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Multilayer networks allow one to represent diverse and interdependent connectivity patterns —
e.g., time-dependence, multiple subsystems, or both — that arise in many applications and which
are difficult or awkward to incorporate into standard network representations. In the study of
multilayer networks, it is important to investigate “mesoscale” (i.e., intermediate-scale) structures,
such as dense sets of nodes known as “communities” that are connected sparsely to each other,
to discover network features that are not apparent at the microscale or the macroscale. A variety
of methods and algorithms are available to identify communities in multilayer networks, but they
differ in their definitions and/or assumptions of what constitutes a community, and many scalable
algorithms provide approximate solutions with little or no theoretical guarantee on the quality of
their approximations. Consequently, it is crucial to develop generative models of networks to use as a
common test of community-detection tools. In the present paper, we develop a family of benchmarks
for detecting mesoscale structures in multilayer networks by introducing a generative model that can
explicitly incorporate dependency structure between layers. Our benchmark provides a standardized
set of null models, together with an associated set of principles from which they are derived, for
studies of mesoscale structures in multilayer networks. We discuss the parameters and properties
of our generative model, and we illustrate its use by comparing a variety of community-detection
methods.

I. INTRODUCTION

Many physical, technological, biological, financial, and
social systems can be modeled as networks, which in their
simplest form are represented as graphs [1]. A graph con-
sists of a set of nodes that represent entities and a set
of edges between pairs of nodes that represent interac-
tions between those entities. One can consider either un-
weighted graphs or weighted graphs, in which each edge
has a weight that quantifies the strength of the associated
interaction. Edges can also have a direction to represent
asymmetric interactions or a sign to differentiate between
positive and negative interactions.

Given a network representation of a system, it is often
useful to apply a coarse-graining technique to investi-
gate features that lie between those at the “microscale”
(e.g., nodes, pairwise interactions between nodes, or local
properties of nodes) and those at the “macroscale” (e.g.,
total edge weight, degree distribution, and mean cluster-
ing coefficient) [2, 3]. One thereby studies “mesoscale”
features such as community structure [2], core–periphery
structure [4], role structure [5], or others. To make our
discussions concrete, we focus primarily on community
structure in this paper. We then briefly explain how our
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results also apply to other types of mesoscale structures
in Section VI.

Loosely speaking, a community in a network is a set
of nodes that are “more densely” connected to each
other than they are to nodes in the rest of the net-
work [2, 3, 6, 7]. Communities thus represent an “as-
sortative structure” — i.e., intracommunity edges are
more likely than intercommunity edges — between sets
of nodes in a network. Most scholars agree that a “good
community” should be a set of nodes that are ‘surpris-
ingly well-connected’ in some sense, but what one ac-
tually means by ‘surprising’ and ‘well-connected’ can
be application-dependent (and sometimes appears to be
somewhat subjective). In many cases, a precise definition
of “community” ultimately depends on the method and
algorithm that one uses to detect them. Myriad methods
have been developed to algorithmically detect communi-
ties, and efforts at community detection have led to in-
sights in applications such as granular force networks [8],
committee and voting networks in political science [9, 10],
friendship networks at universities and schools [11, 12],
protein interaction networks in biology [13, 14], brain and
behavioral networks in neuroscience [15, 16], human com-
munication networks [17, 18], and more.

A popular approach to community detection is the
optimization of a quality function, such as modular-
ity [10, 19, 20], stability [21–23], Infomap and its vari-
ants [24, 25], and likelihood functions derived from
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“stochastic block models” (SBMs) [26–30], which are
models for partitioning a network into blocks of nodes
with statistically homogeneous connectivity patterns.
Different quality functions are motivated by different in-
terpretations of “community” (e.g., as bottlenecks of dy-
namical processes [22, 23, 25]), and different SBMs make
different assumptions on the underlying network struc-
ture [27–29]. Further complications arise from the fact
that community-assignment problems for many notions
of community structure — including the most prominent
methods — cannot be solved exactly in polynomial time
(unless P = NP) [3, 31, 32]. Together with the need for
methods to scale to be usable for very large networks, this
necessitates the use of computational heuristics that only
find approximate solutions, and there is often little the-
oretical understanding of how closely such approximate
solutions resemble an optimal solution.

Benchmark networks with known structural properties
are important for (1) analyzing and comparing the per-
formance of different community-detection methods and
algorithms and (2) determining which one(s) are most ap-
propriate in a given situation. The ill-defined nature of
community detection makes it particularly crucial to de-
velop good benchmark networks. We propose to do this
using generative models. In many benchmark networks,
one plants a partition (i.e., an assignment of nodes to
communities) of a network into well-separated communi-
ties, and one thereby imposes a so-called “ground truth”
(should one wish to use such a notion) that a properly de-
ployed community-detection method ought to be able to
find [33]. However, another complication arises: there is
a “detectability limit” for communities, as one can plant
partitions that, under suitable conditions, cannot sub-
sequently be detected algorithmically even though they
exist by construction [34–36].

For a single-layer network (i.e., a “monolayer net-
work”), which is the standard type of network and is
represented mathematically as a graph, many different
types of benchmark networks have been developed to
capture different aspects of community structure. A
benchmark that was employed in early studies of com-
munity structure is the “planted-l-partition model” [37],
which was used in [19]. The most popular family of
benchmark networks are the Lancichinetti–Fortunato–
Radicchi (LFR) networks [38], which were generalized
subsequently in [39] to be able to generate weighted
and directed networks with either disjoint or overlapping
communities. To attempt to capture the heterogene-
ity observed in many real networks [1], LFR networks
have power-law degree distributions and community-size
distributions. A similar benchmark, based on a degree-
corrected SBM, was suggested in [27]. In Section IV, we
point out some advantages of this benchmark over LFR
networks when used to generate multilayer networks. In
our numerical experiments in Section V, we use a slight
variant of the degree-corrected SBM benchmark in which
we impose the additional constraint that there can be nei-
ther self-edges nor multi-edges (see Algorithm 2). There

have also been some efforts towards highlighting unreal-
istic features of LFR networks [40] and towards devel-
oping more realistic benchmarks [41]. Other benchmarks
have also been developed to capture particular aspects of
some networks, such as being embedded in or influenced
by space [42].

In many applications, monolayer networks are insuffi-
cient for capturing the intricacies of connectivity patterns
between entities. For example, this arises in both tem-
poral [20, 43–45] and multiplex networks [46–50], which
we represent as multilayer networks [51, 52]. Our mo-
tivation for considering a single multilayer network in-
stead of several networks independently is that connec-
tivity patterns in different layers often depend on each
other in some way. For example, the connectivity pat-
terns in somebody’s Facebook friendship network today
are not independent either of the connectivity patterns
in that person’s Facebook friendship network last year
(temporal) or of the connectivity patterns in that per-
son’s Twitter follower/following network today (multi-
plex). Data sets that have multilayer structures are be-
coming increasingly available, and several methods to de-
tect communities in multilayer networks have now been
developed [10, 24, 28, 29, 51, 53, 54].

Existing benchmark networks for multilayer commu-
nity detection assume either a temporal structure [35,
42, 55–58] or a simplified multiplex structure with in-
dependent blocks of layers in which layers in the same
block have identical community structures [24]. Exist-
ing multilayer SBMs make different assumptions on the
underlying network structure. For example, [59–61] used
the same monolayer SBM for each layer, and [28] used in-
dependent monolayer SBMs (one for each set of “similar”
layers). We also note Ref. [62], which developed several
multilayer random-graph models (including an SBM) to
use as null models. Much of the theory and examples
in [29] entail fitting a monolayer SBM with the same
partition (but in which other model parameters may dif-
fer) to each layer, although the author pointed out that
his framework allows more flexibility if one allows over-
lapping communities in the model [29, 63]. Importantly,
none of the aforementioned SBMs include an explicit pa-
rameter to capture dependency structure between lay-
ers. Therefore, although one may be able to use those
SBMs to recover mesoscale structure that fits the em-
ployed model, one cannot use them to generate multi-
layer networks with a prescribed interlayer dependency
structure other than the specific one(s) that are built into
the model.

In this paper, we propose a method for generating ran-
dom multilayer partitions with arbitrary interlayer de-
pendency structures. Given a user-specified interlayer
dependency structure, we define a Markov chain on the
space of multilayer partitions and sample a multilayer
partition from its stationary distribution. (See Sec-
tion III for our generative model of a multilayer parti-
tion.) Our sampling procedure includes the temporal
structure in [35, 42] and simplified multiplex structure
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in [24] as special cases. Broadly speaking, our genera-
tion process is threefold: (1) a user specifies the inter-
layer dependency structure; (2) we then sample a multi-
layer partition of the set of nodes that satisfies the spec-
ified dependency structure; and (3) finally, we sample
edges between nodes in a way that is consistent with the
planted multilayer partition. We explain steps (1) and
(2) in Section III, and we explain step (3) in Section IV.
We treat the process of generating a multilayer parti-
tion separately from the process of generating edges for
a given multilayer partition. That is, we carry out steps
(2) and (3) successively (and not in parallel). This yields
a modular approach for generating benchmark multilayer
networks because one can modify steps 2 and 3 indepen-
dently.

In our numerical experiments, we generate intralayer
edges (i.e., edges within layers) using degree-corrected
SBMs for each layer. Our construction produces a multi-
layer network with no edges between layers but in which
the connectivity patterns in different layers depend on
each other (i.e., they are “interdependent”). This is the
most commonly studied type of multilayer network (see
Table 2 of [51]). One can also use our multilayer for-
mulation of the degree-corrected SBM in Section IV to
generate interlayer edges (i.e., edges between layers).

One can combine our approach for generating multi-
layer partitions with different network generating mod-
els that capture various important features. For example,
one can use an SBM to generate intralayer edges and/or
interlayer edges, or one can replace the degree-corrected
SBM in Section IV with any other monolayer network
model with a planted partition (e.g., other variants of
SBMs [26, 32] and models for spatially embedded net-
works [42, 64]). In all of these examples, dependencies
between connectivities in different layers result only from
the planted multilayer partition. (See [56] for a different
approach, in which dependencies between different layers
are introduced via the network generation process.) It is
also possible to modify our network-generation process to
introduce additional interdependencies between connec-
tivity patterns in different layers beyond that induced by
planted mesoscale structure (see Section VI). Our genera-
tive model is a very general one (and, as discussed above,
we have constructed it to easily admit additional salient
features of empirical multilayer networks), and we illus-
trate its use with a few important special cases. Note,
however, that it is not the goal of our paper to cover as
many special cases as possible.

Along with this paper, we include publicly available
code [65] that users can modify to readily incorporate
different types of interlayer dependency structures (see
Section III A), null distributions (see Section III C), and
monolayer network models with a planted partition (see
Section IV).

