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Abstract

Persistent homology is a method from computational algebraic topology that can

be used to study the “shape” of data. We illustrate two filtrations — the weight

rank clique filtration and the Vietoris–Rips (VR) filtration — that are commonly

used in persistent homology, and we apply these filtrations to a pair of data sets

that are both related to the 2016 European Union “Brexit” referendum in the United

Kingdom. These examples consider a topical situation and give useful illustrations of

the strengths and weaknesses of these methods.

1 Introduction

Persistent homology (PH) [5, 8–11, 16] is a method from computational algebraic

topology that can be used to study the “shape” of data. The studied data typi-

cally consists of networks or high-dimensional point clouds. PH is concerned with

topological invariants, such as connectedness and holes in high-dimensional objects,

over a range of different scales. Topological features that persist over many scales

are often considered to be significant for data shape, and features that persist only

over a small range of scales are construed as noise. PH has been applied to study

an increasingly diverse set of phenomena in a large variety of subjects. A small set

of the myriad examples include granular materials [14], protein binding sites [13],

brain-artery trees [4], and functional brain networks [7, 12,18].
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In the present article, we illustrate two filtrations that are commonly used in

PH: the weight rank clique filtration (WRCF) [17] and the Vietoris–Rips (VR) filtra-

tion [10]. We apply these filtrations to a pair of data sets that are both related to

the recent European Union (EU) referendum in the United Kingdom (UK) [3]. The

first data set consists of a weighted network based on the year that each European

country joined the EU and the second data set consists of two point clouds that were

constructed from voting results of the UK referendum. We give a detailed description

of both data sets in Subsections 2.1 and 3.1 respectively.

2 The EU Network

2.1 Constructing a Network

We define a network of EU countries based on the geographical location of the coun-

tries and the year in which they joined the European Union. Each current EU country

(as of June 2016) is a node in the network. We connect two countries by an edge if

they are neighbors via a common border (either in Europe or via overseas territories),

a bridge (Denmark–Sweden), or a tunnel (UK–France). We also connect Malta to

Italy and connect Cyprus to Greece because of their geographical proximity. We show

the resulting network in Fig. 1. We define the edge weight wi,j between countries i

and j to be the later of the two years in which those two countries joined the EU.

That is,

wi,j = max {year in which country i joined the EU, year in which country j joined the EU} .

2.2 Weight Rank Clique Filtration

We use a WRCF [15, 17] on the above weighted network to obtain a sequence of

embedded graphs, on which we examine PH. One constructs a WRCF as follows:

1. Define filtration step 0 as the set of all nodes.

2. Rank all edge weights {ν1, . . . , νend}, with ν1 = max1≤i,j≤28wi,j and νend =

min1≤i,j≤28wi,j.

3. In filtration step t, threshold the graph at weight νt to create a binary (i.e.,

unweighted) graph. After thresholding, edges with weight at least νt are present,

and edges with smaller weights are absent.
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Figure 1: Network of EU countries. We connect two countries by an edge if they are considered
neighbors via a border (either in Europe or abroad), a bridge, or a tunnel. We define the edge weight
between two countries to be the later of the two years in which they joined the EU. [We obtained
the employed map from Wikimedia [1].]

4. Find all maximal c-cliques for c ∈ N, and define them to be c-simplices.

We perform the WRCF on the EU network before the EU referendum and on a

network based on the future EU after the referendum results are implemented. In

this future EU, we have removed the two edges between the UK and the other EU

countries as if they never existed in the first place, but we keep all nodes as before.

We run the filtration from years 1953–2016 for the current EU network and 2016

onwards for the hypothetical future EU network. To visualize the results of the PH

computations, we show barcode diagrams [10] in Fig. 2.

In dimension 0, PH detects the connected components of the network in every

filtration step. In our case, every bar in the 0-dimensional barcode represents one EU

country. The countries merge as the EU grows over time until there is one large EU
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Figure 2: Barcodes for dimensions 0 (connected components) and 1 (loops) obtained from a weight
rank clique filtration performed on current and hypothetical future EU networks. See Table 1 for a
listing of EU enlargements.

