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Abstract. We propose a new algorithm to solve the unbalanced and partial L1-Monge-
Kantorovich problems. The proposed method is a first-order primal-dual method that is
scalable and parallel. The method’s iterations are conceptually simple, computationally
cheap, and easy to parallelize. We provide several numerical examples solved on a CUDA
GPU, which demonstrate the method’s practical effectiveness.

1. Introduction

The Monge-Kantorovich problem [8], also named the Wasserstein metric or earth mover’s
distance, defines a metric between two densities on the probability set and is used in
many applications including image processing, optical flow, computer vision,and statistics
[18, 24]. The original problem assumes that the total masses of the two given densities
are equal, which often does not hold in practice. For instance, it is natural to compare
two images of different intensities. Therefore, it is very useful to generalize the Wasser-
stein metric or the earth mover’s distance to densities with unbalanced masses. There has
been much work and interest in this direction [4, 6, 7, 9, 11, 19, 20], and we focus on the
two such approaches, the unbalanced and partial L1 Monge-Kantorovich problems, in this
paper.

Following the idea in [15], we propose a scalable parallel method to solve the unbalanced
and partial L1 Monge-Kantorovich problems. Our algorithm uses a finite volume method
to discretize the domain and then applies the Chambolle-Pock primal-dual method [5, 22].
As a first-order method, our algorithm has the following advantages: (1) the “shrink”
operator promotes sparsity; (2) each iteration is conceptually very simple and computa-
tionally very cheap (each iteration does not even solve a linear system); (3) it is easy to
parallelize, and, in particular, can effectively utilize the computational power of CUDA
GPUs; (4) the cost of each iteration scales well with the problem or discretization size.

A few algorithms have been proposed in this area. Ling et al. and Rubner et al. cast
the discretized optimization problem into a linear program and solve it, in a similar setup
[16, 24]. The disadvantage of this approach is, however, that the size of the linear program
grows quadratically with the discretization size. Barrett and Prigozhin considers the same
unbalanced and partial L1 model. They approximate the L1 norm with the Lr norm,
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solve the smooth approximation with ADMM, and let r ↓ 1 [1]. We propose a different
approach. Our approach handles the L1 norm directly, which promotes sparsity [27], and it
uses explicit updates, while ADMM requires computing the inverse of an elliptic operator
every iteration.

This paper is organized as follows. In Section 2, we briefly review the unbalanced and
partial L1 Monge-Kantorovich problems. In Section 3, we propose a scalable parallel first-
order method to solve these problems. In Section 4, we discuss the computational issues
such as parallelization and parameter tuning of the proposed method. In Section 5, we
show several numerical examples to demonstrate the method’s effectiveness. In Section 6,
we discuss existence and uniqueness of the unbalanced and partial L1 Monge-Kantorovich
problems, and propose how to regularize the problems to ensure the solution is unique.

2. L1 Monge-Kantorovich problem

In this section, we briefly review the balanced, unbalanced, and partial L1 Monge-
Kantorovich problem. The unbalanced and partial problems have been studied by [1, 21].
Several related setups, which include both L1, L2 and L2

2 cases, have been studied by
[4, 6, 7, 9, 11, 19, 20].

Throughout this paper, assume Ω ⊂ Rd is convex and compact. We write ‖ · ‖ for the
standard Euclidean norm.

2.1. Balanced L1 Monge-Kantorovich problem. Let ρ0 and ρ1 be nonnegative den-
sities supported on Ω with balanced mass, i.e.,∫

Ω
ρ0(x) dx =

∫
Ω
ρ1(x) dx.

The optimal transport map from ρ0 to ρ1 solves

minimize
T

∫
Ω
‖x− T (x)‖ρ0(x) dx. (1)

The optimization variable T : Ω→ Ω is smooth, one-to-one, and transfers ρ0(x) to ρ1(x),
i.e., T satisfies

ρ0(x) = ρ1(T (x))det(∇T (x)).

The optimization problem (1) is nonlinear and nonconvex. We can relax (1) into a linear
(convex) optimization problem:

W (ρ0, ρ1) =


minimize

m

∫
Ω×Ω ‖x− y‖π(x,y) dxdy

subject to π(x,y) ≥ 0∫
Ω π(x,y) dy = ρ0(x)∫
Ω π(x,y) dx = ρ1(y).

 (2)

The optimization variable π is a joint nonnegative measure on Ω × Ω having ρ0(x) and
ρ1(y) as marginals. To clarify, W (ρ0, ρ1) denotes the optimal value of (2).
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The theory of optimal transport [8, 26] remarkably points out that (2) is equivalent to
the following flux minimization problem:

W (ρ0, ρ1) =


minimize

m

∫
Ω ‖m(x)‖ dx

subject to ∇ ·m(x) = ρ0(x)− ρ1(x)

m(x) · n(x) = 0, for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω.