The rest of the paper is organized as follows. We start
in Section II with an overview of the definitions and nota-
tion that we use. In Section III, we explain in detail how
we generate a multilayer partition with a specified depen-

dency structure between layers. We give some properties
of a sampled partition and discuss the effect of some pa-
rameter choices on the resulting partition. In Section IV,
we describe how we generate edges that are consistent
with the planted partition. The modular nature of our
approach enables one to generate edges using any mono-
layer network model with a planted partition. In Sec-
tion V, we describe numerical experiments to compare
the performance of various community-detection meth-
ods. In Section VI, we provide a summary of our main
results and we outline how one can incorporate more re-
alistic features into the generative model (e.g., change
points [29, 66], mesoscale structures other than commu-
nity structure, and others) and discuss directions for fu-
ture work.

II. MULTILAYER NETWORKS:
PRELIMINARIES

The simplest type of network is a graph G = (V, E),
where V = {1, . . . , n} is a set of nodes and E ⊆ V × V
is a set of edges. Using a graph, one can encode the
presence or absence of connections (the edges) between
entities (the nodes). However, in many situations, one
would like to include more detailed information about
connections between entities. A common extension is
to allow edges to have a weight, which one can use to
represent the strength of a connection. We represent edge
weights using a weight function w : E → R which assigns
a weight to each edge.

As we mentioned in Section I, one can further extend
the network framework to represent different “aspects”
of connections between entities, such as connections at
different points in time or different types of connections
that occur simultaneously. We adopt a “multilayer net-
work” framework [51, 67] to represent such connections.
In a multilayer network, a node is present in a variety
of different “states”, where each state is further charac-
terized by a variety of different aspects. In this setting,
edges join “state nodes”, each of which is the representa-
tion of a given node in a particular state. One can think
of the aspects as features that one needs to specify to
identify the state of a node. In other words, a state is a
collection of exactly one element from each aspect. For
convenience, we introduce a mapping such that we as-
sign an integer label to each element of an aspect. That
is, the la elements of the ath aspect are mapped to the
elements of a set {1, . . . , la} of integers. Aspects can be
unordered (e.g., social-media platform) or ordered (e.g.,
time). For an ordered aspect, we require that the map-
ping respects the order of the aspect (e.g., ti → i for time,
where t1 ≤ . . . ≤ tla is a set of discrete time points). A
multilayer network can include an arbitrary number of
ordered aspects and an arbitrary number of unordered
aspects, and one can generalize these ideas further (e.g.,
by introducing a time horizon) [51].

To illustrate the above ideas, consider a hypothetical
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(1, (1, 1)) (2, (1, 1))

time

Facebook

(1, (2, 1))

(2, (2, 1))

(1, (1, 2)) (2, (1, 2))

(3, (1, 2))

Twitter

(1, (2, 2))

(2, (2, 2))

(1, (1, 3)) (2, (1, 3))

(3, (1, 3))

LinkedIn

(1, (2, 3))

(2, (2, 3))

(3, (2, 3))

FIG. 1. Toy example of a multilayer network with three nodes
and two aspects. (Although we use a hypothetical example
with three aspects in Section II, we omit the third aspect from
this figure for clarity.) We represent undirected intralayer
edges using solid black lines, directed interlayer edges using
dotted red lines, and undirected interlayer edges using dashed
blue arcs. The first aspect is ordered and corresponds to time.
It contains two time points (arising either from different in-
stances or from aggregations over different time intervals),
which we label by 1 and 2. That is, L1 = {1, 2}. The sec-
ond aspect is unordered and represents social-media platform.
It contains three elements: Facebook (which we label with
the integer 1), Twitter (which we label with the integer 2),
and LinkedIn (which we label with the integer 3). That is,
L2 = {1, 2, 3}. A state node thus takes the form (i, (α1, α2)),
with i ∈ {1, 2, 3}, α1 ∈ {1, 2}, and α2 ∈ {1, 2, 3}. The total
number of states (i.e., layers) is l = |L1||L2| = 6. All inter-
layer edges are diagonal (i.e., between state nodes that corre-
spond to the same physical node). Interlayer edges between
layers at different times for a given social media platform are
ordinal (i.e., between layers with successive time labels) and
directed. Interlayer edges between layers at the same time
and corresponding to different social media platforms are cat-
egorical (i.e., between all pairs of layers) and undirected. For
example, information can flow from node 1 in Facebook at
time 1 to node 1 in Facebook at time 2. Similarly, informa-
tion can flow between node 1 in Facebook at time 1 and node
1 in Twitter at time 1. One can also define interlayer edges
differently—for example, by introducing edges between state
nodes at successive times and different social media platforms
(e.g., (1, (1, 1))→ (1, (2, 2)) similarly to the approach in [45].

social network in which we observe different types of con-
nections (‘friendship’ and ‘following’) on different plat-
forms (‘Facebook’, ‘Twitter’, and ‘LinkedIn’) between
the same set of people at different points in time. In
our example, we have three aspects: type of connection,
social-media platform, and time. The first aspect is un-
ordered and consists of two elements: ‘friendship’ (which
we map to the integer 1) and ‘following’ (which we map to
the integer 2). The second aspect is also unordered and
consists of three elements: ‘Facebook’ (which we map to
the integer 1), ‘Twitter’ (which we map to the integer
2), and ‘LinkedIn’ (which we map to the integer 3). The
third aspect is ordered and consists of as many elements
as there are time points or time intervals. If we assume

that the time resolution is daily and spans the year 2010,
an example of a state is the triple (‘following’, ‘Facebook’,
‘01-Jan-2010’) or equivalently (2, 1, 1).

We refer to the set of all state nodes that represent a
given entity as a “physical node” and the set of all state
nodes in a given state as a “layer”. Note that there is
a bijective mapping between nodes and physical nodes
and a bijective mapping between states and layers. One
can have connections between nodes in the same state
(i.e., intralayer edges) and nodes in different states (i.e.,
interlayer edges). An example of an intralayer edge is
(1, (‘following’, ‘Twitter’, ‘01-Jan-2010’)) → (2, (‘follow-
ing’, ‘Twitter’, ‘01-Jan-2010’)), indicating that entity 1
was following entity 2 on Twitter on 1 January 2010. An
example of an interlayer edge is (1, (‘following’, ‘Twit-
ter’, ‘01-Jan-2010’)) → (1, (‘following’, ‘Twitter’, ‘02-
Jan-2010’)), indicating that information can flow from
entity 1 on 1 January 2010 to entity 1 on 2 January 2010.

More formally, following the notation of [51], we con-
sider a general multilayer network M = (VM , EM ,V,L)
with n = |V| nodes (or physical nodes) and l = |L| states
(or layers). For ease of writing, we use the same notation
for nodes and physical nodes, and we also use the same
notation for states and layers. We use d to denote the
number of aspects and use La = {1, . . . , la} to denote the
labels of the ath aspect (where a ∈ {1, . . . , d}). We use
O to denote the set of ordered aspects and U to denote
the set of unordered aspects. The set L = L1 × . . . × Ld
of states is the Cartesian product of the aspects, where
a state α ∈ L is an integer vector of length d and each
entry specifies an element of the corresponding aspect.

Note that l = |L| =
∏d
a=1 la.

We use (i,α) ∈ VM ⊆ V × L to denote the state node
(i.e., “node-layer tuple” [51]) representing node i ∈ V in
state α ∈ L. We only include a state node in VM if
the corresponding node exists in that state. The edges
EM ⊆ VM×VM in a multilayer network are between state
nodes, where we use ((i,α), (j,β)) to denote a directed
edge from (i,α) to (j,β). For two state nodes, (i,α) and
(j,β), connected by a directed edge ((i,α), (j,β)) ∈ EM ,
we say that (i,α) is an in-neighbor of (j,β) and (j,β) is
an out-neighbor of (i,α). We categorize the edges into
intralayer edges EL, which have the form ((i,α), (j,α))
and link entities i and j in the same state α, and in-
terlayer (or coupling) edges EC , which have the form
((i,α), (j,β)) for α 6= β. We thereby decompose the
edge set EM = EL ∪ EC .

We define a weighted multilayer network by introduc-
ing a weight function w : EM → R (analogous to the
weight function for weighted monolayer networks), which
encodes the edge weights within and between layers. For
an unweighted multilayer network, we define w(e) = 1
for all e ∈ EM to simplify our discussion. We encode
the connectivity of a multilayer network using an adja-
cency tensor A, analogous to the adjacency matrix for
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monolayer networks, with entries

Aj,βi,α =

{
w(((i,α), (j,β))) , ((i,α), (j,β)) ∈ EM
0 , otherwise .

(1)

Note that GM = (VM , EM ) is a graph on the state
nodes of the multilayer network M . We refer to GM as
the flattened network associated with M . The adjacency
matrix of the flattened network is the “supra-adjacency
matrix” [51, 67–69] of the multilayer network. One ob-
tains the supra-adjacency matrix by flattening [70] the
adjacency tensor (Eq. (1)) of the multilayer network. The
multilayer network and the corresponding flattened net-
work encode the same information [51, 71], provided one
keeps track of the mapping between state nodes, nodes,
and layers.

We denote a multilayer partition with c elements by
S = {S1, . . . ,Sc}, where

⋃c
s=1 Ss = VM and Ss ∩ Sr = ∅

for s 6= r. We represent a partition S using a parti-
tion tensor S with entries Si,α, where Si,α = s if and
only if the state node (i,α) is in set Ss. A multilayer
partition induces a partition S|α = {S1|α, . . . ,Sc|α} on
each layer, where Ss|α = {i ∈ V : (i,α) ∈ Ss}. For
convenience, we refer to an element Ss of a partition S
as a community and to Ss|α as the induced community
on layer α. We call s ∈ {1, . . . , c} the label of commu-
nity Ss. We use the word “community” to make our
discussions more concrete, but we emphasize that our
model (see Section III) for generating a multilayer par-
tition only assumes that its set of state nodes can be
partitioned into subsets and makes no assumption on the
multilayer network edge structure. In particular, one can
use a planted multilayer partition to generate dependent
mesoscale structures beyond community structure (e.g.,
including non-assortative structures) in different layers
(see Section VI).

III. GENERATING SAMPLED MULTILAYER
PARTITIONS

We generate multilayer networks with planted
mesoscale structure by proceeding in two steps. First,
we sample a multilayer partition that has user-specified
dependency properties between induced partitions in dif-
ferent layers. Second, we generate a random multilayer
network that reflects this prescribed partition. Impor-
tantly, we generate a multilayer network after generating
a multilayer partition rather than in parallel. Our ap-
proach for generating benchmark multilayer networks is
thus modular, and each of these steps can be modified
separately to incorporate features however one desires
(see Section VI). In this section, we focus on how we
generate a multilayer partition. In Section IV, we dis-
cuss how we generate multilayer networks.

We use an iterative process to introduce dependen-
cies between induced partitions in different layers. Our
community-assignment update process for generating a

Initialize multilayer
partition,

independently in
each layer, with P0

Input: Interlayer
dependency tensor P
and null distributions

P0

Update multilayer
partition using a
copying process

governed by P and
P0

Convergence
to prescribed
interlayer

dependency
structure?

