
Random walks and diffusion on networks

Naoki Masuda,1, ∗ Mason A. Porter,2, 3, 4 and Renaud Lambiotte5

1Department of Engineering Mathematics, University of Bristol, Bristol, UK
2Department of Mathematics, University of California Los Angeles, Los Angeles, USA

3Mathematical Institute, University of Oxford, Oxford, UK
4CABDyN Complexity Centre, University of Oxford, Oxford, UK

5Department of Mathematics/Naxys, University of Namur, Namur, Belgium
(Dated: December 19, 2016)

Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and
practical perspectives. They are one of the most fundamental types of stochastic processes; can be
used to model numerous phenomena, including diffusion, interactions, and opinions among humans
and animals; and can be used to extract information about important entities or dense groups of
entities in a network. Random walks have been studied for many decades on both regular lattices
and (especially in the last couple of decades) on networks with a variety of structures. In the present
article, we survey the theory and applications of random walks on networks, restricting ourselves to
simple cases of single and non-adaptive random walkers. We distinguish three main types of random
walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric
continuous-time random walks. We first briefly survey random walks on a line, and then we consider
random walks on various types of networks. We extensively discuss applications of random walks,
including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and
opinion models such as voter models.
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I. INTRODUCTION

Random walks (RWs) are popular models of stochas-
tic processes with a very rich history [1–5]. The term
“random walk” was coined by Karl Pearson [6], and the
study of RWs dates back to the “Gambler’s Ruin” prob-
lem analyzed by Pascal, Fermat, Huygens, Bernoulli,
and others [7]. Additionally, Albert Einstein formulated
stochastic motion (in the form of “Brownian motion”)
of particles in continuous time due to their collisions
with atoms and molecules [8]. Theoretical developments
have involved mathematics (especially probability the-
ory), computer science, statistical physics, operations re-
search, and more. RW models have also been applied in
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various domains, ranging from locomotion and foraging
of animals [9–12], the dynamics of neuronal firing [13, 14],
and decision making in the brain [15, 16] to population
genetics [17], polymer chains [18, 19], descriptions of fi-
nancial markets [20, 21], ranking systems [22], dimension
reduction and feature extraction from high-dimensional
data (e.g., in the form of “diffusion maps”) [23], and even
sports statistics [24]. RW theory can also help predict ar-
rival times of diseases spreading on networks [25]. There
exist several monographs and review papers on RWs.
Many of them treat RWs on classical network topologies,
such as regular lattices (e.g., Zd) and Cayley trees (i.e.,
trees in which each node has the same number of neigh-
boring nodes, which we henceforth call the node “de-
gree”) [4, 26–32]. Other monographs and surveys focus
on RWs on fractal structures, revealing diffusion proper-
ties that are “anomalous” compared to RWs on regular
lattices or Euclidean spaces (i.e., Rd) [29, 33–37]. Other
literature treats RWs on finite networks, which are equiv-
alent to a finite Markov chain (in the discrete-time case)
[1, 29, 38, 39] and are at the core of several stochastic
algorithms.

In parallel, “network science” has emerged in recent
years as a central approach to the study of complex
systems [40–43]. Networks are a natural representation
of systems composed of interacting elements and allow
one to examine the impact of structure on the dynam-
ics and function of a system (as well as the impact of
dynamics and function on network structure). Examples
include friendship networks, international relationships,
gene-regulatory networks, food webs, airport networks,
the internet, and myriad more. In each case, one can
represent the system’s connectivity structure as a set of
nodes (representing the entities in the system) and edges
(representing interactions among those entities). The
study of networks is highly interdisciplinary, and it in-
tegrates theoretical and computational tools from sub-
jects such as applied mathematics, statistical physics,
computer science, engineering, sociology, economics, bi-
ology, and other domains. Many networks exhibit com-
plex yet regular patterns that are explainable (sometimes
arguably) by simple mechanisms. Network science has
also had a strong impact on the understanding of dy-
namical processes because of the critical role of struc-
ture on spreading processes, synchronization, and others
[44–46]. As with RWs, numerous books and review pa-
pers have been written on networks, including textbooks
[41, 42, 47–49], general review articles [43, 50], and more
specialized reviews on topics such as dynamical processes
on networks [45, 46, 51], connections to statistical physics
[52, 53], temporal networks [54–56], multilayer networks
[57–59], and community structure [60–62].

The main purpose of the present review is to bring to-
gether two broad subjects — RWs and networks — by
discussing their many interconnections and their ensuing
applications. RWs are often used as a model for diffu-
sion, and there has been intense research on the impact of
network architecture on the dynamics of RWs. Moreover,

nontrivial network structure paves the way for different
definitions of RWs, and different definitions can be “nat-
ural” from some perspective, while leading to different
diffusive processes on the same network. Finally, RWs
are at the core of several algorithms to uncover struc-
tural properties in networks. We will discuss these points
further in the next three paragraphs.

First, RWs are often used as a model for diffusion, and
there has been intense research on the impact of net-
work architecture on the dynamics of RWs. The finite-
ness of a network — along with properties such as degree
heterogeneity, community structure, and others — can
make diffusion on networks both quantitatively and even
qualitatively different from diffusion on regular or infinite
lattices. RWs on networks are an example of a Markov
chain in which the network is the state space of the ran-
dom walker and the transition probabilities depend on
the existence and weights of the edges between nodes.
In this review, we will include a summary of results on
the dependence of dynamical properties — including sta-
tionary distribution and mean first-passage time — on
structural properties of an underlying network.

Second, the irregularity of underlying network struc-
ture opens the door for different definitions of RWs. Each
is “natural” from some perspective, but they lead to dif-
ferent diffusive processes even when considering the same
network. For example, it is useful to distinguish between
discrete-time and continuous-time RWs. On networks in
which degree (i.e., the number of neighbors) is heteroge-
neous (i.e., it depends on the node), one needs to subdi-
vide continuous-time RWs further into two major types,
depending on whether the random events that induce
walker movement are generated on nodes or edges and
corresponding to different types of propagators (normal-
ized versus unnormalized Laplacian matrices). Different
literatures use different variants of RWs, often implicitly.
We distinguish these different types of RWs and clarify
the relationship between them, and we discuss formula-
tions and results that are informed by empirical networks
(such as networks with heavy-tailed degree distributions,
multilayer networks, and temporal networks).

Finally, RWs lie at the core of many algorithms to un-
cover various types of structural properties of networks.
Consider the notion of identifying “central” nodes, edges,
or other substructures in networks [41]. A powerful set of
diagnostics (e.g., PageRank [22, 63] and eigenvector cen-
trality [64]) are derived based on recursive arguments of
the type “a node is important if it is connected to many
important nodes”, and such derivations often rely on the
trajectories of random walkers. Similarly, flow-based al-
gorithms, based on trajectories of dynamical processes
(e.g., random walks) being trapped within certain sets of
node for a long time, are helpful for discovering mesoscale
patterns in networks [62, 65]. These techniques and al-
gorithms open a wealth of applications that go well be-
yond classical applications of RWs. Their design benefits
both explicitly and implicitly from developing an under-
standing of how RW dynamics are influenced by network
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structure and how different types of RWs behave on the
same network.

There has been a vast amount of research on RWs
on networks, and it is scattered across disparate corners
of the scientific literature. It is impossible to cover ev-
erything, and we choose specific subsets of it to make
our review cohesive, although we will occasionally in-
clude pointers to other parts of the landscape. First,
we focus on the most standard types of RWs, in which
a random walker moves to a neighbor with a probability
proportional to edge weight, and their very close rela-
tives. We only very rarely mention some of the numerous
other types of random walks, which include correlated
RWs [66], self-avoiding RWs [67, 68], zero-range processes
[69], multiplicative random processes [70, 71], adaptive
RWs (including reinforced RWs [72]), branching RWs
[73], Lévy flights [31, 32], elephant RWs [74], quantum
walks [75, 76], mortal RWs [77], and so on. These pro-
cesses are of course fascinating, and many of the different
flavors of RWs are often developed with specific motiva-
tion from an application (e.g., a Pac-Man-like “hungry
RW” [78] has been used as a model for chemotaxis in a
porous medium), are often inspired by applications, such
as animal movement [10, 12] or financial markets [21],
and one can find discussions of different flavors of RWs
in Refs. [4, 31, 32]. Second, we will not cover many results
for RWs on particular generative models of networks, ex-
cept that we do give extensive attention to first-passage
times for fractal and pseudo-fractal network models (see
Section III B 5). Third, we will not discuss various impor-
tant, rigorous results from mathematics and theoretical
computer science. For such results, see [1, 4, 27, 38, 39].
We focus instead on results that we believe give physical
insight on RW processes and their applications.

As a final warning, we focus exclusively on diffusive
processes in which the total number of walkers (or, equiv-
alently, the total probability of observing a walker) is a
conserved quantity [79]. The only exception is in Sec-
tion V F, where we use “coalescing RWs” as an analytical
tool. As we will see, this conservation rule translates into
certain properties of the operator that drives the RW pro-
cess. When transposed, the operator leads naturally to
linear models for consensus dynamics (see Sections V F
and V G). Among notable non-conservative processes,
which we do not cover in this review, are classical epi-
demic processes [45, 46, 80, 81], in which the number of
entities (e.g., viruses or infected individuals) varies over
time. In the linear regime, corresponding to a small num-
ber of infected nodes, the propagator of infection events
in simple epidemic processes such as susceptible–infected
(SI) and susceptible–infected–recovered (SIR) models are
the adjacency matrix [82, 83]. In contrast, a propagator
of an RW is a type of Laplacian matrix, as we will discuss
in detail in Section III. If all nodes have the same degree,
these Laplacian and adjacency matrices are related lin-
early, and their dynamics are essentially the same [56, 84].
However, they are generically different for heterogeneous
networks, such as when degree depends on node identity.

Therefore, the difference between conservative dynamics
(described by a Laplacian matrix) and non-conservative
dynamics (described by the adjacency matrix) tends to
be more striking for heterogeneous than for homogeneous
networks. Other spreading models that are also beyond
the scope of this work include threshold models of so-
cial contagions [46, 85] (e.g., for modeling adoption of
behaviors) and reaction–diffusion dynamics [86].

The rest of our review proceeds as follows. In Section
II, we discuss RWs on the line. In Section III, we give
a lengthy presentation of RWs on networks. We then
discuss RWs on multilayer networks in Section IV A and
RWs on temporal networks in Section IV B. We discuss
applications in Section V, and we conclude in Section VI.

II. RANDOM WALKS ON THE LINE

In this section, we review some basic properties of RW
processes on one-dimensional space (i.e., the infinite line).
This section serves as a primer to later sections, in which
we examine RWs on general networks. In this and later
sections, we carefully distinguish between discrete-time
and continuous-time models.

A. Discrete time

Consider a discrete-time RW (DTRW) process on the
infinite line, which we identify with R1 ≡ R. There is
a single walker. At each discrete time step, it moves
from some node to some other node, including the case
of moving from a node to itself. The length and direction
of the move are both random variables. We assume that
the probability that a walker located at x moves to the
interval [x+ r, x+ r+ ∆r] in one step is equal to f(r)∆r.
The normalization is

∫∞
−∞ f(r)dr = 1, and we assume

that moves at different times are independent.
Let’s derive the probability density p(x;n) that a ran-

dom walker is located at a point x ∈ R after n steps. (For
emphasis, we sometimes use the term “discrete time” or
“event time” for n.) The master equation is given by

p(x;n) =

∫ ∞
−∞

f(x− x′)p(x′;n− 1)dx′ . (1)

It is convenient to solve Eq. (1) for general x and n in
the Fourier domain. We define the Fourier transform by

p̂(k;n) ≡
∫ ∞
−∞

p(x;n)e−ikxdx (2)

and the inverse Fourier transform by

p(x;n) ≡ 1

2π

∫ ∞
−∞

p̂(k;n)eikxdk . (3)

Note that p̂(−k, n) is the “characteristic function” of a
random variable x with probability density p(x;n). The
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Fourier transform f̂(k) of f(x) is sometimes called the
“structure function” of the RW. The Taylor expansion of
p̂(k;n) around k = 0 yields

p̂(k;n) =〈e−ikx〉

=1− ik〈x〉 − 1

2
k2〈x2〉+O(k3) , (4)

where 〈·〉 is the expectation unless we state otherwise.
One can thereby obtain moments of p(x;n) from the
derivatives of p̂(k;n) at k = 0.

The Fourier transform maps a convolution, such as
Eq. (1), to a product; and Eq. (1) thus yields

p̂(k;n) = f̂(k)p̂(k;n− 1) . (5)

If a random walker is located initially at x = 0, we obtain
p(x; 0) = δ(x), where δ(x) is the Dirac delta function,
which has Fourier transform p̂(k; 0) = 1. We thereby
obtain

p̂(k;n) =
[
f̂(k)

]n
. (6)

Using the inverse Fourier transform in Eq. (3), we obtain
a formal solution for p(x;n) in the time domain:

p(x;n) =
1

2π

∫ ∞
−∞

[
f̂(k)

]n
eikxdk . (7)

The qualitative behavior of the solution in Eq. (7) de-

pends on the details of the structure function f̂(k). How-
ever, the asymptotic behavior of the RW depends only

on some of the properties of f̂(k). When the first two

moments of f̂(k) are finite, the solution converges to the
Gaussian profile

p(x;n) =
1

(2πDn)1/2
e−

(x−vn)2

4Dn , (8)

where v ≡ 〈r〉 and D ≡ 〈(r − 〈r〉)2〉/2. Equation (8)
implies that the variance of x grows linearly with time.
This result is the “central limit theorem” for the sum
of the sizes of the moves, which are independent random
variables. This asymptotic regime is well-defined because
the underlying space (i.e., the line) is infinitely large. One
can derive these results in a similar manner when the un-
derlying space is discrete (e.g., a one-dimensional lattice)
[2, 4, 27, 28]. In situations in which the second moment
of the structure function diverges, the process exhibits
superdiffusion and the probability profile converges to
so-called “Lévy distributions” [31, 32].

B. Continuous time

In this section, we consider continuous-time RWs
(CTRWs), which incorporate the timing of moves [4, 5,
27, 31, 32, 87]. We assume that a walker waits between
two moves for a duration τ that independently obeys

for rwreview
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FIG. 1. Schematic of the standard continuous-time random
walk (CTRW) on a one-dimensional lattice. (a) The position
x of the walker in physical time t is described by p(x; t). Note
that tn represents the time of the nth move. (b) The position
of the walker after n moves is described by p(x;n).

the probability density function ψ(τ). In other words,
the move events are generated by a renewal process [3].
If τ = 1 with probability 1, the CTRW reduces to the
DTRW described in Section II A. In a standard CTRW,
one assumes that the time of a move event and the se-
lection of a destination in a given move are independent.
Therefore, a combination of ψ(τ) and f(r), where r is the
displacement in a single move, completely determines the
dynamical properties of a random walker.

Let tn denote the time of the nth move. By defini-
tion, tn =

∑n
i=1 τi, where each τi is independent and

identically distributed (i.i.d.) and drawn from some dis-
tribution ψ(τ). Additionally, we can write

p(x; t) =

∞∑
n=0

p(x;n)p(n, t) , (9)

where p(x; t) is the probability that the walker is located
at x at time t, the quantity p(x;n) is the probability that
the walker is located at x after n steps, and p(n, t) is the
probability density that the walker has moved n times at
time t. Note that it is crucial to distinguish p(x; t) and
p(x;n), and we illustrate the difference between these
probabilities with a schematic in Fig. 1. Equation (9)
reflects the fact that a walker can visit x at time t after
some number n of steps.

The probability p(x;n) is given by the same solution,
Eq. (7), as for the DTRW. To obtain p(x; t) from Eq. (9),
we need to examine p(n, t), and we thus need to consider
a renewal process generated by ψ(τ). According to the
elementary renewal theorem [88], the mean of n at time
t is

〈n〉 =
t

〈τ〉
. (10)

Equation (10) indicates that n(t) grows linearly with time
on average, irrespective of the details of the distribution
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ψ(τ). However, realized values of n are random, inducing
heterogeneity in the length of the RW “trajectory” (i.e.,
the walk measured in terms of the number of moves)
observed at a given time t.

When the CTRW is driven by a Poisson process, ψ(τ)
is the exponential distribution (i.e., ψ(τ) = βe−βτ ). In
this case, n obeys the Poisson distribution with mean βt.
That is,

p(n, t) =
(βt)n

n!
e−βt . (11)

It requires some effort to derive p(n, t) when ψ(τ) is
a general distribution. To calculate the time of the nth
event or the number of events in a given time interval, we
need to sum i.i.d. variables that obey ψ(τ). The duration
τ ≥ 0 is nonnegative, so we take a Laplace transform

ψ̂(s) =

∫ ∞
0

ψ(τ)e−sτdτ ≡ 〈e−sτ 〉 . (12)

The Taylor expansion of Eq. (12) is given by

ψ̂(s) =

∞∑
n=0

(−1)n
〈τn〉sn

n!
(13)

and implies that ψ̂(s) generates the moments of ψ(τ) if
they exist. One computes the inverse Laplace transform
by integrating in the complex plane:

ψ(τ) =
1

2πi

∫ c+i∞

c−i∞
ψ̂(s)esτds , (14)

where c is a real constant that is larger than the real part

of all singularities of ψ̂(s).
The probability that no event has occurred up to time

t is

p(0, t) =

∫ ∞
t

ψ(t′)dt′ , (15)

whose Laplace transform is

p̂(0, s) =
1− ψ̂(s)

s
. (16)

The probability that one event occurs in [0, t] is

p(1, t) =

∫ t

0

ψ(t′)p(0, t− t′)dt′ . (17)

By Laplace-transforming Eq. (17) and applying Eq. (16),
we obtain

p̂(1, s) = ψ̂(s)
1− ψ̂(s)

s
. (18)

By the same arguments, the probability density that n
events occur at times t1, t2, . . ., tn but at no other times

in [0, t] is given by ψ(t1)ψ(t2− t1) · · ·ψ(tn− tn−1)p(0, t−
tn). This yields [88, 89]

p̂(n, s) =
[
ψ̂(s)

]n 1− ψ̂(s)

s
. (19)

In the analysis of RWs, Eq. (19) relates two ways to count
time: one is in terms of the number of moves (n), and
the other is in terms of the physical time (t).

For a CTRW driven by a Poisson process, we obtain

ψ̂(s) =

∫ ∞
0

βe−βτe−sτdτ =
β

s+ β
. (20)

Substituting Eq. (20) into Eq. (19) yields

p̂(n, s) =

(
β

s+ β

)n
1

s+ β
. (21)

By taking the Fourier transform of Eq. (9) with respect
to x and the Laplace transform of Eq. (9) with respect
to t and then using Eqs. (6) and (19), we obtain

p̂(k; s) = p̂(k;n)p̂(n, s) (22)

=
1− ψ̂(s)

s

∞∑
n=0

f̂(k)nψ̂(s)n

=
1− ψ̂(s)

s

1

1− f̂(k)ψ̂(s)
. (23)

This result is central to the theory of CTRWs [87], and
we will extend it to the case of general networks in Sec-
tion III C 1. Taking the inverse transform of Eq. (23)
with respect to both time and space yields p(x; t), and
we can examine the behavior of the RW for large t by
expanding p̂(k; s) or p̂(x; s) for small s.

III. RANDOM WALKS ON NETWORKS

A. Notation

For our discussions, we assume that our networks are
finite. However, to estimate how certain quantities scale
with the number N of nodes, we sometimes examine the
N →∞ limit. We allow our networks to have self-edges
and multi-edges. We assume that the edge weights are
nonnegative, so our networks are unsigned. For now, we
assume that our networks are ordinary graphs (i.e., the
best-studied types of networks), but we will consider mul-
tilayer networks in Section IV A and temporal networks
in Section IV B. Because introducing edge weights does
not usually complicate RW problems, we assume that
our networks are weighted unless we state otherwise, and
we consider unweighted networks to be a special case of
weighted networks. We also assume that our networks
are directed unless we state otherwise. We summarize
our main notation in Table I.
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TABLE I. Main notation.
N number of nodes
M number of edges
vi the ith node (where i ∈ {1, . . . , N})
A The N × N weighted adjacency matrix of the network; the matrix component Aij ≥ 0 represents

the weight of the edge from node vi to node vj . In an undirected network, Aij = Aji (where
i, j ∈ {1, . . . , N}). In an unweighted network, Aij ∈ {0, 1} (again with i, j ∈ {1, . . . , N}).