 (3)

Although (3) and (2) are mathematically equivalent, (3) is much more computationally
effective as its optimization variable m is much smaller when discretized. It is clear that
(2) or (3) requires ρ0 and ρ1 have balanced mass; (2) by Fubini’s theorem and (3) by the
divergence theorem. Finally, W (ρ0, ρ1) defines a metric on the set of probability measures
and thus is called the 1-Wasserstein metric.

2.2. Unbalanced L1 Monge-Kantorovich problem. Let ρ0 and ρ1 be nonnegative
densities supported on Ω with possibly unbalanced mass, i.e., we allow∫

Ω
ρ0(x) dx 6=

∫
Ω
ρ1(x) dx.

Without loss of generality, assume∫
Ω
ρ0(x) dx ≤

∫
Ω
ρ1(x) dx.

The unbalanced L1 Monge-Kantorovich problem solves

U(ρ0, ρ1) =

 minimize W (ρ0, ρ̃1)
subject to 0 ≤ ρ̃1(x) ≤ ρ1(x)∫

ρ0(x) dx =
∫
ρ̃1(x) dx

 . (4)

To idea is that we fully transport ρ0, the smaller mass, to partially fill ρ1, the larger mass,
and U(ρ0, ρ1) is the optimal (smallest) cost of doing so. If

∫
Ω ρ

0(x) dx >
∫

Ω ρ
1(x) dx,

we simply flip the definition and interpretation. We can write (4) as a single equivalent
optimization problem:

U(ρ0, ρ1) =


minimize

m,ρ̃1

∫
Ω ‖m(x)‖ dx

subject to ∇ ·m(x) = ρ0(x)− ρ̃1(x)

m(x) · n(x) = 0, for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω

0 ≤ ρ̃1(x) ≤ ρ1(x)

 . (5)

In (5), the constraint
∫
ρ0(x) dx =

∫
ρ̃1(x) dx is enforced by ∇ ·m(x) = ρ0(x) − ρ̃1(x)

and the zero-flux boundary condition on m.

It is easy to see that when ρ0 and ρ1 have balanced mass the unbalanced case reduces
to the balanced case, i.e., U(ρ0, ρ1) = W (ρ0, ρ1) when

∫
Ω ρ

0(x) dx 6=
∫

Ω ρ
1(x) dx.
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Note that U is not a metric as it satisfies neither the identity of indiscernibles nor the
triangle inequality. However,

D(ρ0, ρ1) = U(ρ0, ρ1) + λ

∫
Ω
|ρ1(x)− ρ̃1,?(x)| dx,

where λ ≥ max{‖x − y‖ |x,y ∈ Ω} is a given constant and ρ̃1,? is a minimizer of (4),
defines a metric on nonnegative measures [1, 11, 19, 20]. Of course, if ρ0, ρ1 have balanced
mass, D(ρ0, ρ1) reduces to the 1-Wasserstein metric W (ρ0, ρ1).

2.3. Partial L1 Monge-Kantorovich problem. Let ρ0 and ρ1 be nonnegative densities
supported on Ω with possibly unbalanced mass, and let

0 < γ ≤ min

{∫
Ω
ρ0(x) dx,

∫
Ω
ρ1(x) dx

}
.

The partial L1 Monge-Kantorovich problem solves

Pγ(ρ0, ρ1) =


minimize

ρ̃0,ρ̃1
W (ρ̃0, ρ̃1)

subject to 0 ≤ ρ̃0(x) ≤ ρ0(x)
0 ≤ ρ̃1(x) ≤ ρ1(x)
γ =

∫
Ω ρ̃

0(x) dx =
∫

Ω ρ̃
1(x) dx

 . (6)

The idea is that we partially transport a mass of γ from ρ0 to partially fill a mass of γ of
ρ1, and Pγ(ρ0, ρ1) is the optimal (smallest) cost of doing so. We can write (6) as a single
equivalent optimization problem:

Pγ(ρ0, ρ1) =



minimize
m,ρ̃0,ρ̃1

∫
Ω ‖m(x)‖ dx

subject to ∇ ·m(x) = ρ̃0(x)− ρ̃1(x)

m(x) · n(x) = 0, ∀for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω

0 ≤ ρ̃0(x) ≤ ρ0(x)
0 ≤ ρ̃1(x) ≤ ρ1(x)
γ =

∫
Ω ρ̃

0(x) dx =
∫

Ω ρ̃
1(x) dx


. (7)

It is easy to see that when γ =
∫

Ω ρ
0(x) dx ≤

∫
Ω ρ

1(x) dx, the partial case reduces to

the unbalanced case, i.e., Pγ(ρ0, ρ1) = U(ρ0, ρ1).

Robustness to noise is an interesting property of Pγ . Assume ρ0 and ρ1 are densities
with (balanced) unit mass, and let δ0 and δ1 be their respective perturbations with small
mass. Even though the perturbations have small mass, the difference between W (ρ0, ρ1)
and W (ρ0 + δ0, ρ1 + δ1) can be large if the mass of δ0 is far away from the mass of ρ1

and δ1. On the other hand, the difference between Pγ(ρ0, ρ1) and Pγ(ρ0 + δ0, ρ1 + δ1) is
affected much less when γ < 1. This idea is illustrated in Figure 2 and 1.