Iterate

Output: Multilayer
partition with desired
interlayer dependency

structure

no

yes

FIG. 2. Flow chart illustrating the main stages for generating
a multilayer partition. We describe our iterative update pro-
cess in detail in Section III A for an arbitrary choice of null
distributions, and we discuss a specific choice of null distribu-
tions in Section III C.

multilayer partition consists of two parts: (1) incorporat-
ing interlayer dependencies and (2) incorporating layer-
specific random components. The first part is governed
by a user-specified “interlayer dependency tensor” that
determines the extent to which an induced partition in
one layer can be inferred directly from the induced par-
tition of another layer. The second part is governed by
independent layer-specific “null distributions” that deter-
mine the community assignment of state nodes whenever
these assignments are not updated by the interlayer de-
pendency tensor. Our independence assumption on the
null distributions allows us to keep all of the interlayer de-
pendencies in a single object (the interlayer dependency
tensor).

Our procedure for generating a multilayer partition
with a prescribed interlayer dependency structure has
four main stages: (1) a user specifies the interlayer depen-
dency structure via an interlayer dependency tensor; (2)
one initializes the community assignments of state nodes
using independent layer-specific null distributions; (3)
one updates the community assignments of state nodes
using a copying process that is governed by the inter-
layer dependency tensor and null distributions; (4) one
repeats step (3) until the partition converges to a multi-
layer partition with the prescribed interlayer dependency
structure. We illustrate these stages in Fig. 2.
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In Section III A, we explain our model for generating
a multilayer partition in its most general form. In Sec-
tion III B, we restrict our discussions to the specific sit-
uation in which a physical node is present in all layers
(i.e., the network is “fully interconnected” [51]), and in
which interlayer dependencies occur only between state
nodes that correspond to the same physical node (i.e.,
“diagonal” coupling [51]) and are uniform across state
nodes for a given pair of layers (i.e., “layer-coupled” [51]).
In Section III C, we describe possible choices for the layer-
specific null distributions. In Section III D, we focus on
the case of temporal networks with interlayer dependen-
cies only between contiguous layers. We take advantage
of the analytical tractability of this special case to discuss
some of its properties and to illustrate some effects of the
choice of null distribution on a multilayer partition.

A. A general class of multilayer partitions

We begin by defining the interlayer dependency ten-
sor. We then explain how, given a choice of null dis-
tributions, one can use the interlayer dependency tensor
to generate multilayer partitions with a desired depen-
dency structure. To do this, we use a copying process
on the community assignment of state nodes to gener-
ate dependencies between induced partitions in different
layers. The copying probabilities are user-specified and
govern the dependencies between induced partitions.

We encode the copying probabilities in an interlayer

dependency tensor P , where P j,βi,α is the probability that

state node (j,β) copies its community assignment from
state node (i,α). The total probability that state node
(j,β) copies its community assignment from another

state node is p̂j,β =
∑

(i,α)∈VM P j,βi,α , and we thus require

that p̂j,β ≤ 1 for each state node (j,β) ∈ VM . Fur-
thermore, we assume that a state node can only copy its
community assignment from a state node in a different

layer (i.e., P j,βi,α = 0 if α = β). We call the network with
adjacency tensor P the interlayer dependency network,
and we note that it has only interlayer edges. In gen-
eral, the interlayer dependency network is directed, with
edges pointing in the direction of information flow be-
tween layers. The in-neighbors (see Section II) of a state
node (i,α) in the interlayer dependency network thus
correspond to the set of state nodes from which (i,α)
can copy a community assignment.

As we mentioned in Section II, an aspect of a multi-
layer network can either be ordered or unordered, and we
want to treat these two cases differently when generating
multilayer partitions. To generate ordered aspects, the
structure of the interlayer dependency tensor should re-
flect the causality implied by the order of the aspect’s el-
ements. For an ordered aspect, structure in a given layer
therefore only depends directly on structure in previous
layers. Formally, an aspect a of a multilayer network is

causally ordered if

αa ≥ βa ⇒ P j,βi,α = 0 , (2)

where αa denotes the element of state α corresponding
to aspect a and where, as stated in Section II, we re-
quire that the labels of an aspect’s elements reflect the
ordering of those elements. We define a partial order for
the layers based on the ordered aspects, where α � β if
and only if αa ≤ βa for all a ∈ O. This partial order of
the layers allows us to combine the different notions of
causality implied by the ordered aspects and to respect
them through the order in which we update community
assignments of state nodes.

A single community-assignment update step is inde-
pendent of the partial order of the layers; it depends
only on the choice of state node to update and the cur-
rent multilayer partition. In this paragraph, we describe
an update step for any given interlayer dependency ten-
sor. Suppose that we are updating the community as-
signment of state node (j,β) at step τ of the copying
process and that the current multilayer partition is S(τ)
(with partition tensor S(τ)). The community assign-
ment of state node (j,β) is updated either by copying
the community assignment in S(τ) from one of its in-
neighbors in the interlayer dependency network or by
obtaining a new, random, community assignment from

the specified null distribution Pβ
0 for layer β. In par-

ticular, with probability
∑

(i,α)∈VM P j,βi,α , a state node

(j,β) copies its community assignment from one of its
neighbors in the interlayer dependency network; and with

probability 1−
∑

(i,α)∈VM P j,βi,α , it obtains its community

assignment from the null distribution Pβ
0 . We use the

notation P0 = {Pα
0 ,α ∈ L} for the set of null distribu-

tions [72]. This yields the following update equation at
step τ of our copying process:

P[Sj,β(τ + 1) = s|S(τ)]

=

 ∑
(i,α)∈VM

P j,βi,α δ(Si,α(τ), s)


+

1−
∑

(i,α)∈VM
P j,βi,α

Pβ
0 [Sj,β = s] .

(3)

The update equation in Eq. (3) is at the heart of our
generative model for mesoscale structure in multilayer
networks. It is clear from Eq. (3) that the null distribu-
tions P0 are responsible for the specification of commu-
nity assignments in the absence of interlayer dependen-

cies (i.e., if P j,βi,α = 0 for all (i,α), (j,β)). In particular,
the support of the null distributions corresponds to the
possible community assignments for a state node (i,α)
whenever the state node does not copy its assignment
from one of its neighbors. In Section III C, we discuss
the choice of P0 and its effect on a sampled multilayer
partition.
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We want to sample multilayer partitions that are con-
sistent with both the order of the layers and the condi-
tional probability distributions defined by Eq. (3). We
use Gibbs sampling [73], as it relies only on the condi-
tional distributions and does not require the joint distri-
bution for the community assignments. Our sampling
algorithm proceeds as follows: (1) we sample an ini-
tial multilayer partition from the null distribution (i.e.,
Si,α(0) ∼ Pα

0 ); and (2) we then repeatedly update the
multilayer partition by sequentially updating the commu-
nity assignment of each state node using Eq. (3). When
updating community assignments, we respect the order
of the layers: if state node (i,α) is updated before state
node (j,β), then α � β. This updating process defines a
Markov chain on the space of multilayer partitions, and
its stationary distribution is the desired joint distribution
for the community assignments. We will sample from this
joint distribution.

By running the updating process for a sufficiently large
number of iterations (the so-called “burn-in period”), the
state of the Markov chain is sampled approximately from
its stationary distribution. The stationary distribution of
the Markov chain defined by Gibbs sampling does not de-
pend on the order in which we update the state nodes.
However, the order of the update steps can influence
its convergence speed [74]. In particular, for fully or-
dered multilayer networks (i.e., for multilayer networks
with U = ∅), updating state nodes in an order that is
consistent with the order of the layers ensures that the
sampling algorithm converges after a single pass over all
state nodes, as the results of subsequent passes are in-
dependent from each other in this case. We expect that
respecting the partial order of the layers also helps for
situations in which a multilayer network is only partially
ordered, though to our knowledge this question remains
open.

Sampling initial conditions in an ‘unbiased’ way can
be important for ensuring that one successfully explores
the space of possible partitions, as the updating process
is not necessarily ergodic over the supports of the null
distributions (which is a subspace of the space of all mul-

tilayer partitions) when
∑

(i,α)∈VM P j,βi,α = 1 for some

state nodes. A non-ergodic updating process corresponds
to the case in which the conditional probabilities given
by Eq. (3) do not define a unique joint probability dis-
tribution for the community assignments. Instead, there
are multiple joint distributions that are consistent with
the conditional distributions. The updating process will
converge to one of the possible joint distributions, and
the joint distribution that is selected depends both on
the initial condition and on the exact sequence of ran-
dom steps taken by the updating process. For example,

if
∑

(i,α)∈VM P j,βi,α = 1 for all (j,β) ∈ VM , then any par-

tition with a single community is an “absorbing state” of
the Markov chain — i.e., a state that, once reached, can-
not be changed by the updating process. In this exam-
ple, the updating process eventually reaches an absorb-
ing state and the distribution of final absorbing states

depends on the initial partition. The absorbing states in
this example correspond to partitions in which all state
nodes in each component of the interlayer dependency
network have the same community assignment.

Importantly, provided the updating process has con-
verged, any partition that one generates still has the de-
sired dependencies between induced partitions in differ-
ent layers. Thus, to work around the problem of non-
unique joint distributions when the updating process is
not ergodic, we reinitialize the updating process by sam-
pling from the null distribution for each partition that
we want to generate. Reinitializing the initial partition
from a fixed distribution for each sample always defines
a unique joint distribution, which is a mixture of all pos-
sible joint distributions when the updating process is not
ergodic. When the updating process is ergodic, sampling
partitions by reinitializing and sampling multiple parti-
tions from a single long chain is equivalent. The second
approach is usually more efficient when many samples are
needed and some dependence between samples is not an
issue [75]. However, in our case, one usually only needs a
few samples with the same parameters, and independence
tends to be more important than ensuring perfect con-
vergence (provided the generated partitions exhibit the
desired interlayer dependency structure). Using multiple
chains thus has clear advantages even when the updat-
ing process is ergodic, and it is necessary to use multiple
chains when it is not ergodic.

Determining whether a Markov chain has converged to
a stationary distribution is a difficult problem, mostly be-
cause it is difficult to distinguish the case of a slow-mixing
chain becoming stuck in a particular part of the state
space from the case in which the chain has converged
to a stationary distribution. There has been much work
on trying to define a convergence criterion for Markov
chains [76], but none of the approaches are entirely suc-
cessful. In practice, one usually runs a Markov chain (or
chains) for a predetermined number of steps (e.g., 1000).
One manually checks on a few examples that the result-
ing chains exhibit behavior that is consistent with con-
vergence by examining autocorrelations between samples
of the same chain and cross-correlations between samples
of independent chains with the same initial state. When
feasible, one can also check whether parts of different,
independent chains or different parts of the same chain
are consistent with being sampled from the same distri-
bution.

