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Abstract. Variational problems in vision are solved numerically on the
pixel lattice because it provides the simplest computational grid to dis-
cretize the input images, even though a uniform grid is seldom well-
matched to the complexity of the solution. To adapt the complexity of
the discretization to the solution, it is necessary to adopt finite-element
techniques that match the resolution of piecewise polynomial bases to
the resolving power of the variational model, but such techniques have
been neglected in vision. To address this issue, we investigate the ad-
vantages and drawbacks of finite-element discretizations for variational
models in vision, their multiresolution properties, and the optimization
algorithms to resolve them. Our 2 and 3D experiments in image segmen-
tation, optical flow, stereo, and depth fusion reveal the conditions where
finite-element can outperform finite-difference discretizations by achiev-
ing significant computational savings with a minimal loss of accuracy.

1 Discretizations for Variational Problems in Vision

Many inference tasks in vision are formulated as variational optimization prob-
lems that estimate a function over the image plane. This variational approach is
more robust and accurate than sparse feature techniques because it exploits all
the information in the input images to estimate a solution at pixel resolution.
With standard discretizations this produces optimization problems with as many
variables as image pixels, require regularization to resolve undeterminations, and
limit the deployment of variational models in resource-constrained systems.

Variational techniques solve vision problems by (i) designing cost functionals
that describe the properties of the solution, (ii) discretizing the continuous model
into the digital domain, and (iii) developing numerical algorithms to minimize
it. While there is a vast literature on modeling and optimization, the choice of
discretization has been largely overlooked in vision. Most algorithms are imple-
mented on the pixel lattice, the simplest discretization of the image plane, with
finite-difference (FD) approximations of spatial derivatives. This makes the im-
plementation simple but inefficient in flat areas because the discretization is not
adapted to the resolution power of the model or the complexity of the solution.
To investigate the effects of FD discretizations on variational vision, we introduce
alternative finite-element (FE) discretizations that match the complexity of the
unknown solution, instead of the input data, and reduce the computational cost
the optimization. The discretizations are adapted to the variational model and
a multiscale construction that mimics the multiresolution optimiztion of varia-
tional models. Finally, we also investigate the integration of FE techniques with
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the optimization algorithms used in vision for non-differentiable functionals with
Total Variation (TV) or `1 penalties. Our three contributions are: (i) we intro-
duce adaptive multi-resolution discretizations for a wide class of vision problems,
(ii) we adapt the optimization algorithms of vision to FE discretizations, (iii) we
investigate the advantages and drawbacks of FE discretizations in vision.

2 Related Methods

FE techniques [23] are common in graphics and computational sciences [1, 2]
because they parametrize surfaces of arbitrary topology and can model disconti-
nuities. The inverse nature of vision poses a challenge to these techniques because
the topology and differentiability of the functions are unknown and must be in-
ferred from data. As a result FE techniques have been largely neglected in vision,
even though surface reconstruction techniques [3–5] resort to similar principles
to handle large volumes by constructing basis functions over octrees at multi-
ple resolutions. These surface reconstruction techniques, however, are limited to
least-squares optimizations ver octree grids adapted to the input pointcloud, not
the reconstructed surface, that reproduce ithe noise and artifacts of the input
data. Our FE discretization adapts to the complexity of the unknown solution,
not the input data, and seamlessly merge with the optimization algorithms [6,
7] used for variational 2 and 3D vision models.

Only a few authors explicitly use FE techniques in vision: [8] first proposed
non-uniform B-splines in vision, but their bases cannot be locally refined and
their solvers are restricted to differentiable functionals; [9, 10] overcome these
limitations with bases that suffer from expensive evaluation and refinement. We
investigate simpler FE discretizations with non-differentiable functionals.

Loosely related are kernel and parametric models designed for specific ap-
plications. Wavelets in image reconstruction lead to similar coefficient-based
parametrizations but depend on uniform discretizations of the pixel grid. The
flow and stereo methods [11–14] estimate multiple parametric models on the
pixel grid or its super-pixelization [15] but are only adapted to the input image,
not to the solution. In active contours segmentation, narrow-band implementa-
tions implicitly create a non-uniform discretization of the domain but are limited
to PDE models and slow descent algorithms. Compared to these techniques, we
handle a broader range of applications and optimizations.

3 A Wide Range of Target Problems

We target variational models of the form

min
u

∫
Ω

[αf(u) + g(∇u)]dx, (1)

where α is a scalar parameter, f is a data-dependent functional, and g is a
regularization functional. The unknown function u : Ω → R is defined over the
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domain Ω ⊂ Rd and resctricted to the space of bounded variation BV (Ω). To
illustrate its applicability, we choose 4 sample problems with different model and
optimization complexities: segmentation, optical flow, stereo, and depth fusion.

