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Abstract

We propose a novel deep network architecture for
grayscale and color image denoising that is based on a
non-local image model. Our motivation for the overall de-
sign of the proposed network stems from variational meth-
ods that exploit the inherent non-local self-similarity prop-
erty of natural images. We build on this concept and intro-
duce deep networks that perform non-local processing and
at the same time they significantly benefit from discrimina-
tive learning. Experiments on the Berkeley segmentation
dataset, comparing several state-of-the-art methods, show
that the proposed non-local models achieve the best re-
ported denoising performance both for grayscale and color
images for all the tested noise levels. It is also worth noting
that this increase in performance comes at no extra cost on
the capacity of the network compared to existing alternative
deep network architectures. In addition, we highlight a di-
rect link of the proposed non-local models to convolutional
neural networks. This connection is of significant impor-
tance since it allows our models to take full advantage of
the latest advances on GPU computing in deep learning and
makes them amenable to efficient implementations through
their inherent parallelism.

1. Introduction
Deep learning methods have been successfully applied in

various computer vision tasks, including image classifica-
tion [16,20] and object detection [11,29], and have dramat-
ically improved the performance of these systems, setting
the new state-of-the-art. Recently, very promising results
have also been reported for image processing applications
such as image restoration [5, 39], super-resolution [18] and
optical flow [1].

The significant boost in performance achieved by deep
networks can be mainly attributed to their advanced mod-
eling capabilities, thanks to their deep structure and the
presence of non-linearities that are combined with discrimi-
native learning on large training datasets. However, most
of the current deep learning methods developed for im-

(a) (b)
Figure 1. Image denoising with the proposed deep non-local CNN
model. (a) Noisy image corrupted with additive Gaussian noise
(σ = 25) ; PSNR = 20.16 dB. (b) Denoised image using the
5-stage feed-forward network described in Sec. 3.3 ; PSNR =
29.53 dB.

age restoration tasks are based on general network archi-
tectures that do not fully exploit problem-specific knowl-
edge. It is thus reasonable to expect that incorporating such
information could lead to further improvements in perfor-
mance. Only very recently, Schmidt and Roth [34] and
Chen and Pock [6] introduced deep networks whose archi-
tecture is specifically tailored to certain image restoration
problems. However, even in these cases, the resulting mod-
els are local ones and do not take into account the inherent
non-local self-similarity property of natural images. On the
other hand, conventional methods that have exploited this
property have been shown to gain significant improvements
compared to standard local approaches. A notable exam-
ple is the Block Matching and 3D Collaborative Filtering
(BM3D) method [7] which is a very efficient and highly
engineered approach that held the state-of-the-art record in
image denoising for almost a decade.

In this work, motivated by the recent advances in deep
learning and relying on the rich body of algorithmic ideas
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that have been developed in the past for tackling image
reconstruction problems, we study deep network architec-
tures for image denoising. Inspired by non-local variational
methods and other related approaches, we design a network
that performs non-local processing and at the same time it
significantly benefits from discriminative learning. Specif-
ically, our strategy is instead of manually designing a non-
local regularization functional, to learn the non-local reg-
ularization operator and the potential function following a
loss-based training approach.

Our contributions in this work can be summarized as fol-
lows: (1) We propose a novel deep network architecture that
is discriminatively trained for image denoising. As opposed
to the existing deep-learning methods for image restoration,
which are based on local models, our network explicitly
models the non-local self-similarity property of natural im-
ages through a grouping operation of similar patches and
a joint filtering. (2) We unroll a proximal gradient method
into a deep network and learn the relevant parameters using
a simple yet effective back-propagation strategy. (3) In con-
trast to the majority of recent denoising methods that are
designed for processing single-channel images, we intro-
duce a variation of our network that applies to color images
and leads to state-of-the-art results. (4) We highlight a di-
rect link of our proposed non-local networks with convolu-
tional neural networks (CNNs). This connection allows our
models to take full advantage of the latest advances on GPU
computing in deep learning and makes them amenable to ef-
ficient implementations through their inherent parallelism.

2. Variational Image Restoration Revisited
The goal of image denoising is the restoration of a

grayscale or color image X from a corrupted observation Y,
with the later obtained according to the observation model

y = x + n . (1)

In this setting, y, x ∈ RN ·C are the vectorized versions
of the observed and latent images, respectively, N is the
number of pixels, C the number of image channels, and n
is assumed to be i.i.d Gaussian noise with variance σ2.

Due to the ill-posedness of the studied problem [38],
Eq. (1) that relates the latent image to the observation can-
not uniquely characterize the solution. This implies that in
order to obtain a physically or statistically meaningful so-
lution, the image evidence must be combined with suitable
image priors.

Among the most popular and powerful strategies avail-
able in the literature for combining the observation and prior
information is the variational approach. In this framework
the recovery of x from y heavily relies on the formation of
an objective function

E (x) = D (x,y) + λJ (x) , (2)

whose role is to quantify the quality of the solution. Typ-
ically the objective function consists of two terms, namely
the data fidelity term D (x,y), which measures the prox-
imity of the solution to the observation, and the regularizer
J (x) which constrains the set of plausible solutions by pe-
nalizing those that do not exhibit the desired properties. The
regularization parameter λ ≥ 0 balances the contributions
of the two terms. Then, the restoration task is cast as the
minimization of this objective function and the minimizer
corresponds to the restored image. Note that for the prob-
lem under consideration and since the noise corrupting the
observation is i.i.d Gaussian, the data term should be equal
to 1

2 ‖y − x‖22. This variational restoration approach has
also direct links to Bayesian estimation methods and can be
interpreted either as a penalized maximum likelihood or a
maximum a posteriori (MAP) estimation problem [2, 13].