B. Fully-interconnected, diagonal, and
layer-coupled multilayer partitions

In many situations, the complexity of allowing arbi-
trary interlayer dependencies is unnecessary (and even
undesirable) when designing benchmark multilayer net-
works. A particularly useful restriction that still allows
us to represent many situations of interest is to require
the interlayer dependency network to be “fully intercon-
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0 p2 0 0

0
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0 0


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
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0 p p

p

p

p p 0







P̃ βα = δ(α+ 1, β)pβ , P̃ βα = (1− δ(α, β))p ,

pβ ≤ 1 p̂ = (l − 1) p ≤ 1

(a) Temporal network (b) Uniform multiplex network

FIG. 3. Layer-dependency tensors (which are matrices in this
case) for different types of multilayer networks with a single
aspect. (a) For a temporal network, an induced partition
in a layer depends directly only on the induced partition in
the previous layer. Therefore, the only nonzero elements of
the layer-dependency tensor occur in the first superdiagonal.
(b) For a multiplex network, an induced partition in a layer
depends directly on the induced partitions in all other layers.

nected”, “diagonal”, and “layer-coupled” [51]. A multi-
layer network is fully interconnected if each node is rep-
resented in each layer, it is diagonal if interlayer edges
only exist between state nodes that correspond to the
same physical node, and it is layer-coupled if the weight
of the interlayer edges depends only on the layers and
not on the nodes. For a fully interconnected, diagonal,
layer-coupled dependency network, we can represent the
interlayer dependency tensor P using a layer dependency

tensor P̃ such that its elements satisfy P j,βi,α = δ(i, j)P̃β
α .

The update equation (Eq. (3)) then simplifies to

P[Sj,β(τ + 1) = s|S(τ)]

=

(∑
α∈L

P̃β
αδ(Sj,α(τ), s)

)

+

(
1−

∑
α∈L

P̃β
α

)
Pβ
0 [Sj,β = s] ,

(4)

which depends only on the layer dependency tensor P̃

and the null distributions P0. Each term P̃β
α quantifies

the extent to which an induced partition in layer β can
be inferred directly from an induced partition in layer

α. As before, we require that p̂β =
∑

α∈L P̃
β
α ≤ 1.

By changing the structure of P̃ , one can generate mul-
tilayer networks that correspond to several of the most
important scenarios, including temporal networks, mul-
tiplex networks, and multilayer networks with more than
one aspect (e.g., combinations of temporal and multiplex
features). That is, the above restriction simplifies mat-
ters considerably while still allowing us to analyze several
very important situations.

In Fig. 3, we show the dependency tensors for single-
aspect multilayer networks. For a temporal network, one

usually assumes that induced partitions in a layer de-
pends directly only on induced partitions in the previous
layer. There are thus l− 1 copying probabilities (one for
each pair of consecutive layers) that we are free to choose.
Typical examples include choosing the same probability
for each pair of consecutive layers to obtain a uniformly-
evolving network [35, 42] or making some of the proba-
bilities significantly smaller than the others to introduce
change points that one may wish to detect [66].

For a multiplex network, an induced partition in any
layer can in principle depend directly on induced par-
titions in all other layers. This yields l(l − 1) copying
probabilities to choose. In Figure 3b, we illustrate the
simplest case, in which each layer depends equally on ev-
ery other layer. In Fig. 4 and Fig. 5, we show example
multilayer partitions obtained with the interlayer depen-
dency tensors of Fig. 3 .

We can also generate multilayer networks with more
than one aspect and can thereby combine temporal and
multiplex features. In Fig. 6, we illustrate how to con-
struct an appropriate layer-dependency tensor to gener-
ate such a multilayer network on a simple example with
two aspects, one of which is multiplex and the other of
which is temporal.

C. Categorical null distribution

The null distributions in Eqs. (3) and (4) determine
the multilayer partition in the absence of interlayer de-
pendencies, thereby fixing the numbers and sizes of the
communities in the sampled partitions. We seek to allow
the possibility of having heterogeneous community-size
distributions. Although the LFR benchmarks [38] incor-
porate such heterogeneity, the procedure used in [38] to
sample community sizes and then assign nodes to com-
munities in a way that exactly preserves these commu-
nity sizes does not mesh well with the copying process
that we use to induce dependencies between community
structures in different layers. In particular, we consider a
process that updates the community assignment of a sin-
gle node at a time, which does not guarantee preserving
community sizes. Instead, we only fix expected commu-
nity sizes by defining null distributions P0 that we can
use in Eqs. (3) and (4).

A simple choice for the null distributions is a categor-
ical distribution, where for each layer α and each com-
munity label s, we fix the probability pαs for a random
state node in layer α to be assigned to a community s in
the absence of interlayer dependencies. That is,

Pα
0 [s] =

{
pαs , s ∈ {1, . . . , nc} ,
0 , otherwise ,

(5)

where nc is the total number of communities in the mul-
tilayer partition and

∑nc
s=1 p

α
s = 1 for all α ∈ L. The

set {1, . . . , nc} corresponds to the set of community la-
bels, and the support of a null distribution corresponds
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FIG. 4. Example temporal multilayer partitions for (n, l) =
(150, 100). For the update process, we use the interlayer de-
pendency tensor in Fig. 3a with uniform probabilities pβ = p
for all β ∈ {1, . . . , l} and a Dirichlet null distribution with
q = 1, θ = 1, and nc = 5 (see Section III C). We perform
a single iteration of the update process, as convergence is
immediate for a fully ordered multilayer network (see Sec-
tion III A). For (a) p = 0, (b) p = 0.5, (c) p = 0.85, (d)
p = 0.95, (e) p = 0.99, and (f) p = 1, we show color-coded
community assignments ( , top) for a single example out-
put partition and NMIa values (0 1, bottom) between
induced partitions in different layers averaged over a sample
of 10 output partitions. The parameter values that we use
in this example match those that we use for our numerical
examples in Section V (with the exception of p = 0, which we
include for completeness). In our visualization of each mul-
tilayer partition, we choose a node ordering that emphasizes
(whenever possible) “persistent” community structure [20] in
that multilayer partition. We show only the first 15 layers of
each multilayer partition, because (as one can see in the NMI
heatmaps) similarities between induced partitions for p < 1
decay “quickly” with the number of layers when dependencies
exist only between contiguous layers.

a We use the variant of the normalized mutual information
(NMI) with “joint entropy” as the normalization factor [77].

to the set of labels that have nonzero probability. In
other words, the support Gα of the null distribution Pα

0

is given by Gα = {s : Pα
0 [s] 6= 0}. We say that a label

s is active in a layer α if it is in the support of the null

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(a) p̂ = 0

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(b) p̂ = 0.5

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(c) p̂ = 0.85

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(d) p̂ = 0.95

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(e) p̂ = 0.99

1 5 10 15

1

500

1000

layer

n
o
d
e

Partition

1 5 10 15

1

5

10

15

layer

la
y
e
r

NMI

(f) p̂ = 1

FIG. 5. Example multiplex multilayer partitions for (n, l) =
(1000, 15). For the update process, we use the interlayer de-
pendency tensor in Fig. 3b and a Dirichlet null distribution
with q = 1, θ = 1, and nc = 10 (see Section III C). We perform
200 iterations of our update process (see Section III A). For
(a) p̂ = 0, (b) p̂ = 0.5, (c) p̂ = 0.85, (d) p̂ = 0.95, (e) p̂ = 0.99,
and (f) p̂ = 1, where p̂ = (l− 1)p is the total probability that
a state node copies its assignment from another state node,
we show color-coded community assignments ( , top) for
a single example output partition and NMI values (0 1,
bottom) between induced partitions in different layers aver-
aged over a sample of 10 output partitions. (For the temporal
case in Fig. 4, note that p̂ = p.) The parameter values that
we use match those that we use for our numerical examples
in Section V (with the exception of p̂ = 0, which we include
for completeness). In our visualization of each multilayer par-
tition, we choose a node ordering that emphasizes (whenever
possible) “persistent” community structure [20] in that mul-
tilayer partition.

distribution Pα
0 (i.e., if Pα

0 [s] 6= 0), and we say that a
label is inactive in layer α if it is in the complement of
the support of Pα

0 (i.e., if Pα
0 [s] = 0). In the absence

of interlayer dependencies, a categorical null distribution
corresponds to fixing the expected size npαs of each in-
duced community in each layer. The actual community
sizes follow a multinomial distribution. Therefore, by
choosing the probabilities pαs , one has some control over
the community-size distribution of the sampled multi-
layer partitions. A natural choice for pα is to sample it
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α
2
=

1
α

2
=

2

β2 = 1 β2 = 2

P̃ β1,β2α1,α2
= (1− δ(α1, β1))δ(α2, β2)pβ1,β2

+ δ(α1, β1)δ(α2 + 1, β2)pβ1,β2

FIG. 6. Block-matrix representation of a layer-dependency
tensor for a temporal multiplex network. This is an exam-
ple of a multilayer network with more than one aspect and
combines the features of the examples in Fig. 3. An induced
partition in a layer depends directly on the induced partitions
of all other layers in the same temporal layer and on the in-
duced partition of the same layer in the previous temporal
layer.

from a Dirichlet distribution, which is the conjugate prior
for the categorical distribution [78, 79]. One can think of
the Dirichlet distribution, which is the multivariate form
of the beta distribution, as a probability distribution over
the space of all possible categorical distributions with a
given number of categories. Any other (probabilistic or
deterministic) choice for pα is also possible.

The Dirichlet distribution over q variables takes q pa-
rameters θ1, . . . , θq (one for each variable). Its probability
density function is

p(x1, . . . , xq) =
Γ (
∑q
i=1 θi)∏q

i=1 Γ(θi)

q∏
i=1

xθi−1i ,

where xi ∈ (0, 1) and θi > 0 for all i ∈ {1, . . . , q}. The
case in which all θi are equal is called a symmetric Dirich-
let distribution, which we parametrize instead by the
common value θ (the so-called “concentration parame-
ter”) of the parameters and the number q of variables.

The concentration parameter θ determines the kinds
of discrete probability distributions that one is likely to
obtain from the symmetric Dirichlet distribution. For
θ = 1, the symmetric Dirichlet distribution is the contin-
uous uniform distribution over the space of all discrete
probability distributions with nc states. As θ → ∞, the
Dirichlet distribution becomes increasingly concentrated
near the discrete uniform distribution, such that all en-
tries pα are approximately equal. As θ → 0, it becomes

increasingly concentrated away from the uniform distri-
bution, such that pα tends to have 1 (or a few) large en-
tries, and all other entries are close to 0. Consequently,
to have very heterogeneous community sizes, one would
choose θ ≈ 1. To have all communities to be of simi-
lar sizes, one would choose a large value of θ. To have
a few large communities and many small communities,
one would choose θ sufficiently below 1. The value of nc
also affects the amount of community label overlap across
layers that is not a result of our copying process. For ex-
ample, if pα is the same for all layers, then larger values
of nc incentivize less label overlap across layers (because
there are more possible labels for each layer), and smaller
values of nc incentivize more label overlap across layers
(because there are fewer possible labels for each layer).