As before, U is not a metric. However, also as before,

D(ρ0, ρ1) = Pγ(ρ0, ρ1) + λ

∫
Ω
|ρ0(x)− ρ̃0,?(x)|+ |ρ1(x)− ρ̃1,?(x)| dx,
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where λ ≥ max{‖x−y‖ |x,y ∈ Ω} is a given constant and ρ̃0,? and ρ̃1,? are minimizers of
(6), defines a metric on nonnegative measures [1]. Again, if γ =

∫
Ω ρ

0(x) dx =
∫

Ω ρ
1(x) dx,

then D(ρ0, ρ1) reduces to the 1-Wasserstein metric W (ρ0, ρ1).

In what follows, we present a parallelizable first-order algorithm to solve Pγ(ρ0, ρ1), the
partial L1 Monge-Kantorovich problem.

3. algorithm

In this section, we derive and present the main algorithm for the partial L1 Monge-
Kantorovich problem, which can, of course, solve the unbalanced problem as a special
case. We also provide a convergence proof.

3.1. Discretization. For notational simplicity, we will consider the case where Ω ⊂ R2

and Ω is square. The following discussion does immediately generalize to higher dimensions
and more complicated domains.

Also, we will use the same symbol to denote the discretizations and their continuous
counterparts. Whether we are referring to the continuous variable or its discretization
should be clear from the context.

Consider a n×n discretization of Ω with finite difference ∆x in both x and y directions.
Write the x and y coordinates of the points as x1, . . . , xn and y1, . . . , yn. So we are
approximating the domain Ω with {x1, . . . , xn}×{y1, . . . , yn}. Write C(x, y) be the ∆x×
∆x cube centered at (x, y), i.e.,

C(x, y) = {(x′, y′) ∈ R2 | |x′ − x| ≤ ∆x/2 , |y′ − y| ≤ ∆x/2} .

We use a finite volume approximation for ρ0, ρ1, ρ̃0, and ρ̃1. Specifically, we write
ρ0 ∈ Rn×n with

ρ0
ij ≈

∫
C(xi,yj)

ρ0(x, y) dxdy ,

for i, j = 1, . . . , n. The discretizations ρ1, ρ̃0, , ρ̃1 ∈ Rn×n are defined the same way.

Write m = (mx,my) for both the continuous variable and its discretization. To be
clear, the subscripts of mx and my do not denote differentiation. We use the discretization

mx ∈ R(n−1)×n and my ∈ Rn×(n−1). For i = 1, . . . , n− 1 and j = 1, . . . , n

mx,ij ≈
∫
C(xi+∆x/2,yj)

mx(x, y) dxdy ,

and for i = 1, . . . , n and j = 1, . . . , n− 1

my,ij ≈
∫
C(xi,yj+∆x/2)

my(x, y) dxdy .

In defining mx and my, the center points are placed between the n×n grid points to make
the finite difference operator symmetric.
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Define the discrete divergence operator div(m) ∈ Rn×n as

div(m)ij =
1

∆x
(mx,ij −mx,(i−1)j +my,ij −my,i(j−1)) ,

for i, j = 1, . . . , n, where we meanmx,0j = mx,nj = 0 for j = 1, . . . , n andmy,i0 = my,in = 0
for i = 1, . . . , n. This definition of div(m) makes the discrete approximation be consistent
with the zero-flux boundary condition.

For Φ ∈ Rn×n, define the discrete gradient operator ∇Φ = ((∇Φ)x, (∇Φ)y) as

(∇Φ)x,ij = (1/∆x) (Φi+1,j − Φi,j) for i = 1, . . . , n− 1, j = 1, . . . , n

(∇Φ)y,ij = (1/∆x) (Φi,j+1 − Φi,j) for i = 1, . . . , n, j = 1, . . . , n− 1 .

So (∇Φ)x ∈ R(n−1)×n and (∇Φ)y ∈ Rn×(n−1), and the ∇ is the adjoint of −div.

We will soon see that using ghost cells is convenient for both describing and implement-
ing the method. So we define the variable m̃ = (m̃x, m̃y) ∈ R2×n×n where

m̃x,ij =

{
mx,ij for i < n
0 for i = n

m̃y,ij =

{
my,ij for j < n
0 for j = n ,

for i, j = 1, . . . , n. We also define ∇̃Φ = ((∇̃Φ)x, (∇̃Φ)y) ∈ R2×n×n, where

(∇̃Φ)x,ij =

{
(∇Φ)x,ij for i < n
0 for i = n

(∇̃Φ)y,ij =

{
(∇Φ)y,ij for j < n
0 for j = n ,

for i, j = 1, . . . , n. Finally, we write m̃ = (m̃x, m̃y) and m̃ij = (m̃x,ij , m̃y,ij) and (∇Φ)ij =
((∇Φ)x,ij , (∇Φ)y,ij) for i, j = 1, . . . , n