L combinatorial Laplacian matrix
L′ random-walk normalized Laplacian matrix

si The strength of node vi in an undirected network; it is defined by si ≡
∑N

j=1Aij =
∑N

j=1Aji. In
an undirected and unweighted network, si is equal to the degree of vi, which we denote by ki.

sini In-strength of vi; it is defined by sini =
∑N

j=1Aji. In an unweighted network, sini is equal to the

in-degree of vi, which we denote by kini .

souti Out-strength of vi; it is defined by souti =
∑N

j=1Aij . In an unweighted network, souti is equal to the

out-degree of vi, which we denote by kouti .
〈k〉 mean degree, which is given by 〈k〉 =

∑
k kp(k) and indicates the sample mean of the degree for a

network
D The N × N diagonal matrix whose (i, i)th element is equal to souti (where i ∈ {1, . . . , N}). In an

undirected network, the (i, i)th element of D is equal to si.
n discrete time
t continuous time
pi probability that a random walker visits vi
p∗i stationary density of a random walker at vi
≈ approximately equal to
∝ proportional to

An undirected network is called “regular” if all nodes
have the same degree. Notably, many mathematical re-
sults for RWs on networks are restricted to regular graphs
[1, 39, 90]. In this review, we are interested in networks
with heterogeneous degree distributions, which tend to
be the norm rather than the exception in empirical net-
works in numerous domains [91].

In our discussions, we assume that undirected networks
are connected networks and that directed networks are
“weakly connected” (i.e., that they are connected when
one ignores the directions of the edges). It is clear (in
the absence of jumps such as “teleportation” [22] to aug-
ment the RW) that a random walker is confined in the
component in which it starts, and the analysis of RWs
is then reduced to analysis within each component. See
[41] for extensive discussions of components and weakly
connected components.

B. Discrete time

1. Definition and temporal evolution

Consider a DTRW on a directed network. We suppose
that there is a single walker, which moves during each
time step. When the walker is located at vi, it moves
to the out-neighbor vj with a probability proportional to
Aij . The transition-probability matrix T has elements
Tij , which give the probability that the walker moves

from vi to vj , of

Tij =
Aij
souti

. (24)

Other choices of T , informed by the adjacency matrix
A, are also possible. One example is a “degree-biased
RW” in unweighted (and usually undirected) networks
[92–97]; in this case, Tij ∝ kαj , where α is a constant. If
Aij = Aji = (kikj)

α, then T given by Eq. (24) gives
this degree-biased RW. Another example of a biased
transition-probability matrix T is a “maximum entropy
RW” [98–102].

Because a random walker must go somewhere — in-
cluding perhaps the current node — in a given move, the
following conservation condition holds:

N∑
j=1

Tij = 1 . (25)

A DTRW on a finite network is a Markov chain on
N states. There is a huge literature (both pedagogical
and more advanced) on Markov chains in general and
for RWs in particular. This is especially true for finite
state spaces (corresponding to finite networks) and for
stationary Markov chains in which the transition prob-
ability does not depend on discrete time n [1, 103–111].
We draw from this literature to explain several properties
of DTRWs in the rest of this section.

Let pi(t) denote the probability that node vi is visited



7

at discrete time n. This probability evolves according to

pj(n+ 1) =

N∑
i=1

pi(n)Tij (j ∈ {1, . . . , N}) . (26)

Additionally,

N∑
i=1

pi(n) = 1 (27)

for any n if Eq. (27) holds for n = 0. Equation (26) is
equivalent to

p(n+ 1) = p(n)T , (28)

where p(t) = (p1(n) , · · · , pN (n)). From Eq. (28), we see
that

p(n) = p(0)Tn . (29)

2. Stationary density

Consider the stationary density (i.e., the so-called
“occupation probability”) p∗ = (p∗1, . . . , p

∗
N ), where

p∗i = limn→∞ pi(n) (with i ∈ {1, . . . , N}). Substituting
pi(n) = pi(n+ 1) = p∗i into Eq. (28) yields

p∗ = p∗T . (30)

Therefore, the stationary density is the left eigenvector of
T with eigenvalue 1. The corresponding right eigenvector
is (1 , . . . , 1)>, where > represents transposition.

For a directed network that is “strongly connected”
(i.e., a walker can travel from any node vi to any other
node vj along directed edges [41]), p∗ is unique. In undi-
rected networks, one just needs a network to be con-
nected, which we have assumed.

In undirected networks, we obtain the central result

p∗i =
si∑N
`=1 s`

(i ∈ {1, . . . , N}) , (31)

which one can verify by substituting Eq. (31) into
Eq. (30). For unweighted networks, Eq. (31) reduces to
p∗i = ki/2M . Regardless of other structural properties of
a network, the stationary density is determined solely by
strength (and thus by degree for unweighted networks).
Equation (31) also holds for directed networks that sat-
isfy si ≡ sini = souti (where i ∈ {1, . . . , N}). Such directed
networks are sometimes called “balanced” [1].

In undirected networks,

p∗i Tij = p∗jTji . (32)

In other words, for each edge, the flow of probability in
each direction must equal each other at equilibrium. This
property, called “detailed balance” in statistical physics
[112] and “time reversibility” in mathematics, does not
generally hold for directed networks.

for rwreview

s1 = 2

v4

v1

v3

v2

(a) original (b) modified

2

1

1

1

s3 = 4

s2 = 3

s4 = 1 v4

v1

v3

v2

12 = s2s3

4 = s3s4

6 = s1s2

8 = s1s3

FIG. 2. Strength-biased RW. (a) An original undirected net-
work, whose weighted adjacency matrix is given by A. (b)
The modified undirected network, whose weighted adjacency
matrix is given by A′. The numbers attached to the edges
represent the edge weight. We set α = 1.

Let’s consider a generalization of the degree-biased
RW to weighted networks (i.e., a strength-biased RW)
in which the probability that a random walker located at
node vi or vj traverses the edge (vi, vj) is proportional
to (sisj)

α. It follows that

Tij =
(sisj)

α∑N
`=1(sis`)α

=
sαj∑

`;v`∈Ni
sα`

, (33)

where Ni is the neighborhood of vi. A strength-biased
RW is equivalent to an RW on a modified undirected
network whose weighted adjacency matrix is given by
A′ij = (sisj)

α (see Fig. 2 for an example). The strength
of node vi in this modified network is given by s′i =∑N
j=1A

′
ij = sαi

∑N
j;vj∈Ni

sαj . By substituting s′i into

Eq. (31) in place of si, we obtain the stationary den-

sity p∗i = sαi
∑
vj∈Ni

sαj
/∑N

i′=1 s
α
i′
∑
vj′∈Ni′

sαj′ . For an

unweighted network constructed using a “configuration
model” [113], a standard model of random networks, we
obtain p∗i ≈ kα+1

i /
∑
`=1 k

α+1
` [114–116]. In particu-

lar, we obtain p∗i = 1/N for all nodes when α = −1.
Therefore, in general, we expect that a node with a large
strength tends to have a large p∗i when α > −1 (including
for the unweighted case α = 0) and that the same node
tends to have a small p∗i when α < −1. For nodes with
a large strength, we expect p∗i to increase as α increases.

For directed networks in general, one can write a
first-order approximation to the stationary density from
Eq. (30). We assume that we do not possess any infor-
mation about the neighbors of vi, so we replace p∗j and

soutj by their mean values:

p∗i =

N∑
j=1

p∗j
Aji
soutj

≈ (const)×
N∑
j=1

Aji ∝ sini . (34)

On both synthetic and empirical networks, Eq. (34) is
reasonably accurate in some cases but not in others [117–
124].
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3. Relaxation time

To determine the relaxation time to the stationary
state, it is instructive to project the solution, Eq. (29),
onto an appropriate basis of vectors and to represent it
in terms of its modes. The procedure, which is analogous
to taking a Fourier transform [see Eq. (2)], is sometimes
called a “graph Fourier transform” [125, 126] and will be
explained in this section [see Eqs. (42)–(44)].

For simplicity, we consider undirected networks. In
general, the transition probability matrix T is asym-
metric even for undirected networks, except for regu-
lar graphs. However, one can derive its eigenvalues and
eigenvectors from those of the symmetric matrix

Ãij =
Aij√
sisj

, (35)

which we can decompose as follows:

Ãij =

N∑
`=1

λ`u`u
>
` , (36)

where λ` is the `th eigenvalue of Ã and u` is the corre-
sponding normalized eigenvector (so that 〈u`,u`′〉 = δ``′ ,
where 〈 , 〉 is the inner product), and δ is the Kronecker

delta. Because Ã is symmetric, each eigenvalue λ` is real.
Because Tij =

√
sjÃij/

√
si, we have the following sim-

ilarity relationship between T and A [1, 127]:

T = D−1/2ÃD1/2 , (37)

where we defined D (a matrix whose nonzero entries lie
only on the diagonal) in Section III A. Equation (37) im-

plies that T and Ã have the same eigenvalues. In par-
ticular, all eigenvalues of T are real-valued, because that
is the case for Ã. The left and right eigenvectors of T
corresponding to the eigenvalue λ` are, respectively,

uL
` =u>` D

1/2 = ((u`)1
√
s1, . . . , (u`)N

√
sN ) (38)

and

uR
` =D−1/2u` = ((u`)1/

√
s1, . . . , (u`)N/

√
sN )

>
.
(39)

One can verify Eqs. (38) and (39) using Eq. (37) and the

relation Ãu` = λ`u`.
Using

Tn = D−1/2ÃnD1/2

= D−1/2
N∑
`=1

λn` u`u
>
` D

1/2

=

N∑
`=1

λn` u
R
` u

L
` , (40)

we obtain the following mode expansion of the solution
of the RW:

p(n) = p(0)Tn =

N∑
`=1

λn` u
L
` 〈p(0),uR

` 〉 . (41)

That is,

pi(n) =

N∑
`=1

a`(n)(uL` )i , (42)

where

a`(n) = λn` a`(0) , (43)

a`(0) ≡ 〈p(0),uR
` 〉 , (44)

and a`(n) is the projection onto the `th eigenmode.
Equations (42)–(44) map the state vector p(n), which
is defined on the nodes, to a vector (a1(n), . . . , aN (n))
of eigenvector amplitudes (i.e., their coefficients). This
transform, called the “graph Fourier transform”, gen-
eralizes the standard Fourier transform of an RW [see
Eqs. (3) and (7)], and the eigenvectors of the transition-
probability matrix T play the role of the Fourier modes
eikx.

For the matrix T and Ã, the eigenvalues λ` each sat-
isfy −1 ≤ λ` ≤ 1 [1, 39]. Except in the special cases of
multipartite graphs, the strict inequality λ` > −1 also
holds. In this case, the mode with λ` = 1 corresponds
to the stationary density, and we thus write uL

` = p∗.
The right eigenvector that corresponds to this mode is
uR
` ∝ (1, . . . , 1)>. All modes for which −1 < λ` < 1 de-

cay to 0. The eigenvalue λ` = 1 is the largest-magnitude
eigenvalue, and the Perron–Frobenius theorem guaran-
tees that all elements of uL

` and uR
` are positive. Similar

results hold for directed networks, although we cannot
take advantage of the symmetric structure of the matrix
Ã in general. In directed networks, the eigenvalues sat-
isfy −1 ≤ |λ`| ≤ 1. When −1 < |λ`| < 1 holds for all
but one eigenvalue, which is the case except for directed
variants of multipartite graphs with an even number of
components, the mode with λ` = 1 corresponds to the
stationary density. In this case, we obtain uL

` = p∗ and
uR
` ∝ (1, . . . , 1)>. Again, the Perron–Frobenius theo-

rem guarantees that all elements of uL
` are positive.

By letting n → ∞ in Eq. (41), we obtain p∗ =
uL
max〈p(0),uR

max〉, where the subscript “max” indicates
the mode corresponding to the dominant eigenvalue
(which is equal to 1). Because uR

max ∝ (1, . . . , 1)>,
it follows that 〈p(0),uR

max〉 = 1 regardless of the initial
condition p(0). This is consistent with the fact that uL

max

gives the stationary density. By letting n be large but fi-
nite, we obtain

p(n) ≈ uL
max〈p(0),uR

max〉+ λn2u
L
2 〈p(0),uR

2 〉 , (45)

where λ2 is the second-largest (in magnitude) eigenvalue
of T . In deriving Eq. (45), we only kept two terms, be-
cause |λ`|n � |λ2|n for all eigenvalues λ` with ` > 2,
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assuming that |λ`| < |λ2| (where ` ∈ {3, . . . , N}). Equa-
tion (45) indicates that the second-largest eigenvalue of
T governs the relaxation time. More generally, the relax-
ation speed is determined by the ratio between |λ2| and
λmax = 1. The difference 1−λ2 is often called the “spec-
tral gap”. A large spectral gap (i.e., a small-magnitude
for λ2) entails fast relaxation.

The “Cheeger inequality” gives useful bounds on λ2
[128]. The “Cheeger constant”, which is also called “con-
ductance”, is defined by

h = min
S

{
(number of edges that connect S and S)

min{vol(S), vol(S)}

}
,

(46)
where S is a set of nodes in a network, S is the comple-
mentary set of the nodes (i.e., S ∩S = ∅ and S ∪S is the

complete set of the N nodes), and vol(S) ≡
∑N
i=1;vi∈S si.

In the minimization in Eq. (46), we seek a bipartition of
a network such that the two parts are the most sparsely
connected. (In other words, we want a minimum cut.)
The denominator in the right-hand side of Eq. (46) pre-
vents the selection of a very uneven bipartition, which
would easily yield a small value for the numerator. The
Cheeger inequality is

h2

2
< 1− |λ2| ≤ 2h , (47)

so a small Cheeger constant h implies a small spectral gap
1− |λ2| and hence slower relaxation. This result is intu-
itive, because one can partition a network with a small
value of h into two well-separated communities such that
it is difficult for random walkers to cross from one com-
munity to the other. Note that there are various versions
of Cheeger constants and inequalities. They give quali-
tatively similar — but quantitatively different — results
[1, 39, 51, 129–131]. As discussed in Ref. [65] and refer-
ences therein, such results are important considerations
for community detection.

A fact related to the relaxation time is that the power
method is a practical method to calculate the stationary
density of an RW in a directed network. Suppose that
we start with an arbitrary initial vector p(0), excluding
one that is orthogonal to p∗, and repeatedly left-multiply
it by T . After many iterations, we obtain an accurate
estimate of p∗. Because any p(0) that is orthogonal to
p∗ includes a negative entry, one can start iterations with
any probability vector p(0). In practice, one may have to
normalize p(n) after each iteration (or after some number
of iterations) to avoid the elements of p(n) becoming too
large or small.

4. Exit probability

One is often interested in the probability that a random
walker terminates at a particular node, which is then
called an “absorbing state”. Upon reaching an absorbing

state, a stochastic process cannot escape from it. A node
vi is “absorbing” if and only if Tii = 1, which implies
that Tij = 0 (for j 6= i). A set of nodes is an “ergodic”
set if (1) it is possible to go from vi to vj for any nodes
in the set and (2) the process does not leave the set once
it has been reached. An absorbing node is an ergodic set
that consists of a single node. A state in a Markov chain
is said to be a “transient state” if it does not belong to
an ergodic set.

When an RW is composed of N1 transient-state nodes
and N2 absorbing-state nodes, there are N1 + N2 = N
nodes in total. Without loss of generality, we relabel the
nodes such that v1, . . ., vN1 are transient and vN1+1, . . .,
vN are absorbing. The transition-probability matrix T
then has the following form:

T =

(
Q R
0 I

)
, (48)

where Q is an N1 ×N1 matrix that describes transitions
between transient-state nodes, R is an N1 × N2 matrix
that describes transitions from transient-state nodes to
absorbing-state nodes, and I is the N2×N2 identity ma-
trix that corresponds to individual absorbing-state nodes.
Taking powers of Eq. (48) yields

Tn =

(
Qn R+QR+ · · ·+QRn−1

0 I

)
. (49)

Suppose that we start from transient-state node vi and
want to calculate the mean number of visits to transient-
state node vj before reaching an absorbing-state node.
This number of visits is equal to the (i, j)th element of
the matrix

W =

∞∑
n=0

Qn = (I −Q)
−1

, (50)

because the (i, j)th element of Qn is equal to the prob-
ability that a random walker starting from vi visits vj
at discrete time n. The matrix W is called the “funda-
mental matrix” associated with Q. The matrix on the
right-hand side of Eq. (50) is called the “resolvent” of
Q. Similar considerations arise in the study of “central”
(i.e., important) nodes in networks [132].

The “exit probability” (i.e., the “first-passage-time
probability”) is defined as the probability Uij that the
walker terminates at an absorbing state vj when it starts
from a transient state vi. When there are multiple
absorbing-state nodes, it is nontrivial to determine the
exit probability. The probability that the walker reaches
vj after exactly n steps is given by the (i, j)th element
of Qn−1R. Therefore, we obtain the exit probability in
matrix form as follows:

U =

∞∑
n=1

Qn−1R = WR . (51)
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5. Mean first-passage and recurrence times

When does a random walker starting from a certain
source node arrive at a target node for the first time?
The answer to this question is known as the “first-passage
time” (or “first-hitting time”) if the source and target
nodes are different and is known as the “recurrence time”
(or the “first-return time”) when the source and target
nodes are identical. Let mij (with i 6= j) denote the
mean first-passage time (MFPT) from node vi to node vj .
The mean recurrence time is mii. For directed networks,
we assume strongly connected networks throughout this
section to guarantee thatmij <∞ (for i, j ∈ {1, . . . , N}).
For reviews on first-passage problems on networks and
other media, see [28, 37].

General networks: Let’s first consider some general re-
sults. The following identity holds [1, 103, 104, 106]:

mij = 1 +
N∑

`=1; 6̀=j

Ti`m`j . (52)

In its first step, a random walker moves from node vi
to node v`, which produces the 1 on the right-hand side
of Eq. (52). If ` = j, then the walk terminates at v`,
resulting in a first-passage time of 1. Otherwise, we seek
the first-passage from node v` (with ` 6= j) to node vj .
This produces the second term on the right-hand side.
Note that Eq. (52) is also valid when i = j.

In matrix notation, we write Eq. (52) as

M = J + T (M −Mdg) , (53)

where M = (mij), all of the elements of the matrix J
are equal to 1, and Mdg is the diagonal matrix whose
diagonal elements are equal to mii. By left-multiplying
Eq. (53) by p∗ and using p∗J = (1, . . . , 1) and p∗T =
p∗, we obtain the mean recurrence time

mii =
1

p∗i
. (54)

Equation (54) is called “Kac’s formula” [1, 109, 110].
There are several different ways to evaluate the MFPT

mij (with i 6= j), and it is insightful to discuss different
approaches.

One method is simply to iterate Eq. (52) [106].
A second method to calculate the MFPT, for a given

j, is to rewrite Eq. (52) as

m(j) = 1 + T
(j)

m(j) , (55)

where m(j) = (m1j , . . . ,mj−1,j ,mj+1,j . . . ,mNj)
>

and 1 = (1, . . . , 1)> are (N − 1)-dimensional column

vectors and T
(j)

is the (N − 1) × (N − 1) submatrix of
T that excludes the jth row and jth column [115]. The
formal solution of Eq. (55) is

m(j) =
(
L
(j)
)−1

D
(j)

1 , (56)

where D
(j)

is the submatrix of D that excludes the jth

row and jth column and L
(j)

= D
(j) − A(j)

, where A
(j)

is the submatrix of A that excludes the jth row and jth

column. The matrix L
(j)

is sometimes called a “grounded
Laplacian matrix” [133] (although it is not a Laplacian
matrix), and it is invertible because we assumed strongly
connected networks. One can derive and solve Eq. (56)
separately for each j.

A third method to calculate the MFPT is to take ad-
vantage of relaxation properties of RWs [134]. Let pij(n)
denote the probability that a walker starting at node vi
visits node vj after n moves. The master equation is

pij(n+ 1) =

N∑
`=1

pi`(n)T`j . (57)

Let Fij(n) denote the probability that the walker starting
from vi arrives at vj for the first time after n moves. We
obtain

pij(n) = δn0δij +

n∑
n′=0

Fij(n
′)pjj(n− n′) . (58)

Using a discrete-time Laplace transform (see, e.g., [135]
for an extensive discussion of such generating functions),
defined by

p̂ij(s) ≡
∞∑
n=0

e−snpij(n) (59)

and

F̂ij(s) ≡
∞∑
n=0

e−snFij(n) , (60)

we transform Eq. (58) to

p̂ij(s) = δij + F̂ij(s)p̂jj(s) (61)

and thereby obtain

F̂ij(s) =
p̂ij(s)− δij
p̂jj(s)

. (62)

Using Eq. (62) then yields

mij =

∞∑
n=0

nFij(n) = −F̂ ′ij(0)

=
−p̂′ij(0)p̂jj(0) + p̂′jj(0) [p̂ij(0)− δij ]

p̂jj(0)2
. (63)

To evaluate Eq. (63), we define

R
(m)
ij ≡

∞∑
n=0

nm
[
pij(n)− p∗j

]
. (64)

Equation (64) quantifies the relaxation speed at which
pij(n) approaches the stationary density. To write the
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Laplace transform, we multiply both sides of Eq. (64) by
(−1)msm/m! and sum over m. We thereby obtain

∞∑
m=0

R
(m)
ij (−1)m

sm

m!
=

∞∑
m=0

∞∑
n=0

nm(−1)m
sm

m!