In some situations — e.g., when modeling the birth
and death of communities in temporal networks — it
is desirable to have communities that have a nonzero
probability of obtaining nodes from the null distribu-
tion only in some layers. For example, if a label has
0 probability in a given layer, it may be desirable to en-
sure that it also has 0 probability in all subsequent lay-
ers. For these situations, we suggest sampling the sup-
port (i.e., the set of active communities in each layer)
of the distributions before sampling the probabilities pα.
As stated earlier in this section, the support Gα of the
null distribution Pα

0 is given by Gα = {s : Pα
0 [s] 6= 0}.

Given supports for each layer, the total number of com-
munities is nc = maxα∈L max(Gα). We then write

Gα = {s ∈ {1, . . . , nc} : Pα
0 [s] = 0} for the complement.

Given the supports for each layer, one samples the cor-
responding probabilities from a symmetric Dirichlet dis-
tribution. That is,

pαGα ∼ Dir(θ, |Gα|) , pα
G

α = 0 . (6)

A simple example for a birth/death process for com-
munities is the following. First, fix a number of commu-
nities and a support (i.e., active community labels) for
the first layer. One then sequentially initializes the sup-
ports for the other layers by removing each community
present in the support of the previous layer with proba-
bility rd ∈ [0, 1] and adding a number, sampled from a
Poisson distribution with rate rb ∈ [0,∞), of new com-
munities (with new community labels that are not active
in any previous layer). In temporal networks for exam-
ple, this ensures that if a community label is not in the
support of a given layer, then the label is also not in the
support of any subsequent layers. For this process, the
expected number 〈|Gα|〉 of communities in a given layer
approaches rb/rd as the number of iterations increases.
Hence, one should initialize the size of the support for
the first layer close to this value to avoid transients in the
number of communities. For this process, the lifetime of
communities follows a geometric distribution. The na-
ture of the copying process that we use to introduce de-
pendencies between induced partitions in different layers
tends to imply that communities that have been removed
from the support of the null distribution do not lose all
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of their members instantly but instead shrink at a speed
that depends on the parameters (e.g., the values of the
copying probabilities in the interlayer dependency ten-
sor).

One can also allow labels to appear and disappear
when examining multiplex multilayer partitions. For ex-
ample, given a value for nc, one can generate the support
for each layer by allowing every label s ∈ {1, . . . , nc} to
be present with some probability q̃ and absent with com-
plementary probability 1− q̃. This yields a sets of active
and inactive community labels for each layer. One can
then sample the nonzero probabilities in pα that corre-
spond to active labels from a Dirichlet distribution and
set pαs to 0 for every inactive label s. Because multiplex
partitions are unordered, there is no notion of one layer
occurring after another one, so we do not need to ensure
that an inactive label in a given layer is also inactive in
“subsequent” layers.

In general, the choice of pα, which encodes both the
expected community sizes and the support for the null
distribution (by allowing some community labels to have
0 probability), can have a very large effect on the set of
sampled multilayer partitions. We illustrate some effects
of the choice of pα for the case of fully ordered temporal
multilayer networks in Section III D. For our numerical
examples in Section V, we fix a value of nc ∈ {1, . . . , nl}
and use a symmetric Dirichlet distribution with parame-
ters q = nc and θ = 1 to sample probability vectors pα of
length nc. This produces multilayer partitions in which
the active community labels are the same across layers
(and given by {1, . . . , nc}) and for which the expected
induced community sizes (given by npαs ) vary across lay-
ers.

D. Temporal multilayer partitions

For the important special case of temporal networks
that we illustrated in Fig. 3a (where each layer depends
only on the previous one), our generative model for mul-
tilayer partitions simplifies significantly. We take advan-
tage of the analytic tractability of this special case to
point out some of its properties that hold for any choice
of P0, and we use it to illustrate some features of the
categorical null distribution in Section III C. In our dis-
cussion, we assume that dependencies between contigu-
ous layers are uniform. That is, pβ = p ∈ [0, 1] for all
β ∈ {2, . . . , l} in Fig 3a. (We note that one could gen-
erate change points [29, 66] by relaxing this assumption
and allowing some probabilities to be significantly smaller
than others. We show an example of this in Section V).

This example includes a single ordered aspect, so the
layer index α ∈ N is a scalar and the order of the layers
corresponds to temporal ordering. Furthermore, as we
mentioned in Section III A, for a fully ordered multilayer
network, we require that the order of the community-
assignment update process in Eq. (3) respects the or-
der of the layers. The update order of state nodes

(1, α) . . . (n, α) in any given layer α can be arbitrary (i.e.,
these can be updated simultaneously), but each update is
conditional on the community assignment of state nodes
in layer α − 1. The update process described in Sec-
tion III A for generating a multilayer partition thus re-
duces to the procedure described in Algorithm 1. In ac-
cord with the discussion in Section III A, note that con-
vergence is not an issue for this case as only one pass is
needed. In Fig. 4, we show example multilayer partitions
for this scenario using different values of p .

The generative model for temporal multilayer parti-
tions in Algorithm 1 was also suggested in [35]. The
authors of that paper used the model to derive a de-
tectability threshold for a planted partition for the case
in which the null distributions are uniform across com-
munities (i.e., θ → ∞ in Section III C) and intralayer
edges are generated independently using the standard
SBM (i.e., one replaces the DCSBM in Section IV by
the non degree-corrected SBM in [26]). In the follow-
ing paragraphs, we highlight properties of the generative
model in Algorithm 1 that hold for any choice of null dis-
tributions, and we illustrate that the choice of null dis-
tributions can greatly influence resulting partitions. Our
observations are independent of one’s choice of mono-
layer network model with a planted partition. We also
discuss how to generalize the temporal multilayer parti-
tion model in Algorithm 1 to include memory effects [80]
and “burstiness” [81] in Section VI.

A first important feature of the generative model in Al-
gorithm 1 is that it respects the arrow of time. In particu-
lar, community assignments in a given layer depend only
on community assignments in the previous layer (e.g., the
previous temporal snapshot) and on the null distributions
P0. That is, for all s ∈ {1, . . . , nl} and all α ∈ {2, . . . , l},
the following condition is satisfied:

P [Si,α = s| S|α−1] = pδ(Si,α−1, s)

+ (1− p)Pα0 [Si,α = s] ,
(7)

where S|α is the n-node partition induced on layer α by
the multilayer partition S. The relative importance of the
previous layer versus the null distribution is determined
by the value of p. When p = 0, community assignments
in a given layer depend only on the null distribution of
that layer [i.e., on the second term on the right-hand side
of Eq. (7)]. When p = 1, community assignments in a
given layer are identical to the community assignments
of the previous layer (and, by recursion, to community
assignments in all previous layers).

Using Eq. (7), one can easily compute the marginal
probability that a given state node has a specific com-



12

function TemporalPartition(p, P0)
S = 0 . Initialize partition tensor of

appropriate size
for i ∈ V do . Loop over nodes in some

order
Si,1 ∼ P1

0 . Initialize induced partition
on first layer using null
distribution

end for
for α ∈ 2 . . . l do . Loop over layers in

sequential order
for i ∈ V do . Loop over nodes in some

order
with probability p
Si,α = Si,α−1; . Copying step (Step C)
with probability 1− p
Si,α ∼ Pα0 . Reallocation step (Step R)

end for
end for
return S

end function

ALG. 1. Pseudocode for generating temporal multilayer par-
titions with uniform interlayer dependencies p between suc-
cessive layers (i.e., pβ = p for all β ∈ {1, . . . , l} in Fig. 3a).

munity assignment:

P [Si,α = s] = pP [Si,α−1 = s]

+ (1− p)Pα0 [Si,α = s] ,

= P1
0 [Si,1 = s] pα−1

+ (1− p)
α−1∑
β=2

Pβ0 [Si,β = s] pα−β

+ (1− p)Pα0 [Si,α = s] , α > 1 .

Computing marginal probabilities can be useful for com-
puting expected community sizes for a given choice of
null distributions.

We now highlight how the copying step (i.e., Step C)
and the reallocation step (i.e., Step R) in Algorithm 1
govern the evolution of community assignments between
consecutive layers. Steps C and R deal with the move-
ment of nodes by first removing some nodes (“subtrac-
tion”) and then reallocating them (“addition”). In Step
C, a community assignment s in layer α can lose a number
of nodes that ranges from 0 to all of them. It can keep all
of its nodes in layer α+1 (i.e., Ss|α+1 = Ss|α), lose some
of its nodes (i.e., Ss|α+1 ⊂ Ss|α), or disappear entirely
(i.e., Ss|α+1 = ∅ and Ss|α 6= ∅). The null distribution in
Step R is responsible for a community assignment s gain-
ing new nodes (i.e., Ss|α+1 6⊂ Ss|α) or for a community
label appearing (i.e., Ss|α+1 6= ∅ and Ss|α = ∅). One
needs to bear the interplay between Step C and Step R
in mind when defining the null distributions P0.

To illustrate how the community-assignment copying
process and the null distribution in Algorithm 1 can in-
teract with each other, we give the conditional proba-
bility that a label disappears in layer α and the condi-
tional probability that a label appears in layer α. For

all s ∈ {1, . . . , nl} and all α ∈ {2, . . . , l}, the conditional
probability that a label disappears in layer α is

P [Ss|α = ∅| S|α−1]

= [(1− p) (1− Pα0 [Si,α = s])]

∣∣Ss|α−1

∣∣
× [p+ (1− p) (1− Pα0 [Si,α = s])]

n−
∣∣Ss|α−1

∣∣
.

This expression depends only on our copying process

and simplifies to (1 − p)
∣∣Ss|α−1

∣∣
when Pα0 [Si,α = s] = 0

(i.e., when the probability of being assigned to label s is
0 using the null distribution of layer α). Furthermore,
as Pα0 [Si,α = s] increases, the probability that a label
disappears decreases.

For all s ∈ {1, . . . , nl} and all α ∈ {2, . . . , l}, the con-
ditional probability that a label appears in layer α is

P
[
Ss|α 6= ∅| Ss|α−1 = ∅

]
= 1−

[
p+ (1− p)

( ∑
Sr|α−1∈S|α−1

Pα0 [Si,α = r]

)]n
.

This expression gives the probability that at least one
node in layer α has the label s, given that no node in layer
α − 1 has the label s. When

∑
Sr|α−1∈S|α−1

Pα0 [Si,α =

r] = 0, the probability that a node disappears de-
pends only on our community-assignment copying pro-
cess and is given by 1−pn. Furthermore, larger values of∑
Sr|α−1∈S|α−1

Pα0 [Si,α = r] decrease the probability that

a label appears in layer α.
With the exception of Section III C, our discussions

thus far hold for any choice of P0. In the next two
paragraphs, we give two examples to illustrate some fea-
tures of the categorical null distribution in Section III C.
In particular, we focus on the effect of the support of
a categorical null distribution on a sampled multilayer
partition. As we stated in Section III C, the support
Gα of a categorical null distribution Pα

0 is given by
Gα = {s : pαs 6= 0}, where s ∈ {1, . . . , nc}. An important
feature of the support for a multilayer partition gener-
ated with the interlayer dependency matrix in Fig. 3a is
that overlap between Gα and Gα+1 (i.e., Gα+1 ∩Gα 6= ∅)
is a necessary condition for communities in layer α to
gain new members in layer α+ 1.