Image segmentation partitions the domain of an image I into homogeneous
regions. A popular model [16, 17] for binary segmentation finds the indicator
function u that partitions I into two regions with mean intensities µ1, µ2 solving

min
0≤u≤1

∫
Ω

α[(I−µ1)2−(I −µ2)2]u+|∇u| R1 = {x|u(x)>
1

2
}, R2 = ΩrR1, (2)

and thresholding u to binarize the solution of the convex optimization problem.
The resolution necessary for the indicator function u is lower than the resolution
of the image because we are only interested on its zero-level set and, where we
need a fine spatial resolution with a coarse discretization for the rest of Ω.

In optical flow estimation, the unknown of the problem is a vector field
u = (u, v) that describes the apparent motion of pixels between two consecutive
image frames I1, I2. A common formulation [18, 19] as an optimization problem

min
u

∫
Ω

α|I1(x)− I2(x+ u)|ε + |∇u|+ |∇v| |z|ε =

{
1
2ε |z|

2 if |z| ≤ ε
|z| − ε

2 otherwise
, (3)

contains a data term |I1(x) − I2(x + u)|ε that measures pixel correspondences
with the Huber-loss function | · |ε and a regularizer |∇u| + |∇v| that penalizes
large gradients of the flow. The data term is usually substituted by a convex
approximation fl(u) = |b+a·u|ε that linearizes the image around the current flow
estimate ul. The optimization is then solved as a sequence of convex problems

ul+1 ← min
u

∫
αfl(u) + |∇u|+ |∇v| fl(u) = |I1(x)−I2(x+ul)+∇I2(x+ul)(u−ul)|ε

The regularizer is a critical part of the model because it resolves the ambiguities
of the data term in flat regions, where a flow estimate at pixel resolution relies on
the regularizer to resolve the excessive degrees of freedom of pixel discretizations.

A similar model can be applied in stereo reconstruction to estimate the 3D
geometry of a scene from a pair of images with different vantage points. A depth
parametrization describes the scene geometry visible from the image pair and
confines the optimization variable to the image domain Ω to formulates the
problem as the estimation of the depth map u by solving the optimization

min
u

∫
α|I2(ω(u))− I1|ε + |∇u| ω = π ◦ gr ◦ π−1, (4)

where the domain warping ω back-projects image pixels from I1 onto the surface
and then projects them onto I2 with the relative camera pose change gr. The
dependency on u in the data term is again substituted by a convex approximation
fl(u) = |b+au|ε that linearizes the warping around the current ul and the original
problem is solved by the sequence

ul+1 ← min
u

∫
αfl(u) + |∇u| fl(u)= |I2(ω(ul))−I1 +

∂I2(ω(u))

∂u
(u− ul)|ε.
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The TV regularizer penalizes large variations in depth and is again the key to
the resolution of the undetermined data term in flat regions. The smoothness
imposed by the regularizer can also be obtained with an adaptive discretization.

The optimization problem (1) has also been used to estimate a single surface
from a collection of partial and noisy measuremets [20–22]. We adopt the model
of [22] to make no assumptions on the topology of the scene and estimate a
signed-distance representation u of the surface from a collection of depth maps
described by truncated distance functions and combined into a histogram of
distance functions h : Ω → RL over the volume. The reconstruction solves

min
u

∫
Ω

α

L∑
i=1

hi|u− bi|+ |∇u|, (5)

where bi, h,i are the center and count of i-th histogram bin [22]. The regularizer
|∇u|, is necessary to resolve indeterminations in the histograms caused by either
overlapping noisy depth maps or undersampled depth areas or holes. Similar to
segmentation, a fine discretization is only necessary close to the surface.

4 Adaptive Piecewise Polynomial Basis

FE methods approximate a PDE solution by a linear combination u(x)=
∑n
i ciφi(x)

of basis functions, φi : Ω → R, and substitute the original PDE with a system of
algebraic equations in the basis coefficients c = [c1, . . . , cn]. When we apply this
paradigm to our problem, we approximate the minimization over the function
space BV (Ω) by a minimization over the space of coefficients c ∈ Rn.

The resolution and smoothness of the discretization is determined by the
shape of the basis functions, while its computational cost by their evaluation.
This guides our choice of discretization: first, the basis functions must have
non-uniform resolution to represent both sharp edges and smooth regions at
a minimal cost; second, they must have integrable derivatives ∇u; and they
must be compactly supported to evaluate u fast. We thus propose a piecewise
polynomial basis over elements with minimal support and analytic derivatives.