Using this notation, we write the discretization of (7) as

minimize
m,ρ̃0,ρ̃1

‖m‖1,2

subject to div(m) = ρ̃0 − ρ̃1

0 ≤ ρ̃0 ≤ ρ0

0 ≤ ρ̃1 ≤ ρ1

γ = 〈1, ρ̃0〉 = 〈1, ρ̃1〉,

(8)

where mx ∈ R(n−1)×n, my ∈ Rn×(n−1), ρ̃0 ∈ Rn×n, and ρ̃1 ∈ Rn×n are the optimization
variables. The inequalities are element-wise. Here, 1 ∈ Rn×n denotes the matrix filled
with 1s and 〈·, ·〉 denotes the inner product between n×n matrices treated as vectors. So

〈1, ρ̃0〉 =
n∑
i=1

n∑
j=1

ρ̃ij .
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The boundary conditions are implicitly handled by the discretization. The objective is

‖m‖1,2 =

n∑
i=1

n∑
j=1

‖mij‖2 =

n∑
i=1

n∑
j=1

√
m2
x,ij +m2

y,ij ,

where we mean mx,nj = 0 for j = 1, . . . , n and my,in = 0 for i = 1, . . . , n.

3.2. Chambolle-Pock. Write

S(ρ, γ) = {ρ̃ ∈ Rn×n | 0 ≤ ρ̃ ≤ ρ, 〈1, ρ〉 = γ},

and we can write the constraints of (8) on ρ̃0 and ρ̃1 as

ρ̃0 ∈ S(ρ0, γ)

ρ̃1 ∈ S(ρ1, γ).

Define the Lagrangian

L(m, ρ̃0, ρ̃1,Φ) = ‖m‖1,2 + 〈Φ, div(m) + ρ̃1 − ρ̃0〉 ,

where Φ ∈ Rn×n is the Lagrange multiplier corresponding to the equality constraint
div(m) = ρ̃0 − ρ̃1 of (8). Again, 〈·, ·〉 denotes the inner product between n × n matrices
treated as vectors. i.e.,

〈A,B〉 =

n∑
i=1

n∑
j=1

AijBij .

Standard convex analysis states that (m?, ρ̃0?, ρ̃1?) is a solution to (8) if and only if
there is a Φ? such that (m?, ρ̃0?, ρ̃1?,Φ?) is a saddle point of L(m,Φ) on [23]. In other
words, we can solve (8) by solving the minimax problem

minimize
mx∈R(n−1)×n

my∈Rn×(n−1)

ρ̃0∈S(ρ0,γ)
ρ̃1∈S(ρ1,γ)

maximize
Φ∈Rn×n

L(m, ρ̃0, ρ̃1,Φ). (9)

Saddle point problems, such as (9), can be solved with the first-order primal-dual
method of Chambolle and Pock [5, 22]:

mk+1 = argmin
m

{
‖m‖1,2 + 〈Φk, div(m)〉+

1

2µ
‖m−mk‖22

}
ρ̃0,k+1 = argmin

ρ̃∈S(ρ0,γ)

{
−〈Φk, ρ̃〉+

1

2ν
‖ρ̃− ρ̃0,k‖22

}
ρ̃1,k+1 = argmin

ρ̃∈S(ρ1,γ)

{
+〈Φk, ρ̃〉+

1

2ν
‖ρ̃− ρ̃1,k‖22

}
(10)

vk+1 =div(2mk+1 −mk) + 2ρ̃1,k+1 − ρ̃1,k − 2ρ̃0,k+1 + ρ̃0,k

Φk+1 = argmax
Φ

{〈
Φ, vk+1

〉
− 1

2τ
‖Φ− Φk‖22

}



8 RYU, LI, YIN, AND OSHER

where µ, ν, τ > 0 are step sizes. The meaning of ‖ · ‖22 is standard; for m it is

‖m−mk‖22 =

n−1∑
i=1

n∑
j=1

(mx,ij −mk
x,ij)

2 +

n∑
i=1

n−1∑
j=1

(my,ij −mk
y,ij)

2,

for Φ it is

‖Φ− Φk‖22 =
n∑
i=1

n∑
j=1

(Φij − Φk
ij)

2,

and for ρ̃0 and ρ̃1 it is the same as it is for Φ. These steps can be interpreted as a gradient
descent in the primal variable m and a gradient ascent in the dual variable Φ.

3.3. Subproblems. The optimization problems that define (10) have closed-form or semi-
closed-form solutions, and these efficient solutions to the subproblems allow algorithm (10)
as a whole to be efficient.

