction of the preconditioner have on the
convergence behavior of the iterative method.

2 Subspace preconditioning

Our proposed preconditioner for (3) is a subspace preconditioner. The primary ingredient of
a subspace preconditioner is an N×p matrix Ũ whose p columns are orthonormal, and hence
span a p dimensional subspace. An approximation to a matrix A can be constructed that
consists of the projection of the linear operator that A represents onto the subspace spanned
by the columns of Ũ and is the identity on the orthogonal complement of that subspace.
The matrix representation of this approximation is given by

Ã = I− ŨŨT + Ũ
[
ŨTAŨ

]
ŨT (5)

In order to allow for efficient application of the subspace preconditioner (5) and it’s inverse
to a vector, we transform Ũ to another N× p matrix U, so that the columns of U span the
same subspace as the columns of Ũ but application of the operator A is represented by a
diagonal matrix. This transformed matrix is the matrix whose columns are the Ritz vectors
associated with the diagonalization of the p× p matrix ŨTAŨ. Specifically, if C is the p× p
matrix of orthonormal eigenvectors of ŨTAŨ so that that CT ŨTAŨ C = D where D is a
diagonal matrix, then U by U = ŨC. One can verify that UTAU = D so the subspace
approximation to A based upon the columns of U has the form
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Ã = I− UUT + U
[
UTAU

]
UT = I− UUT + UDUT (6)

The inverse of this subspace approximation is given by

Ã−1 = I− UUT + UD−1UT (7)

In iterative methods that utilize preconditioners it is only necessary to apply the inverse
of the preconditioner to a vector. For subspace preconditioners, this requires the evaluation
of [

I− UUT + UD−1UT
]
~w (8)

and is a task that can be efficiently accomplished by storing the matrix U and calling a
sequence of BLAS routines for the component matrix vector multiplications.

3 Preconditioning for kernel ridge regression problems

In kernel ridge regression problems A = [M + λI] and since the eigenvectors of ŨT [M + λI]Ũ
are identical to the eigenvectors of ŨT M Ũ, a subspace preconditioner based upon a subspace
spanned by the columns of Ũ can be expressed in the form

Ã = I− UUT + UDUT (9)

where U are the Ritz vectors associated with the diagonalization of the kernel matrix ŨT M Ũ
and D = diag(di + λ) with di the eigenvalues of ŨT M Ũ. It is worth noting that for a given
choice of subspace, Ũ, the diagonalization step required to create a useful preconditioner
does not depend on the regularization parameter λ. Thus the preconditioner, and, perhaps
most importantly, the inverse of the preconditioner, are easily constructed for any value of
λ once the initial diagonalization step is done.

The choice of subspace to use as a preconditioner is dictated by the need to reduce the con-
dition number of the preconditioned system (4). Specifically, as indicated by the error bounds
for the Conjugate-Gradient method [3, p. 299], if the condition number, κ2 = λmax/λmin, of
the linear system is close to 1, then the method will converge rapidly. Therefore, we seek a
subspace with the objective of reducing the condition number of the preconditioned system
(4) to be close to 1.

The eigenvalues of A = [M + λI] have the from di + λ where di are the eigenvalues of the
kernel matrix M. The typical distribution of eigenvalues for M consists of a large number
of very small eigenvalues and a modest number of large (or dominant) eigenvalues. The
condition number of A is approximately (λmax+λ)/λ where λmax is the largest eigenvalue of
M. If the subspace U is taken to be the subspace spanned by the orthonormal eigenvectors
of M greater than λ̄, then the inverse of the preconditioner will be exact on that subspace
and the resulting condition number of the preconditioned system (4) will be reduced to
max(1, λ̄)/λ. If the dominant eigenvalues of M decay rapidly, then the size of the subspace
needed to significantly reduce the condition number of the preconditioned system need not
be especially large.