We review the basic properties of FE discretizations [23] with triangular
elements, and sketch their extension to quad- and octrees. Each tessellation
offers different properties: Delaunay triangulations avoid the skinny triangles
that make FE discretizations unstable and can match discontinuities in ∇u with
the edges of the triangulation; while quad- and octree tesselations reduce the
cost of evaluation but constrain the discontinuities of ∇u to be axis-aligned.

4.1 Triangular Linear Finite Elements

A linear function of two variables, a1x1 + a2x2 + a0, is uniquely determined by
its values on the 3 vertices of a non-degenerate triangle K. The set of these
functions thus defines a functional space P1(K) of dimension 3 over the triangle.
Given two triangles K1,K2 with a common edge, a piecewise linear function
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u ∈ P1(Ki) uniquely determined by its values at the 4 vertices of the triangles is
continuous across them; these functions thus form a functional space of dimen-
sion 4. Repeating this procedure for a triangulation of Ω with n vertices K, we
obtain a function that is linear on each triangle, continuous in Ω, and uniquely
determined by its values on the triangulation vertices v1, . . . , vn. These func-
tions define a vector space VT of continuous piecewise linear functions known as
triangular linear finite elements.

The space VT has dimension n and a basis formed by the set of unique
continuous piecewise linear function that verify φi(vj) = δij . These functions
are compactly supported, have integrable derivatives discontinuous at edges,
and can be constructed from a reference element K̂ that decouples the analytic
properties of the basis from the geometry of the triangulation. The reference
element is the triangle with vertices (0, 0), (1, 0), (0, 1) and basis functions

φ̂1(ξ, η) = 1− ξ − η φ̂2(ξ, η) = ξ φ̂3(ξ, η) = η. (6)

We can map any triangleK ∈ K with vertices (x1, y1), (x2, y2), (x3, y3) bijectively
into K̂ with the affine transform[

x
y

]
= FK(ξ, η) =

(
x2−x1 x3−x1
y2−y1 y3−y1

)[
ξ
η

]
+

[
x1
y1

]
= BK

[
ξ
η

]
+

[
x1
y1

]
. (7)

and evaluate the i-th basis function of triangle K, φKi , and its derivatives by

φKi = φ̂i ◦ F−1
K ∇φKi = B−T

K (∇̂φ̂i ◦ F−1
K ), (8)

where ∇φKi = B−T
K ∇̂φ̂i as ∇̂φ̂i=[∂φ̂i

∂ξ ,
∂φ̂i

∂η ] is constant for linear elements.

4.2 Finite Elements Over Quad- and Octrees

When the elements of the tessellation are the rectangular cells of a quadtree, the
same argument shows that Q1 = {a0 + a1ξ+ a2η+ a3ξη| a0, . . . , a3 ∈ R} defines
a polynomial space of dimension 4 where each element is uniquely determined
by its values on the vertices of the cell. In this case, the reference element K̂ is
the square with vertices (±1,±1) and basis functions

φ̂1 =
1

4
(1−ξ)(1−η) φ̂2 =

1

4
(1+ξ)(1−η) φ̂3 =

1

4
(1+ξ)(1+η) φ̂4 =

1

4
(1−ξ)(1+η).

The affine transform (9) maps the reference space Q1 into any quadtree cell K to define
a polynomial space Q1(K) = {q̂ ◦F−1

K |q̂∈Q
1} of dimension 4 and basis φKi = φ̂i ◦F−1

K .[
x
y

]
= FK(ξ, η) =

1

2

(
∆x 0
0 ∆y

)[
ξ
η

]
+

[
xc
yc

]
= BK

[
ξ
η

]
+

[
xc
yc

]
(xc, yc) cell center
∆x ×∆y cell size

(9)

Gluing together the spaces over each cell, we obtain the space of continuous piecewise
polynomial functions over a quadtree grid VQ. This construction extends to 3D do-
mains by defining a polynomial space with three reference variables (ξ, ν, η) ∈ [−1, 1]3,
extending the quadtree reference basis with terms (1± ν), and mapping the resulting
polynomial space to each cell in an octree tessellation.
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4.3 Adaptive Multiresolution

Many variational models in vision, e.g., optical flow or stereo, are not convex problems
guaranteed to convergence to a global minimum and require multiresolution strategies
to guide the optimization algorithm to a local minimum relevant at multiple scales. In
FD discretizations, this is achieved by solving the optimization problem over a pyramid
of uniform grids of increasing resolutions, initializing the minimization at finer grids
with the solution from coarser grids and exponentially increasing the memory and
computational costs of the discretization regardless of the complexity of the solution.