[
pij(n)− p∗j

]
=

∞∑
n=0

e−sn
[
pij(n)− p∗j

]
= p̃ij(s)−

p∗j
1− e−s

. (65)

Substituting Eq. (65) into Eq. (62) then yields

F̂ij(s) =

p∗j
s+o(s) +

∑∞
m=0R

(m)
ij (−1)m sm

m! − δij
p∗j

s+o(s) +
∑∞
m=0R

(m)
jj (−1)m sm

m!

=
p∗j +R

(0)
ij s− δijs+ o(s)

p∗j +R
(0)
jj s+ o(s)

= 1 +
R

(0)
ij −R

(0)
jj − δij

p∗j
s+ o(s) , (66)

where o(s) represents a quantity that is much smaller
than s in the relevant asymptotic limit (s → 0 in the
present case). Consequently,

mij = −F̂ ′ij(0) =


1
p∗j

(j = i) ,

R
(0)
jj −R

(0)
ij

p∗j
(j 6= i) ,

(67)

which is consistent with Kac’s formula [see Eq. (54)]. For

undirected networks, substituting p∗j = sj/
∑N
`=1 s` into

Eq. (67) yields

mij =


∑N

`=1 s`
sj

(j = i) ,∑N
`=1 s`
sj

(
R

(0)
jj −R

(0)
ij

)
(j 6= i) .

(68)

A fourth method to examine the MFPT is to estimate
mij using a mean-field approximation [136–138]. Regard-
less of the source node vi, the target node vj is reached
with an approximate probability of p∗j in each time step.
Therefore,

mij ≈
∞∑
n=1

np∗j (1− p∗j )n−1 =
1

p∗j
= mjj . (69)

Equation (69) is a rather coarse approximation, and mij

can deviate considerably from mjj = 1/p∗j . More sophis-
ticated mean-field approaches can likely do better, espe-
cially for networks with structures that are well-suited to
the employed approximation.

There have been many studies of MFPTs for various
network models using both analytical and numerical ap-
proaches [28, 139–143]. We will discuss some examples of
undirected and unweighted networks. We focus mainly

on the MFPT between difference nodes, although it is of
course also interesting to calculate recurrence times.

Regular networks: For a complete graph, mij (with
i 6= j) is independent of i and j because of the symmetry
of the network. Therefore, Eq. (52) reduces to

mij =
1

N − 1
+
N − 2

N − 1
(1 +mij) , (70)

which yields mij = N − 1 for i 6= j. Kac’s formula [see
Eq. (54)] implies that mii = N .

For regular lattices Zd of any dimension d, Eq. (54)
implies that mii ∝ N because p∗i ∝ ki = 2d for any
i. Define m•j to be the MFPT averaged over all source
nodes i 6= j [144]. For Zd, it satisfies the scalings m•j ∝
N2 for d = 1, m•j ∝ N lnN for d = 2, and m•j ∝ N for
d = 3.

Erdős–Rényi (ER) random graphs: Consider an ER
random graph G(N, p), where p denotes the (indepen-
dent) probability that each node pair has an edge. As-
suming that the mean degree 〈k〉 is kept constant (i.e.,
p = 〈k〉/(N − 1) ∝ 1/N), we obtain mii ∝ N and
mij ∝ N3/2 (with i 6= j) as N → ∞ [145] for the “gi-
ant component” (i.e., a largest connected component that
scales linearly with the number N of network nodes as
N → ∞ [41]). Now suppose that we assume instead
that p > lnN/N , so that all nodes belong to a single
component (in the N → ∞ limit) and thus mij (for
i, j ∈ {1, . . . , N}) is well-defined. It then follows that
mij averaged over all source and target nodes is equal to
N − 1, independently of p [146, 147]. In other words, for
a sufficiently dense ER random graph, the MFPT is the
same as that for the complete graph.

Other network models with random features: Much ef-
fort in studying RWs on networks has considered first-
passage times on Watts–Strogatz (WS) small-world net-
works [139, 148–153]. As expected, given that WS net-
works interpolate between regular lattices and ER net-
works [154], these studies have found that the behavior
of an RW on WS networks lies somewhere between that
on a regular lattice and that on ER graphs.

Equation (68) has also been elaborated further for
“scale-free” networks, which are defined as networks with
a power-law degree distribution p(k) ∝ k−γ , where p(k)
is the degree distribution. Let’s consider scale-free net-
works that are generated by a “configuration model”
[113], so there are no degree–degree correlations. We
examine the mean of the MFPT mij over the position of
the source node i 6= j, which we select according to the
stationary density. We use m̃•j to denote this weighted
mean of the MFPT over i. This mean is distinct from
the unweighted mean m•j . For scale-free networks con-
structed using a configuration model, we obtain for large
N that [155]

m̃•j ∝


N2/ds (ds < 2) ,

Nk
(1−2/ds)(γ−1)
j (2 < ds < 2(γ − 1)/(γ − 2)) ,

Nk−1j (ds > 2(γ − 1)/(γ − 2)) ,

(71)



12

where ds ≡ 2df/dw is the “spectral dimension” of the
network; the “fractal dimension” df is defined as the ex-
ponent of the scaling relation Nr ∝ rdf , where Nr is the
number of nodes within distance r from a source node;
and the “walk dimension” dw is defined from the scaling
relation 〈r2〉 ∝ t2/dw , where r is the distance between
the current position of the walker and the source node
[33, 36]. In practice, one calculates the walk dimension
as the scaling exponent for the time texit for a random
walker to exit from a sphere of radius r from the source
node (so that texit ∝ rdw) [156]. For regular lattices,
dw = 2, and the diffusion is thus called “normal”. If
dw 6= 2, the diffusion is called “anomalous” [36]. For
the “compact exploration” case of ds < 2, Eq. (71) sug-
gests that the asymptotic scaling of m̃•j with N does not
depend on the target node at leading order. However, if
ds > 2 (the second and the third cases in Eq. (71)), nodes
with higher degrees are reached faster. In particular, for
networks that satisfy the “small-world property” (i.e.,
the mean path length between nodes scales proportion-
ally to lnN or even more slowly) [157], including popular
scale-free network models (such as ones generated by a
configuration model), one obtains ds =∞ (and ds is very
large for many empirical networks). Therefore, the third
case in Eq. (71) applies.

Fractal and pseudo-fractal networks: There are vari-
ous deterministic mechanisms to grow networks in a re-
cursive manner. Depending on the mode, these algo-
rithms yield “pseudo-fractal” scale-free networks [158]
(also called “hierarchical networks” [159, 160] or “trans-
fractals” [161]; see Table II for different meanings of the
term “hierarchical network” that exist in the literature),
which have a highly symmetric structure and satisfy the
small-world property; fractal networks that do not satisfy
the small-world property [161–163]; or classical fractals
[36]. These objects are defined and studied in the limit
N → ∞. For such models, it is often possible to exploit
their deterministic and recursive nature to exactly calcu-
late the MFPT, and generating functions again can be
helpful.

Let’s start by looking at fractals that do not have a
heavy-tailed degree distribution. In a recursive process
of generating a fractal structure from a model of a frac-
tal, we stop the process in each iteration and regard any
intersection with more than one edges as a node. In
this way, we define a network corresponding to each it-
eration. The recursive process generates a series of net-
works, where the number N of nodes becomes larger as
one iterates further. We are interested in how the MFPT
scales in such networks as a function of N . For example,
consider a network constructed from the Sierpinski gas-
ket [167]. When the target node is located at the apex
of the gasket, the MFPT averaged over a uniform distri-
bution of the source node is m•j ∝ N ln 5/ ln 3 ≈ N1.46

[36, 145, 168]. Another example is the so-called “T-
graph”, which is produced by the initial condition of two
nodes connected by an edge and recursive replacement of
each edge by a star composed of four nodes to produce

TABLE II. The term “hierarchical network” has been used
(sometimes in a misleading way) to describe various network
structures. To help readers, we provide a short summary of
three common uses.

Hierarchical
modularity

A hierarchical network can indicate the pres-
ence of “hierarchical modularity”, in which
dense modules are themselves composed of
dense submodules in the recursive manner
of a “Russian doll” [164].

Status theory One can also understand a hierarchy in the
context of “status theory”, in which certain
nodes have a higher status than others, and
a directed edge indicates a difference of sta-
tus [165]. This notion leads naturally to
trees that are dominated by a root and, more
generally, to acyclic networks [166].

Pseudo-fractal
networks

Some models of pseudo-fractal networks
are sometimes called hierarchical networks.
Ravasz and Barabási proposed to character-
ize such “hierarchical” structure by exam-
ining a scaling relation between clustering
coefficient and node degree [159, 160].

a fractal [169, 170]. For the T-graph, the MFPT when
the target is the unique central node and the source node
is distributed uniformly over the N − 1 remaining nodes
is m•j ∝ N ln 6/ ln 3 ≈ N1.63 [171]. Yet another exam-
ple are so-called “Vicsek fractals”, which are produced
by the initial condition of a star having f + 1 nodes and
recursive addition of f replicas of the current network,
such that each replica network is connected to the cur-
rent network by one edge between leaves (i.e., between
a node with degree 1 in a replica and a node with de-
gree 1 in the current network) [172, 173]. For Vicsek
fractals, the MFPT averaged over all pairs of source and
target nodes, chosen from all possible pairs and denoted
by m••, scales as m•• ∝ N ln(3f+3)/ ln(f+1) [174]. Simi-
lar scaling results have also been studied in other deter-
ministic and stochastic fractals and heterogeneous media
[28, 36, 170, 175].

Now let’s consider fractal networks that have a power-
law degree distribution. One generates a so-called
“(u, v)-flower”, where u and v are integers, by start-
ing with two nodes connected by an edge and replac-
ing each edge by two parallel paths of length u and v
in each generation. This model produces fractal and
scale-free networks for u, v ≥ 2 [161, 176]. The de-
gree distribution of a (u, v)-flower is p(k) = k−γ , where
γ = 1+ln(uv)/ ln 2. For this network, the MFPT between
so-called “hubs” (which, in this context, are defined as
nodes that are present in the same finite generation and
whose degree thus becomes infinite as N →∞) scales as

mij ∝ N
ln(uv)

ln(u+v) [161]. Consistent with this result, when
u = v, the MFPT, averaged over source-node position
(which is distributed according to the stationary density),
to the node with the largest degree (i.e., one of the two
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nodes that exist initially) is given by m̃•j ∝ N2 lnu/ ln(2u)

[177]. A tree-like network model, called the “(u, v)-tree”,
is produced if, in each generation, one replaces every edge
by a path of u edges and add two new paths of v/2 edges
that start from each end point of the already added path
of u edges and have a loose end. (If v is odd, one adds
two paths of (v ± 1)/2 edges.) When u ≥ 2, the (u, v)-
tree model produces fractal and scale-free networks with
γ = 1 + ln(u+ v)/ ln 2 [161, 163]. For such networks, the
MFPT between hubs (which here too are defined as nodes
that are present in the same finite generation) scales as

mij ∝ N
ln[u(u+v)]
ln(u+v) [161, 178].

All of the above results on fractals and fractal scale-
free networks are consistent with a known scaling law for
the MFPT: it scales proportionally to N2/ds = Ndw/df

[145]. There are known analytical expressions for df
and dw for the fractals and fractal scale-free networks
whose MFPT we discussed above. The spectral dimen-
sion is ds = ln 9/ ln 5 ≈ 1.37 for the Sierpinski gas-
ket [34], ds = ln 9/ ln 6 ≈ 1.23 for the T-graph [169],
ds = 2 ln(f + 1)/ ln(3f + 3) for the Vicsek fractals [173],
ds = 2 ln(u + v)/ ln(uv) for the fractal (u, v)-flowers
[161, 179], and ds = 2 ln(u+v)/ lnu(u+v) for the fractal
(u, v)-trees [161, 179].

As we mentioned in the beginning of this section, there
are also scale-free network models that are constructed
deterministically and recursively. The resulting networks
are not fractals [158–161, 180–183] and are sometimes
called “pseudo-fractals” [158]. In the literature, fractal
and pseudo-fractal networks are usually distinguished as
follows. By definition, pseudo-fractal networks satisfy
the small-world property, as they have a small mean path
length (which scales as logN or smaller [157]) between
pairs of nodes, possibly due to the creation of shortcuts
during the generation of the network. In contrast, the
fractal network models discussed above, as well as con-
ventional fractals, have large worlds, as the mean path
length scales as a power of N [162]. Similar to the case
of fractal networks, it is possible to exactly calculate the
MFPT for a variety of pseudo-fractals by exploiting the
recursive nature of their definitions.

Before general (u, v)-flowers were proposed in
Ref. [161], the special case with u = 1 and v = 2 had
already been studied [158]. A (1, 2)-flower has degree
distribution p(k) ∝ k−γ , where γ = 1 + ln 3/ ln 2 ≈ 2.59
[158]. A (u, v)-flower has a small mean path length
and is non-fractal when u or v is equal to 1 [161]. In a
(1, 2)-flower, the MFPT for an arbitrary pair of nodes
(present in a particular finite generation of the network)
scales as mij ∝ N [145]. For the same network, mij

averaged over a uniformly distributed location of the
source node scales as m•j ∝ N ln 2/ ln 3 ≈ N0.63 when
the target node vj is the largest hub (whose degree

k ≈ N ln 2/ ln 3) [184]. For a (1, v)-flower for general v, the
MFPT between hubs (i.e., nodes that are present in the
same finite generation, so their degree becomes infinite
as N → ∞) scales as mij ∝ N ln v/ ln(v+1), which is con-
sistent with the results in Ref. [184] that we explained

above. For a (1, v)-tree for general v, which produces
non-fractal scale-free networks [161], the MFPT between
hubs (i.e., nodes present in the same finite generation)
scales as mij ∝ N and that between non-hub nodes (i.e.,
nodes of finite degree) scales as mij ∝ N lnN [161].
The MFPT to the most connected hub j (i.e., the node
that is present initially) averaged over the position of
the uniformly distributed source node i (with i 6= j)
scales as m•j ∝ N [178]. Consider a different scale-free
tree model, in which, in each generation, m new nodes
are connected to each of the already existing nodes.
This model produces a power-law degree distribution
with γ = 1 + ln(2m + 1)/ ln(m + 1) [181]. For this
network model, the MFPT averaged over all pairs of
source and target nodes selected uniformly at random
scales as m•• ∝ N lnN [185]. The MFPT when the
target node is selected from the stationary density of
an RW is also proportional to N lnN as N → ∞ for an
arbitrary source node [186]. Similar results have also
been derived for pseudo-fractal scale-free networks that
include loops. In one such network model, one starts
from a single node and, in each generation, adds two
replicas of the present network and connects some nodes
in each replica to the initially-present single node. This
model produces scale-free networks with loops and with
γ = ln 3/ ln 2 ≈ 1.59 [180]. For this model, the MFPT
from the largest-degree hub (i.e., the initially-existing
node) to a low-degree node created in the latest genera-
tion in the growth (and the corresponding MFPT in the
reverse direction) scales as mij ∝ N1−ln 2/ ln 3 ≈ N0.37

[187]. The MFPT to the largest-degree hub starting
from a uniformly distributed source node (where the
position of the source node is selected with the equal
probability from the N − 1 nodes excluding the target
hub node) also scales as m•j ∝ N1−ln 2/ ln 3 [187]. One
obtains a related pseudo-fractal scale-free network model
by starting the recursive growth process of a network
from an Ninit-node connected network in which one root
node is specified [159, 160]. In each generation, one
adds Ninit − 1 replicas Ninit ≥ 3) and connects them to
the root node by some edges. This model produces a
scale-free network with γ = 1 + lnNinit/ ln(Ninit − 1).
For this network model, the MFPT to the root node,
which has the largest degree, starting from a source
node, selected with equal probability from all nodes but
the root, scales as m•j ∝ N1−ln(Ninit−1)/ lnNinit [188].
Because Ninit ≥ 3, the MFPT scales no faster than
N1−ln 2/ ln 3 ≈ N0.37. Finally, a so-called “Apollonian
network” is defined through an Apollonian packing (i.e.,
a space-filling packing of spheres) and produces a power-
law degree distribution with γ = 1 + ln 3/ ln 2 ≈ 2.58
[182, 183]. For Apollonian networks, the MFPT to the
node with the largest degree, where the source node
is selected with the equal probability from all but the
target node, is given by m•j ∝ N2−ln 5/ ln 3 ≈ N0.54

[189].

In the results in the above paragraph for pseudo-fractal
scale-free (but non-fractal) networks, the MFPT scales
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at most proportional to N lnN and mostly scales sublin-
early in N . The MFPT is smaller than for fractals and
fractal scale-free networks for which mij (or its mean over
source or target nodes) scales superlinearly (i.e., in pro-
portion to N2/ds , where ds < 2). Because ds =∞ for the
aforementioned pseudo-fractal scale-free networks, which
satisfy the small-world property, the MFPT does not
scale in proportion to N2/ds . These results are consis-
tent qualitatively with the third case in Eq. (71), al-
though Eq. (71) was derived for a source node whose
location satisfies the stationary density, and many of the
aforementioned theoretical results were derived for spe-
cific source — target pairs or a source node selected with
equal probability from all nodes (excluding the target
node). Note that the largest degree in the aforementioned
pseudo-fractal scale-free networks (including the (1, v)-
flowers and (1, v)-trees) scales as a sublinear power of N
[158–161, 180–183]. Therefore, the third line of Eq. (71)
suggests sublinear power-law scaling of the MFPT with
respect to N for these networks.

Unsurprisingly, the MFPT can depend on the dis-
tance between source and target nodes. The results in
Ref. [134] have been extended to the case of networks
such as fractal and pseudo-fractal networks in a way that
takes into account the distance between the source and
target [156, 190]. The MFPT is

mij ∝


N(A+Brdw−df ) (df < dw ; i.e., ds < 2) ,

N(A+B ln r) (dw = df ; i.e., ds = 2) ,

N(A−Brdw−df ) (dw > df ; i.e., ds > 2) ,

(72)

where r is the distance between nodes vi and vj , and
A and B are constants. For example, the Sierpinski
gasket has df = ln 3/ ln 2 and dw = ln 5/ ln 2. There-
fore, Eq. (72) implies that mij ∝ Nr(ln 5−ln 3)/ ln 2.
The pseudo-fractal scale-free networks that we discussed
above satisfy the small-world property, so df = ∞ be-
cause the number Nr of nodes within radius r grows ex-
ponentially in r [162]. Additionally, Eq. (72) still holds
if we replace df by the box-counting dimension dB. The
box-counting dimension is defined by the scaling rela-
tion NB/N ∝ `−dBB , where NB is the number of non-
overlapping boxes of linear size `B (e.g., the length of a
side for a square) that are necessary to cover an entire
fractal (and, in the present context, an entire network).
For fractals without a heavy-tailed degree distribution,
dB = df [162].

For discussion of scaling theory based on renormaliza-
tion theory for first-passage time and other quantities
on networks, see Refs. [142, 191]. For other approaches
to first-passage times and return times on networks, see
Refs. [140, 192, 193].

6. Cover time

“Cover time” is defined as the time required for
a random walker to visit all nodes. It has been
proven that the expected cover time c, maximized with
respect to the source node, scales approximately as
c ln [c/(c− 1)]N lnN in an Erdős–Rényi random graph
in which each pair of nodes is adjacent with a probabil-
ity of approximately c(lnN)/N [194]. For a Barabási–
Albert scale-free network, the expected cover time scales
as 2m/(m − 1)N lnN , where m is the number of edges
in each new node [195]. These results hold with high
probability in the limit of infinite network size (i.e., with
probability tending to 1 as N →∞).

In practice, exactly covering all nodes tends to be a
rather strong requirement. In contrast to the above and
other rigorous mathematical results on exact cover time,
physicists have tended to instead examine “coverage”
C(n) in terms of the number of distinct nodes visited
at least once within n steps [33, 96, 139, 196–199]. For a
complete graph, one can calculate that

C(n) =

N∑
i=1

[1− (1− p∗i )
n
] . (73)

because each node is visited with probability p∗i = 1/N
in a single step. In some situations, one can also expect
Eq. (73) to hold approximately as a mean-field calcula-
tion.

C. Continuous-time random walks (CTRWs)

Similar to the case of RWs on a line, CTRWs on net-
works have two main components: the statistics of a
walker’s trajectory in terms of the number of steps and
the statistics of the time to the next move. By combin-
ing these two components, one can specify the probability
that a random walker is visiting a given node at a given
time. We distinguish two types of CTRWs: node-centric
CTRWs and edge-centric CTRWs [1, 127, 200, 201]. For
dynamical processes in general, there are often substan-
tial differences between node-based dynamics and edge-
based dynamics [46], so it is very important to distinguish
between these situations.