2.1. Image Regularization

The choice of an appropriate regularizer is very impor-
tant, since it is one of the main factors that determine the
quality of the restored image. For this reason, a lot of ef-
fort has been made to design novel regularization function-
als that can model important image properties and conse-
quently lead to improved reconstruction results. Most of
the existing regularization methods are based either on a
synthesis- or an analysis-based approach. Synthesis-based
regularization takes place in a sparsifying-domain, such as
the wavelet basis, and the restored image is obtained by
applying an inverse transform [13]. On the other hand,
analysis-based regularization involves regularizers that are
directly applied on the image one aims to restore. For gen-
eral inverse problems, the latter regularization strategy has
been reported to lead to better reconstruction results [9, 35]
and therefore is mostly preferred.

The analysis-based regularizers are typically defined as:

J (x) =

R∑

r=1

φ (Lrx) , (3)

where L : RN 7→ RR×D is the regularization operator (Lrx
denotes the D-dimensional r-th entry of the result obtained
by applying L to the image x) and φ : RD 7→ R is the
potential function. Common choices for L are differential
operators of the first or of higher orders such as the gradi-
ent [3, 31], the structure tensor [23], the Laplacian and the
Hessian [21,24], or wavelet-like operators such as wavelets,
curvelets and ridgelets (see [13] and references therein). For
the potential function φ the most popular choices are vector
and matrix norms, but other type of functions are also fre-
quently used such as the `0 pseudo-norm and the logarithm.
Combinations of the above regularization operators and po-
tential functions lead to existing regularization functionals
that have been proven very effective in several inverse prob-
lems, including image denoising. A notable representative
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of the above regularizers is the Total Variation (TV) [31],
where the regularization operator corresponds to the gradi-
ent and the potential function to the `2 vector norm.

TV regularization and similar methods that penalize
derivatives are essentially local methods, since they involve
operators that act on a restricted region of the image do-
main. More recently, a different regularization paradigm
has been introduced where non-local operators are em-
ployed to define new regularization functionals [10, 14, 19,
22, 40]. The resulting non-local methods are well-suited
for image processing and computer-vision applications and
produce very competitive results. The reason is that they al-
low long-range dependencies between image points and are
able to exploit the inherent non-local self-similarity prop-
erty of natural images. This property implies that images
often consist of localized patterns that tend to repeat them-
selves possibly at distant locations in the image domain.

It is worth noting that alternative image denoising meth-
ods that do not fall in the category of analysis-based regular-
ization schemes but still exploit the self-similarity property
have been developed and produce excellent results. A non-
exhaustive list of these methods is the non-local means filter
(NLM) [4], BM3D [7], the Learned Simultaneous Sparse
Coding (LSSC) [25], and the Weighted Nuclear Norm Min-
imization (WNNM) [15].

2.2. Objective Function Minimization

Besides the formulation of the objective function and the
proper selection of the regularizer, another important aspect
in the variational approach is the minimization strategy that
will be employed to obtain the solution. For the case under
study, the solution to the image denoising problem can be
mathematically formulated as:

x∗ = argmin
a≤xn≤b

1

2
‖y − x‖22 + λ

R∑

r=1

φ (Lrx)

= argmin
x

1

2
‖y − x‖22 + λ

R∑

r=1

φ (Lrx) + ιC (x) (4)

where ιC is the indicator function of the convex set C ={
x ∈ RN |xn ∈ [a, b]∀n = 1, . . . N

}
. The indicator func-

tion ιC takes the value 0 if x ∈ C and +∞ otherwise. The
presence of this additional term in Eq. (4) stems from the
fact that these type of constraints on the image intensities
arise naturally. For example it is reasonable to require that
the intensity of the restored image should either be non-
negative (non-negativity constraint with a = 0, b = +∞)
or its values should lie in a specific range (box-constraint).

2.3. Proximal Gradient Method

There is a variety of powerful optimization strategies
for dealing with Eq. (4). The simplest approach however,

which we will follow in this work, is to directly use a
gradient-descent algorithm. Since the indicator function ιC
is non-smooth, instead of the classical gradient descent al-
gorithm we employ the proximal gradient method [28]. Ac-
cording to this method, the objective function is split into
two terms, one of which is differentiable. Here we assume
that the potential function φ is smooth and therefore we
can compute its partial derivatives. In this case, the split-
ting that we choose for the objective function has the form
E (x) = f (x) + ιC (x), where f (x) is defined as

f (x) =
1

2
‖y − x‖22 + λ

R∑

r=1

D∑

d=1

φd ((Lrx)d) . (5)

Note that in the above definition we have gone one step fur-
ther and we have expressed the multivariable potential func-
tion φ as the sum of D single-variable functions,

φ (z) =

D∑

d=1

φd (zd) . (6)

As it will become clear later, this choice will allows us to
reduce significantly the computational cost for training our
network and will make the learning process feasible. It is
also worth noting that this decoupled formulation of the po-
tential function is met frequently in image regularization,
as in wavelet regularization [13], anisotropic TV [12] and
Field-of-Experts (FoE) [30].