In FE discretizations, it is possible to only increase the cost of multiresolution
representations with the resolution of the discretization when the solution requires it.
To this purpose, we locally increase the spatial resolution of FE discretizations by
subdividing only the elements that require higher spatial resolution and updating their
basis functions. Following this principle, we initialize the discretization with a uniform
FE tessellation K0, basis function V 0 = {φ0

1, . . . , φ
0
n}, c0 = 0, and alternate between:

1. Solve minu∈spanV l

∫
Ω
αf(u) + g(∇u) initializing u =

∑
i∈V l−1 c

l−1
i φl−1

i .

2. Refine the elements in Kl where the objective function evaluated at ul exceeds
threshold δ to define a finer tessellation Kl+1 and basis functions V l+1.

The process stops when the resolution of the pixels is reached. At each level, the opti-
mization converges with only a few iterations because the algorithm is initialized close
to the optimum, as in multiresolution FD pyramids, but is more efficient because the
number of minimization variables – basis functions– only increases if the representation
of the solution at finner scales requires it: flat areas keep a coarse-element discretization
while discontinuities are resolved at finer scales. See Fig. 1(m)-1(n) in our Experiments.

The refinement criteria tries to minimize the objective function by increasing the
resolution of the discretization in areas where the data term or the regularizer are large
and the estimated solution violates the model assumptions. We set threshold δ to fix
the number of elements N in the final discretization when we refine the same percentage
p at each level. In quadtrees, for instance, N = 2D0(1 + 3p)D−D0 is a function of the
depths D0, D of quadtrees matching the resolution of the initial tessellation and pixel
grids, and δ is the 1 − p percentile of the objective over the elements. This technique
also applies to triangulations and octrees and can be improved by application-specific
criteria that match statistics of image gradients or voxel occupation in depth fusion.

5 Minimization

FE discretizations are designed to solve PDEs by approximating them with an algebraic
system of equations in the basis coefficients. Applied to our variational problem (1), FE
solvers must first derive the Euler-Lagrange PDE that characterizes the minimum and
are limited to differentiable functionals incompatible with most vision models. For this
reason, we resort to algorithms developed in vision for non-differentiable functionals.

To this purpose, we use quadrature to approximate the integral with the sum∫
Ω

[αf(u(x)) + g(∇u(x))] dx ≈
m∑
k=1

wk [αf(u(xk)) + g(∇u(xk))] (10)

where xk ∈ Rd are quadrature points and wk > 0 quadrature weights. As the objective
functional only depends on the value of u at quadrature points, it is convenient to
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define the variable u = [u(x1), . . . , u(xm)] = Pc ∈ Rm, where the k-th row of matrix
P is [φ1(xk) . . . φn(xk)] ∈ R1×n. Similarly, the gradient of u at the quadrature points
satisfies [∇u(x1), . . . ,∇u(xm)] = Nc ∈ Rm, where the k-th row of matrix N ∈ Rdm×n
is [∇φ1(xk) . . .∇φn(xk)], and the optimization problem

min
u

m∑
k=1

αwkf(u(xk))︸ ︷︷ ︸
F (Pc)

+
m∑
k=1

wkg(∇u(xk))︸ ︷︷ ︸
G(Nc)

= min
c

F (Pc) +G(Nc). (11)

has the standard form of many convex minimization problems solved with splitting
techniques. Among them, we adopt a primal-dual formulation and rewrite (11) as the
saddle-point problem with dual variables λ ∈ Rm, ν ∈ Rdm

max
λ, ν

min
c
−F ∗(λ)−G∗(ν) + 〈λ, Pc〉+ 〈ν, Nc〉, (12)

where ∗ denotes the convex conjugate and 〈·, ·〉 the Euclidean scalar product. We then
solve (12) with algorithm [7] as the sequence of proximal problems and updates

λn+1 ← min
λ

σF ∗(λ) +
1

2
‖λ− (λn + σP c̄n)‖2 (13)

νn+1 ← min
ν

σG∗(ν) +
1

2
‖ν − (νn+1 + σN c̄n)‖2 (14)

cn+1 = cn − τ(N∗νn+1 + P ∗λn+1) (15)

c̄n = 2cn − cn−1. (16)

The minimization is efficient because we find simple closed-form solutions for (13)–(14)
similar to the ones in FD discretizations that now parallelize over quadrature points
instead of pixels. Experiments show that 3-, 4, and 8-point quadrature over triangular,
quad- and octree elements produce accurate approximations, see Fig. 6.