We first simplify the m update. We have

argmin
m

{
‖m‖1,2 + 〈Φk,∇ ·m〉+

1

2µ
‖m−mk‖22

}

= argmin
m

∑
ij

(
‖mij‖1,2 +

1

∆x
Φk
ij(mx,ij −mx,(i−1)j +my,ij −my,i(j−1)) +

1

2µ
‖mij −mk

ij‖22
)

= argmin
m

∑
ij

(
‖mij‖1,2 − (∇Φk)Tijmij +

1

2µ
‖mij −mk

ij‖22
) ,

where again, all out-of-bounds indicies are interpreted as zeros. This minimization has a
closed form solution, which can be written concisely with m̃ and ∇̃:

m̃k+1
ij = shrink2(m̃k

ij + µ(∇̃Φk)ij , µ)

for i, j = 1, . . . , n. The shrink operator shrink2 is defined as

shrink2(v, µ) =

{
(1− µ/‖v‖2)v for ‖v‖2 ≥ µ
0 for ‖v‖2 < µ .

Note that shrink2 maps from R2 to R2, given a fixed µ.

Next, we simplify the Φ update. We have

argmax
Φ

{〈
Φ, vk+1

〉
− 1

2τ
‖Φ− Φk‖22

}
= argmax

Φ

∑
ij

(
Φijv

k+1
ij − 1

2τ
(Φij − Φk

ij)
2

) ,

and last line of (10) simplifies to

Φk+1
ij = Φk

ij + vk+1
ij

for i, j = 1, . . . , n.
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The updates for ρ̃0 and ρ̃1 have a semi-closed-form solution. After reorganization, the
second and third lines of (10) becomes

ρ̃0,k+1 = PS(ρ0,γ)(ρ̃
0,k + νΦk)

ρ̃1,k+1 = PS(ρ1,γ)(ρ̃
1,k − νΦk),

where PS(ρ0,γ) and PS(ρ1,γ) are the projections onto S(ρ0, γ) and S(ρ1, γ), respectively. We
can evaluate these projections via the following algorithm.

Projection algorithm
Input: σ ∈ Rn×n, ρ ∈ Rn×n+ , γ ∈ (0, 〈1, ρ〉], and ε > 0
Output: PS(ρ,γ)(σ)

θmin = −maxi,j{ρij}+ mini,j{σij}
θmax = maxi,j{σij}
while θmax − θmin ≥ ε

θmid = (θmax + θmin)/2
ρ̃(θmid) = min{max{σ − θmid1, 0}, ρ}
if γ < 〈1, ρ̃(θmid)〉

θmin = θmid

else
θmax = θmid

end
end
ρ̃(θmid) = min{max{σ − θmid1, 0}, ρ}

To clarify, the min and max are taken element-wise and ρ ∈ Rn×n+ means ρ is positive
element-wise.

Lemma 1. The projection algorithm computes PS(ρ,γ)(σ).

Proof. Consider the constrained convex optimization problem defining PS(ρ,γ):

minimize
ρ̃

1
2‖ρ̃− σ‖

2
2

subject to 0 ≤ ρ̃
ρ̃ ≤ ρ
γ = 〈1, ρ̃〉,

Then Lagrangian for this optimization problem is

L(ρ̃;λ1, λ2, θ) =
1

2
‖ρ̃− σ‖22 − 〈λ1, ρ̃〉+ 〈λ2, ρ̃− ρ〉 − θ(γ − 〈1, ρ̃〉),
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where λ1, λ2 ∈ Rn×n and θ ∈ R are Lagrange multipliers. The KKT conditions for the
optimization problem are

0 ≤ ρ̃, ρ̃ ≤ ρ (11)

γ = 〈1, ρ̃〉 (12)

λ1 ≥ 0, λ2 ≥ 0 (13)

λT1 ρ̃ = 0, λT2 (ρ− ρ̃) = 0 (14)

0 = ρ̃− σ − λ1 + λ2 + θ1 (15)

where all inequalities are element-wise. Write

ρ̃(θ) = min{max{σ − θ1, 0}, ρ}
λ1(θ) = −min{σ − θ1, 0}
λ2(θ) = max{σ − θ1− ρ, 0},

where the max and min are taken element-wise. For any θ, we see that ρ̃(θ), λ1(θ), and
λ2(θ) satisfy the KKT conditions (11), (13), (14), and (15). So if we find a θ? such that
ρ̃(θ?) satisfies the final KKT condition (12), ρ̃(θ?) is a solution to the projection problem.

Define

θmin = −max
i,j
{ρij}+ min

i,j
{σij}

θmax = max
i,j
{σij}.

Then

ρ̃(θmin) = ρ

ρ̃(θmax) = 0

and we have

〈1, ρ̃(θmin)〉 = 〈1, ρ〉
〈1, ρ̃(θmax)〉 = 0.