1. Node-centric walks

In a node-centric CTRW, a walker waits for a time τ
until the next move, where τ is drawn from some prob-
ability distribution. Let’s start with a scenario in which
jumps occur as independent Poisson processes. In other
words, τ is distributed according to the exponential dis-
tribution with parameter λ. We can safely normalize λ
to 1, because λ only sets the time scale. When the walker
moves from node vi, one of the out-neighbors, which we
denote by vj , is selected with a probability proportional
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FIG. 3. Schematic of two types of continuous-time random
walks (CTRWs) on networks: (a) a node-centric CTRW and
(b) an edge-centric CTRW. In each case, a walker is visiting
either a degree-3 node or a degree-4 node in a network, which
we assume is unweighted for simplicity. We show the transi-
tion rates for each edge. In panel (a), the walker moves at
a unit rate and moves to one of its out-neighbors with equal
probability for each choice. Therefore, the transition rate for
each edge is the reciprocal of the out-degree of the node that
the walker is visiting. In panel (b), however, the transition
rate on each edge is equal to 1. Therefore, on average, a
walker visiting the node with out-degree 4 leaves the node
earlier than the walker visiting the node with out-degree 3.

to Aij as the destination [see Fig. 3(a)]. This assumption
is the same as that for a DTRW.

Node-centric CTRWs were assumed in, for example,
some metapopulation disease-spreading models that are
driven by empirical data [202, 203]. In those mod-
els, a network consists of subpopulations of individuals,
and individuals move from one subpopulation to another
through a mobility rule. The simplest mobility rule,
which has been used widely, is that individuals move ac-
cording to a node-centric CTRW. (For a discussion of
mobility models, see [56].) In this context, one is often
interested in manipulating the diffusion-time constant to
be able to discuss the effect of the relative time scale be-
tween diffusion and other dynamical processes (e.g., bio-
logical contagions) on a network. The diffusion constant
can depend on the state (e.g., susceptible or infected) of
mobile individuals.

The master equation for the Poissonian node-centric
CTRW on a network is

dp(t)

dt
= p(t)(−I + T ) = −p(t)D−1L , (74)

where

L ≡ D −A (75)

is the (“combinatorial”) “Laplacian matrix” of the net-
work. The process is driven by the “random-walk nor-
malized Laplacian”

L′ ≡ D−1L = I − T . (76)

That is, (L′)ij = δij − (Aij/s
out
i ). If we examine the

node-centric CTRW in terms of the number n of moves,
the trajectories are statistically the same as those of the
DTRW in Eq. (26). Consistent with this observation,

node-centric CTRWs are also called the “continuization”
of the DTRW [1]. In particular, the stationary density
of the node-centric CTRW is the same as that of the
DTRW. By setting the left-hand side of Eq. (74) to 0, we
obtain p∗(−I+T ) = 0, so that p∗ = p∗T . If the network

is undirected, p∗i = si/
∑N
`=1 s`.

When the inter-event time between two moves obeys a
distribution ψ(τ) that is not exponential, the RW dynam-
ics are non-Markovian. Various empirical data sets re-
lated to human activity support heavy-tailed (and hence
non-exponential) distributions for ψ(τ) [54, 204]. See
Ref. [205] for a discussion of how to estimate ψ(τ) from
empirical data. In a non-Markovian setting, the rate at
which a walker moves depends on the time since the last
move. To analyze this scenario, we consider the extension
of Eq. (9) to the case of general networks and write

p(t) =

∞∑
n=0

p(n)p(n, t) , (77)

where we recall that p(n, t) is the probability that the
walker has moved n times at time t. By taking the
Laplace transform of Eq. (77) and using Eqs. (19), we
obtain

p̂(s) =
1− ψ̂(s)

s

∞∑
n=0

p(n)ψ̂(s)n . (78)

We then substitute p(n) = p(0)Tn [Eq. (29)] into
Eq. (78), where T is the transition-probability matrix
of the DTRW, to obtain

p̂(s) =
1− ψ̂(s)

s
p(0)

[
I − T ψ̂(s)

]−1
. (79)

Equation (79) is a generalization to arbitrary networks of
results by Montroll and Weiss [87]. The inverse Laplace
transform of Eq. (79) gives the probability pi(t) that the
walker visits vi at time t.

For a Poisson process (i.e., when ψ(τ) = βe−βτ ), sub-

stituting ψ̂(s) = β/(s+β) [see Eq. (20)] in Eq. (79) yields

sp̂(s)− p(0) = βp̂(s)(−I + T ) (80)

after some calculations. Because the inverse Laplace
transform of sp̂(s) − p(0) is equal to dp(t)/dt, Eq. (80)
leads to Eq. (74) up to a multiplicative constant β.

To understand how the form of ψ(τ) affects diffusive
processes, let’s work in the graph-Fourier domain. That
is, we work in terms of the amplitude of the eigenmodes,
and we examine how the relaxation of different eigen-
modes deviates from the situation for Poisson processes
[206]. Combining Eqs. (42)–(44) and (78) yields

p̂(s) =
1− ψ̂(s)

s

N∑
`=1

a`(0)

1− λ`ψ̂(s)
uL
` , (81)

where λ` is an eigenvalue of T and uL
` is the correspond-

ing left eigenvector. By taking the inner product of both
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sides of Eq. (81) with the right eigenvector uR
` of T for a

particular value `, we obtain

â`(s) =
1− ψ̂(s)

s
[
1− λ`ψ̂(s)

]a`(0) . (82)

For CTRWs driven by Poisson processes, an eigenmode
relaxes exponentially in time. However, relaxation dy-
namics can be rather different when ψ(t) is not an expo-
nential distribution. For simplicity, we assume that ψ(t)
has finite mean and finite variance. (When these mo-
ments are not defined, one can examine dynamical pro-
cesses using the framework of fractional calculus [207].)
We substitute a small-s expansion

ψ̂(s) = 1− 〈τ〉s+
1

2
〈τ2〉s2 + o(s2) (83)

into Eq. (82). For the `th mode, where λ` 6= 1, one can
calculate that

a`(s) =
〈τ〉

1− λ`

[
1− s

(
λ`〈τ〉
1− λ`

+
〈τ2〉
2〈τ〉

)]
. (84)

This leads to a characteristic time tcha of

tcha =
λ`〈τ〉
1− λ`

+
〈τ2〉
2〈τ〉

= 〈τ〉
(

1

ε`
+ βburst

)
, (85)

where ε` = 1 − λ` is the eigenvalue of the random-walk
normalized Laplacian L′ and

βburst =
σ2
τ − 〈τ〉2

2〈τ〉2
, (86)

where σ2
τ = 〈τ2〉−〈τ〉2 is the variance of τ . The quantity

βburst ∈ [−1/2,∞) is a measure of burstiness. Poisson
processes have βburst = 0, and βburst = −1/2 when ψ(τ)
is distributed as a delta function. A heavy-tailed dis-
tribution, implying bursty activity of nodes, generates a
large value of βburst.

Let’s consider the slowest-decaying mode associated
with the spectral gap ε` (i.e., the smallest nonzero eigen-
value of L′). The corresponding characteristic decay time
tcha indicates the relaxation time of the CTRW towards
equilibrium. Equation (85) includes competition between
two factors. When the spectral gap is small relative to
1/βburst, the first term on the right-hand side of Eq. (85)
is dominant. In this case, tcha is determined mainly by
structural bottlenecks in a network (e.g., through the ex-
istence of sets of densely-connected nodes called “com-
munities” (see section V C), which are weakly connected
to each other) [65, 128, 131]. When the spectral gap is
larger or when an event sequence is bursty (in the sense
of a large variation in inter-event times), the second term
dominates the right-hand side of Eq. (85). In this case,
tcha is determined primarily by the properties of ψ(τ)
rather than by network structure.

Because the inter-event time and the number of moves
in an RW are statistically independent, the stationary
density of the node-centric CTRW with a general ψ(τ)
is the same as those for a DTRW or a Poissonian node-
centric CTRW. One can thus calculate the recurrence
and first-passage times of a node-centric CTRW by mul-
tiplying the results for the DTRW (see Section III B 5)
by 〈τ〉.

The stationary density and first-passage times are
qualitatively different in different variants of node-centric
CTRWs. Consider, for example, a node-centric CTRW
in which a move of a walker to node vj resets all of the
inter-event times, which by definition are associated with
edges. In other words, once the walker moves to vj , we
redraw the inter-event times attached to each edge em-
anating from node vj , independently from ψ(τ). This
CTRW is called an “active RW” [200, 201]. For simplic-
ity, let’s consider this active RW on an undirected and
unweighted network. The probability density that a ran-
dom walker moves from node vi to node vj at time τ
since the walker arrived at vi is

f(τ ; j ← i) = ψ(τ)

[∫ ∞
τ

ψ(τ ′)dτ ′
]ki−1

, (87)

and some calculations yield

p∗i =
〈min`=1,...,ki τ`〉ki∑N
j=1〈min`=1,...,kj τ`〉kj

, (88)

where the factors of τ` are independent copies of inter-
event times that are drawn from the distribution ψ(τ).
Because〈

min
`=1,...,ki

τ`

〉
=

∫ ∞
0

[∫ ∞
τ ′

ψ(τ ′)dτ ′
]ki

dτ ′ (89)

depends only on ki, Eqs. (88) and (89) imply that p∗i
depends only on ki. Note that the stationary density
for the active RW is not proportional to ki unless τ is
constant, which reduces the model to the DTRW. The
mean recurrence time for node vi is

mii =

∑N
j=1

〈
min`=1,...,kj τ`

〉
kj

ki
∝ 1

ki
. (90)

Equations (88) and (90) indicate that Kac’s formula [see
Eq. (54)] is not satisfied unless the network is regular.

2. Edge-centric walks

Another type of CTRW is an edge-centric CTRW in
which each edge is activated independently according to
a renewal process, regardless of the motion of the ran-
dom walker [see Fig. 3(b)]. Once an edge is activated,
it becomes available, and a random walker can use it to
move to the associated adjacent node. This RW model
has also been called the “fluid model” [1] and the “passive
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RW” [200, 201]. Although node-centric CTRWs may be
more natural when using RWs to model human or animal
behavior, edge-centric CTRWs may be more natural for
describing diffusion of passive objects in a network.

When a Poisson process with a rate proportional to
the edge weight is assigned independently to each edge,
the master equation is

dp(t)

dt
= p(t)(−D +A) = −p(t)L . (91)

The Poissonian edge-centric CTRW is driven by the
unnormalized (i.e., combinatorial) Laplacian L. Equa-
tion (91) implies that the transition rate at node vi is
equal to souti . A walker can leave a node with a large
out-strength (such a node may be a network “hub”) more
quickly than a node with a small out-strength. In the
Poissonian case, the edge-centric CTRW is equivalent to
the second type of node-centric CTRW (i.e., an active
RW) that we discussed in Section III C 1. In contrast, in
the first type of node-centric CTRW that we discussed,
the transition rate for a walker is the same for all nodes
(see Fig. 3).

The stationary density for Eq. (91) is

p∗L = 0 . (92)

That is, p∗ is a left eigenvector of L with eigenvalue 0. In
connected undirected networks, the 0 eigenvalue, which
we denote by λ1 = 0, is an isolated eigenvalue. Its asso-
ciated eigenvector is

p∗ =
1

N
(1 , . . . , 1) . (93)

For a directed network, the right eigenvector correspond-
ing to λ1 = 0 is still given by (1, . . . , 1)>/N , but the
left eigenvector (i.e., p∗) is different in general. Equa-
tion (92) is equivalent to p∗D = (p∗D)

(
D−1A

)
= p∗DT ,

where (as usual) T is the transition-probability matrix of
the DTRW. Therefore, p∗D is the stationary density for
the DTRW (and hence for the first type of node-centric
CTRW) in general directed networks. In other words,
for the edge-centric CTRW, p∗i is given by the expression
for p∗i for the first type of node-centric CTRW divided
by souti and properly normalized. Using this relation-
ship, we divide Eq. (34) by souti to derive the first-order
approximation [123, 208]:

p∗i ≈ (const)× sini
souti

. (94)

For Poissonian node-centric CTRWs, the aforemen-
tioned Poissonian edge-centric CTRWs, and DTRWs, one
can express the stationary density for directed networks
by enumerating spanning trees. We present this tech-
nique now because it is easier to understand this ap-
proach using L rather than L′. The “(i, j) cofactor” of L
is defined by

Co (i, j) ≡ (−1)i+j detL
(i,j)

, (95)

where L
(i,j)

is the (N − 1)× (N − 1) matrix obtained by
deleting the ith row and the jth column of L. (Previ-

ously, we used L
(i)

to denote the (N − 1)× (N − 1) ma-
trix obtained by deleting the ith row and column from L

(see Section III B 5), and here we use the notation L
(i,j)

without ambiguity. Taking i = j yields L
(i,i) ≡ L

(i)
.)

Because
∑N
j=1 Lij = 0 (with i ∈ {1, . . . , N}), the value

of Co (i, j) is independent of j. Using Eq. (95) and the
fact that L is singular because of the 0 eigenvalue, we
obtain

N∑
i=1

Co(i, i)Lij =

N∑
i=1

Co(i, j)Lij

= detL = 0 (96)

for any j. This yields

p∗i ∝ Co (i, i) = detL
(i,i)

. (97)

From the matrix–tree theorem (i.e., Kirchhoff’s theo-

rem), detL
(i,i)

is equal to the sum of the weights of all
possible directed spanning trees rooted at vi (called “ar-
bolescence”) [209, 210]. One thereby obtains p∗i from
weighted spanning trees in a formula called the “Markov-
chain tree formula” [1]. The “weight” of a spanning tree
is defined as the product of the weight of the N − 1
edges that form the tree. For unweighted networks, the

weight of a spanning tree is 1, and detL
(i,i)

is equal to
the number of spanning trees rooted at vi. When we
apply Eq. (97) to the first type of node-centric CTRW
(or to a DTRW), we replace L by L′. In doing this,
we must be aware of the weight of spanning trees even
for unweighted networks because L′ is the combinato-
rial Laplacian for the weighted adjacency matrix D−1A,
where A is a binary adjacency matrix.

Equation (97) is useful for exacting calculating p∗i for
some directed networks, including a variant of Watts–
Strogatz small-world networks and multipartite networks
[211], and for approximately calculating p∗i for some types
of directed networks with community structure [212].

Although the stationary density differs for node-centric
and edge-centric CTRWs, their trajectories and also
those of the DTRW are statistically the same and are
determined by the transition-probability matrix T [see
Eq. (24)] if ψ(τ) is an exponential distribution. For
edge-centric CTRWs, this is true because the probabil-
ity that a Poisson process on the edge (vi, vj) occurs
first among the Poisson processes on all edges (vi, v`)
(where ` ∈ {1, . . . , N}) is proportional to the rate of the
process on the edge (vi, vj) (i.e., it is proportional to
Aij). Let p(n) = (p1(n), . . . , pN (n)) denote the distri-
bution of the random walker, where pi(n) is the prob-
ability that the walker visits vi after exactly n moves.
When ψ(τ) is an exponential distribution, the master
equations for the DTRW, the two types of node-centric
CTRWs, and the edge-centric CTRW in terms of n are
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each given by Eq. (28). The two types of Poissonian
CTRWs have different p(n, t) [see Eq. (77)]. In the Pois-
sonian node-centric CTRW of the first type, moves are
triggered by a Poisson process at a constant rate, so
p(n, t) is given by a Poisson distribution. In the Pois-
sonian edge-centric CTRW (which is equivalent to the
Poissonian node-centric CTRW of the second type), how-
ever, p(n, t) depends on the walker trajectory. When the
walker is at a node vi, the time to the next event is drawn
from the exponential distribution with mean 1/souti . If a
trajectory includes many nodes with large out-strengths,
then the number n of moves at a given time t tends to
be larger than for trajectories that traverse many nodes
with small out-strengths.

The combinatorial Laplacian L of a connected, undi-
rected network includes exactly one 0 eigenvalue, so
0 = λ1 < λ2 ≤ · · · ≤ λN , where λ` is its `th smallest
eigenvalue. The combinatorial Laplacian of a directed
network satisfies an analogous relationship, 0 = λ1 <
Reλ2 ≤ · · · ≤ ReλN , provided the network is strongly
connected or has just one strongly connected component
from which all other nodes can be reached by a directed
path [51, 210, 213]. In the latter case, we call such a
strongly connected component the “root component” (in-
cluding the case of a single node, which is then a “root
node”). If there are multiple components in an undi-
rected network or multiple root components, then there
are multiple 0 eigenvalues in L, although we do not con-
sider such situations in the present article. The spec-
tral gap (and thus λ2) governs the relaxation time. The
corresponding eigenvector u2 is called the “Fiedler vec-
tor”. For details of spectral properties of networks, see
[41, 48, 51, 84, 128, 130, 131, 214, 215].

When a network is undirected, Eq. (91) can also be
construed as a type of deterministic, linear synchroniza-
tion or coordination dynamics in which pi(t) is the state
of node vi and nodes vi and vj attract each other with
a coupling strength of Aij [51]. The only difference be-
tween CTRW dynamics and linearized synchronization
dynamics is that pi(t) is confined between 0 and 1 and
normalized in CTRWs, whereas it is not in synchroniza-
tion dynamics. Therefore, various theoretical results on
linear synchronization dynamics on networks are appli-
cable to edge-centric CTRWs. In particular, methods
to estimate the relaxation time via the spectral gap of
L are useful for understanding relaxation properties of
RWs [51, 216, 217].

Now let’s consider non-Poissonian edge-centric
CTRWs, so we now allow ψ(τ) to be a general dis-
tribution. In this situation, edge-centric CTRWs are
considerably different from node-centric CTRWs. One
difference arises from the “waiting-time paradox” (which
is also called the “bus paradox”) [3, 218]. In this
paradox, a walker arrives at node vi from node v`. The
waiting time before edge (vi, vj) (with j 6= `) is activated
is typically longer than the naive expected value 〈τ〉/2.
Let ψw(τw) denote the distribution of waiting times τw

on edge (vi, vj) after a walker has arrived at node vi

for rwreview

waiting 
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time (τ)
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FIG. 4. Schematic illustrating the concept of waiting time.
We show a trajectory of a random walker using dotted arrows.
The walker moves from node v3 to node v2, and it then moves
to node v1. This example corresponds to j = 1, i = 2, and
` = 3 in the main text. (See the j 6= ` case in Eq. (101).)

from node v` (where ` 6= j). See Fig. 4 for a schematic.
One can obtain ψw(τw) from ψ(τ) when the arrival of
a walker to vi and the activation of edge (vi, vj) are
statistically independent processes. In that situation,
the probability density with which the time t0 when a
walker has moved from v` to vi lies in an interval of
length τ satisfies

f(τ) =
τψ(τ)∫∞

0
τ ′ψ(τ ′)dτ ′

=
τψ(τ)

〈τ〉
. (98)

Conditioned on this event, the probability density with
which the waiting time is equal to τw is

g(τw|τ) =

{
1/τ (0 ≤ τw ≤ τ) ,

0 (τ > τw) .
(99)

Equations (98) and (99) yield

ψw(τw) =

∫ ∞
τw

f(τ)g(τw|τ)dτ =
1

〈τ〉

∫ ∞
τw

ψ(τ)dτ .

(100)
In particular, the mean waiting time is given by∫∞
0
τwψw(τw)dτw = 〈τ2〉/ (2〈τ〉). If ψ(τ) is heavy-tailed,

then 〈τ2〉 is much larger than 〈τ〉, so a typical wait-
ing time is very long. For example, if ψ(τ) ∝ τ−γ ,
with γ ∈ (2, 3], then the mean inter-event time is finite,
whereas the mean waiting time diverges because 〈τ2〉 di-
verges.

A second difference is that master equations can
only be derived approximately for edge-centric CTRWs,
whereas they are exact for node-centric CTRWs. When
a random walker has moved from node v` to node vi at
time t, the waiting time (i.e., the time to the next event)
on edge (vi, vj), where j 6= ` (we will consider the case
j = ` in the next paragraph), is estimated by the dis-
tribution ψw However, if a random walker has already
traversed edge (vi, vj) in the past — let’s suppose that
the last time is at time t′ — the independence assump-
tion that is required to derive Eq. (100) is not satisfied,
and the waiting time on (vi, vj) is not given exactly by
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the distribution ψw, unless the process is Poissonian and
ψ is an exponential distribution. The deviation between
the waiting-time distribution and ψw increases when t′

approaches t. In the remainder of the present section, we
ignore any modification of the distribution of the next
waiting time caused by past events on (vi, vj); this cor-
responds to assuming that t′ = −∞. To our knowledge,
the impact of such a memory effect (i.e., finite t′) has not
been considered in detail in the literature.

A third difference stems from the possible emergence
of non-Markovian trajectories for random walkers. To
explain this point, we consider the case of backtracking
moves (i.e., v` → vi → v`). For such backtracking moves,

the waiting time on the edge (vi, v`) is distributed accord-
ing to ψ, rather than ψw, as the waiting-time paradox
does not apply. The existence of different waiting times
for backtracking and non-backtracking moves has an im-
pact on the motion of a walker. For a walker to move to
node vj at time τw since the walker moved from node v`
to node vi, there cannot be any events on any edges em-
anating from vi in [0, τw], and then an event must occur
on the edge (vi, vj) at time τw. Let f(τw; j ← i|i ← `)
denote the probability density of the event that a walker
that has moved from v` to vi moves to node vj at time
τw. We obtain

f(τw; j ← i|i← `) ≈

{
ψ(τw)

[∫∞
τw ψ

w(τ ′)dτ ′
]ki−1

(j = `),

ψw(τw)
[∫∞
τw ψ

w(τ ′)dτ ′
]ki−2 ∫∞

τw ψ(τ ′)dτ ′ (j 6= `) .
(101)

Equation (101) indicates that where a walker moves de-
pends not only on its current position but also on the
edge that it used to arrive to that position. For trajecto-
ries of RWs, one can construe this situation as a special
case of the “memory networks” that we will discuss in
Section IV B 2.