Minimization in λ: We solve the proximal problem that updates λ through Moreau’s
identity, solving the minimization problem

y? = arg min
y

F (y) +
σ

2
‖y − λ̂

σ
‖2 = min

y

m∑
k=1

αwkf(yk) + 0.5σ(yk −
λ̂k
σ

)2. (17)

and updating the dual variable λ = λ̂−σy? accordingly. The objective function in the
minimization in y is decoupled in of its components yk with a different term in the
sum and, consequently, the minimization is solved by independently minimizing each
on of these terms, that is,

min
yk

αwkf(yk) + 0.5σ(yk −
λ̂k
σ

)2. (18)

As the function f is convex, the minimizers are the zeros of the subgradient of the
objective function with respect to each yk. The resulting equations, after standard
algebraic manipulations, directly provide the closed-form solutions and the following
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dual updates:

segmentation λk = αwk[µ2
1 + µ2

2 + (µ2 − µ1)I(xk)] (19)

stereo λk =


αwkak if akλ̂k + σbk > αa2k + σε

−αwkak if akλ̂k + σbk < −(αa2k + σε)
αak
ρk

[akλ̂k + wkσbk] otherwise

(20)

optical flow λk =


αwkak if aTk λ̂k + σbk > α|ak|2 + σε

−αwkak if aTk λ̂k + σbk < −(α|ak|2 + σε)

λ̂k − σMk(λ̂k− αwkbk
ε
ak) otherwise

(21)

depth fusion λk = median(λ̂k−σb1, ..., λ̂k−σbL,W1k, ...,WLk) (22)

where Wik = αwk[
∑i
j=1 hi(xk)−hi(xk)], the sub-index k indicates the components

associated with the quadrature point xk, a and b are the variables in the linearization
of stereo and flow problems, and the 2×2 matrix Mk = [σI2+ αwk

ε
aka

T
k ]−1 is inverted

analytically in our implementation. These standard derivations of these updates are
provided next:

Image segmentation In image segmentation, the minimization in y reads

min
yk∈R

αwk[µ2
1 + µ2

2 + (µ2 − µ1)I(xk)yk + 0.5σ(yk −
λ̂k
σ

)2. (23)

The optimality conditions of (23) are obtained by computing the zeros of the derivative
of the objective, that is

yk =
1

σ
[λ̂k − αwk[µ2

1 + µ2
2 + (µ2 − µ1)I(xk)]. (24)

The dual variable λk = λ̂k − σy?k is thus updated by

λk = αwk[µ2
1 + µ2

2 + (µ2 − µ1)I(xk) (25)

as reported in Equation (19) of the manuscript.

Flow and Stereo In optical flow, the minimization in y reads

min
yk∈R2

αwk|bk + aTk yk|ε + 0.5σ(yk −
λ̂k
σ

)2. (26)

The optimality conditions of (26) are obtained by computing the zeros of the derivative
of the objective. With the Huber norm, we analyze two cases.

If |bk + aTk yk| > ε, the optimality conditions

αwk sign(bk + aTk yk)ak + σyk − λ̂k = 0 (27)

are solved by analyzing the two possible values of sign(bk + aTk yk) in |bk + aTk yk| > ε,
that is,

yk =

{
λ̂k − αwkak if aTk λ̂k + σbk > α|ak|2 + σε

λ̂k + αwkak if aTk λ̂k + σbk < −[α|ak|2 + σε].
(28)
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If |bk + aTk yk| < ε, the optimality conditions results in a 2× 2 system of equations

1

ε
αwkak(bk + aTk yk) + σyk − λ̂k = 0 (29)

[
1

ε
αwkaka

T
k + σI2]yk = λ̂k −

1

ε
αwkbkak (30)

and the condition |bk + aTk yk| = ε becomes |aTk λ̂k + σbk| < αaTk ak + σε.

Combining both cases, we obtain the closed-form solution of (26)

y?k =


λ̂k − αwkak if aTk λ̂k + σbk > α|ak|2 + σε

λ̂k + αwkak if aTk λ̂k + σbk < −[α|ak|2 + σε]

yk = M−1
k λ̂k − 1

ε
αwkbkak otherwise

, (31)

where Mk = 1
ε
αwkaka

T
k +σI2. This results on the following update for the dual variable

λk = λ̂k − σy?k

λk =


αwkak if aTk λ̂k + σbk > α|ak|2 + σε

−αwkak if aTk λ̂k + σbk < −(α|ak|2 + σε)

λ̂k − σMk(λ̂k− αwkbk
ε
ak) otherwise

, (32)

as reported in Equation (21) of the manuscript. The closed-form expressions for stereo
are obtained analogously, susbtituting the linearization vector ak ∈ R2 by the cor-
responding linearization scalar ak ∈ R and the inverse matrix by an inverse scalar
value.