After the splitting of the objective function, the proximal
gradient method recovers the solution in an iterative fash-
ion, using the updates

xt = proxγtιC

(
xt−1 − γt∇xf

(
xt−1

))
, (7)

where γt is a step size and proxγtιC
is the proximal opera-

tor [28] related to the indicator function ιC . The proximal
map in this case corresponds to the orthogonal projection of
the input onto C, and hereafter will be denoted as PC .

Given that the gradient of f is computed as

∇xf (x) = x− y + λ

R∑

r=1

LT
rψ (Lrx) , (8)

where ψ (z) =
[
ψ1 (z1) ψ2 (z2) . . . ψD (zD)

]T
and

ψd (z) = dφd

dz (z), each proximal gradient iteration can be
finally re-written as

xt=PC

(
xt−1

(
1−γt

)
+ γty−αt

R∑

r=1

LT
rψ
(
Lrx

t−1)
)
, (9)

where αt = λγt.
In order to obtain the solution of the minimization prob-

lem in Eq. (4) using this iterative scheme, a large number of
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Figure 2. Convolutional implementation of the non-local operator of Eq. (12).

iterations is required. In addition, the exact form of the op-
erator L and the potential function φ must be specified. De-
termining appropriate values for these quantities is in gen-
eral a very difficult task. This has generated increased re-
search interest and a lot of effort has been made for design-
ing regularization functionals that can lead to good recon-
struction results.

3. Proposed Non-Local Network
In this work, we pursue a different approach than

conventional regularization methods and instead of hand-
picking the exact forms of the potential function and the
regularization operator, we design a network that has the ca-
pacity to learn these quantities directly from training data.
The core idea is to unroll the proximal gradient method and
use a limited number of the iterations derived in Eq. (9) to
construct the graph of the network. Then, we learn the rele-
vant parameters by training the network using pairs of cor-
rupted and ground-truth data.

Next, we describe in detail the overall architecture of the
proposed network, which is trained discriminatively for im-
age denoising. First we motivate and derive its structure for
processing grayscale images, and then we explain the nec-
essary modifications for processing color images.

3.1. Non-Local Regularization Operator

As mentioned earlier, non-local regularization methods
have been shown to produce superior reconstruction re-
sults than their local counterparts [14,22] for several inverse
problems, including image denoising. Their superiority in
performance is mainly attributed to their ability of model-
ing complex image structures by allowing long-range de-
pendencies between points in the image domain. This fact
highly motivates us to explore the design of a network that
will exhibit a similar behavior. To this end, our starting
point is the definition of a non-local operator that will serve
as the backbone of our network structure.

Let us consider a single-channel image X of size Nx ×
Ny and let x ∈ RN , where N = Nx ·Ny , be the vector that
is formed by stacking together the columns of X. Further,
we consider image patches of size Px × Py and we denote
by xr ∈ RP , with P = Px · Py , the vector whose elements
correspond to the pixels of the r-th image patch extracted
from X. The vector xr is derived from x as xr = Prx,

where Pr is a P × N binary matrix that indicates which
elements of x belong to xr. For each one of the R extracted
image patches, its K closest neighbors are selected. Let
ir = {ir,1, ir,2, . . . , ir,K}, with r = 1, . . . , R, be the set of
indices of the K most similar patches to the r-th patch xr

1.
Next, a two-dimensional transform is applied to every patch
xr. The patch transform can be represented by a matrix-
vector multiplication fr = Fxr where F ∈ RF×P . Note
that if F > P then the patch representation in the transform
domain is redundant. In this work, we focus on the non-
redundant case where F = P . For the transformed patch
fr, a group is formed using the K-closest patches. This is
denoted as

fir =
[
fTir,1 fTir,2 . . . fTir,K

]T ∈ RF ·K . (10)

The final step of the non-local operator involves collabo-
rating filtering among the group, which can be expressed
as zr = Wfir , where W ∈ RF×(F ·K) is a weighting
matrix and is constructed by retaining the first F rows
of a circulant matrix. The first row of this matrix corre-
sponds to the vector r =

[
w1 . . . wK

]
∈ RF ·K , where

wi =
[
wi 0 . . . 0

]
∈ RF . This collaborative filter-

ing amounts to performing a weighted sum of the K trans-
formed patches in the group, i.e.

zr =

K∑

k=1

wkfir,k . (11)

Based on the above, the non-local operator acting on an
image patch xr can be expressed as the composition of three
linear operators, that is

Lr x =
(
WF̃Pir

)
x, (12)

where Pir =
[
PT
ir,1

PT
ir,2

. . . PT
ir,K

]T
and F̃ ∈

R(F ·K)×(P ·K) is a block diagonal matrix whose diagonal
elements correspond to the patch-transform matrix F. The
non-local operator L : RN 7→ RR·F described above bears
strong resemblance to the BM3D analysis operator studied
in [8]. The main difference between the two is that for the
proposed operator in (12) a weighted average of the trans-
formed patches in the group takes place, as described in

1The convention used here is that the set ir includes the reference
patch, i.e. ir,1 = r.
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Figure 3. Architecture of a single stage of the proposed non-local convolutional network. Each stage of the network is symmetric and
consists of both convolutional and de-convolutional layers. In between of these layers there is a layer of trainable non-linear functions.