Since 〈1, ρ̃(θ)〉 is a non-increasing function of θ, we can use bisection to find the θ? that
satisfies 〈1, ρ̃(θ)〉 = γ. �

3.4. Main algorithm. We are now ready to state the main algorithm.

First-order Method for Partial L1 Monge-Kantorovich Problem
Input: Discrete probabilities ρ0, ρ1, and γ

Initial guesses ρ̃0,0, ρ̃1,0, m0, Φ0 and step size µ, ν, τ
Output: Optimal ρ̃0,?, ρ̃1,?, and m?

m
for k = 1, 2, · · · (Iterate until convergence)

m̃k+1
ij = shrink2(m̃k

ij + µ(∇̃Φk)ij , µ) for i, j = 1, . . . , n

ρ̃0,k+1 = PS(ρ0,γ)(ρ̃
0,k + νΦk)

ρ̃1,k+1 = PS(ρ1,γ)(ρ̃
1,k − νΦk)
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Φk+1
ij = Φk

ij + τ(div(2mk+1 −mk)ij + 2ρ̃1,k+1
ij − ρ̃1,k

ij − 2ρ̃0,k+1
ij + ρ̃0,k

ij )

for i, j = 1, . . . , n
end

When the problem is unbalanced, then one of the projection steps for ρ̃0 or ρ̃1 can be
eliminated. When the problem is balanced, both projection steps can be eliminated and
the algorithm reduces to that of [15].

3.5. Convergence analysis. We now show that the proposed primal-dual algorithm con-
verges to the minimizer of (8).

Define the discrete Laplacian operator as ∇2 = div · ∇.

Theorem 2. Assume µτ/(1−2ντ) < 1/λmax(−∇2), where λmax(−∇2) denotes the largest
eigenvalue of the negative discrete Laplacian operator −∇2. Then with iterations (10)

(mk, ρ̃0,k, ρ̃1,k,Φk)→ (m?, ρ̃0,?, ρ̃1,?,Φ?) ,

where (m?, ρ̃0,?, ρ̃1,?,Φ?) is a saddle point of L in (9). Define

Rk = (1/µ)‖mk+1 −mk‖22 + (1/ν)‖ρ̃0,k+1 − ρ̃0,k‖22 + (1/ν)‖ρ̃1,k+1 − ρ̃1,k‖22
+ (1/τ)‖Φk+1 − Φk‖22 (16)

− 2〈Φk+1 − Φk, div(mk+1 −mk) + ρ̃1,k+1 − ρ̃1,k − ρ̃0,k+1 + ρ̃0,k〉.

Then Rk ≥ 0 and Rk = 0 if and only if (mk, ρ̃0,k, ρ̃1,k,Φk) is a saddle point of of (9).
Finally, Rk monotonically converges to 0.

Proof. We check the conditions required in [5, 22]. Let us rewrite L by

L(m, ρ̃0, ρ̃1,Φ) = G(m, ρ̃0, ρ̃1) + ΦTK(m, ρ̃0, ρ̃1)− F (Φ) ,

where G(m, ρ̃0, ρ̃1) = ‖m‖1,2,

K =
[
div −I I

]
,

and F (Φ) = 0. Observe that G, F are convex functions and K is a linear operator. By
Lemma 1 of [22] and an application of the Schur complement, the algorithm converges for
µτ/(1− 2ντ) < 1/λmax(−∇2).

The Chambolle-Pock methods can be interpreted as a proximal point method under a
certain metric [12]. Rk is the fixed-point residual of the non-expansive mapping defined
by the proximal point method and thus decreases monotonically to 0, cf., review paper
[25]. �

4. Computational considerations

The proposed method can be parallelized to run efficiently on GPUs. The update for
m and Φ can be split the computation over the indices (i, j) as follows:
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(Main algorithm)

m_temp[i,j] = m[i,j]

m[i,j] = shrink(m[i,j]+mu/dx*(Phi[i+1,j]-Phi[i+1,j],Phi[i,j+1]-Phi[i+1,j]))

m_temp[i,j] = 2*m[i,j]-m_temp[i,j]

---------------------------------------------------------------------------

Synchronize over all i,j

---------------------------------------------------------------------------

Perform rho0 and rho1 update

---------------------------------------------------------------------------

divm[i,j] = m_temp_x[i,j]-m_temp_x[i-1,j]+m_temp_y[i,j]-m_temp_y[i,j-1]

Phi[i,j] = Phi[i,j] + tau*(divm[i,j]/dx+rho1_temp[i,j]-rho0_temp[i,j]);

---------------------------------------------------------------------------

Synchronize over all i,j

---------------------------------------------------------------------------

This algorithmic structure can effectively utilize the parallel computing capabilities of
GPUs (and even more so when with the use of ghost cells).

The ρ̃0 and ρ̃1 updates are the computational bottleneck of the proposed algorithm and
are trickier to program. The hard work for these updates is finding the max, min, and
sum of an array.

(rho0 update)

theta_min = min(t_rho0) + rho0_max

theta_max = max(t_rho0)

while (...)

...

if ( sum(min(max(t_rho0-nu*Phi,0),rho0) > gamma)

...

...

end

...

These operations can be done via parallel reduction, which can effectively utilize the par-
allel computing capabilities of GPUs. Implementing an efficient parallel reduction for
a CUDA GPU can be tricky, as it requires specific knowledge of the CUDA computing
architecture. See [17] for a tutorial on this topic.