Depth fusion In depth fusion, the minimization in y reads

min
yk∈R

αwk

L∑
i=1

hi|yk − bi|+ 0.5σ(yk −
λ̂k
σ

)2. (33)

Its optimality conditions are again obtained by computing the zeros of the sub-derivative
of the objective as follows

αwk

L∑
i=1

hi sign(yk − bi) + σyk − λ̂k = 0 (34)

yk =
1

σ
(λ̂k − αwk

L∑
i=1

hi sign(yk − bi)). (35)

Taking into consideration that the bin centers b1, . . . , bL are sorted, we can analyze the
possible values of sign(yk − bi) to obtain the following closed-form expression:

yk = median(b1, ..., bL,W1k, ...,WLk) Wik =
λ̂k
σ
− αwk

σ
[

i∑
j=1

hi(xk)− hi(xk)]. (36)

The closed-form update (22) for the dual variable λk = λ̂k−σy?k follows immediately:

λk = median(λ̂k−σb1, ..., λ̂k−σbL,W1k, ...,WLk). (37)
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Minimization in ν Let ν̂ = νn + σN c̄n and recall that the conjugate of a norm is
the indicator of its dual unit ball, the minimization in ν for (2), (4)-(5) and each flow
component in (3) decouples in each quadrature point and simplifies to

min
ν

m∑
k=1

σg∗(νk) +
1

2
|νk − ν̂k|2 = min

|νk|<wk

m∑
k=1

1

2
|νk − ν̂k|2 ⇒ νk =

wk
max( wk, |ν̂k| )

ν̂k.

Gradient-based Minimization Algorithms We have also compared the dis-
cretizations with gradient-based optimization algorithms. To this purpose, we have
smoothed the objective functions with Moreau-Yosida regularization of TV and `1.
This leads to a Huber penalty

h(u) = |u|ε =

{
1
2ε
u2 |u| < ε

|u| − ε
2
|u| ≥ ε

, (38)

for the `1 norm of depth-fusion, and avoids the staircase artifacts of TV regularization
in flow, stereo, and depth fusion with the regularizer

g(∇u) =

{
1
2ε
|∇u|2 |∇u| < ε

|∇u| − ε
2
|∇u| ≥ ε

, (39)

where ε is the regularization parameter. It is not possible to apply this regularization
to the TV regularizer of the segmentation model (2) without loosing the optimality of
the thresholded solution [16].

As the objective functional is now differentiable, we can apply gradient-based de-
scent algorithms that only require the gradient of the functionals. We will exemplify it
with the stereo problem:

min
u

∫
α|b+ au|ε + g(∇u) (40)

(41)

that we discretize with quadrature approximations into

min
u
α

m∑
k=1

wkh(bk + akuk)︸ ︷︷ ︸
F1(Pc)

+
m∑
k=1

wkg(∇uk)︸ ︷︷ ︸
F2(Nc)

(42)

min
c

αF1(Pc) + F2(Nc) = E(c), (43)

where

F1(y) =
m∑
k=1

wkh(bk + akyk) k = 1, . . . ,m (44)

F2(z) =

m∑
k=1

wkg(zk) k = 1, . . . ,m, (45)

and zk ∈ R2 is the block component of Nc that discretizes ∇u at the k-th quadrature
point. By the chain rule, we have ∇E = αPT∇F1(Pc) + NT∇F2(Nc) and we only
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need to compute ∇F1,∇F2. These are trivial and have k-th components

[∇F1(y)]k = wkh
′(bk + akyk)ak where h′(u) =

{
u
ε

|u| < ε

sign(u) |u| ≥ ε
(46)

and

[∇F2(z)]k = wk∇g(zk) where ∇g(z) =

{
1
ε
z |z| < ε
z
|z| |z| ≥ ε

. (47)

As a result, the computational complexity of computing the gradient is similar to
the computation of each primal-dual iteration: it requires the computation of gradients
of F1, F2, or the F proximal updates, that decouple in each quadrature point and
matrix-vector multiplications with N , P , NT and PT . Although gradient descent leads
to slower convergence than the primal-dual approach, the quasi Newton L-BFGS [24]
has comparable performance to it. We decided to opt for the primal-dual approach in
our experiments because it is not restricted to differentiable functionals.

6 Experimental Results

Our experiments are designed to compare discretizations, not variational models or
optimization algorithms. To this purpose, we implement the segmentation, stereo, flow
and depth-fusion models of Section 3 and the optimization algorithm [7] with our FE
and the standard FD discretizations and multiresolution pyramids. Models and algo-
rithm are chosen for their prevalence, not to top the state-of-the-art of each application.