Let cα denote the vector of expected induced commu-
nity sizes in layer α (i.e., cαs = npαs ), and suppose that the
probabilities pα are the same in each layer (i.e., pα = p
for all α). The expected number of community labels is
then the same for each layer, and the expected number
of nodes with community label s is also the same in each
layer and is given by cαs . This choice produces a temporal
network in which nodes change community labels across
layers in a way that preserves both the expected number
of induced communities in a layer and the expected size
of induced communities in a layer.

Now suppose that one chooses the pα values such that
their supports are nonoverlapping (i.e., Gα ∩ Gβ = ∅ for
all α 6= β). At each iteration of Step C in Algorithm 1,
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an existing community label can then only lose members;
and with probability 1 − pn, at least one new label will
appear in every subsequent layer. For this case, one ex-
pects that pcαs members of community s in layer α to
remain in community s in layer α+ 1 and that (1− p)cαs
members of community s in layer α are assigned to new
communities (because labels are nonoverlapping) in layer
α+ 1. This choice thus produces multilayer partitions in
which the expected number of new community labels per
layer is nonzero (unless p = 1) and the expected size of a
given induced community decreases in time.

IV. SAMPLING NETWORK EDGES

Having generated a multilayer partition S, we want
to sample multilayer networks in a way that reflects the
desired mesoscale structure. We assume that all inter-
dependencies between the different layers of the multi-
layer network are a result of dependencies between the
partitions induced on the different layers. Therefore, we
can generate edges independently for each layer. In Sec-
tion VI, we point out how one can generalize our net-
work generation process to include dependencies between
layers beyond those induced by planted mesoscale struc-
tures. As we mentioned in Section I, for the purpose of
the numerical examples in Section V, we generate mul-
tilayer networks without interlayer edges and with in-
tralayer edges that reflect planted community structure
in each layer. We consider multilayer networks without
interlayer edges and with planted community structure
(rather than another type of mesoscale structure) as an
illustrative example, because it is the most commonly
studied case. However, the multilayer SBM that we dis-
cuss in this section can be used to generate not only in-
tralayer edges but also interlayer ones, and it can also
be used to generate mesoscale structures other than the
assortative structures of “communities”.

The generative network model that we discuss in this
section is a generalization to multilayer networks of the
degree-corrected SBM (DCSBM) [27]. In other words, it
is a multilayer DCSBM (M-DCSBM). The parameters of
a general, directed M-DCSBM are a multilayer partition
S (which determines the assignment of state nodes to
communities), a block tensor W (which determines the
expected number of edges between communities in differ-
ent layers), and a set σ of state-node parameters (which
determine the allocation of edges to state nodes within
communities).

The probability of observing an edge (or the expected
number of edges if we allow multi-edges) from state node
(i,α) to state node (j,β) with community assignments
r = Si,α and s = Sj,β in a M-DCSBM is

P
[
Aj,βi,α = 1

]
= σβ

i,αW
s,β
r,α σj,βα , (8)

where W s,β
r,α is the expected number of edges from state

nodes in layer α and community Sr to state nodes in layer

Generate edges using the
monolayer network model

independently for each induced
partition S|α

Input: Multilayer
partition S and

monolayer network model
with a planted partition

Output: Multilayer
network with

interdependent
connectivity patterns in

different layers

FIG. 7. Flow chart illustrating the main steps for generating
a multilayer network with a planted mesoscale structure. In
this paper, we use the DCSBM as a monolayer network model
with a planted partition (see Section IV). We generate mul-
tilayer networks without interlayer edges and interdependent
connectivity patterns in different layers for our numerical ex-
periments, but the M-DCSBM that we introduce in Section IV
can be used to generate both interlayer and intralayer edges.

β and community Ss, the quantity σβ
i,α is the probability

for a random edge starting in community Sr in layer α
and ending in layer β to be attached to state node (i,α)

(note that the dependence on Sr is implicit in σβ
i,α), and

σj,βα is the probability for an edge starting in layer α
and ending in community Ss in layer β to be attached
to state node (j,β) (note that the dependence on Ss is
implicit in σj,βα ). For an undirected M-DCSBM, both
the block tensor W and the state-node parameters σ are

symmetric. That is, W r,α
s,β = W s,β

r,α and σi,αβ = σβ
i,α.

The above M-DCSBM can generate multilayer net-
works with arbitrary expected layer-specific in-degrees
and out-degrees for each state node. (Note that the
DCSBM [27] can generate monolayer networks with ar-
bitrary expected degrees.) Given a multilayer network
with adjacency tensor A, the layer-α-specific in-degree
of state node (j,β) is

kj,βα =
∑
i∈V

Aj,βi,α ,

and the layer-β-specific out-degree of state node (i,α) is

kβi,α =
∑
j∈V

Aj,βi,α .

(Note that the layer-α-specific in-degree and out-degree
of state node (i,α) are the “intralayer in-degree” and “in-
tralayer out-degree” of (i,α).) For an undirected multi-
layer network, layer-β-specific in-degrees and out-degrees
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are equal (i.e., ki,αβ = kβi,α). We refer to their common
value as the “layer-β-specific degree” of a state node. For
an ensemble of networks generated from an M-DCSBM,
the associated means are

〈kj,βα 〉 = σj,βα

|S|∑
r=1

W s,β
r,α , s = Sj,β (9)

and

〈kβi,α〉 = σβ
i,α

|S|∑
s=1

W s,β
r,α , r = Si,α . (10)

For the experiments in Section V, we use a model that
is a slight variant (avoiding the creation of self-loops and
multi-edges) of the DCSBM benchmark suggested in [27].
As we mentioned earlier, we only consider undirected
multilayer networks with only intralayer edges for our
experiments. The block tensor W thus does not have
any interlayer contributions (i.e., W s,β

r,α = 0 if α 6= β).
Furthermore, we can reduce the number of node param-
eters that we need to specify the M-DCSBM to a single
parameter σi,α = σα

i,α = σi,αα for each state node (i,α).
For this case, the M-DCSBM reduces to using indepen-
dent monolayer DCSBMs for each layer. In Fig. 7, we
describe the main stages for generating edges for a given
multilayer partition with an arbitrary choice of mono-
layer network model with a planted partition.

We parametrize the DCSBM benchmark in terms of
its distribution of expected degrees and a community-
mixing parameter µ ∈ [0, 1] that controls the strength of
the community structure in the benchmark. For µ = 0,
all edges lie within communities; for µ = 1, edges are
distributed independently of the communities, where the
probability of observing an edge between two state nodes
in the same layer depends only on the expected degrees
of those two state nodes. We choose a truncated power
law as the distribution for expected degrees.

We sample the expected intralayer degrees
ei,α = 〈kαi,α〉, where kαi,α =

∑
j∈VM Aj,αi,α , for the

state nodes from a truncated power law [82] with ex-
ponent τk, minimum cutoff kmin, and maximum cut-off
kmax. We then construct the block tensor W and state
node parameters σ for the M-DCSBM from the sampled
expected degrees e and the community assignments S.
Let

κs,α =
∑
i∈Ss|α

ei,α , Ss ∈ S

be the expected degree of community s in layer α, and
let

wα =
1

2

∑
i∈V

ei,α

be the expected number of edges in layer α. Conse-
quently,

σi,α =
ei,α
κs,α

, s = Si,α

is the probability for an intralayer edge in layer α to be
attached to the particular state node (i,α), given that
the edge is attached to a state node in layer α and is
attached to community Si,α.

The elements

W s,β
r,α = δ(α,β)

(
(1− µ)δ(r, s)κs,α + µ

κr,ακs,α
2wα

)
of the block tensor give, for r 6= s, the expected number
of edges between state nodes in community s in layer β
and state nodes in community r in layer α. For s = r
and β = α, the block-tensor element W s,β

r,α instead gives
twice the expected number of edges. One way to think of
the DCSBM benchmark is that we categorize each edge
that we want to sample as an intracommunity edge with
probability 1 − µ or as a “random edge” (i.e., an edge
that can be either an intracommunity edge or an inter-
community edge) with probability µ. To sample an edge,
we sample two state nodes (which we then join by an
edge). We call these two state nodes the “end points”
of the edge. The two end points of an intracommunity
edge are sampled with a frequency that is proportional
to the expected degree of their associated state nodes,
conditional on the end points being in the same commu-
nity. By contrast, the two end points of a random edge
are sampled with a frequency proportional to expected
degree of their associated nodes (without conditioning on
anything). We assume that the total number of edges in
a layer α is sampled from a Poisson distribution [83] with
mean wα. One can easily extend this model to generate
interlayer edges [84].

Although our procedure for sampling edges at the end
of the previous paragraph describes a potential algorithm
for sampling networks from the DCSBM benchmark, it
is usually more efficient to sample edges separately for
each pair of communities. We describe this process in
Algorithm 2. The only difference between Algorithm 2
and the sampling algorithm of [27] is that we use re-
jection sampling to avoid creating self-loops and multi-
edges (i.e., if we sample an edge that has already been
sampled or that is a self-loop, then we do not include
it in the multilayer network and resample). Rejection
sampling is efficient provided all blocks of the network
are sufficiently sparse, such that the probability of gen-
erating multi-edges remains small. For dense blocks of
the network, we instead sample edges from independent
Bernoulli distributions with success probability given by
Eq. (8). This algorithm for sampling networks from a
DCSBM is very efficient, as it scales linearly with the
number of edges in a network.

One of the key reasons for using a multilayer ap-
proach for identifying communities in a multilayer net-
work (rather than identifying communities in each layer
separately) is that one would expect to be able to identify
weaker planted community structure (e.g., µ values closer
to 1 in Algorithm 2) using information from multiple lay-
ers with similar structures. The DCSBM benchmark pro-
duces networks with truncated power-law degree distri-
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function DCSBM(S,σ,W )
A = 0 . Initialize adjacency tensor

of appropriate size
for α ∈ L do . Loop over layers

for r ∈ 1 . . . |S| do
for s ∈ r . . . |S| do

. Sample number of edges
from a Poisson distribution

if r = s then
m = Poisson(W r,α

r,α /2)
else

m = Poisson(W s,α
r,α )

end if
e = 0 . Count edges sampled
while e < m do

. Sample nodes from
communities; node i is
sampled with probability
σi,α if it is in the
community

i = Sample(Sr|α,σSr|α,α)
j = Sample(Ss|α,σSs|α,α)

if i 6= j & Aj,αi,α = 0 then
. Reject self-loops or

multi-edges
Aj,αi,α = 1, Ai,αj,α = 1
e = e+ 1

end if
end while

end for
end for

end for
return A

end function

ALG. 2. Sampling multilayer networks from a DCSBM with
community assignments S, node parameters σ, and block ten-
sor W .

butions that are similar to the degree distributions of net-
works generated by the LFR benchmark. However, the
DCSBM benchmark differs from the network-generation
process of the LFR benchmark in crucial ways that make
it more suitable for our purposes and that we specify
below.