Unless ψ is an exponential distribution, f(τw; ` ←
i|i ← `) is not equal to f(τw; j ← i|i ← `) (with
j 6= `) in general, so the trajectory of an RW (i.e., the
walk measured in terms of the number of moves) is non-
Markovian. In particular, if ψ is a heavy-tailed distribu-
tion, the mean waiting time is larger than the mean inter-
event time. Therefore, a walker tends to backtrack (i.e.,
v` → vi → v`), and diffusion dynamics are slowed down.
This slowing down is caused entirely by the modification
of trajectories in non-exponential distributions, and, in
particular, it does not arise from a competition between
structural and temporal factors (in contrast to Eq. (86)).
If ψ is lighter-tailed than the exponential distribution,
a walker tends to avoid backtracking. (We will briefly
discuss non-backtracking RWs in Section VI.) When ψ is
not an exponential distribution, trajectories of the edge-
centric CTRW are different from those of node-centric
CTRWs or DTRWs.

We now evaluate the stationary density and recurrence
time of non-Poissonian edge-centric CTRWs [201]. Let
qj←i(t) denote the rate at which a random walker moves
from node vi to node vj at time t. This quantity satisfies
the following approximate self-consistency equation:

qj←i(t) ≈
∑
`∈Ni

[∫ t

0

f(t− t′; j ← i|i← `)qi←`(t
′)dt′

]
+ pj←i(0)δ(t) , (102)

where we recall that Ni is set of the neighbors of vi. The

initial condition satisfies∑
j∈Ni

pi←j(0) = pi(0) . (103)

Equation (103) implies that one needs to specify an ini-
tial condition that includes not only the current position
of the walker but also its previous location. More gener-
ally, the transition probability of a move depends on the
previous move. The master equation is given by

d

dt
pi(t) =

∑
j∈Ni

[qi←j(t)− qj←i(t)] . (104)

To derive the stationary density, we work in terms of
qi←j(t) rather than pi(t). We take the Laplace transform
of Eq. (102) to obtain

q̂j←i(s) ≈
∑
`∈Ni

[
f̂(s; j ← i|i← `)q̂i←`(s)

]
+ pj←i(0) .

(105)
Note that q̂j←i(s) 6= q̂i←j(s) in general even for undi-
rected networks. Equation (105) is a set of linear equa-
tions with 2M unknowns. We solve q̂j←i(s), and then
calculate the stationary value of qj←i(t) (i.e., q∗j←i ≡
limt→∞ qj←i(t) as q̂j←i(0)) and then obtain p∗i as a
weighted sum of q∗i←j , where j ∈ Ni. In fact, q∗j←i does
not depend on i or j, and the final result is

p∗i =
1

N
(i ∈ {1, . . . , N}) . (106)

Therefore, the stationary density is the uniform density,
independent of the network structure and the form of
ψ(τ). The mean recurrence time is

mii ≈
N〈τ〉
ki

. (107)
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Equation (107) indicates that the mean recurrence time
is essentially independent of ψ(τ), as it depends only on
the mean 〈τ〉, which gives the trivial normalization of
the time. Equations (106) and (107) imply that Kac’s
formula [see Eq. (54)] is not satisfied by any edge-centric
CTRW except in regular networks.

IV. RANDOM WALKS ON GENERALIZED
NETWORKS

A. Multilayer networks

A multilayer network includes different “layers” and
allows one to explicitly incorporate different types of
subsystems and/or different types of ties between edges
[57, 58]. The latter case, which is often called a “mul-
tiplex” network, occurs when there are different types
of interactions between individuals, different modes of
transportation, and so on. If there are `max layers, one
can represent a multilayer network as an ordinary (i.e.,
“monolayer”) network with `maxN nodes, where there
are `max replicates of each node if each entity (repre-
sented by a node) exists on every layer. How strongly
different layers are connected to each other has an enor-

mous effect on diffusive dynamics in multilayer networks
[58, 59]. It thereby affects anything else, such as various
community-detection methods, that are based on RWs
(see Section V C) [219–221].

Let’s consider Poissonian edge-centric CTRWs. For
simplicity, we also assume undirected multilayer networks
in which each intra-layer network is a connected network
[222–224] and each node is present on every layer (though
of course this need not be true in general). We also as-
sume that inter-layer edges occur only between the same
entity in different layers (i.e., so-called “diagonal” cou-
pling) and that there is only a single type (i.e., “aspect”)
of layering [58]. (For example, a single-aspect multilayer
network can be a multiplex network, but it cannot be
both multiplex and time-dependent.) Let Aα = (Aαij) de-
note the adjacency matrix for the αth layer. One needs to
think about both diffusion within layers and diffusion be-
tween layers (see Fig. 5). Let Dα denote the intra-layer
diffusion constant in the αth layer, and let Dαβ (with
α, β ∈ {1, . . . , `max}) denote the inter-layer diffusion con-
stant between the αth and βth layers. Such constants set
the edge weights between pairs of nodes that represent
the same entity in different layers, and the corresponding
nodes in the αth and βth layers are connected by an edge
on which there is a Poisson process with rate Dαβ . The
master equation is given by

dpαi (t)

dt
= Dα

N∑
j=1

Aαij
[
pαj (t)− pαi (t)

]
+

`max∑
α′=1

Dαβ

[
pα
′

i (t)− pαi (t)
]
, (108)
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FIG. 5. Schematic of an edge-centric CTRW on a multilayer
network with `max = 2 layers. The values on the edges repre-
sent edge weights.

where pαi (t) is the probability that a random walker visits
the ith node in the αth layer. The normalization is given

by
∑`max

α=1

∑N
i=1 p

α
i (t) = 1.

Consider the case of two layers and Dx ≡ D12 = D21

[222, 224]. Equation (108) is written concisely as

dp(t)

dt
= −p(t)L , (109)

where p(t) = (p11(t), p12(t), . . . , p1N (t), p21(t), p22(t),

. . . , p2N (t)), and

L =

(
D1L1 +DxI −DxI
−DxI D2L2 +DxI

)
(110)

is the (combinatorial) “supra-Laplacian”, where L1 and
L2 are the (combinatorial) Laplacian matrices for the
intra-layer network. Because this RW is an edge-centric
CTRW on an undirected network, the stationary density
is (pαi )

∗
= 1/(2N) (with i ∈ {1, . . . , N} and α ∈ {1, 2}).

The supra-Laplacian matrix L has a 0 eigenvalue that
corresponds to the stationary density. The relaxation
time is governed by the smallest positive eigenvalue (i.e.,
the spectral gap) λ2 of L. One of the nonzero eigen-
values is 2Dx and has a corresponding eigenvector of
(1, . . . , 1, −1, . . . ,−1). If the inter-layer diffusion
constant Dx is small, then λ2 = 2Dx, so the inter-layer
hopping is a bottleneck for diffusion in the entire multi-
layer network. In the opposite limit (Dx � 1), one can
examine diffusion properties using a perturbative analy-
sis [222]. The quantity 2Dx is still an eigenvalue, but it
diverges to infinity in the limit Dx → ∞, and there are
N copies of the same eigenvalue in this limit. Another
important quantity is λs/2, the eigenvalue of (L1+L2)/2;
and there are also N copies of this eigenvalue. Therefore,
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λ2 = λs/2. Note that L1 + L2 is the (combinatorial)
Laplacian for the monolayer network obtained by adding
the intra-layer edge weights for each intra-layer edge and
ignoring the inter-layer edges. We obtain

λs
2
≥ λα=1

2 + λα=2
2

2
≥ min(λα=1

2 , λα=2
2 ) , (111)

where λα2 is the second-smallest eigenvalue (i.e., the spec-
tral gap) of Lα, so it specifies the speed at which an RW
on the network consisting only of the αth layer (so there
are no inter-layer edges) relaxes to the stationary den-
sity. Equation (111) implies that above diffusion in the
two-layer network is faster than diffusion in the slower
layer. For some multilayer networks, however, diffusion
can occur faster than in each layer considered individu-
ally [222, 223].

The small-Dx and Dx � 1 regimes are connected by a
discontinuous (i.e., “first-order”) phase transition [224].
More precisely, there exists a threshold value D∗x of Dx,
such that λ2 = 2Dx for Dx ≤ D∗x and λ2 ≤ λs/2 for
Dx ≥ D∗x. Note that Dx → λs/2 as Dx → ∞. The
first derivative of λ2 with respect to Dx is discontinuous
at Dx = D∗x. The transition point has an upper bound
given by D∗x ≤ λs/4.

Reference [225] investigated the so-called “coverage”
time of different types of CTRWs in multilayer networks
by calculating the mean fraction of distinct nodes that
are visited at least once (in any layer) in some time period
by a walk (which can start from any node in a network).
Reference [225] then examined coverage as a function of
time when some nodes are deleted and used it to consider
the resilience of multilayer networks to random node fail-
ures. In their paper, node failure is defined with respect
to the removal of nodes in individual layers (rather than,
e.g., removal from all layers), such as a failure of a station
in a single transportation mode (i.e., a single layer) in a
transportation network.

See Refs. [57–59] and references therein for further
discussion of diffusion processes in multilayer networks.
This is a very active area of research.

B. Temporal networks

Many empirical networks vary over time, and one can
describe them as temporal networks [54, 55]. CTRWs
with non-exponential distributions of inter-event times
(see Section III C) are often discussed in the context of
temporal networks, because non-Poissonian distributions
of inter-event times are a fundamental property of most
empirical temporal networks [54, 204].

In this section, we discuss some situations in which
a temporal network is given in the form of a sequence
of static networks (which are called “snapshots” in [56])
[226]. In this type of example, one time-independent net-
work corresponds to a single observation (with a time
stamp) of a temporal network, whose time resolution may
correspond to that imposed by a recording period (e.g.,

every 20 secs). One can then consider an RW on a (tem-
poral) sequence of adjacency matrices:

A = {A(1), A(2), . . . , A(nmax)} , (112)

where (A(n))ij encodes the activation of edge (vi, vj) at
discrete time n (with n ∈ {1, . . . , nmax}). See the review
[55] for a discussion of several models of RWs on temporal
networks in addition to the ones that we will discuss in
the following sections.

1. Activity-driven model

RWs on temporal networks have been examined both
analytically and computationally. One useful approach is
to examine RWs on an “activity-driven model” of tem-
poral networks [137].

The simplest type of activity-driven model gener-
ates a sequence of uncorrelated time-independent net-
works [227]. First, we associate each node vi (with
i ∈ {1 , . . . , N}) with a random variable ai, called
the “activity potential”, drawn from a given distribu-
tion F (a) (with a ≥ 0). Second, at each discretized time
t, each node vi is independently active with probability
ai∆t < 1 and inactive with probability 1 − ai∆t, where
∆t is the time difference (which we assume to be homo-
geneous) between two consecutive time points. Third,
at each t, each activated node generates m undirected
edges that connect to m other nodes uniformly at ran-
dom. When nodes vi and vj are both active and each
connects to the other with an edge at time t, we suppose
that there is exactly one unweighted edge (vi, vj) at t.
In practice, we suppose that ai∆t is sufficiently small to
prevent such mutual edge creation to occur too often.
We regard the network at each t as an undirected and
unweighted network, and we repeat this procedure in-
dependently to generate a time-independent network for
the time interval ∆t.

Consider the aggregation of a temporal network into a
time-independent network, which we construct by sum-
ming the edge weights across some time window for each
edge. The aggregated network neglects any temporal in-
formation contained in the temporal network during that
window. If we aggregate observed time-independent net-
works over some time — which cannot be too long, or else
the aggregated network might be a complete weighted
graph — the aggregated (and sometimes called “an-
nealed”) adjacency matrix is given by

A∗ij ≈
m (ai + aj)

N
, (113)

where we neglect o(1/N) terms. The degree distribution
of the aggregated network is

p(k∗) ≈ 1

m
F

(
k

m
− 〈a〉

)
, (114)

where 〈a〉 =
∫
aF (a)da is the ensemble average of a.

Therefore, a heterogeneous distribution F (a) yields a
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comparably heterogeneous degree distribution in the ag-
gregated network.

When we observe a temporal network with a fine tem-
poral resolution, the network at each time point is very
sparse [228]. This also occurs for the above activity-
driven model if ai∆t and m are sufficiently small. A
walker has to remain at a node if the node is isolated at
the present time t, and this fact has a substantial effect on
RW dynamics. In the above activity-driven model, there
are two ways for a walker located at node vi to move to
node vj in a network at time t [137, 229]. The first way
is to combine the following three independent events: (i)
vi is activated with probability ai∆t, (ii) node vi is con-
nected to vj with probability m/N , and (iii) the edge (vi,
vj) is traversed with probability 1/(m + m〈a〉∆t). Note
that the mean degree of vi in a time-independent net-
work at an arbitrary time t when vi is activated is equal
to m + m〈a〉∆t, because vi has m〈a〉∆t edges from the
activation of other nodes. The second way is to combine
the following four independent events: (i) node vi is not
activated with probability 1 − ai∆t, (ii) node vj is acti-
vated with probability aj∆t, (iii) vj is connected to vi
with probability m/N , and (iv) the edge (vi, vj) is tra-
versed with probability 1/(1+m〈a〉∆t). By adding these
contributions and assuming that ∆t is small, we obtain
a transition-probability matrix T with elements

Tij ≈ ai∆t
m

N

1

m+m〈a〉∆t
+ (1− ai∆t)aj∆t

m

N

1

1 +m〈a〉∆t

≈ ∆t

N
(ai +maj) (j 6= i) . (115)

Note that Tii = 1−
∑N
j=1;j 6=i Tij .

We aggregate all nodes with the same value of a into
one group, and we regard a as continuous. Let pa(t)
denote the probability that a single node with activity
potential a is visited at time t. The normalization is∫
pa(t)F (a)da = 1, and the master equation in the ∆t→

0 limit is

dpa(t)

dt
=

∫
a′pa′(t)F (a′)da′−apa(t)+ma

1

N
−m〈a〉pa(t) .

(116)
The first and second terms on the right-hand side of
Eq. (116) account, respectively, for the in-flows and out-
flows of probability driven by (∆t/N)ai on the right-
hand side of Eq. (115). The third and fourth terms ac-
count, respectively, for the in-flows and out-flows driven
by (∆t/N)maj in Eq. (115). This RW is a Poissonian
node-centric CTRW of the first type whose general mas-
ter equation is given by Eq. (74).

The stationary density of Eq. (116) is

p∗a =
ma
N + φ

a+m〈a〉
, (117)

where

φ =

∫
ap∗aF (a)da (118)

is the mean probability flow from active nodes at equi-
librium. By combining Eqs. (117) and (118), we obtain
the following self-consistency equation:

φ =

∫
a

ma
N + φ

a+m〈a〉
F (a)da . (119)

Because we are considering a node-centric CTRW in an
undirected network, the stationary density for a time-
independent, aggregated network has components that
are proportional to node degree. Equation (113) im-
plies that p∗a for the aggregated network is proportional
to m(a + 〈a〉). However, the stationary density for the
CTRW on the activity-driven temporal network model,
obtained by numerically solving Eq. (119) for a given
heterogeneous F (a), is rather different from the time-
independent case [137]. In particular, in the activity-
driven model, p∗a saturates as the degree (or, equivalently,
a) increases.

The MFPT is also different in the temporal and aggre-
gated networks. At equilibrium, the probability that a
walker moves to node vj in each discrete step of time ∆t

is ξj =
∑N
i=1;i 6=j p

∗
i Tij . The probability that the walker

arrives at vj for the first time after n steps is thus given
by ξj(1 − ξj)n−1 under the mean-field approximation in
Eq. (69). One can then calculate that the MFPT for the
above activity-driven model is

mij ≈
∞∑
n=1

∆tnξj(1− ξj)n−1 =
∆t

ξj
=

N

maj +
∑N
`=1 a`p

∗
`

.

(120)
This result is different from the aggregated (time-
independent) network case, in which mij ≈ 1/p∗j un-
der the mean-field approximation in Eq. (69). A crucial
difference between RW dynamics in the temporal and
aggregated cases is that a walker in the activity-driven
model can be trapped for some time in an isolated node
vi and is temporarily unable to travel to a different node.
At a later time, vi becomes connected to another node,
and the walker can then move away from vi. This phe-
nomenon never happens in a time-independent (i.e., ag-
gregated) network, as edges are always present.

One can also define RWs on empirical tempo-
ral networks. For example, given a sequence of
time-independent networks, one can use each time-
independent network to induce one time step of a DTRW
[138]. (Another approach is to construct a multilayer rep-
resentation of such a temporal network, and examine an
RW on the resulting multilayer network [58, 219].) They
compared properties of RWs on empirical temporal net-
works to those on randomized temporal networks, which
included ones in which the times of activating edge (vi,
vj) are redistributed uniformly over time while keeping
the weight of each edge in the aggregated network the
same as that in the original temporal network. In com-
parison to such randomized temporal networks, the nu-
merical computations in Ref. [138] suggest that empirical
temporal networks tend to slow down RW processes, as
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FIG. 6. A temporal network with three time points andN = 4
nodes.

the MFPT is large and the coverage at a given time is
small. See Refs. [206, 207, 230–233] for discussions of the
effects of temporal networks on the speed of diffusion on
networks.

Note that if the time-independent network at each time
point is sparse, the trajectory of a random walker may
not be as random as the terminology RW might suggest.
For example, if the degree of vi equals 1 at a certain
time t, then the walker located at vi must move to its
one neighbor. If vi is isolated at time t, then the walker
does not move at t. In the extreme case in which each
node is adjacent to just one node or is isolated at all
times, the trajectory of the “random” walk is determin-
istic. For example, in the temporal network on N = 4
nodes in Fig. 6, a walker starting from node v1 always
visits node v4 after three time steps, so there is no ran-
domness. In a CTRW, this situation always occurs in
some sense: if ψ(τ) is a continuous distribution, then
multiple events occur at the same time with probability
0 because of the continuous-time nature of the stochastic
dynamics. However, because the event times themselves
are determined from a random process, we safely regard
CTRWs as RWs. This situation is not shared by RWs on
temporal networks when a network is given by a single
realization of empirical or numerical data. Fortunately,
there are at least two (imperfect) ways out of this co-
nundrum. One solution is to aggregate a sequence of
time-independent networks with a sufficiently large time
window to make them sufficiently dense. Another solu-
tion is to allow walkers to wait at the current node with
some probability even if an edge is available for it to move
to another node.

2. Memory networks

By definition, a DTRW is a (stationary) Markov chain
such that the transition probability does not depend on
the past trajectory. Node-centric CTRWs and Poissonian
edge-centric CTRWs also share this property. However,
many real temporal networks have correlations in edge
activations [54–56]. Therefore, one does not expect a tra-
jectory of RWs on an empirical temporal network to be
a Markov chain, as certain trajectories are favored and
others are discouraged or even forbidden. Such trajec-
tories are poorly reproduced by the first-order Markov
chains that we have considered thus far. In this situ-
ation, using higher-order Markov chains may be help-

ful [232, 234], and it is also important to explore non-
Markovian stochastic processes.

To consider the above issue with empirical data in the
context of temporal networks, we first map time series of
edge activations in a sequence of time-independent net-
works to trajectories of walkers [234]. We assume that
a walker is located initially at a uniformly randomly se-
lected node vi. (The choice of initial condition can matter
if RW trajectories simulated in the following are short.)
A walker waits there until at least one edge is available for
it to move. When at least one edge becomes available, the
walker leaves the node with probability 1−q and does not
move with probability q. As usual, the destination node

vj is selected with probability Aij(t)/
∑N
`=1Ai`(t). We

repeat this procedure several times and thereby generate
multiple trajectories starting at n = 1 and finishing at
n = nmax. When q = 0, the walker always moves to a dif-
ferent node using the first available edge [138, 206]. When
q ∈ (0, 1), some randomness is introduced into the trajec-
tories [235], preventing spurious effects such as a strong
tendency for backtracking [236]. However, for sufficiently
large q, the effect of temporal correlations between edges
at short time scales becomes unimportant, which may di-
lute the impact of the temporality of the data. If trajecto-
ries are statistically independent of the past locations of
a walker, it is sufficient to use a first-order Markov chain.
In this case, the transition-probability matrix T = (Tij)
constructed from an aggregated network, in which the
weight of edge (vi, vj) is equal to the sum of (A(t))ij
over time, is sufficient for describing the RWs. We de-
note a first-order Markov chain on an aggregated network
by M1. See the top right panel of Fig. 7.