Eq. (11), while for the operator of [8] a 1D Haar wavelet
transform is applied on the group. Our decision for this par-
ticular set-up of the non-local operator was mainly based on
computational considerations and for decreasing the mem-
ory requirements of the network that we propose next.

Due to the specific structure of the non-local operator Lr
(composition of linear operators) it is now easy to derive its
adjoint as

LT
r = PT

ir F̃
TWT. (13)

The adjoint of the non-local operator is an important com-
ponent of our network since it provides a reverse mapping
from the transformed patch domain to the original image
domain, that is LT : RR·F 7→ RN .

3.1.1 Convolutional Implementation of the Non-Local
Operator

As we explain next, both the non-local operator defined
in (12) and its adjoint defined in (13) can be computed
using convolution operations and their transpose. There-
fore, they can be efficiently implemented using modern
software libraries such as OMP and cuDNN that support
multi-threaded CPU and parallel GPU implementations.

Concretely, the image patch extraction and the 2D patch
transform, fr = FPrx, can be combined and computed by
passing the image X from a convolutional layer. In order to
obtain the desired output, the filterbank should consist of as
many 2D filters as the number of coefficients in the trans-
form domain. In addition, the support of these filters should
match the size of the image patches. This implies that in
our case F filters with a support of Px×Py should be used.
Also note that based on the desired overlap between consec-
utive image patches, an appropriate stride for the convolu-
tion layer should be chosen. Finally, the non-local weighted
sum operation of (11) can also be computed using convolu-
tions. In particular, following the grouping operation of the
similar transformed patches, which is completely defined

by the set I = {ir : r = 1 . . . R}, the desired output can be
obtained by convolving the grouped data with a single 3D
filter of support 1 × 1 × K. The necessary steps for com-
puting the non-local operator using convolutional layers are
illustrated in Fig. 2. To compute the adjoint of the non-local
operator one simply has to follow the opposite direction of
the graph shown in Fig. 2 and replace the convolution and
patch grouping operations with their transpose operations.

3.2. Parameterization of the Potential Function

Besides the non-local operator L, we further need to
model the potential function φ. We do this indirectly by
representing its partial derivatives ψi as a linear combina-
tion of Radial Basis Functions (RBFs), that is

ψi (x) =

M∑

j=1

πijρj (|x− µj |) , (14)

where πij are the expansion coefficients and µj are the cen-
ters of the basis functions ρj . There are a few radial func-
tions to choose from [17], but in this work we use Gaus-
sian RBFs, ρj (r) = exp

(
−εjr2

)
. For our network we

employ M = 63 Gaussian kernels whose centers are dis-
tributed equidistantly and they all share the same precision
parameter ε. The representation of ψi using mixtures of
RBFs is very powerful and allow us to approximate with
high accuracy arbitrary non-linear functions. This is an im-
portant advantage over conventional regularization methods
that mostly rely on a limited set of potential functions such
as the ones reported in Section 2.1. Also note that this pa-
rameterization of the potential gradient ψ would have been
computationally very expensive if we had not adopted the
decoupled formulation of Eq. (6) for the potential function.

Having all the pieces of the puzzle in order, the architec-
ture of a single “iteration” of our network, which we will
refer to it as stage, is depicted in Fig. 3. We note that our
network follows very closely the proximal gradient itera-
tion in Eq. (9). The only difference is that the parameter
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αt has been absorbed by the potential gradient ψ, whose
representation is learned. We further observe that every
stage of the network consists of both convolutional and de-
convolutional layers and in between there is a layer of train-
able non-linear functions.

3.3. Color Image Denoising

The architecture of the proposed network as shown in
Fig. 3 can only handle grayscale images. To deal with
RGB color images, a simple approach would be to use the
same network to process each image channel independently.
However, this would result to a sub-optimal restoration per-
formance since the network would not be able to explore
the existing correlations between the different channels.

To circumvent this limitation, we follow a similar strat-
egy as in [7] and before we feed the noisy color image to
the network, we apply the same opponent color transforma-
tion which results to one luminance and two chrominance
channels. Due to the nature of the color transform, the lu-
minance channel contains most of the valuable information
about primitive image structures and has a higher signal-to-
noise-ratio (SNR) than the two chroma channels. We take
advantage of this fact and since the block-matching opera-
tion can be sensitive to the presence of noise, we perform
the grouping of the patches only from the luminance chan-
nel. Then, we use exactly the same set of group indices
I = {ir : r = 1 . . . R} for the other two image channels.
Another important modification that we make to the origi-
nal network is that for every image channel we learn a dif-
ferent RBF mixture. The reason for this is that due to the
color transformation the three resulting channels have dif-
ferent SNRs that need to be correctly accounted for. Finally,
it is important to note that all the image channels share the
same filters of the convolutional and weighted-sum layers
and their transposes. The reasoning here is that this way
the network can better exploit the channel correlations. A
by-product of the specific network design is that the search
for similar patches needs to be performed only once com-
pared to the naive implementation that would demand it to
be computed independently for each channel. In addition,
since this operation is computed only once from the noisy
input and then it is re-used in all the network stages, the
processing of the color channels can take place in a com-
pletely decoupled way and therefore the network admits a
very efficient parallel implementation.