The LFR benchmarks impose community structure by
ensuring that each node in a sampled network has a spec-
ified fraction of intra-community edges. This can create
a sharp transition between networks with clearly identifi-
able community structure (where information from a sin-
gle sample is sufficient to identify the structure) and those
without identifiable community structure (where even in-
formation from many samples does not allow one to iden-
tify the structure). This leaves only a narrow range of
parameters for LFR models in which methods based on
a multilayer approach have the potential to improve on
the performance of monolayer-network methods.

The DCSBM benchmark that we discuss in this sec-
tion only imposes community structure as an expected
feature of an ensemble of networks that it generates. Ad-
ditionally, the definition of the mixing parameter µ of the

DCSBM benchmark ensures that the planted partition
remains community-like (i.e., within-community edges
are more likely to be observed and between-community
edges are less likely to be observed than in a random
network with the same expected degrees) for any value
of µ < 1. (This contrasts with the behavior of the LFR
benchmark, for which a planted partition switches from
being community-like to being multipartite-like at some
intermediate, parameter-dependent value of the mixing
parameter.) Consequently, given sufficiently many sam-
ples from the same DCSBM benchmark (i.e., all samples
have the same planted partition and expected degrees),
one should be able to identify the planted community
structure for any value of µ < 1 (where the necessary
number of samples goes to infinity as µ → 1). This fea-
ture makes the DCSBM benchmark an interesting test
for the ability of multilayer community-detection meth-
ods to aggregate information from multiple layers. Given
a multilayer network with sufficiently many layers that
have sufficiently similar structures, we expect multilayer
methods to be able to detect the community structure
even for values of µ for which it is impossible to detect
using monolayer-network methods. We show examples
of this in Section V, where we note that the ability of
multilayer community detection methods to exploit in-
terlayer dependencies is more pronounced in the tempo-
ral examples that we consider (see Section V B) than in
our multiplex examples (see Section V A).

V. NUMERICAL EXAMPLES

In this section, we use the benchmark networks to com-
pare the behavior of different variants of the Louvain-
like [85] computational heuristic [86] to optimize a mul-
tilayer modularity objective function [10, 20] (using the
standard Newman–Girvan null model, which is a vari-
ant of a “configuration model” [87]). Modularity is an
objective function that is often used to partition sets of
nodes into communities that have a larger total internal
edge weight than the expected total internal edge weight
in the same sets in a “null network” [20], which is gen-
erated from some null model. Modularity maximization
consists of finding a partition that maximizes this differ-
ence. For our numerical experiments, we use the gen-
eralization of modularity to multilayer networks in [10].
In a multilayer network with “uniform” interlayer cou-
pling, the strength of interaction between different layers
of the network is governed by a layer-independent and
node-independent interlayer parameter ω ≥ 0. We use
diagonal and categorical (i.e., between all pairs of layers)
interlayer coupling ω for the multiplex examples in Sec-
tion V A, and we use diagonal and ordinal (i.e., between
contiguous layers) interlayer coupling ω for the temporal
examples in Section V B.

The Louvain algorithm [85] for maximizing (monolayer
or multilayer) modularity proceeds in two phases, which
are repeated iteratively. Starting from an initial parti-
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tion, one considers the state nodes one by one (in some
order) and places each state node in a set that results in
the largest increase of modularity. (If there is no move
that improves modularity, then a state node keeps the
same assignment.) One repeats this first phase of the al-
gorithm until reaching a local maximum. In the second
phase of the Louvain algorithm, one obtains a new re-
duced modularity matrix by aggregating the sets of state
nodes that one obtains after the convergence of the first
phase. One then applies the algorithm’s first phase to
the new modularity matrix and iterates both phases un-
til convergence to a local maximum. The two Louvain-
like algorithms that we use in this section differ in how
they select which moves to make. The first is GenLou-
vain, which always chooses the move that maximally in-
creases modularity; the second is GenLouvainRand,
which chooses modularity-increasing moves at random,
such that the probability of a particular move is propor-
tional to the resulting increase in the quality function.
(The latter is a variant of the algorithm “LouvainRand”
in [20], which chooses modularity-increasing moves uni-
formly at random.)

We also compare multilayer modularity maximization
with multilayer InfoMap [88] [24], which uses an ob-
jective function called the “map equation” (which is not
an equation), based on a discrete-time random walk and
ideas from coding theory, to coarse-grain sets of nodes
into communities [89]. In multilayer InfoMap, one uses
a probability r ∈ [0, 1] called the “relaxation rate” to con-
trol the relative frequency with which a random walker
remains in the same layer or moves to other layers. (A
random walker cannot change layers when r = 0.) The
relaxation rate thus controls the interactions between dif-
ferent layers of a multilayer network. We allow the ran-
dom walker to move to all other layers when r 6= 0 for
the multiplex examples in Section V A, and we allow the
random walker to move only to adjacent layers for the
temporal examples in Section V B.

In all experiments in this section, we generate a mul-
tilayer partition using our copying process in Section III
and a multilayer network for a fixed planted partition
using the network model in Section IV. Given a multi-
layer planted partition, we generate multilayer networks
that have only intralayer edges for our numerical com-
putations. This produces multilayer networks in which
the connectivity patterns in different layers are interde-
pendent. We use normalized mutual information (NMI)
[90] (with “joint entropy” as a normalization factor [77])
to compare the performance of different community-
detection algorithms.

For each partition that we identify with an algorithm,
we compute NMI between (1) the partition induced on
each layer by the output partition and (2) that induced
by the planted partition, and we compute the mean NMI
(〈NMI〉) by averaging across layers and runs of the al-
gorithm. In all of our numerical examples, we average
the results over 10 runs of the community-detection al-
gorithms on one instantiation of the benchmark for each

value of the parameters. All variables (for each param-
eter choice and each algorithmic run) used to generate
Fig. 8, Fig. 9, and Fig. 10 are available in the Supple-
mental Information (SI).

Our goal in this section is to illustrate that one can use
our generative model to compare methods and algorithms
on different types of multilayer networks. Accordingly,
we do not investigate any given method in detail.

A. Multiplex examples

In Fig. 8, we consider multiplex networks with uniform
interlayer dependencies between each pair of layers (see
Fig. 3b). In this kind of multilayer network, the proba-
bilities in the interlayer dependency tensor are the same
between all pairs of layers. We control the strength of in-
terdependency between induced community structure in
different layers using the parameter p̂, which is the prob-
ability that a state node’s community assignment on a
given layer is the result of copying rather than being as-
signed from the null distribution. (Recall that p̂ = (l−1)p
in Fig. 3b).) We use networks with n = 1 000 physical
nodes and l = 15 layers. Each node is present on every
layer, so there are a total of 15 000 state nodes. We use
variants of the Louvain method to detect communities in
panels (a)–(j), and we use multilayer InfoMap in panels
(k)–(o).

The results in Fig. 8 suggest that none of the algo-
rithms that we test can exploit the interdependencies be-
tween community structure in the different layers of the
multilayer networks in this example unless the commu-
nity structure is (almost) identical across layers. We show
an instance with p̂ < 1 in Fig. 8i in which NMI increases
as one increases the value of interlayer coupling with
GenLouvainRand before collapsing onto other curves.
In particular, for p̂ = 0.99 (see Fig. 8i), we observe that
for multilayer networks with µ = 0.4 and µ = 0.5 the
NMI increases for a narrow range of ω values before sta-
bilizing at a value of approximately 0.7. Similarly, using
multilayer InfoMap only results in a larger value of the
NMI than that obtained with monolayer InfoMap (cor-
responding to the data point “s” on the horizontal axis)
for large values of p̂ (e.g., for p̂ = 0.99 and µ = 0.5
in Fig. 8n). In our experiments, the methods based on
multilayer modularity outperform multilayer InfoMap
for networks with weak community structure and simi-
lar layers (i.e., when both µ and p̂ are close to 1). In
particular InfoMap yields an NMI value lower than 0.2
for µ > 0.7 in all five numerical examples (whereas, for
example, the NMI is 1 for µ = 0.8 and p̂ = 1 with Gen-
Louvain and GenLouvainRand for large values of ω).

For GenLouvain, we observe some erratic behavior as
the interlayer coupling ω approaches 1 from below. For
values of ω near 1 but smaller than 1, the GenLouvain
algorithm has a tendency to place all state nodes in a
single community. By contrast, for ω ≥ 1, it identifies
partitions that are identical across layers but does not
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FIG. 8. Effect of interlayer coupling strength ω and relaxation rate r on the ability of different community-detection algorithms
to recover planted partitions as a function of the mixing parameter µ in a uniform multiplex benchmark (see Fig. 3b). We
parametrize the amount of interlayer dependency in a network by the probability p̂ that a state node copies its community
assignment from a neighbor in the interlayer dependency network. (Recall that p̂ = (l − 1)p in Fig. 3b.) For InfoMap, the
first data point for each value of µ is the result of running monolayer InfoMap separately on each layer of the corresponding
multilayer network. Each multilayer network has 1000 nodes and 15 layers, and each node is present in all layers. We perform
200 iterations of our update process (see Section III A). We use a Dirichlet null distribution to specify expected community sizes
and set nc = 10, θ = 1, and q = 1 (see Section III C). We use the M-DCSBM benchmark (see Section IV) with τk = −2, kmin = 3,
and kmax = 150 to generate intralayer edges. All results are means over 10 runs of the algorithms on one instantiation of the
benchmark network for each value of the parameters.

place all state nodes into a single community. This ob-
servation is related to the transition behavior described
in [20].

B. Temporal examples

In this section, we show two numerical examples with
the interlayer adjacency tensor of Fig 3a: one in which in-
terlayer dependencies between contiguous layers are uni-
form, and one in which interlayer dependencies between
contiguous layers are nonuniform. Importantly, for both
case, we show examples in which the employed algorithms
can exploit interdependencies between community struc-
ture in the different layers of the multilayer network.

In Fig. 9, we examine temporal networks with uniform

interlayer dependencies between contiguous layers. That
is, pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l} in Fig 3a. In all
experiments of Fig. 9, we set (n, l) = (150, 100). Addi-
tionally, each node is present in all layers, so there are a
total of 15 000 state nodes. For this case, our generative
model reduces to Algorithm 1. We use variants of the
Louvain method to detect communities in panels (a)–(j),
and we use multilayer InfoMap in panels (k)–(o).