In general, the probability that a random walker visits
node vi after the (n + 1)th step depends on the entire
history of a stochastic process. To partially take into
account temporal correlations between edge activations,
one can use a second-order Markov chain. We define
a process, which we denote by M2, using an expanded
transition probability tensor, whose element Ti′ij repre-
sents the probability that a walker moves from node vi
to node vj given that the previous position is node vi′ .
Another representation of the process M2 is to use a
memoryless RW (i.e., a first-order Markov chain) between
directed edges of the original network. In this represen-
tation, the probability that directed edge #     »vivj is visited
depends on #      »vi′vi rather than only on node vi, as in the
first-order Markov chainM1. For simplicity, for the rest
of the present discussion, we use the shorthand notation
#»
ij for a directed edge #     »vivj . For this representation, we re-
gard the state space (i.e., the set of directed edges) as the
nodes of a new network, which we call the “M2 network”
or “(second-order) memory network”. One construes the
original network as a “physical network”, and the state
space of M2 is the so-called “directed line graph” of the
original network [237]. The memory network has 2M
nodes whether the original network is directed or undi-
rected. We sometimes use the term “memory nodes” for
the nodes of a memory network. Even for undirected
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FIG. 7. Memory networks (of order 2). The network on the
left shows a part of a directed network (a “physical network”).
The width of each edge represents edge weight. In the present
example, we assume for simplicity that the physical network
is unweighted. In the first-order Markov chainM1, a state is
a node of the physical network. In the second-order Markov
chain M2 (of which we show a part), a state is a directed
edge of the physical network. The state space is the directed
line graph of the physical network. If the process that occurs
on the physical network is Markovian, transitions in M2 are
uniform in the following sense. Suppose, as indicated in the
figure, that node v3 has two in-edges and two out-edges in
the physical network. One then should be able to reach node
# »
34 with equal probability from nodes

# »
13 and

# »
23, yielding the

same weight for edges
# »
13 → # »

34 and
# »
23 → # »

34. In the part of
M2 (determined from, for example, a temporal network) that
we show in this figure has edge weights that are different from
the expectation of the first-order Markov chainM1. In other
words, a move from node v3 to node v4 is more likely to occur
when a walker arrives at v3 from v1 than from v2. Therefore,
the process represented by M2 network is not Markovian on
the physical network.

networks, we must assign two memory nodes
#»
ij and

#»
ji to

each pair of adjacent nodes vi and vj in the original net-
work, because a memory node encodes the time ordering
of visits. The number of edges in a memory network is
proportional to 〈k2〉N [238].

To improve accuracy, one can also examine memory
networks in the form of higher-order Markov chains. For
example, in a third-order Markov chain, the transition
probability depends on the currently visited node vi and
two previously visited nodes vj and v`. A memory node is
then specified by #          »v`vjvi. However, going beyond second-
order Markov chains is not always practical. First, a
second-order memory network is conceptually simpler
than higher-order counterparts, as the memory nodes
are given by edges of the original network rather than
by higher-order structures. Second, one may only obtain
marginal gains by considering higher orders [234]. Third,
higher-order memory networks require a lot of data, be-
cause the number of memory nodes and transition prob-
abilities to be estimated increases exponentially with the
order of the Markov chain.

One encodes the dynamics of a second-order Markov
chain by a transition-probability matrix on the network

with 2M nodes whose elements are given by p(
#»
ij → # »

jk)

(see Fig. 7). In practice, one estimates p(
#»
ij → # »

jk) with

p(
#»
ij → # »

jk) =
(number of transitions

#»
ij → # »

jk)∑N
`=1(number of transitions

#»
ij → #»

j`)
,

(121)
where one counts the number of transitions in the
RW trajectories generated by the sequence of time-
independent networks. One interprets the transitions as
movements between directed edges. The normalization

is given by
∑N
`=1 p(

#»
ij → #»

j`) = 1. In situations in which
one can measure RW trajectories in empirical data, they
can be used directly to estimate Eq. (121) [234].

In a first-order Markov chain M1 (i.e., a DTRW) on
an unweighted network, we obtain

p(
#»
ij → #»

j`) =

{
1/kj (v` is a neighbor of vj) ,

0 (otherwise) .
(122)

In general second-order Markov chains, the probability

that a walker visits node
#»

j` after n+ 1 steps is given by

p(
#»

j`;n+ 1) =

N∑
i=1

p(
#»
ij;n)p(

#»
ij → #»

j`) . (123)

Edge-centric CTRWs with a non-exponential distribu-
tion ψ(τ) of inter-event times are one example of a situa-
tion that is appropriate to model using a second-order
Markov chain rather than a first-order chain. Equa-

tion (101) implies that p(
#»

`i → #»
ij) depends on whether

j = ` or j 6= `. In particular, if ψ(τ) is a heavy-tailed dis-

tribution, then p(
#»

`i → #»

i`) (i.e., the probability to back-
track) is larger than is expected in a first-order Markov

chain. All other p(
#»

`i → #»
ij) (j 6= `) values are the

same. In contrast, if ψ(τ) is a lighter-tailed distribution

than an exponential distribution, p(
#»

`i → #»

i`) is smaller
than expected in a first-order Markov chain, and ran-
dom walkers tend to avoid backtracking. The extreme
case of the latter situation is a non-backtracking RW
[232, 234, 239, 240]. In such an RW, a walker performs an
RW, except that it is not allowed to backtrack [241, 242],

so p(
#»
ij → #»

ji) = 0 and p(
#»
ij → #»

j`) = 1/(soutj −Aji) (with
j 6= i).

A network’s associated non-backtracking matrix,
which is a 2M × 2M adjacency matrix for the M2 net-
work, has been used recently in several applications, in-
cluding percolation [243, 244], network centralities [245],
community detection [246–248], and efficient “immuniza-
tion” algorithms [249]. More generally, we also note that
non-backtracking matrices help with “message passing”
and “belief propagation” approaches to network analysis.

To quantify the difference between a first-order Markov
chainM1 and a second-order Markov chainM2, we com-
pare their entropy rates. “Entropy rate” quantifies the
uncertainty of the next state given the current state,
weighted by the stationary density. ForM1, the entropy
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rate is

H1 = −
N∑

i,j=1

p∗i Tij log Tij . (124)

In M2, one calculates the entropy rate for a first-order
Markov chain on the memory network and thereby ob-
tains

H2 = −
N∑

i,j,`=1

p∗#»
ij
p(

#»
ij → #»

j`) log p(
#»
ij → #»

j`) , (125)

where p∗#»
ij

is the stationary density at node
#»
ij in the mem-

ory network. In many empirical temporal networks, H2

is considerably smaller than H1, implying that one can-
not neglect memory effects [232, 234] (also see [250, 251]
for similar measurements). The first-order Markov chain
M1 tends to overestimate the number of available neigh-
bors around the current node of a random walker com-
pared to its higher-order counterparts.

The observation that H2 < H1 can influence RW dy-
namics, other dynamical processes on networks, and how
one wants to calculate certain structural features of net-
works. For example, communities of networks found
by second-order Markov chains (see Section V C 1) tend
to contain edges that are activated at the same time
[239]. Such communities are undetectable using first-
order models (such as the usual RWs). Memory also

affects the relaxation time of an RW or other Markov
processes towards a stationary state [231].

The eigenvalue λ2 of T with the second-largest abso-
lute value influences network community structure and
determines the relaxation time of RWs [206]. (See Sec-
tion V C for more discussions of community structure.)
Temporal correlations can either increase or decrease λ2,
depending on how temporal correlations are introduced
[231]. If memory increases λ2, then a random walker in
a second-order Markov process tends to be confined in
a certain part of the original network (i.e., the M1 net-
work) than is suggested by network structure alone. In
the corresponding M2 network, a random walker tends
to be trapped in a community. In this case, memory has
slowed down relaxation to a steady state. However, if
memory decreases λ2, a walker moves from one commu-
nity to another faster than is suggested by the original
network. In this case, memory accelerates relaxation to
a steady state. Moreover, non-Markovian pathways in
a network without community structure can still create
community structure in the associatedM2 network [56].
As a simple example (see Fig. 8), consider an undirected
3-clique (i.e., a triangle).

The transition-probability matrix of the usual DTRW
(i.e., the M1 process) is

T =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 , (126)

which yields λ2 = −1/2. On the triangle network, con-
sider the second-order Markov chain process defined by

p(
# »
12→ # »

21) = p(
# »
21→ # »

12) = p(
# »
13→ # »

31) = p(
# »
31→ # »

13) = p(
# »
23→ # »

32) = p(
# »
32→ # »

23) = q , (127)

p(
# »
12→ # »

23) = p(
# »
21→ # »

13) = p(
# »
13→ # »

32) = p(
# »
31→ # »

12) = p(
# »
23→ # »

31) = p(
# »
32→ # »

21) = 1− q , (128)

where q ∈ [1/2, 1) (see Fig. 8). This RW backtracks the
edge traversed in the previous step with probability q. If
we order the nodes in the M2 network as

# »
12,

# »
21,

# »
13,

# »
31,

# »
23, and

# »
32, the transition-probability matrix is

T =


0 q 0 0 1− q 0
q 0 1− q 0 0 0
0 0 0 q 0 1− q

1− q 0 q 0 0 0
0 0 0 1− q 0 q
0 1− q 0 0 q 0

 . (129)

The eigenvalues of T are 1, 1 − 2q, and[
−1 + q ±

√
(1− q)2 + 4(2q − 1)

] /
2. The last

eigenvalues (for each of ±) have multiplic-
ity two. The relaxation time is governed by

λ2 =
[
−1 + q −

√
(1− q)2 + 4(2q − 1)

] /
2 < 0. When

q = 1/2, we obtain λ2 = −1/2, which is consistent with
the memoryless case. When q > 1/2, we see that λ2
decreases monotonically towards −1, which one obtains
in the limit q → 1. A large value of q makes λ2 (and
hence the spectral gap) small, so a random walker tends
to spend a long time in a community in theM2 network.
In this situation, each of the three edges constitutes a
community, and it is difficult for the walker to leave any
edge.

Storing the stationary density of a second-order
Markov chain (i.e., p∗#»

ij
) may be prohibitive, particu-

larly for a network that is not sparse, because the M2

network has 2M nodes. A space-friendly alternative is
to introduce an approximation p∗#»

ij
≈ p̂∗i p̂

∗
j (with i, j ∈

{1, . . . , N}) and estimate p̂∗i [252]. The estimated p̂∗i
is the stationary density of a modified second-order-like
Markov chain called a “spacey RW” [253]. In a spacey
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FIG. 8. A second-order Markov chain on a 3-clique. The
widths of the arrows represent (schematically) the transition
probabilities in a second-order Markov chain. For example, a
walker that has moved from node v2 to node v1 moves back to
v2 with probability q and moves to v3 with probability 1− q
in the next move. Because q > 1/2 in this figure, random
walkers tend to backtrack.

RW, a walker visiting node vj forgets the last node vi
that it has visited. The walker then draws the fictive
last position vi uniformly at random from the list of the
nodes visited in the past. (The probability that each
node is selected is weighted by the number of past vis-
its to the node.) The walker then moves to v` according

to the probability p(
#»
ij → #»

j`). Spacey RWs are a type
of “reinforced RW”, in which nodes or edges (nodes in
the present case) visited frequently in the past are also
visited more frequently in subsequent steps [72]. Spacey
RWs have such a richer-get-richer mechanism embedded
in the process to select the fictive last position vi.

V. APPLICATIONS

A. Search on networks

People are often interested in finding a resource, ser-
vice, or piece of information that is available only at some
nodes in a network [41]. If network structure is com-
pletely known to a user or a designer, a shortest path
from the initially visited node to a destination node pro-
vides the most efficient way of searching, although it may
be sensible to plan a detour if one expects congestion
from traffic somewhere along a shortest path.

If a searcher has partial information about his/her des-
tination (e.g., the geographic distance to it), one can of
course use such information to inform search paths [254].
In contrast, if one does not have any information about
network structure or has only local information (such as
the degrees of neighbors), RWs provide a viable approach
for searching in networks. One context in which this
idea has been investigated and implemented are decen-
tralized peer-to-peer networks [255, 256]. A node that
sends a query emits Nrw packets to neighbors selected
uniformly at random. Each packet behaves as a random
walker, which travels until it finds the item or reaches

a prescribed lifetime nmax, which is the maximum num-
ber of steps it is allowed to take before it is removed
from the network. Search overhead is determined by
Nrwnmax, which is a measure of the number of walkers,
averaged over time, that are wandering in a network.
One expects larger Nrwnmax to yield better search effi-
ciency (i.e., a higher probability that an item is found).
Therefore, there is a trade-off between search overhead
and search efficiency. RW search methods are compa-
rable with flooding search methods in various networks
and scenarios [255]. In a flooding method, first used by
Gnutella, a node with a query asks all of its neighbors,
each of which in turn asks all of its unvisited neighbors,
and so on [257].

Most empirical networks are highly heterogeneous in
node degree [41]. If a node that is making or passing
on a query knows the degrees of its neighbors, one can
enhance search efficiency by sending the query to high-
degree neighbors [258]. The main limitation of such an
approach is that most queries are forwarded to hubs, po-
tentially causing overloading at such nodes (depending
on their capacity).

B. Ranking

In the study of networks, one often seeks to rank
nodes, edges, or other structures based on their rela-
tive importances (i.e., “centralities”). There are myr-
iad ways to measure centralities in networks, especially
for ranking nodes [41, 259], and new ones are published
at a very rapid pace. Many methods for computing
node centralities are based on eigenvectors of matrices
and are derived from various types of RWs or other
walks. These include “Katz centrality” [260] and related
measures (such as “communicability”) [132], “eigenvec-
tor centrality” [64], “PageRank” [22], “hubs” and “au-
thorities” [261], “non-backtracking centrality” [245], and
many others. By considering RWs on multilayer and tem-
poral networks, one can also generalize such notions of
centrality [225, 235, 262–266]

1. PageRank

The most famous centrality measure is probably
“PageRank”, which was introduced originally for rank-
ing web pages. In this context, it was introduced by Brin
and Page [63] (see also [267]), although an equivalent for-
mulation had already existed for two decades [268]. (Brin
and Page’s discovery was independent of Ref. [268].)

PageRank is discussed thoroughly in many review pa-
pers and monographs [22, 269–273], and it has been used
(and generalized) for numerous applications — includ-
ing ranking of academic journals and papers, professional
sports, disease-gene identification, discovery of correlated
genes and proteins, systemic risk in financial networks,
anomaly detection in distributed engineered systems, or-



27

dering of the most important functions in Linux, pre-
diction of traffic flow and human movement, recommen-
dation systems in online marketplaces, image search en-
gines, identifying community structure in networks, and
much more [22]. We indicate a few fascinating appli-
cations in passing. For example, seven new genes that
predict the survival of patients in a type of pancreatic
cancer were identified using PageRank [274]. PageRank
has also been used to rank professional tennis players
[275], and PageRank and other RW-based ranking meth-
ods have been used for ranking teams in U.S. college
football [276, 277] and ranking players in Major League
Baseball [278]. PageRank and other eigenvector-based
centrality measures have also been used to rank universi-
ties [279], mathematics research programs [266, 280], and
many other things.

The PageRank vector is defined as the stationary den-
sity of a DTRW on a network that is a modification
of an original network to guarantee that the station-
ary density always exists. For the original network, the
temporal evolution of the probability p(n) that node vi
(with i ∈ {1, . . . , N}) is visited at time n is governed
by Eq. (26) (or, equivalently, by Eq. (28)). The essen-
tial idea of PageRank is to use the stationary density in
Eq. (30) as a centrality measure. Equation (30) implies
that node vi is central if many edges enter node vi (i.e.,
it has a large in-degree), the source node of the edge
that enters vi is a central node, and the source node vj
of the edge that enters vi has a small out-degree. The
last condition ensures that the total centrality of vj is
shared among its out-neighbors. This recursive relation-
ship (i.e., a node is central if it is adjacent to central
nodes) leads to an eigenvalue problem. Other central-
ity measures — including eigenvector centrality, Katz
centrality, the hyperlink-induced topic search algorithm
(which uses “hubs” and “authorities”), and many others
— are based on the same basic idea [41]. In PageR-
ank, the eigenvalue problem corresponds specifically to
the stationary density of a DTRW.

In an empirical directed network, one cannot typically
use a transition-probability matrix T without modifica-
tion to measure centralities, because such networks are
not usually strongly connected. Consequently, there are
transient nodes with stationary density equal to 0, and
the stationary density need not be unique, as it depends
on the initial condition of an RW when there are mul-
tiple absorbing states. To overcome these problems, we
allow walkers to “teleport” (e.g., uniformly at random)
to other nodes to construct an effective network that is
strongly connected. The master equation for the altered
RW is

pi(t+ 1) = α

N∑
j=1

pj(t)Tji + (1− α)ui , (130)

where the “preference vector” (u1, . . . , uN ), which sat-

isfies the constraint
∑N
i=1 ui = 1, determines the condi-

tional probability that a walker teleports to node vi when

it teleports. At any node with at least one out-edge, a
walker teleports with probability 1 − α. To prevent the
transition probability in Eq. (24) from being ill-defined, it
is standard to ensure that a walker teleports with proba-
bility 1 (rather than with probability 1−α) when it visits
a so-called “dangling node” (which have no out-edges, so
souti = 0 for a dangling node vi). Mathematically, we set
Tij = uj (with j ∈ {1, . . . , N}) for any dangling node vi.
For web browsing, one interprets teleportation as a move
to a new web page without following a hyperlink on the
web page that is currently being visited. If ui > 0 (with
i ∈ {1, . . . , N}), any α ∈ (0, 1) renders the altered RW
ergodic, and Eq. (130) thus converges to a unique sta-
tionary density. The PageRank vector is the stationary
state of Eq. (130), and it is equal to the normalized eigen-
vector corresponding to the largest positive eigenvalue of
the matrix T ′ with elements T ′ij = αTij + (1− α)uj .

Power iteration of T ′ converges rapidly if the spectral
gap of T ′ is large (or, equivalently, if the second-largest
eigenvalue of T ′ has small magnitude). The second-
largest (in magnitude) eigenvalue of T ′ is equal to αλ2,
where λ2 is the second-largest (in magnitude) eigenvalue
of T [269]. Therefore, power iteration converges towards
the PageRank vector at a rate that is proportional to
1/α [22]. However, a small value of α, which corresponds
to a large teleportation probability, dilutes the effect of
the original network structure (which is encoded in the
transition-probability matrix T ). A rule of thumb is to
set α near 1 to suppress the effect of teleportation, but to
also make sure that it is not too close. A popular choice
is to let α = 0.85 and use a preference vector of ui = 1/N
(with i ∈ {1, . . . , N}) so that one teleports to nodes uni-
formly at random. An alternative choice is a “person-
alized PageRank” [22], in which the preference vector is
localized around one node or a small number of nodes
(which can be helpful for applications to community de-
tection [65]). One can also examine other teleportation
strategies [281].

The stationary density of Eq. (130) has components

p∗i;α = (1− α)

N∑
j=1

uj
[
(I − αT )−1

]
ji
, (131)

and we note that we explicitly include the dependence
on α in our notation. The Taylor expansion of Eq. (131)
yields [282, 283]

p∗i;α ≈ ui +

∞∑
`=1

α`
N∑
j=1

uj
(
T `ji − T `−1ji

)
. (132)

Equation (132) includes terms for walks of all lengths `,
and it thereby reveals the non-local nature of PageRank.
When the value of α is large, a lot of credit is given to
long walks. (See Ref. [132] for similar discussions in the
context of centrality measures such as communicability.)
In fact, the stationary density can change drastically as
a function of α [269]. Let’s set ui = 1/N (with i ∈
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{1, . . . , N}) and rewrite Eq. (132) as

p∗i;α =
1

N
+

∞∑
`=1

α`

N

N∑
j,j′=1

(
sinj′ − soutj

sinj′

)
Tjj′T

`−1
j′i . (133)

The leading contribution for small αmakes the PageRank
vector uniform across all nodes. Heterogeneity arises as α
increases. Equation (133) indicates that the contribution
of each length-` walk is proportional to sinj′ − soutj . Each

term on the right-hand side of Eq. (133) vanishes when a
network is regular in the weighted sense (i.e., when sini =
souti = s, where i ∈ {1, . . . , N}). This yields p∗i;α = 1/N
for any value of α.