4. Discriminative Network Training
We train our network, which consists of S stages, for

grayscale and color image denoising, where the images are
corrupted by i.i.d Gaussian noise. The network parameters
Θ =

[
Θ1, . . . ,ΘS

]
, where Θt = {γt,πt,Ft,Wt} de-

notes the set of parameters for the t-th stage, are learned
using a loss-minimization strategy given Q pairs of train-

ing data
{
y(q),x(q)

}Q
q=1

, where y(q) is a noisy input and
x(q) is the corresponding ground-truth image. To achieve
an increased capacity for the network, we learn different pa-
rameters for each stage. Therefore, the overall architecture
of the network does not exactly map to the proximal gra-
dient method but rather to an adaptive version. Neverthe-
less, in each stage the convolution and deconvolution layers
share the same filter parameters and, thus, they correspond
to proper proximal gradient iterations.

Since the objective function that we need to minimize
is non-convex, in order to avoid getting stuck in a bad
local-minima but also to speed-up the training, initially we
learn the network parameters by following a greedy-training
strategy. The same approach has been followed in [6, 34].
In this case, we minimize the cost

L
(
Θt
)
=

Q∑

q=1

`
(
x̂t(q),x(q)

)
, (15)

where x̂t(q) is the output of the t-th stage and the loss func-
tion ` corresponds to the negative peak signal-to-noise-ratio
(PSNR). This is computed as

` (y,x) = −20 log10

(
Pint

√
N

‖y − x‖2

)
, (16)

where N is the total number of pixels of the input images
and Pint is the maximum intensity level (i.e. Pint = 255 for
grayscale images and Pint = 1 for color images).

To minimize the objective function in Eq. (15) w.r.t the
parameters Θt we employ the L-BFGS algorithm [27] (we
use the available implementation of [33]). The L-BFGS is a
Quasi-Newton method and therefore it requires the gradient
of L w.r.t Θt. This can be computed using the chain-rule as

∂L (Θt)

∂Θt
=

Q∑

q=1

∂x̂t(q)

∂Θt
·
∂`
(
x̂t(q),x(q)

)

∂x̂t(q)
(17)

where ∂`(y,x)
∂y = 20

log 10
(y−x)

‖y−x‖22
, and

∂x̂t
(q)

∂Θt is the Jacobian of
the output of the t-th stage, which can be computed using
Eq. (9). We omit the details about the computation of the
derivatives w.r.t specific network parameters and we provide
their derivations in the appendix. Here, it suffices to say that
the gradient of the loss function can be efficiently computed
using the back-propagation algorithm [32], which is a clever
implementation of the chain-rule.

For the greedy-training we run 100 L-BFGS iterations
to learn the parameters of each stage independently. Then
we use the learned parameters as initialization of the net-
work and we train all the stages jointly. The joint training
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(a) (b) (c) (d) (e) (f)
Figure 4. Grayscale image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 25) ; PSNR = 20.16 dB.
(c) Denoised image using NLNet57×7 ; PSNR = 29.95 dB. (d) Denoised image using TNRD5

7×7 [6] ; PSNR = 29.72 dB. (e) Denoised
image using MLP [5] ; PSNR = 29.76 dB. (f) Denoised image using WNNM [15] ; PSNR = 29.76 dB.

(a) (b) (c) (d)
Figure 5. Color image denoising. (a) Original image, (b) Noisy image corrupted with Gaussian noise (σ = 50) ; PSNR = 14.15 dB. (c)
Denoised image using CNLNet55×5 ; PSNR = 26.06 dB. (d) Denoised image using CBM3D [7] ; PSNR = 25.65 dB.

corresponds to minimizing the cost function

L (Θ) =

Q∑

q=1

`
(
x̂S(q),x(q)

)
, (18)

w.r.t to all the parameters of the network Θ. This cost func-
tion does not take into account anymore the intermediate
results but only depends on the final output of the network
x̂S(q). In this case we run 400 L-BFGS iterations to refine
the result that we have obtained from the greedy-training.
Similarly to the previous case, we still employ the back-
propagation algorithm to compute the required gradients.

5. Experiments
To train our grayscale and color non-local models we

generated the training data using the Berkeley segmenta-
tion dataset (BSDS) [26] which consists of 500 images. We
split these images in two sets, a training set which consists
of 400 images and the validation/test set which consists of
the remaining 100 images. All the images were randomly
cropped and their resulting size was 180 × 180 pixel. We
note that the 68 BSDS images of [30] that are used for the
comparisons reported in Tables 1 and 2 are strictly excluded
from the training set. The proposed models were trained on
a NVIDIA Tesla K-40 GPU and the software we used for
training and testing was built on top of MatConvnet [36].

Grayscale denosing Following the strategy described in
Section 4, we have trained 5 stages of two different varia-
tions of our model, which we will refer to as NLNet55×5 and
NLNet57×7. The main difference between them is the con-
figuration of the non-local operator. For the first network we
considered patches of size 5×5 while for the second one we
have considered slightly larger patches of size 7×7. In both
cases, the patch stride is one, that is every pixel in the im-
age is considered as the center of a patch. Consequently, the
input images at each network stage are padded accordingly,
using symmetric boundaries. In addition, a non-redundant
patch-transform, which was learned by training, is applied
to every image-patch2 and the group is formed using the
K = 8 closest neighbors. The similar patches are searched
on the noisy input of the network in a window of 31 × 31
centered around each pixel. The same group indices are
then used for all the stages of the network.