Since the pixel grid defines the finest resolution to do inference from the input im-
ages, the performance of FD discretizations at pixel grid defines the gold standard in
terms of accuracy. We use standard metrics in each application: angular error (ae) in
flow, relative root mean-square (rms) error in stereo, and visual inspection in segmenta-
tion and depth fusion. To compare time performance, we implement all the algorithms
in python and run them on an Intel i7 at 2.6 with the same number of warps, iterations,
and image pyramids in FD discretizations and FE refinement levels. We investigate the
speed, accuracy, and limitations of each discretization in Figures 1-7.

Speed: Our discretization with quadtree FEs is 3 times faster than a FD for image
segmentation, 0.6−2 times faster for stereo matching, and 3−5 times faster for optical-
flow, and 4 − 5 faster for depth fusion. With FE triangulations, the speed gains are
similar. The gain in speed from our discretization depends on the complexity of both the
minimization problem and solution. 1) In terms of the solution, the speed up is larger for
solutions with large uniform areas that can be represented with large cells and smaller
tessellations. Compare the segmentations of the flower and the bird in Figures 1(i)-1(j),
where the complexity of the image is transferred into the tessellation and computational
cost. 2) In terms of minimization, the speed-up is lower for image segmentation and
depth fusion because they only benefit from the adaptivity of discretization, while flow
and stereo benefit from an adaptive discretization and an adaptive multiresolution to
amortize the overheads of constructing FE tessellations.

Accuracy The gains in speed come with a loss in accuracy: 0.01−0.02◦ of angular
error in optical flow, below 3% of relative root-mean-square error in stereo, and small
perturbations of the contours in image segmentation and fusion along the tesellation
edges. The results of FE discretizations are thus qualitatively similar to the FD ones
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but tend to blurr sharp transitions in u; this causes small artifacts in the estimated
flow and stereo results of Fig 2-3 but has minimal impact on the segmentation of Fig.
1 and fusion of depth maps in Fig. 5 as u is post-processed to extract its zero-level set.

Quadrature is accurate for the regularizer because we constrain the solution to the
span of a spline basis, but is only a valid approximation for the integration of the data
term if large FE cells correspond to flat regions of in the image plane or volume, while
discontinuities in u are supported by fine elements. Figure 6 compares the evaluation of
the data term over all the image pixels with different quadrature approximations: using
quadrature to both compute the integral in the optimization and refinement, using
quadrature only on the optimization but not on the refinement, and evaluating the data
term over all the pixels for both the optimization and refinement. The experiment shows
that quadrature speeds optimization with a small accuracy loss and the refinement
process partitions elements with large objective values, caused by either large errors in
the forward model (data term) or sharp transitions in u (regularizer).

Trade-Offs FE discretizations reduces the computational cost of optimization as
they reduce the number of variables but introduce a data-structure overhead by tes-
sellating of the image domain into elements. When the information in the data term
is uniformly distributed, like in flow or stero problems, FE discretizations results in
larger accuracy losses or reduced speed ups because the optimal tessellation approaches
a uniform grid. For problems where the input information clusters in small areas, like
the image gradients in segmentation or surface patches in depth fusion, the speed up
is large and compensates for any loss of accuracy that can be corrected in the post-
processing that extracts the zero-level set of u. This property is of particular interest
for 3D reconstruction where large uniform grids are unfeasible.

The memory requirements of FE discretizations depend on the tessellation. Delau-
nay triangulations need to store the 2D points and edges of the triangulation, while
quadtrees can encode its simple tree structure with binary codes. Experimentally, the
refinement process of triangles is unable to align the discontinuities in u to the edges
of the triangles without creating skewer triangles that compromise the stability of the
FE discretization as we must estimate jointly the optimal u and its discretization.

Finally, Figure 7 shows the effect of the number of final elements in the accuracy and
time performance of our discretization. Unsurprisingly, as the number of finite-elements
in the final discretization increases, as a percentage of the number of pixels, the accuracy
of the discretization improves while its running time degrades. In general, the accuracy
of the discretization stops increasing after the number of elements reaches a threshold
around 15-20% of the image size because the resolving power of the variational model
limits the accuracy of the estimation irrespective of the discretization; as a result, we
set 20% of the number of pixels as the upper-bound on the number of elements in
our adaptive discretization for all our experiments. In some cases, as illustrated by
the Hydrangea flow of Figure 7(a), the accuracy of the discretization stops increasing
earlier (7% in this case) because the complexity of the solution is relatively low. In
both cases, the number of final elements should not exceed these thresholds to avoid
increasing the computational cost with no gain in accuracy.

7 Conclusions

The discretization of variational problems has received little attention in vision as
the pixel lattice offers an obvious computational grid that, if not efficient, is simple
and accurate. As a result, when accuracy and not speed or memory is the bottleneck,
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finite-difference are better discretizations for variational models. Finite element dis-
cretizations suit problems where the information in the input data is spatially sparse
as they allow for multiresolution optimizations that allocates resources adaptively to
match the complexity of the solution. This is important for 3D problems like surface
reconstruction or image segmentation, but offers limited benefits for 2D problems like
optical flow or stereo that are described by matching pixels of uniform lattices.