A strategy to minimize the dependence of the PageR-
ank vector on α is to carefully choose the preference vec-

tor. One choice is ui = sini /
∑N
`=1 s

in
` [281], inspired by

the observation that the in-strength of a node is often
correlated positively with p∗i for a DTRW on the original
network (see Section III B 2). With this choice of ui, one
uniformly randomly selects an edge rather than a node.
One then teleports, uniformly at random, to one of the
two end points of the selected edge. Substituting this
preference vector into Eq. (132) yields

p∗i;α =
sini∑N
`=1 s

in
`

+

∞∑
`=1

α`∑N
`=1 s

in
`

N∑
j=1

(
sinj − soutj

)
T `ji ,

(134)
which differs from Eq. (133) in several respects. As
α → 0, the components of the PageRank vector in
Eq. (134) are given by the in-strength of the nodes. (The
simplest — and a rather popular — measure of central-
ity in networks is simply to calculate node degrees and/or
node strengths.) The `th-order contribution consists of
a weighted mean of the walks of length `. One expresses
their contribution to the PageRank vector in terms of
the source node of a walk (i.e., vj) in Eq. (134). This
contrasts with Eq. (133), where one instead expresses
the contribution in terms of edges (vj , vj′). A node vj
that is the source of more probability flow than it re-
ceives as a destination (i.e., sinj > soutj ) makes a positive
contribution to the PageRank vector, and a node vj with
sinj < soutj makes a negative contribution. Equation (134)
is independent of α when a network is balanced. (Re-
call from Section III B 2 that a directed network is bal-
anced when sini = souti for each i.) In a balanced network,

Eq. (134) reduces to p∗i = sini /
∑N
`=1 s

in
` .

Chung proposed a variant of PageRank called “heat-
kernel PageRank” (which is defined for strongly con-
nected networks) [284, 285]. It is the probability density
of a Poissonian node-centric CTRW at time t, where t is
the only parameter and it plays the role of α from the
original PageRank. One uses a preference vector as an
initial condition. Heat-kernel PageRank tends to the sta-
tionary density of a DTRW as t → ∞. (For undirected
networks, the components of the limiting stationarity
density are thus proportional to the node strengths.)

We also note that various versions of PageRank and

similar RW-based centralities for multilayer networks
have been proposed [263–265, 286–288].

2. Laplacian centrality

PageRank is essentially the stationary density of
a DTRW. The stationary density of the edge-centric
CTRW has also been employed as a centrality measure
for directed networks (and, in fact, it has a longer history
than PageRank [209, 289–291]). For strongly connected
networks, such a “Laplacian centrality” is defined by the
left eigenvector corresponding to the 0 eigenvalue of the
(combinatorial) Laplacian L. That is, it is given by p∗

in Eq. (92). This Laplacian centrality has been used, for
example, to rank football teams [292], baseball players
[278], and neurons [212]. It has also been used in popu-
lation ecology as a “reproductive value” [293, 294].

3. TempoRank

One can extend the DTRW to temporal networks by
using sequences {A(1), A(2), . . .} of adjacency matrices
(see Section IV B). Therefore, one can also extend PageR-
ank to temporal networks. One such generalization is
called “TempoRank” [235], and Katz centrality [262, 295]
and all eigenvector-based centralities [266] have been gen-
eralized to such temporal networks.

In this section, we discuss TempoRank. We consider
an undirected temporal network whose edge weights at
each discrete time have (nonnegative) integer values. The
latter assumption corresponds to a situation in which an
event is an unweighted edge and each node pair can ex-
perience multiple events during the time window corre-
sponding to a given matrix in the sequence. One can
also image a sequence of networks, in which one has a
time-independent view (or approximation) of a temporal
network at a given instant in time. This weighting as-
sumes that a random walker at node vi that moves at dis-
crete time n selects each available edge (i.e., event) with
the same probability and then traverse the chosen edge.
Because we consider DTRWs, the walker moves at most
once per time step. To avoid using a multilayer-network
formalism, we also assume that there are no inter-layer
edges between different matrices in the sequence.

To make the walk random even when just a single edge
is available to a walker in a time period, we assume that,
in each time period, a walker resists moving from node vi
with probability q per unit weight of an edge connected
to vi. For example, if vi is adjacent to a node with two
events (i.e., edge weight equal to two) and to another
node with three events at discrete time n, a walker visit-
ing vi stays at the same node with probability q5 at time
n. A large q entails slow diffusion, and the parameter
q allows one to explore situations in which diffusion is
slower than the time scale of the dynamics of the net-
work. We define the transition probability from node vi
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to node vj at discrete time n as

Tij(n) =


δij (si(n) = 0 , j ∈ {1, . . . , N}) ,
qsi(n) (si(n) ≥ 1 , i = j) ,

(A(n))ij(1− qsi(n))/si(n) (si(n) ≥ 1 , i 6= j) ,

(135)

where si(n) =
∑N
j=1(A(n))ij is the strength of vi at time

n. Note that
∑N
j=1 Tij(n) = 1. From Eq. (135), we see

that a walker does not move with probability qsi(n). Oth-
erwise, it moves to a neighbor with a uniform probabil-
ity of 1/si(n). By setting the probability of not moving
to qsi(n), one ensures that the probability of not mov-
ing from vi is unaffected by whether multiple edges are
present simultaneously in a time period or if they are
distributed over multiple times. For example, if vi is
connected simultaneously to three other nodes by un-
weighted edges at time n = 1 but isolated at times n = 2
and n = 3, the probability that a walker visiting vi does
not move during n = 1, n = 2, and n = 3 is equal to q3.
The probability is the same if vi is connected to one node
at each of n = 1, n = 2, and n = 3. Note that one can de-
rive the former case (i.e., three edges simultaneously con-
nected to vi) from the latter case (i.e., one edge connected
to vi at each time) by coarse-graining the temporal net-
work (e.g., by regarding A(3n− 2) + A(3n− 1) + A(3n)
as a new adjacency matrix at a rescaled discrete time n).
Our formulation mitigates the effect of temporal resolu-
tion (and time-window size) by equating the probability
of not moving in the two cases.

The transition probability depends on time. When
there are nmax time windows, the transition probabil-
ity for one “cycle” (i.e., one time through the full time
period in the temporal sequence of adjacency matrices)
is defined as

T tp ≡ T (1)T (2) · · ·T (nmax) . (136)

Using periodic boundary conditions (i.e., by having the
last adjacency matrix A(nmax) loop back to A(1)), the
“stationary density” at node vi is given by the ith element
of u(1), where

u(1) = u(1)T tp . (137)

There is no stationary density in the present RW process
in the conventional sense, because the network is chang-
ing in time. Due to the periodic boundary conditions, the
stationary density of walkers at each node differs across
time periods. The vector u(1) represents the stationary
density when the RW is observed right after time nmax

(and before time 1) in each cycle. One defines the Tem-
poRank vector based on the running mean of the station-
ary density over all time periods. That is, it is given by
uavg ≡

∑nmax

n=1 u(n)/nmax, where u(n) is the stationary
density when the observation is made right after time
n− 1 (and before time n).

4. Random-walk betweenness centrality

In our discussions of ranking methods, we have dis-
cussed centrality measures (e.g., PageRank) that are de-
rived from RWs. RWs are also useful for deriving variants
of other familiar centrality measures, such as “between-
ness centrality”.

Shortest-path betweenness centrality (i.e., geodesic be-
tweenness centrality) of a node is defined from a normal-
ized count of the shortest paths that pass through a focal
node for all pairs of distinct source and target nodes in
a network [41, 296]. Specifically, the shortest-path be-
tweenness of node vi is

bgeoi =
∑
is 6=it

(number of shortest paths from vis to vit that pass through vi)

N(N − 1)× (number of shortest paths from vis to vit)
, (138)

where the nodes vi, vis , and vit are all distinct. However,
restricting to strictly shortest paths can be problematic
[297]. For example, consider the network in Fig. 9 that
includes two communities of densely-connected nodes.
Nodes v1 and v2 have large betweenness-centrality values
because any shortest path connecting one node in each
community must pass through both v1 and v2. However,
because such a shortest path does not pass through v3,

the shortest-path betweenness of node v3 is 0, yet v3 may
be more important than most other nodes in connecting
different parts of the network (albeit to a lesser extent
than v1 and v2). One can capture this intuition by al-
lowing paths that are longer than the strictly shortest
ones to contribute to the value of a betweenness central-
ity. One way to do this is to use RWs [134, 297].

We now explain the “RW betweenness centrality” in-
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v1 v2

v3

FIG. 9. A network with two clearly distinguished communi-
ties.

troduced in Ref. [297]. Consider an undirected network.
Similar to the definition of shortest-path betweenness
centrality, we specify the starting node vis and terminal
node vit of an RW. Intuitively, RW betweenness central-
ity of a node vi measures the number of times that a
random walker starting from vis passes through vi before
reaching vit . If we do not specify vit , a walker wanders
forever in the network, and the centrality of vi is propor-
tional to si [see Eq. (31)]. In RW betweenness centrality,
one still discounts long walks, because a walk terminates
once a walker reaches vit .

The RW betweenness centrality of node vi as

brwi ∝
N∑
is=1

is−1∑
it=1

(number of times that a walker starting at vis and terminating at vit “effectively” visits vi) . (139)

Note that the “effective” number of transitions between
nodes vi and vj ∈ Ni is equal to the difference (in ab-
solute value) between the number of times that a walker
moves from node vi to node vj and the number of times

that it moves from node vj to node vi. An effective tran-
sition from v` to vi and then to a different node vj (with
j 6= `) completes an effective visit to vi.

Therefore, the number of effective visits to vi on the right-hand side of Eq. (139) is given by∑
j∈Ni

(number of effective transitions between vi and vj)/2.

Because an RW on a network is related to a corre-
sponding electric circuit on the same network [1, 32, 38,
41, 109, 110], we also discuss a centrality based on electric
circuits and then relate it to RW betweenness centrality
brwi . Consider an electric circuit in which one injects a
unit current at node vis and drains it at vit . Suppose
that each edge has a conductance of Aij , and let Vi de-
note the voltage at node vi. Kirchhoff’s current law at
each vi implies that

N∑
j=1

Aij(Vi − Vj) = δi,is − δi,it . (140)

The left-hand side of Eq. (140) represents the cur-
rent that flows from node vi to node vj for each j ∈
{1, . . . , N}. Because

N∑
j=1

Aij = si , (141)

we rewrite Eq. (140) as

(D −A)V = LV = Icurr , (142)

where V = (V1, . . . , VN )>, the quantity Icurr is the
column vector of size N given by

Icurri =


1 , (i = is) ,

−1 , (i = it) ,

0 , (i 6∈ {is , it}) ,
(143)

and we recall that L is the combinatorial Laplacian ma-
trix.

Because L does not have full rank, Eq. (142) does not
have N independent solutions, even though it consists
of a set of N linear equations with unknowns Vi (with
i ∈ {1, . . . , N}). Therefore, we delete an arbitrary i0th
row from L, corresponding to setting Vi0 = 0, without
loss of generality. As in Section III B 5, we also delete the
i0th row and column from D and A to yield (N−1)×(N−
1) matrices D

(i0)
and A

(i0)
, respectively. Similarly, we

remove the i0th element from V and Icurr to obtain (N−
1)-dimensional vectors V

(i0)
and I

curr(i0)
, respectively.

Equation (142) is thus equivalent to

(D
(i0) −A(i0)

)V
(i0)

= I
curr(i0)

. (144)

For a connected network, the matrix D
(i0)−A(i0)

has full
rank, and we obtain

V
(i0)

= (D
(i0) −A(i0)

)−1I
curr(i0)

. (145)

We now reinsert the i0th row and column of (D
(i0) −

A
(i0)

)−1 by filling them with 0s, and we denote the result-
ing N ×N matrix by R = (Rij). Substituting Eq. (143)
into Eq. (145) then yields

Vi = Ri,is −Ri,it . (146)
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Note that Eq. (146) satisfies the condition Vi0 = 0. The total current that flows through node vi is

Currentis,iti =


1

2

N∑
j=1

Aij |Vi − Vj | =
1

2

N∑
j=1

Aij
∣∣Ri,is −Ri,it −Rj,i +Rj,i

∣∣ (i 6∈ {is, it}) ,

1 (i ∈ {is, it}) .
(147)

The division by 2 in the first case of Eq. (147) arises from
the fact the same current is counted twice when it flows
into and out of vi.

One can show that RW betweenness centrality is equal
to

brwi =

N∑
is=1

is−1∑
it=1

Currentis,iti

N(N − 1)/2
. (148)

That is, it is the normalized frequency that a random
walker visits node vi before it reaches vit . To verify
Eq. (148), let’s consider a DTRW with an absorbing
boundary at vit . The transition-probability matrix con-
sists of the elements

T ′ij =

{
Aij

si
(i 6= it) ,

δitj (i = it) .
(149)

The matrix T ′ is equal to the transition-probability ma-

trix of a DTRW with an absorbing boundary, so T ′ is
equal to D−1A except in the itth row. We remove the
itth row and column from T ′, D−1, and A to obtain

T
′(it)

=
(
D

(it)
)−1

A
(it)

. (150)

Whenever the row sum of T
′

is less than 1, the walk is
absorbed at vit with the residual probability.

Consider an RW that starts from node vis . The prob-
ability that a random walker visits vi (with i 6= it) after

n steps is given by the (is, i)th element of
(
T
′(it)
)n

. (For

clarity, we use the indices 1, . . ., it−1, it+1, . . ., N rather

than 1, . . ., N − 1 for the elements of T
′
.) Conditioned

on this event, the probability that the walker moves to
node vj in the next step is equal to 1/ki. The expected
number of times that the walker steps from node vi to a
neighboring node vj ∈ Ni is

∞∑
n=0

((
T
′(it)
)n)

isi

ki
=

([
I − T ′(it)

]−1)
isi

ki

= ith element of
(
I
curr(it)

)> [
I −

(
D

(it)
)−1 (

A
(it)
)]−1 (

D
(it)
)−1

= ith element of
(
I
curr(it)

)> (
D

(it) −A(it)
)−1

. (151)

Because D
(it)

and A
(it)

are symmetric matrices, the
left-hand side of Eq. (151) is also equal to the

ith element of

[(
I
curr(it)

)> (
D

(it) −A(it)
)−1]>

=(
D

(it) −A(it)
)−1

I
curr(it)

. Therefore, Eq. (145) guaran-

tees that the quantity
∑∞
n=0([(T

′(it)
)n]isi/ki) is equal to

voltage Vi when vi0 = vit . Finally, the “effective” number
of transitions — i.e., the difference between the number
of times that a walker moves from node vi to node vj and

the number of times that it moves from node vj to node
vi — is equal to |Vi − Vj |.

We now consider “RW centrality” [134], another a vari-
ant of RW betweenness centrality. This centrality quan-
tifies the speed at which a walker starting from node vi
reaches other nodes compared to the speed at which a
walker starting from an arbitrary node reaches vi. To for-
malize this idea, we use Eq. (68), which gives the MFPT
mij from node vi to node vj , and we focus on undirected
networks. One measures the importance of node vi rela-
tive to node vj by calculating
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mij −mji =

(
N∑
`=1

s`

)
×

[(
R

(0)
jj

sj
− R

(0)
ii

si

)
−

(
R

(0)
ij

sj
−
R

(0)
ji

si

)]
. (152)

For undirected networks, the following detailed balance, which extends Eq. (32), holds [134]:

sipij(n) = si

N∑
`1,`2,...,`n−1=1

Ai`1
si

A`1`2
s`1

×
A`n−1j

s`n−1

=

N∑
`1,`2,...,`n−1=1

Ai`1
s`1

A`1`2
s`2

×
A`n−1j

sj
sj = sjpji(n) . (153)

Substituting Eq. (153) into Eq. (64) yields

R
(0)
ij

sj
=

∑∞
n=0

[
pij(n)− p∞j

]
sj

=

∑∞
n=0

[
sjpji(n)

si
− sj∑N

`=1 s`

]
sj

=

∑∞
n=0

[
pji(n)− si∑N

`=1 s`

]
si

=
R

(0)
ji

si
. (154)

We then apply Eq. (154) to Eq. (152) to obtain

mij −mji = Crw(j)−1 − Crw(i)−1 , (155)

where

Crw(i) ≡ si

R
(0)
ii

∑N
`=1 s`

=
si∑∞

n=0

[
pii(n)− si∑N

`=1 s`

]∑N
`=1 s`

(156)

is defined to be the RW centrality.

C. Community detection

A useful approach for studying networks is to exam-
ine mesoscale structures, of which the best-known type
is “community structure” [60–62]. There are numer-
ous methods to algorithmically detect communities (and
many applications in which communities can be insight-
ful), which are sets of densely connected nodes such that
connections between different communities are relatively
sparse. RWs provide a theoretical basis for understand-
ing community structure and practical algorithms for de-
tecting them. The main idea is that, if a given network
has community structure, a random walker should be
trapped within a community for a relatively long time be-
fore leaving it. This arises from the high density of edges
within communities and the sparse connections across
communities. Therefore, RWs that are observed on a
short time scale should reveal intra-community structure
in a network, and RWs that are observed on a long time
scale should reveal global structure about the same net-
work.

In this section, we introduce some algorithms for com-
munity detection that are based on RWs. For other al-
gorithms and theoretical underpinnings, see papers such
as Refs. [65, 221, 298–305].

1. Markov-stability formulation of modularity

It is common to use the “modularity” objective func-
tion Q to quantify the quality of a partition of a network
into nonoverlapping communities, and many community-
detection methods are based on maximizing Q [62]. Con-
sider a partition of an undirected network into NCM com-
munities. Let CMc denote the cth community (with
c ∈ {1, 2, . . . , NCM}). We use a variant (sometimes called
the “Newman–Girvan null model”) of an undirected con-
figuration model [113] that is defined as a random graph
with a specified strength si at each node. For this con-
figuration model, the probability that nodes vi and vj
are adjacent is approximately Pij ≡ sisj/(2M

′), where

M ′ =
∑N
i=1 si/2 is the sum of the edge weight over all

edges [41]. (Technically, Pij is a probability only for suf-
ficiently small edge weights; otherwise, it is an expecta-
tion.) Note that M ′ = M for an unweighted network,
where we recall that M is the number of edges. Modu-
larity is defined by

Q =
1

2M ′

NCM∑
c=1

 N∑
i,j=1;

vi,vj∈CMc

(
Aij −

sisj
2M ′

)
=

1

2M ′

N∑
i,j=1

(
Aij −

sisj
2M ′

)
δ(gi, gj) , (157)

where gi is the community to which node vi has been
assigned, and δ(gi, gj) = 1 if gi = gj and δ(gi, gj) = 0
otherwise. The quantity Pij gives the elements of a null-
model matrix, and a wide variety of different versions of
the matrix P = (Pij) have been examined [306, 307].
More precisely, P is not a “null model” but rather a
“null network” (which is a network generated from a null
model) [307].

Methods based on modularity maximization suffer
from the fact that Q has a resolution limit, so using
Eq. (157) does not allow one to detect dense communities
of nodes that are smaller than a certain scale [308, 309]
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(though some null models attempt to address this issue).
Modularity maximization also implicitly favors commu-
nities of a particular size that depend on the size of
the entire network (not only its internal structure), and
methods based on maximizing Q also have various other
problematic features [62].

One can use RWs to gain insights into modularity and
its resolution issues. Modularity is closely related to
“Markov stability”, which quantifies the tendency for a
random walker to stay inside a community for a long
time. The Markov stability of a partition of a net-
work is defined as the probability that a walker is in
the same community at time 0 and time t in the equi-
librium of the Poissonian node-centric CTRW [310–313].
See Refs. [313, 314] for a version of Markov stability de-
rived from a DTRW.

The master equation is

dp(t)

dt
= −p(t)L′ , (158)

where we recall that L′ is the random-walk normalized
Laplacian matrix [see Eq. (76)]. The stationary density
is given by Eq. (31).

Consider a pair of nodes, vi and vj , that belong to the
same community. Equation (158) implies that, in the
stationary state, the probability that a random walker
visits vi and then vj after time t is equal to p∗i (e

−tL)ij . As
with modularity maximization, one needs to compare this
quantity with a null model. For Markov stability R(t),
the standard null model is given by the probability that a
walker visits node vi at t = 0 and node vj at t =∞. This
yields a null probability of p∗i p

∗
j . One thereby obtains a

Markov stability of

R(t) =

N∑
i,j=1

[(
p∗i e
−tL′

)
ij
− p∗i p∗j

]
δ(gi, gj) . (159)

Because of the exponential factor e−tL, Markov stabil-
ity combines walks of various lengths between two nodes.
The time t acts as a resolution parameter, enabling one
to zoom in and out to unravel multiscale structure in
a network. A large value of t gives large weightings to
long walks and yields a small number of communities.
In the limit t → ∞, Markov stability is optimized by
the bipartition given by the signs of the elements of the
Fiedler vector (i.e., a type of spectral partitioning) if the
corresponding eigenvalue is not degenerate [302]. More
generally, spectral partitioning is related to RWs on net-
works because it uses the eigenvectors of matrices such
as the combinatorial Laplacian matrix or a modularity
matrix [315, 316].

Because it is computationally expensive to calculate
e−tL

′
for large networks, we use a linear approximation

e−tL
′ ≈ I − tL′. To simplify our exposition, we now

assume the case of undirected networks for the rest of
this section [313]. By substituting p∗i = si/(2M

′) and

p∗j = sj/(2M
′) into Eq. (159), we obtain

R(t) =
1

2M ′

N∑
i,j=1

[
tAij + (1− t)δijsi +

sisj
2M ′

]
δ(gi, gj) .