In Table 1 we report comparisons of our proposed
NLNet55×5 and NLNet57×7 models with several recent state-
of-the-art denoising methods on the standard evaluation
dataset of 68 images [30]. From these results we observe
that both our non-local models lead to the best overall per-
formance, with the only exception being the case of σ = 50

2Similarly to variational methods, we do not penalize the DC com-
ponent of the patch-transform. Therefore, the number of the transform-
domain coefficients for a patch of size P is equal to P − 1.
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Noise Methods
σ (std.) BM3D [7] LSSC [25] EPLL [41] WNNM [15] CSF5

7×7 [34] TNRD5
7×7 [6] DGCRF8 [37] MLP [5] NLNet55×5 NLNet57×7

15 31.08 31.27 31.19 31.37 31.24 31.42 31.43 – 31.49 31.52
25 28.56 28.70 28.68 28.83 28.72 28.92 28.89 28.96 28.98 29.03
50 25.62 25.72 25.67 25.83 – 25.96 – 26.02 25.99 26.07

Table 1. Grayscale image denoising comparisons for three different noise levels over the standard set of 68 [30] Berkeley images. The
restoration performance is measured in terms of average PSNR (in dB) and the best two results are highlighted in bold. The left part of the
table is quoted from Chen et al. [6], while the results of DGCRF8 are taken from [37] .

Noise Methods
σ (std.) TNRD5

7×7 [6] MLP [5] CBM3D [7] CNLNet55×5

15 31.37 – 33.50 33.69
25 28.88 28.92 30.69 30.96
50 25.94 26.00 27.37 27.64

Table 2. Color image denoising comparisons for three different
noise levels over the standard set of 68 [30] Berkeley images. The
restoration performance is measured in terms of average PSNR (in
dB) and the best result is highlighted in bold.

where the MLP denoising method [5] achieves a slightly
better average PSNR compared to that of NLNet55×5. It
worths noting that while NLNet55×5 has a lower capacity
(it uses approximately half of the parameters) than both
CSF5

7×7 and TNRD5
7×7, it still produces better restora-

tion results in all tested cases. This is attributed to the
non-local information that exploits, as opposed to CSF5

7×7
and TNRD5

7×7 which are local models. Representative
grayscale denoising results that demonstrate visually the
restoration quality of the proposed models are shown in
Fig. 4.
Color denoising Given that in the grayscale case the use
of 7×7 patches did not bring any substantial improvements
compared to the use of 5× 5 patches, for the color case we
have trained a single configuration of our model, consider-
ing only color image patches of size 5×5. Besides the stan-
dard differences, as they are described in Section 3.3, be-
tween the color and the grayscale versions of the NLNet55×5
model, the rest of the parameters about the size of the patch-
group and the search window remain the same.

An important remark to make here is that most of the de-
noising methods that were considered previously have been
explicitly designed to treat single-channel images, with the
most notable exception being the BM3D, for which it in-
deed exists a color-version (CBM3D) [7]. In practice, this
means that if we need to restore color-images then each
of these methods should be applied independently on ev-
ery image channel. In this case however, their denoising
performance does not anymore correspond to state-of-the-
art. The reason is that due to their single-channel design
they fail to capture the existing correlations between the
image channels, and this limitation has a direct impact in

the final restoration quality. This fact is also verified by
the color denoising comparisons reported in Table 2. From
these results we observe that the TNRD and MLP models,
which outperform BM3D for single-channel images, fall
behind in restoration performance by more than 1.3 dBs.
In fact, for low noise levels CBM3D, which currently pro-
duces state-of-the-art results, leads to PSNR gains that ex-
ceed 2 dBs. Comparing the proposed non-local model with
CBM3D, we observe that CNLNet55×5 manages to provide
better restoration results for all the reported noise levels,
with the PSNR gain ranging approximately between 0.2-0.3
dBs. We are not aware of any other color-denoising method
that manages to compete with CBM3D on such large set
of images. For a visual inspection of the color restoration
performance of CNLNet55×5 we refer to Figs. 1 and 9.

6. Conclusions and Future Work
In this work we have proposed a novel network architec-

ture for grayscale and color image denoising. The design of
the resulting models has been inspired by non-local varia-
tional methods and it exploits the non-local self-similarity
property of natural images. We believe that non-local mod-
eling coupled with discriminative learning are the key fac-
tors of the improved restoration performance that our mod-
els achieve compared to several recent state-of-the-art meth-
ods. Meanwhile, the proposed models have direct links to
convolutional neural networks and therefore can take full
advantage of all the latest advances on parallel GPU com-
puting in deep learning.

We are confident that image restoration is just one of
the many inverse imaging problems that our non-local net-
works can successfully handle. We believe that a very in-
teresting research direction is to investigate the necessary
modifications on the design of our current non-local mod-
els that would allow them to be efficiently applied to other
important reconstruction problems. Another very relevant
research question is if it is possible to train a single model
that can handle all noise levels.

A. Derivative Calculations
In this section we provide the necessary derivations for

the gradients of the loss function of the network w.r.t the
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parameters Θ. We note that for all the derivative cal-
culations we use the denominator layout notation3. Fur-
ther, we recall that in order to learn the parameters Θ =

{γt,πt,Ft,Wt}St=1 of the network, which consists of S
stages, we use two different strategies, namely greedy and
joint training. During greedy training we learn the parame-
ters Θt of each stage t of the network independently from
the parameters of the other stages by minimizing the loss
function of Eq. (15). On the other hand, in joint training the
complete set of the network parameters is learned simulta-
neously by minimizing the loss function given in Eq. (18).