Table 1: EU enlargements listed in the barcodes.

Founding countries Belgium, Germany, France, Italy, Luxembourg, and The
Netherlands

First enlargement Denmark, Ireland, and the United Kingdom
Fourth enlargement Austria, Finland, and Sweden
2004 enlargement Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hun-

gary, Malta, Poland, Slovakia, and Slovenia

component in 2013. Because of how we construct the edge weights in the network, we

note that although Greece joined the EU in 1981, it only joins the large EU component

in 2007 when its neighbor Bulgaria joined the EU. Similarly, in the barcode after the

2016 EU referendum, both the UK and Ireland are in separate components because

the latter (in our hypothetical “post-Brexit” world) has lost its connection to the

main EU component via the UK even though it is still a member of the EU.

In dimension 1, PH detects loops in the network. In the case of the WRCF

these loops consist of at least four edges. In other words, edges between three pair-

wise neighboring countries are not registered as loops, but the loop created by edges

between Switzerland’s neighboring countries of leads to a bar in the 1-dimensional

barcode starting in 1995 when Austria joins the EU. We remark that this is also the

only occurrence of a loop in this network.
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3 The Voting Point Cloud

3.1 Data Acquisition

We obtained UK voting data via the website “Number Cruncher Politics” [2]. We

extracted coordinates for one city per voting district by combining python scripts

and the Google Maps API. We thereby construct two point clouds: one, which we

call the leave point cloud, contains the coordinates of cities in voting districts that

voted to leave the EU; the other, which we call the remain point cloud, contains the

coordinates of cities in voting districts that voted to stay in the EU. We show both

point clouds in Fig. 3.
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Figure 3: Point clouds based on the 2016 EU referendum voting result in the UK. We show the
coordinates of “leave” districts in blue and the coordinates of “remain” districts in red.

3.2 Vietoris–Rips Filtration

We apply a VR filtration [10] to our point-cloud data. One constructs a VR filtration

as follows:

1. Choose a sequence ε of increasing distances: ε = {ε1, . . . , εn}.

2. In the ith filtration step, define k-simplices using unordered (k+1)-tuples whose

pairwise distance is at most εi.
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Figure 4: (Top two rows) Barcodes for dimensions 0 and 1 from a Vietoris–Rips filtration on (left)
the leave point cloud and (right) the remain point cloud. (Bottom row) UK referendum voting map
including the loops in dimension 1 of the Vietoris–Rips filtration.

We show the resulting barcodes in Fig. 4.

Our calculations reveal multiple loops in dimension 1 of the leave district barcodes

that are more persistent than other features of the barcode. In particular, London

and the region around Oxfordshire, Reading, and The Cotswolds stand out as two

holes in the leave district point cloud, as they voted in the opposite way as their

surrounding voting districts. However, we also note that the VR filtration detects

a persistent hole around Manchester, where there ought to be a non-persistent hole.

This is due to the fact that the points representing the surrounding voting districts

are located far away from Manchester, and this leads to an artificially large hole. In

the remain point cloud, we find a persistent hole around Birmingham in dimension 1.
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4 Conclusions

Our two examples illustrate the strengths and limitations of the applied PH methods.

For the weighted rank clique filtration on the country network, we find a single large

(and relevant) network loop around Switzerland in dimension 1. The WRCF in

dimension 0 gives a good idea of the years when countries join the EU, but the

results also depend heavily on the neighbors in the network, which leads to the method

suggesting erroneously that Greece joined the EU later than it actually did and Ireland

being illustrated as a separate component in the EU network after the UK leaves the

EU.

The Vietoris–Rips filtration points towards large groups of regions that have voted

differently than their surrounding regions, but we also find that the holes in dimension

1 depend on the choice of points to represent the voting districts.

The two methods that we have illustrated are of course not the only topological

methods that one could apply to the data set. For example, one could build a single

filtration for the EU network over all years that allows edges to disappear from one

filtration step to the next by using zigzag persistent homology [6, 19], or one could

focus on counting the number of persistent loops in the point-cloud data and compare

this to point clouds of other UK votes to see whether there are recurring vote shapes

(which could represent recurring voting patterns).
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