The task of finding the dominant eigenvalues and eigenvectors of a large dense matrix
can be computationally expensive, and so instead of using a subspace explicitly formed from
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the eigenvectors associated with the dominant eigenvalues, we consider using a subspace
comprised of vectors that have significant components of the eigenvectors associated with
the dominant eigenvalues. In particular, one initially selects a set of p random vectors that
have been orthonormalized, and then performs kmax steps of orthogonal iteration [2, p. 454]
to obtain a subspace that is “rich” in components of the eigenvectors associated with the
dominant eigenvalues. In the limit as the number of steps of orthogonal iteration kmax →∞,
the orthogonal iteration will converge to the subspace containing the dominant eigenvectors,
and the reduction in the condition number will be as described above. For smaller values of
kmax, one may not see an identical reduction in condition number as when using a subspace
of dominant eigenvectors, but as the computational experiments will demonstrate, it can
still be a dramatic reduction, even with kmax = 2.

The algorithm for constructing a subspace preconditioner for the matrix problems of
kernel ridge regression is given by

Algorithm 1: Kernel Matrix Subspace Preconditioner Construction

input : Kernel matrix M and regularization parameter λ. W0, an N× p matrix
whose columns are orthonormalized random vectors.

output: U and D̃−1, components of the subspace preconditioner inverse
I− UUT + UD̃−1UT

1 Z0 = W0 for k ← 1 to kmax do
2 Construct p× p matrix C and p× p diagonal matrix Dk such that

[ZTk−1MZk−1] C = Dk C ;
3 Zk ← Zk−1C;

4 U← Zkmax ;
5 {di}pj=1 ← diagonal elements of Dkmax ;

6 D̃−1 ← diag(1/(dj + λ));

As mentioned previously, for the same kernel matrix M and differing values of λ the
only component of this subspace preconditioner that requires modification are the diagonal
entries of of D̃−1; the values {di}pj=1 and the subspace U do change and hence do not need
to be recomputed.

4 Computational Results

The sample problem used to demonstrate the effectiveness of dominant subspace precondi-
tioning concerns the construction of an approximation to the mapping associated with the
minimum of a normalized quintic polynomial over the interval [−1, 1] as a function of it’s
coefficients. Specifically the function F : ~x ∈ R4 → R given by

F(~x) = min
s∈[−1,1]

(x0 + x1x + x2s
2 + x3s

3 + s4) (10)

where the coefficients are restricted so that |xi| ≤ 1.
The kernel used to construct an approximation of this function is the Gaussian kernel

K(~xj, ~x) = e−||~xj−~x||
2/σ2

. For simplicity the standard Euclidean vector norm, ||~x||2, was used
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Figure 1: Average maximal error evaluated at 100 samples outside of training data.

as the distance metric. The training data consisted of N vectors of coefficients, ~x ∈ R4, with
each component taken to be the value of a uniformly distributed random number in [-1,1].
The evaluation of the error in the approximation was obtained by evaluating the average
maximal error at 100 randomly generated test points that were disjoint from the training
set. In all computations reported the value of the hyper-parameter σ was set to σ = 0.5,
and all matrix-vector and matrix-matrix products required by the iterative method were
implemented using single-threaded level-1 and leval-2 BLAS routines.

That kernel ridge regression is capable of providing an approximation is revealed by the
results in Figure 1, where we present the average maximal error as the number of training
points increases. The individual curves correspond to different values of the regularization
parameter λ. For smaller numbers of training points the error in the approximation exhibits
1/N convergence, while for larger values, the error saturates. This is not entirely unexpected
since we are keeping the hyper-parameter σ fixed.