A.1. Single-Stage Parameter Learning

First we will consider the greedy training scheme. The
results computed here will also be useful in the joint esti-
mation scheme. Since the gradient of the overall loss L in
Eq. (15) is decomposed as:

∂L (Θt)

∂Θt
=

Q∑

q=1

∂`
(
x̂t(q),x(q)

)

∂Θt
, (19)

hereafter we will consider the case of a single training ex-
ample x̂t. In order to retain the notation simplicity, in the
following computations we will also drop the superscript t
from all the variables and use it only when it is necessary.

As we mentioned earlier, to compute the gradients w.r.t
the network parameters we rely on the chain rule and we get

∂` (x̂,x)

∂Θ
=

∂x̂

∂Θ
· ∂` (x̂,x)

∂x̂
, (20)

where

∂` (x̂,x)

∂x̂
=

20

log 10

(x̂− x)

‖x̂− x‖22
, (21)

is a vector of size N ×1. Now we focus on the computation
of the Jacobian of the output of the stage, x̂, w.r.t the stage
parameters. Before doing so, we recall that the output, x̂,
of a stage given an input z, is computed according to the
mapping

x̂ = PC

(
z (1− γ) + γy −

R∑

r=1

LT
rψ (Lrz)

)
. (22)

Note that the Eq. (22) is just a modified version of Eq. (9),
where the variable α is absorbed by the function ψ.

The Jacobian of x̂ w.r.t the parameters of the stage, Θ,
can now be expressed as

∂x̂

∂Θ
=
∂u

∂Θ

∂PC (u)
∂u

, (23)

3For the details of this notation we refer to https://en.wikipedia.
org/wiki/Matrix_calculus#Denominator-layout_notation.

where

u = z (1− γ) + γy −
R∑

r=1

LT
rψ (Lrz) . (24)

Regarding the projection operator PC (u), this is applied
element-wise to the vector u and it is defined as:

PC (u) =





u, if a ≤ u ≤ b
a, if u < a

b, if u > b.

(25)

The derivative of PC (u) w.r.t u is computed as:

dPC (u)
du

=

{
1, if a ≤ u ≤ b
0, elsewhere,

(26)

and therefore the Jacobian ∂PC(u)
∂u corresponds to a binary

diagonal matrix of size N × N , whose diagonal elements
are non-zero only if the corresponding values of u are in
the range

[
a b
]
. Now, let us denote as e the N × 1 vec-

tor obtained by the matrix vector product of the Jacobian
∂PC(u)
∂u with the gradient ∂`(x̂,x)∂x̂ , that is

e =
∂PC (u)
∂u

· ∂` (x̂,x)
∂x̂

. (27)

Weight parameter γ : Using Eq. (24) it is straightfor-
ward to show that

∂u

∂γ
= (y − z)

T (28)

and thus ∂`(x̂,x)
∂γ is computed as

∂` (x̂,x)

∂γ
= (y − z)

T · e. (29)

Expansion coefficients π : To compute the gradient of
the loss function ` w.r.t to the expansion coefficients π of
the mixture of Gaussian RBFs, we first express the output
of the RBF mixture as a vector inner product. Specifically,
it holds that

ψi (x) =

M∑

j=1

πijρj (|x− µj |) = ρT (x)πi, (30)

where ρ (x) =
[
ρ (|x− µ1|) . . . ρ (|x− µM |)

]T ∈
RM . We note that in the definition of ρ (x) we have
dropped the subscript j from the Gaussian RBF ρj (x) =
exp

(
−εjx2

)
, since we use a common precision param-

eter for all the mixture components, i.e. ε = εj , ∀j.
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Based on this notation we can further express ψ (x) =[
ψ1 (x1) ψ2 (x2) . . . ψF (xF )

]T
as

ψ (x) = RT (x)π (31)

where π =
[
πT
1 . . . πT

F

]T
, x ∈ RF and

RT (x) =




ρT (x1) 0 . . . 0
0 ρT (x2) 0
...

. . .
0 . . . 0 ρT (xF )


 ∈ RF×(M ·F ).

(32)

Now, using Eqs. (24), (30) and (31) we have

u = z (1− γ) + γy −
R∑

r=1

LT
rR

T (Lrz)π (33)

which directly leads us to compute the Jacobian ∂u
∂π as

∂u

∂π
= −

R∑

r=1

R (Lrz)Lr. (34)

Finally, combining Eqs. (27) and (34) we get

∂` (x̂,x)

∂π
= −

R∑

r=1

RT (Lrz)Lre. (35)

Weighted sum coefficients W : To simplify the compu-
tation of the gradient of the loss function w.r.t W, first we
obtain an equivalent expression for the non-local operator
Lr defined in Eq. (12). Indeed, the non-local operator can
be re-written as

Lr =

K∑

k=1

wkFPir,k =

K∑

k=1

wkTir,k . (36)

Plugging the new expression of Lr into Eq. (24) we get

u = z (1− γ) + γy −
R∑

r=1

K∑

k=1

wkT
T
ir,k

ψ

(
K∑

k=1

wkzir,k

)
,

(37)

where zir,k = Tir,kz. Now, it is straightforward to compute
the partial derivative of u w.r.t each wi. Based on Eq. (37),
we obtain

∂u

∂wi
= −

R∑

r=1

∂

∂wi




wiTT

ir,i +
∑

k 6=i
wkT

T
ir,k


ψ (zir )




= −
R∑

r=1

(
ψT (zir )Tir,i +

K∑

k=1

wkz
T
ir,i

∂ψ (zir )

∂zir
Tir,k

)
,

(38)

where zir =
K∑
k=1

wkzir,k . Note that due to the decoupled

formulation of ψ, the Jacobian ∂ψ(zir )
∂zir

is a diagonal matrix
of the form:

∂ψ (x)

∂x
=




∂ψ1(x1)
∂x1

0 . . . 0

0 ∂ψ2(x2)
∂x2

0
...