The bisection intervals for the ρ̃0 and ρ̃1 can be improved to reduce the number of
bisection iterations. One approach we use is to remember an interval from the last iteration
and check if it is still valid. If so, the past interval is used. Otherwise the method falls
back to the valid but wider interval specified in the statement of the projection algorithm.

The m, ρ̃0, and ρ̃1 updates can be done in parallel, and, in principle, doing so can
slightly improve concurrency.
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We can use Rk, defined as (16), as a termination criterion. Computing Rk also can be
done with parallel reduction.

In choosing the parameters µ, ν, and τ Theorem 2 provides an upper bound for µτ/(1−
2ντ). It suggests ν = 1/(4τ) is a reasonable value, which we use. It does not, however,
provide any guidance for choosing the individual values for µ and τ . As they represent
the step sizes for variables of different scales, µ, ν, and τ should not be constrained to
be equal. Indeed, we have empirically observed that the values of µ, ν, and τ must be
different to get the best convergence rate and that a poor choice of µ, ν, and τ can slow
down the rate of convergence significantly. In Section 5, we report the values of µ, ν, and
τ we used.

5. Examples

In this section, we demonstrate several numerical results on Ω = [−2, 2]×[−2, 2] with an
n×n discretization. The initial values for m0 and Φ0 are chosen as all zeros, and the initial
values for ρ̃0 and ρ̃1 are chosen to be equal to ρ0 and ρ1. We implemented the method
with CUDA C++ and ran it on a GeForce GTX TITAN X graphics card. We describe
the problem description and parameters in the figures’ captions. For simplicity, we did
not use the termination criterion Rk in these experiments; we simply ran the method up
to a fixed iteration count. Rather, we demonstrate the convergence of Rk separately in
Figure 3 .

In Figure 1, we consider the unbalanced L1 Monge-Kantorovich problem between two
Chinese characters. As a reference, the MNIST dataset uses 28× 28 images of numbers to
classify handwritten numerical digits [13]. However, Chinese characters are more complex,
and 28 × 28 pixels are likely not enough to resolve the finer strokes and implement a
character recognition algorithm. We use 128× 128 pixels for Figure 1.

In Figure 1, more specifically, we transport a handwritten character with a ink spill to
a computer font of the same character. The computer font is a reliable reference, while
the handwritten character is noisy. So we let the reference character have mass 0.8, let the
handwritten character have mass 1 and choose γ = 0.8. This way, the reference character
must be fully filled, while 20% of the mass of the noisy handwritten character is ignored.
In particular, the ink spill on the top left corner is ignored.

In Figure 2, we solve a series of partial L1 Monge-Kantorovich problems with different
values of γ. Figure 2(A) shows how Pγ(ρ0, ρ1) = 0 is possible when ρ0 6= ρ1 if γ < 1.
Figures 2(A), 2(B), and 2(C) entirely ignore the ink spill on the top-right corner, but
Figure 2(D), which shows the solution to the balanced, not partial, L1 Monge-Kantorovich
problem, cannot ignore the ink spill.

Figure 3 shows the convergence of the termination criterion Rk. The value of Rk

decreases monotonically, as guaranteed by Theorem 2, until round-off errors become sig-
nificant. We used single-precision floating-point numbers.

In Table 1, we show the rough number of iterations required for convergence. The setup
is shown in Figure 4. The circles of ρ0 are centered at (0, 0) and (0,−1), and the circles
of and ρ1 are centered at (−1, 1) and (1, 1). So Pγ(ρ0, ρ1) with γ = 0.5 should be roughly
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(a) Transported mass. (b) The transported mass ρ̃0.
We can see that the ink spill
on the top-left corner is ig-
nored.

Figure 1. Unbalanced problem: ρ0 (blue) is a handwritten character with
an ink spill on the top-left corner and has total mass 1; ρ1 (yellow) is
a computer font for the same character and has total mass 0.8. (The
character means ‘bear’.) We ran the method with n = 128, µ = 0.0003,
ν = 1/(4τ), τ = 0.03, and 2.5 × 105 iterations, which took 82.1s time.
U(ρ0, ρ1) = 0.051.

1/
√

2 ≈ 0.71. We roughly tuned the parameters µ, ν, and τ to get the best performance
for each grid size. Finally, we ran the method until the computed Pγ(ρ0, ρ1) was close
enough to 0.71 and the flux looked good enough. The quantitative results are summarized
in Table 1.

To the best of our knowledge, [1] is the only previous work that presents numerical
methods for the partial L1 Monge-Kantorovich problem. The performance of Table 1 is
much faster than that of [1].