14

(a) FD 1.9 s (b) FD 3.6 s (c) FD 4.4 s (d) FD 3.0 s

(e) tri-FE 0.4 s (f) tri-FE 2.5 s (g) tri-FE 1.4 s (h) tri-FE 1.0 s

(i) quad-FE 0.6 s (j) quad-FE 1.6 s (k) quad-FE 0.8 s (l) quadFE 1.7

(m) triangulation (n) triangulation (o) triangulation (p) triangula-
tion

(q) quadtree (r) quadtree (s) quadtree (t) quadtree

Fig. 1: Comparison of image segmentation with the FD and FE discretizations
with triangular (tri-FE) and rectangular (quad-FE) elements. The contours of
the segmentation are in blue. The tessellations of FE discretizations in row 4
and 5 adapt to the image structures and speed-up ×2–×3 the optimization.
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(a) I1 (b) ground truth (c) 0.055◦ae, 71s (d) 0.067◦ae, 13s (e) 0.056◦ae, 25s

(f) I1 (g) ground truth (h) 0.11◦ae, 77s (i) 0.12◦ae, 30s (j) 0.12◦ae, 24s

(k) I1 (l) ground-truth (m) 0.15◦ae, 92s (n) 0.16◦ae, 17s (o) 0.16◦ae, 16s

Fig. 2: Optical flow estimation with FD discretization (column 3) and triangular
(column 4) and quadrilateral (column 5) FE discretizations. FE discretizations
are 2− 3 times faster than the FD approach for a loss of 0.01◦ of angular error.

(a) I1 (b) ground truth (c) 9.3 rms, 25s (d) 9.3 rms, 19s (e) 8.7 rms, 12s

(f) I1 (g) ground truth (h) 6.6 rms, 46s (i) 9.1 rms, 21s (j) 6.9 rms, 37s

Fig. 3: Depth-from-stereo estimation with FD (column 3) and triangular (column
4 ) and quadrilateral (column 5) FE discretizations. FE are 2 time faster than
the FDs for a loss in accuracy below 3% in the relative RMS error.
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(a) I1 (b) ground truth (c) 0.13◦ae, 73s (d) FE 0.10◦ae,
13s

(e) 0.11◦ae, 25s

(f) I1 (g) ground truth (h) 0.24◦ae,
1028s

(i) 0.30◦ae, 119s (j) 0.23◦ae, 173s

(k) I1 (l) ground truth (m) 0.14◦ae,
356s

(n) 0.15◦ae, 106s (o) 0.12◦ae, 148s

Fig. 4: Optical flow estimation with FD discretization (column 3) and triangular
(column 4) and quadrilateral (column 5) FE discretizations. FE discretizations
are 2− 3 times faster than the FD approach for a loss of 0.01◦ of angular error.

(a) FD 142 s (b) FD 142 s (c) FD 9460 s (d) FD 9460 s

(e) FE 45 s (f) FE 45 s (g) FE 1540 s (h) FE 1540 s

Fig. 5: Surfaces reconstructed from 14 and 24 depth maps of a small outdoor
scene (left) and a tabletop model (right). FD and FE reconstructions have com-
parable qualities, but the FE is 3 and 6 times faster because the optimization
problem is smaller and the histograms are only computed at quadrature points.
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(a) ground truth (b) 0.056◦ae, 25s (c) 0.055◦ae, 32s (d) 0.056◦ae, 66s

(e) ground truth (f) 8.7%rms, 12s (g) 8.7%rms, 17s (h) 8.6%rms, 32s

Fig. 6: Effects of quadrature approximations in optimization and element selec-
tion for refinement. Column 2: quadrature approximation in optimization and
refinement. Column 3: quadrature approximation in optimization, pixel integra-
tion for refinement. Column 4: pixel integration in optimization and refinement.

(a) quadtree FE (b) quadtree FE (c) triangular FE (d) triangular FE

(e) quadtree FE (f) quadtree FE (g) triangular FE (h) triangular FE

Fig. 7: Effect of the number of elements on the accuracy of the discretization for
Hydrangea’s and Rubberwhale’s optical flow (7(a)-7(b) and 7(e)-7(f)) and Venus
and Tsukuba’s depth from stereo (7(g)-7(h) and 7(c)-7(d)). As expected, the
accuracy of the discretization improves while its running time degrades as the
number of finite elements (as a percentage of the number of pixels) in the final
discretization increases.
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