. . .
0 . . . 0 ∂ψF (xF )

∂xF



, (39)

where

∂ψi (x)

∂x
= −2ε

M∑

j=1

πij (x− µj) exp
(
−ε (x− µj)2

)
.

(40)

Combining Eqs (27) and (38) we obtain:

∂` (x̂,x)

∂wi
= −

R∑

r=1

(
ψT (zir )Tir,i +

K∑

k=1

wkz
T
ir,i

∂ψ (zir )

∂zir
Tir,k

)
e.

(41)

Patch-transform coefficients F : Let us express the ma-
trix F ∈ RF×P in terms of its column vectors, i.e. F =[
f1 . . . fF

]T
with fi ∈ RP ∀ i = 1, . . . , F . Now, let us

also re-write Lrz as

Lrz =

(
K∑

k=1

wkF Pir,k

)
z

= F

(
K∑

k=1

wkPir,k

)
z = F (Brz)

= Fz̃r =




fT1 z̃r
...

fTF z̃r


 . (42)

Next, we use Eq. (42) to re-write Eq. (24) as

u = z (1− γ) + γy −
R∑

r=1

BT
r

[
f1 . . . fF

]
ψ







fT1 z̃r
...

fTF z̃r







= z (1− γ) + γy −
R∑

r=1

BT
r

[
f1 . . . fF

]


ψ1

(
fT1 z̃r

)
...

ψF
(
fTF z̃r

)




= z (1− γ) + γy −
R∑

r=1

BT
r




F∑

j=1

fjψj
(
fTj z̃r

)

 .

(43)
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This last reformulation of u greatly facilitates the compu-
tation of its Jacobian w.r.t fi, ∀i = 1, . . . , F . Now, we can
show that

∂u

∂fi
= −

R∑

r=1

(
IP · ψi (fiz̃r) + fiz̃

T
r ·

∂ψi (fiz̃r)

(fiz̃r)

)
Br,

(44)

where IP ∈ RP×P is the identity matrix. Consequently, it
holds

∂` (x̂,x)

∂fi
= −

R∑

r=1

(
IP · ψi (fiz̃r) + fiz̃

T
r ·

∂ψi (fiz̃r)

(fiz̃r)

)
Bre.

(45)

A.2. Joint Parameter Learning

In the joint-training scheme the parameters of all the
stages of the network are learned simultaneously by min-
imizing the loss function of Eq. (18) which depends only
on the final output of the network x̂S . In this case we need
to compute the gradient of the loss function `

(
x̂S ,x

)
w.r.t

the parameters Θt of each stage t. Using the chain-rule this
can be computed as

∂`
(
x̂S ,x

)

∂Θt
=

∂x̂t

∂Θt
· ∂x̂S

∂x̂t
· ∂`

(
x̂S ,x

)

∂x̂S
, (46)

where ∂x̂t

∂Θt is calculated by combining Eq. (23) and the re-

sults of Section A.1, while
∂`(x̂S ,x)
∂x̂S is given by Eq. (21).

Therefore, the only remaining Jacobian that we need to
compute is ∂x̂S

∂x̂t . This quantity can be computed recursively
as

∂x̂S

∂x̂t
=
∂x̂t+1

∂x̂t
· ∂x̂t+2

∂x̂t+1
· · · ∂x̂S

∂x̂S−1
. (47)

Consequently, it suffices to derive the expression for the Ja-
cobian ∂x̂t+1

∂x̂t where x̂t+1 is obtained from x̂t according to

x̂t+1 = PC

(
x̂t
(
1− γt+1

)
+ γt+1y

−
R∑

r=1

(
Lt+1
r

)T
ψt+1

(
Lt+1
r x̂t

)
)

= PC
(
ut+1

)
. (48)

Using Eq. (48), we finally get

∂x̂t+1

∂x̂t
=
∂ut+1

∂x̂t
· ∂PC

(
ut+1

)

∂ut+1

=

(
IN
(
1− γt+1

)

−
R∑

r=1

(
Lt+1
r

)T ∂ψt+1 (x̂tr)

∂x̂tr
Lt+1
r

)
Pt+1, (49)

where IN ∈ RN×N is the identity matrix, x̂tr = Lt+1
r x̂t

and Pt+1 =
PC(ut+1)
∂ut+1 .

B. Grayscale and Color Image Denoising Com-
parisons

In this section we provide additional grayscale and color
image denoising results for different noise levels. For
grayscale image denoising we compare the performance of
our non-local models with TNRD [6], MLP [5], EPLL [41]
and BM3D [7], while for color image denoising we com-
pare our non-local CNN with the state-of-the-art CBM3D
method [7]. Besides the visual comparisons, in the captions
of the figures we provide the PSNR score (in dB) of each
method to also allow a quantitative comparison.
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