Grids size Run time µ ν τ
32× 32 21.8s (0.5× 105 iterations) 0.003 1/(4τ) 0.03
64× 64 48.6s (1× 105 iterations) 0.001 1/(4τ) 0.03

128× 128 148.5s (2.5× 105 iterations) 0.0003 1/(4τ) 0.03
256× 256 270.4s (5× 105 iterations) 0.0001 1/(4τ) 0.03

Table 1. Run time as a function of grid size
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(a) γ = 0.2. No mass is trans-
ported as more than 0.2 mass
overlaps. Pγ(ρ0, ρ1) = 0.

(b) γ = 0.5. Pγ(ρ0, ρ1) = 0.03.

(c) γ = 0.8. Pγ(ρ0, ρ1) = 0.22. (d) γ = 1.0. The entire mass
is transported and the top-
right ink spill is no longer ig-
nored. Pγ(ρ0, ρ1) = 0.79..

Figure 2. Both ρ0 (blue) and ρ1 (yellow) are densities with mass 1. We
ran the method with n = 256, µ = 0.0003, ν = 1/(4τ), τ = 0.01, and 106

iterations, which took about 300s for all 4 experiments.
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Iteration
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10-8

10-7

10-6

10-5

R
k

Termination Criterion

Figure 3. Termination criterion Rk for the setup of Figure 1 but with
more iterations.

Figure 4. A partial problem: ρ0 (blue) and ρ1 (yellow) of both have mass
1, and γ = 0.5. For Table 1, similar versions with n = 32, 64, 128, and 256
are used.
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(a) A solution to the unbal-
anced problem.

(b) The unique solution
to the regularized unbalanced
problem.

Figure 5. An unbalanced 16× 16 problem with ρ0 (blue) of mass 0.5 and
ρ1 (yellow) of mass 1. Without regularization, the solution is not unique,
and the left image shows one solution.

6. Existence and Uniqueness

Solutions exist for both the continuous unbalanced and partial L1 Monge-Kantorovich
problems [1]. However, the solutions are not unique. To understand why, see the unbal-
anced problem of Figure 5; the center delta mass of ρ0 can be transported to either the
left or right delta masses of ρ1.

We can add regularization to remedy non-uniqueness. Instead of solving Problem (8),
we can solve

minimize
m,ρ̃0,ρ̃1

‖m‖1,2 + (ε1/2)‖m‖22 + (ε2/2)‖ρ̃2‖22 + (ε2/2)‖ρ̃1‖22

subject to div(m) = ρ̃0 − ρ̃1

0 ≤ ρ̃0 ≤ ρ0

0 ≤ ρ̃1 ≤ ρ1

γ = 〈1, ρ̃0〉 = 〈1, ρ̃1〉

(17)

for some small ε1, ε2 > 0. The additional terms makes the objective strictly convex, and
thereby make the solution unique.
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We can solve the regularized problem (17) with only a slight modification to Algo-
rithm (10). The m, ρ̃0, and ρ̃1 updates change:

mk+1 = argmin
m

{
‖m‖1,2 + (ε1/2)‖m‖22 + 〈Φk,div(m)〉+

1

2µ
‖m−mk‖22

}
ρ̃0,k+1 = argmin

ρ̃∈S(ρ0,γ)

{
(ε2/2)‖ρ̃‖22 − 〈Φk, ρ̃〉+

1

2ν
‖ρ̃− ρ̃0,k‖22

}
ρ̃1,k+1 = argmin

ρ̃∈S(ρ1,γ)

{
(ε2/2)‖ρ̃‖22 + 〈Φk, ρ̃〉+

1

2ν
‖ρ̃− ρ̃1,k‖22

}
and

m̃k+1
ij =

1

1 + µε1
shrink2(m̃k

ij + µ(∇̃Φk)ij , µ)

ρ̃0,k+1 = PS(ρ0,γ)

(
1/(1 + ε2ν)(ρ̃0,k + νΦk)

)
ρ̃1,k+1 = PS(ρ1,γ)

(
1/(1 + ε2ν)(ρ̃1,k − νΦk)

The Φ update remains the same. See [15] for a discussion on a similar approach.

7. Conclusion

We proposed a scalable parallel primal-dual method algorithm to solve the unbalanced
and partial L1 Monge-Kantorovich problems. Our method leverages the structure of op-
timal transport, which converts the original problem into L1-type minimization problem
that is easier to discretize. We then apply the Chambolle-Pock primal-dual method [5, 22]
to obtain the main method. The subproblems of the proposed method have simple closed-
form or semi-closed-form solutions, and we discuss their computational considerations, in-
cluding how they can be parallelized to effectively utilize the computing power of a CUDA
GPU. Finally, we provide numerical examples to demonstrate the method’s effectiveness.

Possible interesting future directions include considering variations to the setup such
as the L2 Monge-Kantorovich problem [2] or the L1 Monge-Kantorovich problem based a
ground metric other than the Euclidean distance, such as the Manhattan distance [16, 15].
Another interesting future direction is to explore the applications of unbalanced and partial
L1 Monge-Kantorovich problems in image processing.

Acknowledgment: We would like to thank Professor Wilfrid Gangbo for many fruitful
and inspirational discussions on the related topics.
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