We make a few remarks about Fig. 9. First, in panels
(a) and (f), we observe that increasing the value of the
coupling strength ω does not enhance the recovery of
a multilayer planted partition with respect to the case
ω = 0 (i.e., when there is no interlayer coupling) for the
case p = 0.5. Based on visual inspection, increasing the
value of ω starts to help when p ' 0.6. For example,
when p ∈ {0.85, 0.95, 0.99, 1}, increasing the value of ω
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FIG. 9. Effect of interlayer coupling strength ω and relaxation rate r on the ability of different community-detection algorithms
to recover planted partitions as a function of the mixing parameter µ in a temporal benchmark with uniform interlayer
dependencies (i.e., pβ = p ∈ [0, 1] for all β ∈ {2, . . . , l} in Fig 3a). (Note that p̂ = p in Fig 3a.) For InfoMap, the first data
point for each value of µ is the result of running monolayer InfoMap separately on each layer of the corresponding multilayer
network. Each multilayer network has 150 nodes and 100 layers, and each node is present in all layers. We use a Dirichlet null
distribution to specify expected community sizes and set nc = 5, θ = 1, and q = 1 (see Section III C). We use the M-DCSBM
benchmark (see Section IV) with τk = −2, kmin = 3, and kmax = 30 to generate intralayer edges. All results are means over 10
runs of the algorithms on one instantiation of the benchmark network for each value of the parameters.

enhances the recovery of a planted partition for most
values of µ < 1. See Figs. 9(b)–(e) and Figs. 9(g)–(j).
In many cases, the peak of NMI seems to occur for 2 /
ω / 4. When p 6= 1, one expects NMI to decrease for
sufficiently large values of ω, as such values of ω favor
more “persistence” of communities [20] than is the case
for the multilayer planted partition. The abrupt change
in behavior of GenLouvain near ω = 1 in Figs. 9(a)–(e)
is related to the transition behavior described in [20]. In
Figs. 9(f)–(j), we show the same examples as those in
Fig. 9(a)–(e) using GenLouvainRand.

In Fig. 9(k)–(o), we consider the same five examples
using multilayer InfoMap. Observe that increasing the
value of the relaxation rate only seems to have an ef-
fect when the value of p is close to 1. In particular,
for p ∈ {0.5, 0.85, 0.95}, the value of NMI in a multilayer
setting does not exceed that obtained in a monolayer set-

ting. (The monolayer NMI value is the data point that
we label with “s” on the horizontal axis.) For p = 1
(i.e., induced partitions are the same across layers), in-
creasing the value of the relaxation rate r enhances the
recovery of a planted partition when µ ≤ 0.5 but not be-
yond that value. For multilayer modularity, the recovery
is enhanced beyond µ = 0.5 for a few values of p for both
GenLouvain and GenLouvainRand (e.g., for µ ≤ 0.8
in Figs. 9(c)–(e) and in Figs. 9(h)–(j)).

In Fig. 10, we consider temporal networks with nonuni-
form interlayer dependencies between contiguous layers.
In particular, every 25th layer (i.e., for layers 25, 50, and
75), we set the value of pβ in Fig. 3a to pc = 0 (thereby
introducing an abrupt change in community structure)
and we set all other values of pβ in Fig. 3a to a fixed
value p. As in Fig. 9, we set (n, l) = (150, 100). Addi-
tionally, each node is present in all layers, so there are a
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FIG. 10. Effect of interlayer coupling strength ω and relax-
ation rate r on the ability of different community-detection
algorithms to recover planted partitions as a function of the
mixing parameter µ in a temporal benchmark with nonuni-
form interlayer dependencies. Each multilayer network has
150 nodes and 100 layers, and each node is present in all lay-
ers. Every 25th layer (i.e., for layers 25, 50, and 75), we set
the value of pβ in Fig. 3a to pc = 0 (thereby introducing an
abrupt change in community structure) and set all other val-
ues of pβ in Fig. 3a to p. For InfoMap, the first data point for
each value of µ is the result of running monolayer InfoMap
separately on each layer of the corresponding multilayer net-
work. Each multilayer network has 150 nodes and 100 layers,
and each node is present in all layers. We use a Dirichlet
null distribution to specify expected community sizes and set
nc = 5, θ = 1, and q = 1 (see Section III C). We use the M-
DCSBM benchmark (see Section IV) with τk = −2, kmin = 3,
and kmax = 30 to generate intralayer edges. All results are
means over 10 runs of the algorithms on one instantiation of
the benchmark network for each value of the parameters.

total of 15 000 state nodes. We use variants of the Lou-
vain method to detect communities in panels (a)–(j), and
we use multilayer InfoMap in panels (k)–(o).

We make a few remarks about Fig. 10. First, we ob-
serve that the GenLouvain and GenLouvainRand al-
gorithms significantly exploit interdependencies between
community structure in the different layers of the mul-
tilayer network in this example for all three considered
values of p, whereas Infomap does not significantly ex-

ploit interdependencies in this example. In particular,
for most µ values, NMI values in Figs. 10(a)–(f) exceed
the NMI value obtained with monolayer modularity (i.e.,
ω = 0) for some ω range. In contrast, the NMI values
in Fig. 10(g–i) only slightly exceed that obtained with
monolayer Infomap for two values of µ (µ = 0 and
µ = 0.1). Note for GenLouvain and GenLouvain-
Rand that one expects NMI values to decrease for suffi-
ciently large values of ω, as such values of ω favor more
“persistence” of communities [20] than is the case for the
multilayer planted partition. As in Fig. 9, in many cases,
the peak of NMI for GenLouvain and GenLouvain-
Rand seems to occur for 2 / ω / 4. The abrupt change
in behavior of GenLouvain near ω = 1 in Figs. 10(a)–
(c) is related to the transition behavior described in [20].

VI. CONCLUSIONS

In this paper, we introduced a generative model for
mesoscale structures in multilayer networks. The three
most important features of our model are the following:
(1) it includes an explicitly parametrizable tensor P that
controls interlayer dependency structure; (2) our model
can be used to generate benchmarks for a rather gen-
eral class of multilayer networks (including, e.g., tem-
poral, multiplex, and multi-aspect multilayer networks);
and (3) our approach is modular, as its two main steps
(generating a multilayer partition and generating a mul-
tilayer network) are carried out successively and can be
modified separately. Along with our paper, we provide
publicly available code [65] that users can modify to read-
ily incorporate different types of interlayer dependency
structures (see Section III A), null distributions (see Sec-
tion III C), and monolayer network models with a planted
partition (see Section IV).

The ability to explicitly specify interlayer dependency
structure makes it possible for a user to control which lay-
ers depend directly on each other (by deciding which en-
tries in the interlayer dependency tensor are nonzero) and
the extent of such dependencies (by varying the magni-
tude of entries in the interlayer dependency tensor). One
can thereby generate multilayer networks with either a
single aspect or multiple aspects (e.g., temporal and/or
multiplex networks) and vary dependencies between lay-
ers from the extreme case in which induced partitions in
a planted multilayer partition are the same across layers
to the opposite extreme, in which induced partitions in a
planted multilayer partition are generated independently
for each layer from a null distribution for that layer. To
our knowledge, this level of generality is absent from ex-
isting generative models for mesoscale structures in mul-
tilayer networks, as those models tend to only consider
networks with a single aspect (e.g., temporal or multi-
plex) or limited interlayer dependency structures (e.g.,
the induced partitions in a planted multilayer partition
are the same across all layers). Moreover, to our knowl-
edge, no current generative model for mesoscale structure
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in multilayer networks includes an explicit parametriza-
tion of interlayer dependency structure.

As we have illustrated, our model is both general
and flexible. By using it to generate multilayer net-
works with specified interdependency structure in differ-
ent layers, one can (1) gain insight into whether, when,
and how to build in such dependencies into methods for
studying multilayer networks and (2) generate tunable
benchmarks for community-detection (or more generally,
“mesoscale-structure-detection”) methods for multilayer
networks. The explicit separation between our generative
model for a multilayer partition and our generative model
for a multilayer network with a given planted partition
readily allows the incorporation of additional salient fea-
tures of empirical multilayer networks.

We illustrated our generative model using several sim-
ple but important examples. Our goal was to illustrate
the use of our model with a few special cases of in-
terest rather than to explicitly discuss as many situa-
tions as possible. We focused on community structure
because it is a commonly studied mesoscale structure,
but one can also use our model to generate mesoscale
structures other than community structure in each layer
(e.g., core–periphery structure, bipartite structure, and
so on) by taking advantage of the flexibility of the degree-
corrected SBM. For our examples, we assumed that in-
terlayer dependencies exist either between all contiguous
layers (a special case of temporal networks) or between
all layers (a special case of multiplex networks). For the
case of temporal networks, we considered uniform and
nonuniform dependencies, and for the multiplex case,
we considered only uniform dependencies. However, our
model’s flexibility allows us to generate multilayer net-
works with more realistic features. For example, one can
define a “block multiplex” interlayer dependency tensor
by introducing dependencies between (say) layers from
the set {1, . . . , l/2} and also between layers from the set
{l/2 + 1, . . . , l} but not between a layer from one set and
a layer from the other (so that Fig. 3b is a block-diagonal
matrix with 0 entries on its two off-diagonal blocks). For
temporal networks, on can introduce dependencies be-
tween a layer and all layers that follow it (so that Fig. 3a
is an upper triangular matrix with nonzero entries above
the diagonal) to incorporate memory effects [80]. One
can also incorporate “burstiness” [81] in the inter-event-
time distribution of edges by modifying our multilayer
network model (as opposed to the partition model). In
this scenario, the probability for an edge to exist in a
given layer depends not only on the induced partition on
that layer but also on the existence of the edge in previous
layers. (For example, one could use a Hawkes process to
specify the time points at which edges are active [91, 92].)

Our model for sampling edges in Section V produces
the commonly studied case of a multilayer network with
no edges between layers and interdependent connectiv-
ity patterns in the different layers. However, other types

of multilayer networks are also important [51], and one
can readily combine our approach for generating multi-
layer partitions with different network generating models
that capture various important features. For example,
one can use an SBM to generate interlayer edges, or one
can replace the degree-corrected SBM in Section IV with
any other monolayer network model with a planted par-
tition or other interesting models (e.g., other variants of
SBMs [26, 32] and models for networks whose structure is
affected by space (perhaps spatially embedded) [8, 42] or
arbitrary latent features [64]). In all of these examples,
interdependencies between connectivity patterns in dif-
ferent layers result only from a planted multilayer parti-
tion. It is also possible to modify our network generation
process (see Section IV) to introduce additional depen-
dencies between layers beyond that induced by planted
mesoscale structure (e.g., by introducing dependencies
between a node’s degree in different layers [93, 94]).

Our work has the potential for many useful and in-
teresting extensions; we highlight three of these. First,
although we have given some illustrative numerical exam-
ples in Section V, the area of benchmarking community-
detection methods in multilayer networks is very far from
being fully developed. Generative models are useful tools
for understanding the behavior of community-detection
methods in detail and accordingly for suggesting ways of
improving heuristic algorithms without losing scalability.
Our model can serve as a test bed for gaining insight
into the advantages and shortcomings of community-
detection methods, and importantly we expect it to be
very informative for how they can be used in practice.
Second, a well-understood generative model can be a
powerful tool for statistical inference (i.e., inferring the
structure of a multilayer network rather than generat-
ing a multilayer network with a planted structure) [6].
Finally, it is enormously important to model interdepen-
dent data streams (not just fixed data sets) and detect
their structure in real time. It is critical to develop de-
velop generative models that can be adapted readily to
such situations, and our work in this paper is a step in
this direction.
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