The behavior of the Conjugate-Gradients and Preconditioned Conjugate Gradients meth-
ods when they are used to solve the equations (3) associated with our sample problem is
revealed in Figure 2(a) and Figure 2(b). In Figure 2(a) we present the number of iterations
required to obtain a relative residual size less than ε = 1 × 10−4 for increasing numbers of
training samples and varying values for the regularization parameter λ. Here the subspace
size (dimension) was fixed at 400 and two steps of orthogonal iteration were used to create
an approximation to the dominant subspace. The results clearly show that a substantial
reduction in the number of iterations can be obtained when using a subspace preconditioner.
This reduction is to be expected because of the reduction of the condition number asso-
ciated with the preconditioned system. The number of iterations still increases with the
number of training samples, but this is also expected, as the components of the solution that
are added when the number of training samples increases are generally associated with the
small eigenvalues; components that are not strongly effected when using dominant subspace
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preconditioning. Since the use of a dominant subspace preconditioner requires extra com-
putational work per iteration, the number of iterations required to obtain convergence may
be misleading. However, as revealed by the solution time comparison results given in Figure
2(b), the utility of using dominant subspace preconditioning is also reflected in substantially
reduced computation times. In the reporting of the solution time, the solution time is taken
to be the sum of the computational time spent carrying out the iteration and the initial time
required to create the approximate dominant subspace U.

The results in Figure 2 where created using a dominant subspace dimension fixed at 400
and the number of orthogonal iterations fixed at two. The behavior of the preconditioned
iterative method with respect to changing the subspace size is shown in Figure 3(a) and
changes due to the number of orthogonal iterations used to construct the dominant subspace
are shown in Figure 3(b). In these cases the value of the regularization parameter λ was
fixed at .005. From the results in Figure 3(a), we observe that increasing the subspace size
always reduces the time to compute the solution, but there is a notable trend of diminishing
returns; the extra benefit of using a larger subspace diminishes as the size of the subspace
increases. The results in Figure 3(b) demonstrate the somewhat remarkable property that
very few orthogonal iterations are required to generate a dominant subspace approximation
that is effective as a preconditioner. Using just two or three orthogonal iterations creates
a dominant subspace that reduces the number of iterations to that which is obtained with
a more accurate approximation to the dominant subspace. It is also worth noting that
for this problem the reduction in iteration count does not decrease monotonically with an
increasingly accurate dominant subspace approximation. We interpret this behavior as an
indication that it can be useful to have remnants of the components of the solution associated
with smaller eigenvalues in the dominant subspace approximation. This behavior is another
example that reducing the condition number of the preconditioned system isn’t the only
factor that contributes to efficient iterative methods.

5 Conclusion

In this paper we’ve described an effective preconditioner for the iterative solution of the
matrix problems that arise from applications of kernel ridge regression. The preconditioner
is a subspace preconditioner where the subspace is that associated with the dominant eigen-
values. The success of this preconditioner depends on the observation that the number of
algebraically large eigenvalues of the matrix problem of kernel ridge regression a typically a
small fraction of the total number of eigenvalues, and so it’s possible to remove the adverse
effects of the dominant eigenvectors on the iterative process using a subspace that isn’t of
too high dimension. Moreover, approximations to the dominant subspace created with two
or three steps of orthogonal iteration lead to a preconditioner that is as effective as that
associated using an accurate approximation to the dominant subspace. An effective sub-
space preconditioner is therefore easy to construct and does not require an large amount of
computational work.

For small to modest size problems, direct methods work quite satisfactorily and are
likely to be the method of choice. However, for larger problems, a preconditioned iterative
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Figure 2(a) Figure 2(b)
Iteration count vs N for varying Solution time vs. N for varying

regularization parameter. regularization parameter.

Figure 3(a) Figure 3(b)
Solution time vs N for varying Solution time vs. N for varying

subspace sizes orthogonal iteration count.
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method of the type presented here may be an attractive option. Additionally, there are
several parameters of the preconditioned method that can be varied and it’s not too difficult
to imagine that using problem specific parameter optimization and parallel matrix-vector
operations, one could substantially reduce the size of the linear system where the resulting
iterative method becomes competitive with direct methods of solution.
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