(160)

Because
∑N
i,j=1(1 − t)δijsiδ(gi, gj) =

∑N
i=1 si does not

depend on the partitioning of a network, maximizing R(t)
is equivalent to maximizing

Q(γ) =
1

2M ′

N∑
i,j=1

(
Aij − γ

sisj
2M ′

)
δ(gi, gj) , (161)

where γ ≡ 1/t. We ignore the constraint that t is
small (which is admittedly naughty mathematically) and
thereby allow general values for γ when maximizingQ(γ).
We also note that Q(γ) was derived originally using the
perspective of a Potts spin glass [317], and recently it has
been related to maximum-likelihood methods [318].

When γ = 1, Eq. (161) coincides with Eq. (157).
Therefore, modularity is an approximate variant of
Markov stability. A large value of γ emphasizes the
penalty for classifying nodes into the same community
and results in many communities. The choice of the nat-
ural resolution parameter γ is an important practical is-
sue [315, 319], and it can be examined from a maximum-
likelihood approach [318].

2. Walktrap

In the Walktrap algorithm, one defines a measure of
similarity between nodes based on DTRWs and uses it
for community detection [320]. (See Ref. [321] for a sim-
ilar method that uses DTRWs.) Consider an undirected
and unweighted network. Define the RW-based distance
between two nodes, vi and vj , by

rij =

√√√√ N∑
`=1

(Tni` − Tnj`)2

k`
, (162)

where n is the number of steps in a DTRW. The distance
rij is small when a pair of random walkers — one starting
from vi and the other starting from vj — visit each node
with similar probabilities after n steps. The denomina-
tor k` discounts the fact that a walker visits v` with a
probability proportional to k` at equilibrium. Note that
n needs to be large enough for random walkers to be able
to travel to any node. However, n should be too large,
because limn→∞ Tni` = limn→∞ Tnj` = p∗` implies that rij
is very close to 0 for all i, j ∈ {1, . . . , N} when n is large
[61].

We expect that a pair of nodes, vi and vj , that are
separated by a small distance rij are likely to belong to
the same community. One uses a standard agglomerative
and hierarchical clustering algorithm on the distance ma-
trix r = (rij). One starts from the partition composed of
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N single-node communities and joins a pair of communi-
ties (so-called “tentative communities”) with the smallest
distance, one pair at time, to produce a series of parti-
tions until the entire network is in a single community.
In the merging process, one measures the distance be-
tween two communities CMc and CMc′ by the rij value,
normalized in some way, between vi, vj ∈ CMc ∪ CMc′ .
This agglomerative clustering algorithm is similar to a
greedy algorithm to maximize modularity across parti-
tionings with different numbers of communities [322]. In
Walktrap, one merges a pair of communities under the
restriction that they can be merged only when they are
adjacent to each other by at least one edge.

3. InfoMap

InfoMap is another algorithm for community detection
based on RWs [323]. It is very popular and has been ex-
tended to the case of hierarchical algorithms [324], mem-
ory networks [234], and multilayer networks [220]. In this
section, we discuss the basic version of InfoMap.

Consider a DTRW on a network, which can be directed
or weighted. If the network has meaningful community
structure, a random walker tends to be trapped within a
community for a long time before traveling to a different
community. A trajectory of the RW is a sequence of
the visited nodes (e.g., v3, v6, v3, v1, v8, . . .). Let’s
encode each node into a finite binary sequence (i.e., “a
code word”) and concatenate the code words to encode
the trajectory of a random walker. For example, if v1, v2,
v3, v4, v5, . . . are encoded into 000, 001, 010, 011, 100, . . .,
then the trajectory v3, v6, v3, v1, v8, . . . is encoded into
010101010000111 · · · . For unique decoding, one needs a
“prefix-free” coding scheme. In other words, a code word
cannot be a “prefix” (i.e., an initial segment) of another
code word. For instance, if v1 and v2 are coded as 000
and 0001, respectively, then one’s code is not prefix-free,
because 000 is an initial segment of 0001.

The “Huffman code” is a popular prefix-free code that
encodes individual symbols (i.e., nodes vi) separately and
tends to yield short binary sequences [325]. It assigns
a short code word to a frequently visited node. In a
stationary state, the mean code word length per step of

an RW is
∑N
i=1 p

∗
i×len(i), where len(i) denotes the length

of the code word assigned to vi.
If symbols (such as vi in our context) appear indepen-

dently in each step of an RW, the Huffman code yields a
mean code word length in each step that is close to the
theoretical lower bound set by the Shannon entropy

H = −
N∑
i=1

p∗i log p∗i . (163)

However, the sequence of symbols is correlated in time,
because it is produced by an RW. Consequently, a dif-
ferent coding scheme can yield a mean code length that
is smaller than the Shannon entropy. InfoMap exploits

community structure and uses a two-layer variant of the
Huffman code to achieve this goal. Because there are
fewer nodes in a community than in an entire network,
one can express a trajectory within each community us-
ing a shorter, different Huffman code that is local to in-
dividual communities. In practice, one constructs the
two-layer Huffman code as follows:

1. When a random walker enters the cth community,
one issues the (predetermined) code word that cor-
responds to entering community CMc.

2. The walker moves around within community CMc

for some time. One records the trajectory during
this period by the sequence of code words that cor-
responds to the sequence of visited nodes. One con-
catenates these code words, and they appear after
the code word (obtained in the previous step) that
corresponds to the entry to community CMc.

3. The walker eventually exits CMc. This event is rep-
resented by a special code word, which one places
after the sequence of code words that one has ob-
tained thus far.

4. The exit from CMc implies an immediate entry to
a different community, which we denote by CMc′ .
Therefore, we concatenate the code word corre-
sponding to the entry to CMc′ to the end of the
sequence of code words that we have obtained thus
far.

5. One uses the code words that are local to CMc′ to
record the trajectory until the walker exits CMc′ .
Note that one can use the same code word to rep-
resent a node in CMc and a node in CMc′ . This
fact does not cause any problems, because one de-
termines the current coding table from the entry
and exit code words.

6. Repeat steps 3–5.

Let’s consider the network in Fig. 10. The InfoMap
algorithm partitions the network into four communities,
whose boundaries we show with the dotted lines. The
binary sequence at each node represents the local code
word within the corresponding community. When a ran-
dom walker enters or exits a community, one uses the cor-
responding “in” and “out” code word, respectively. For
example, the trajectory indicated by the red arrows is en-
coded into 11 111 10 01 00 00 10 01 110. The first “11”
indicates that the RW starts in the top left community,
the subsequent “111” indicates that the walk starts at
node “111” in this community, the “00 00” in the middle
indicates that the walk exits this community (because of
the first “00”) and simultaneously enters the community
to the right (because of the second “00”).

In contrast to the original Huffman code, we need
2NCM additional code words to encode entry to and exit
from communities. However, we can use a smaller code
length when a random walker travels within a community
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FIG. 10. Optimal partitioning from the InfoMap algorithm
along with its resulting code words. We draw this example
from a demonstration applet available at [326].

because the code words local to a community are gener-
ally shorter than the code words of the original Huff-
man code. If a network has strong community structure,
one expects that an RW within a community occupies
a majority of steps if one optimally partitions the net-
work into communities. Consequently, one expects the
mean code length to be smaller using InfoMap than by
using a straightforward Huffman code in networks with
community structure. In practice, InfoMap optimizes a
quality function, called the “map equation” (where the
word “equation” is a misnomer), instead of constructing
the optimized coding scheme. The map equation general-
izes Eq. (163). The resulting quality function provides a
theoretical limit of how concisely one can encode an RW
using a given partition. One can optimize this function
using some computational heuristic.

4. Multilayer modularity

One can generalize Markov stability to multilayer net-
works to derive modularity functions for such networks,
including temporal networks given in the form of a se-
quence of adjacency matrices (with interlayer edges that
connect corresponding nodes in the sequence) [219, 307].

As in Section IV A, consider a multilayer network in
the (supra-adjacency) form of a weighted network on
N`max nodes, where `max is the number of layers. One
specifies a node by the pair (vi, `), where i ∈ {1, . . . , N}
indexes an entity and ` ∈ {1, . . . , `max} indicates a layer.
The adjacency matrix in each layer ` (which can be, e.g.,
an aggregation over some time window of a temporal net-
work) is A(`), which we assume to be undirected for sim-
plicity. The weight of the interlayer edge between nodes
(vi, `) and (vi, `

′) is Ci`′`. We consider a multilayer net-
work in which only nodes with the same index i can be
adjacent to each other, though multilayer networks also
allow much more general structures [58]. (Note that an
entity vi need not exist on all layers [219].) For a multi-

layer network that represents a temporal network, the
simplest choice is to connect the corresponding nodes
(i.e., nodes with the same index i) across the adjacent lay-
ers symmetrically and uniformly, so ω = Ci``′ = Ci`′` > 0
when `′ = ` + 1 for ` ∈ {1, . . . , L − 1} and Ci``′ = 0 for
`′ 6= `± 1.

To derive an expression for multilayer modularity for
these “multislice” networks, we generalize the RW inter-
pretation of modularity for time-independent networks
(see Section V C 1) to the case of multilayer networks
[219]. Random walkers are allowed to move either be-
tween layers or within a layer. Consider a Poissonian
node-centric CTRW on a multilayer network with N`max

nodes. The master equation is given by

dpi`(t)

dt
=

`max∑
`′=1

N∑
j=1

[Aij(`
′)δ``′ + δijCj``′ ] pj`′(t)

κj`′
− pi`(t) ,

(164)
where κj`′ = kj`′ + cj`′ is the strength of the jth node

in the `′th layer, kj`′ =
∑N
i=1Aij(`) is the intra-layer

strength of the jth node in the `′th layer, and cj`′ =∑`max

`′′=1 Cj`′`′′ is the inter-layer strength of the same node.
The summand on the right-hand side of Eq. (164) rep-
resents the rate at which a random walker moves from
node (vj , `

′) to node (vi, `). A move to (vi, `) is possi-
ble from the nodes (vj , `) in the same layer at a rate of
Aij(`)/κj`′ and from the ith node in a different layer `′ at
a rate of Cj``′/κj`′ . If Ci``′ = Ci`′` (with i ∈ {1, . . . , N}
and `, `′ ∈ {1, . . . , `max}), the stationary density is given
by

p∗i` =
κi`∑`max

`′=1

∑N
i′=1 κi′`′

≡ κi`
2µ

. (165)

In the same manner as with monolayer networks, we
examine the probability that a random walker visits node
(vj , `

′) at time t = 0 and node (vi, `) at a small time ∆t.
Within the small time ∆t, a walker initially at (vj , `

′)
can make at most a single step. Based on Eq. (164), the
probability that the walker visits node (vj , `

′) at time 0
and node (vi, `) at small time ∆t is[

δijδ``′ + ∆t

(
Aij(`)δ``′ + δijCj``′

κj`′
− δijδ``′

)]
κj`′

2µ
.

(166)
Under the independence assumption, which sets the null
model, the situation remains the same, but each intra-
layer network is now replaced by a Newman–Girvan (NG)
null network whose degree distribution is determined by
the original set of adjacencies of the same layer [307]. The
inter-layer transition probability, determined by Cj``′ , re-
mains the same. Under the independence assumption,
the probability that a walker visits node (vj , `

′) at time
t = 0 and node (vi, `) at time t = ∆t is(

∆t
ki`

2M`

kj`′

κj`′
δ``′ + δij

Cj``′

cj`′

cj`′

κj`′

)
κj`′

2µ
, (167)
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where M` =
∑N
j=1 kj`. In Eq. (167), κj`′/(2µ) is the

probability that the random walker visits (vj , `
′) at time

0 at equilibrium. The quantity in parentheses repre-
sents the conditional probability that a walker visits node
(vi, `) at time ∆t starting from node (vj , `

′) at time
0. A move occurs within the `′th layer with probabil-
ity kj`′/κj`′ . If an intra-layer move occurs, the walker

moves to the ith node in the same layer with probability
ki`′/(2M`′) according to the NG null model. Alterna-
tively, the walker moves to a different layer with prob-
ability cj`′/κj`′ = 1 − kj`′/κj`′ . If an inter-layer move
occurs, the walker moves to the jth node in the `th layer
with probability Cj``′/cj`′ .

By subtracting Eq. (167) from Eq. (166) and then sum-
ming over nodes (vi, `) and (vj , `

′) that belong to the
same community, we obtain

Q =
1

2µ

∑
i,j,`,`′

[
(1−∆t)δijδ``′ + ∆tAij(`)δ``′ −

ki`kj`′

2M`
δ``′ + (∆t− 1)δijCj``′

]
× δ(gi`, gj`′) , (168)

where gi` is the community to which node (vi, `) has been
assigned. Because

∑
i,j,`,`′ δijδ``′δ(gi`, gj`′) = N`max is

independent of the partitioning of the multilayer network
and thus does not affect the maximization of Q, we ignore
the first term on the right-hand side of Eq. (168). By
rescaling Cj``′ by a multiplicative factor of (∆t− 1)/∆t,
we can also ignore (∆t − 1) in the fourth term. If we
allow γ ≡ 1/∆t to depend on the layer (see [219] for the
justification), corresponding to different diffusion rates
in different layers, we obtain the following formula for
multilayer modularity:

Q =
1

2µ

∑
i,j,`,`′

[
Aij(`)− γ(`)

ki`kj`′

2M`
δ``′ + δijCj``′

]
δ(gi`, gj`′) .

(169)
For simplicity, suppose that the inter-layer edge weight

is uniform; that is, ω = Ci``′ for any i, `, and `′ when-
ever entity vi exists in both layers. If an entity vi does
not exist in a layer, its associated interlayer edges have
weight 0 because they do not exist. If ω = 0, the dif-
ferent layers are independent networks. If ω is suffi-
ciently large, all existing copies (vi, `) of each node vi
(with ` ∈ {1, . . . , `max}) are assigned to the same com-
munity because the third term on the right-hand side of
Eq. (169) dominates the others. More generally, a large
value of ω tends to yield a smaller number of communi-
ties. In contrast, a large γ(`) value tends to yield a large
number of communities. See Refs. [306, 307, 319, 327]
for illustrations and discussions.

D. Core–periphery structure

It is often insightful to decompose a network into one
or more densely-connected cores along with sparsely-
connected peripheral nodes. By definition, nodes in a
core are heavily interconnected and also tend to be well-
connected to peripheral nodes. By contrast, peripheral
nodes are sparsely connected (or, ideally, not adjacent at
all) to other peripheral nodes and tend to be adjacent

predominantly to core nodes. This idea, whose intuition
draws somewhat on the notion of pealing an onion (es-
pecially in the case of a single core), is also a mesoscale
network structure, but it has a rather different character
from community structure. See Ref. [328] for a review of
core–periphery, and see the introduction of Ref. [329] for
a brief survey.

There is an RW-based algorithm to extract core–
periphery structure from networks [330]. The idea is that
if a random walker is located at a peripheral node, it is
very unlikely to visit another peripheral node in the next
time step in a DTRW. One defines a “persistence proba-
bility” αS for a set of nodes S by

αS =

∑
i,j∈S p

∗
i Tij∑

i∈S p
∗
i

, (170)

where we recall that p∗i is the stationary density at node
vi, and Tij is the transition probability from vi to vj in
a single move. Equation (170) is the steady-state prob-
ability that a DTRW starting from a node in S remains
in S in the next time step. For an undirected network,

we substitute p∗i = si/
∑N
`=1 s` to reduce Eq. (170) to

αS =

∑
i,j∈S Aij∑
i∈S si

. (171)

Ideally, one obtains αS = 0 for any set S of nodes that
includes only peripheral nodes. This condition is trivially
satisfied when S consists of a single node, and it becomes
very difficult to satisfy as S becomes large. Reference
[330] used the following greedy algorithm. Start from a
node with the smallest total node strength sini + souti . If
there are multiple such nodes, we select one of them uni-
formly at random. For undirected networks, this reduces
to selecting a node with the minimum node strength.
The set S is composed of a single node. One then adds
one node to the set S so that adding this node yields the
smallest value of αS . Again, if there are multiple can-
didate nodes, we break the tie by selecting one of them
uniformly at random. One continues this procedure and
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sequentially adds nodes to try to keep αS small. One
then assigns each node vi a coreness value of αi, which
one sets as the value of αS when vi is added. Nodes
with larger values of αi are deeper into a network core.
One also defines a network’s “α-periphery” as the set of
nodes that satisfy αi ≤ α. Although the algorithm has
randomness in it because of the tie-breakers, Ref. [330]
reported that the randomness had negligible effects on
their results for empirical networks.

E. Respondent-driven sampling

One is often interested in estimating a population
mean of certain quantities, such as the fraction of infected
individuals, the fraction of people who have a particular
opinion, or demographics such as age. If a population is
large, which is typical in the context of social surveys, it
is impossible to record all individuals. In such situations,
a common challenge is how to sample individuals in as
unbiased manner as possible.

“Respondent-driven sampling” (RDS) is a popular
sampling method that uses edge-tracing in a social net-
work [331, 332]. In RDS, one starts from a seed individual
(i.e., a seed node). The seed individual recruits his/her
neighbors to a survey by passing a coupon to each of
them. The successfully recruited individuals then par-
ticipate in the survey and in turn pass coupons to their
neighbors who have not yet participated. To try to pro-
mote participation, individuals who participate are re-
warded financially. One takes a weighted mean of the
samples to derive an estimate of the quantity of interest
(e.g., mean age of a population).

It is necessary to take a weighted mean because the
probability of being recruited depends on the position of
a person in a network. The so-called “RDS II estimator”
is an efficient and realistic estimator [333]. Consider the
case in which each respondent passes a single coupon to
one of its uniformly randomly selected neighbors. One
can then describe the recruitment process as a DTRW if
one allows sampling with replacement for simplicity (i.e.,
if the same individual can be sampled more than once).
Again for simplicity, let’s also assume that the network
is undirected and unweighted. The essential idea of the
RDS II estimator is that one should discount the effect of
a sampled node vi by a factor of its degree ki, because vi
is visited with probability p∗i ∝ ki. Note that respondents
have to report ki to be able to calculate this estimator,
although empirically it is difficult to accurately collect
the ki values of respondents [334, 335].

We are interested in estimating the mean 〈y〉 of a quan-
tity yi assigned to node vi. We denote the set of sampled
nodes by S and the number of samples (i.e, the size of
S) by NS . The estimator 〈ŷ〉 of 〈y〉 is

〈ŷ〉 =
1

NS

∑
vi∈S

yi
Np̂∗i

, (172)

where p̂∗i is the estimate of the stationary density p∗i . We

set the discount factor on the right-hand side of Eq. (172)
to be Np̂∗i , because it is normalized so that 〈Np̂∗i 〉 = 1.
By assuming that we do not have access to the mean
degree 〈k〉 of the entire network, we estimate it by calcu-
lating

p̂∗i =
ki

N〈k̂〉
, (173)

where 〈k̂〉 is an estimate of 〈k〉. We use

〈k̂〉 =

∑
vi∈S

ki
Np∗i∑

vi∈S
1

Np∗i

=
NS∑

vi∈S (ki)
−1 . (174)

Combining Eqs. (172), (173), and (174) yields

〈ŷ〉 =

∑
vi∈S (ki)

−1
yi∑

vi∈S (ki)
−1 . (175)

The estimated quantity y can be either continuous-
valued or discrete-valued. Alternatively, one can estimate
the proportion of nodes PA that have a discrete type A
(e.g., an infected state) by setting yi to the indicator
function (i.e., yi = 1 when vi is of type A and yi = 0
otherwise). In this case, we obtain

P̂A =

∑
vi∈A∩S(ki)

−1∑
vi∈S(ki)−1

. (176)

Note that, even if one controls for the effect of p∗i in
this manner, the estimator 〈y〉 is statistically biased in
practice. For example, the estimator is inaccurate when
networks have community structure [336]. Additionally,
different techniques are required for directed networks,
because Eq. (173) (or, more succinctly, p∗i ∝ ki) does not
hold for directed networks [337, 338]. Furthermore, ac-
tual sampling trajectories are non-backtracking, and one
can incorporate this feature into RDS estimators [339].

A strategy other than RDS II or other estimators of un-
biased sampling of nodes is to use a “Metropolis–Hasting
RW” [340]. In such sampling, one modifies the edge
weight of the original network to guarantee that the sta-
tionary density is the uniform density. This method has
been used for sampling in peer-to-peer (P2P) and online
social networks [39, 341, 342].

F. Consensus probability and time of voter models

Voter models are a prototypical family of models of
opinion formation that are often defined in terms of a
Markov process on a network [1, 28, 30, 46, 343–345].
In traditional voter models, each node assumes one of
two opinions, which we call opinion 0 and and opinion
1, and the nodes’ opinions evolve stochastically in time.
If two adjacent nodes have the opposite opinion, a lo-
cal consensus of opinion 0 or opinion 1 between the two
nodes occurs at some rate. We suppose that the local
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consensus dynamics on each edge obeys an independent
Poisson process, so the nodes update their opinions asyn-
chronously. For example, if a local consensus on the edge
(vi, vj) in an undirected network occurs according to a
Poisson process at rate ∝ Aij , we say that voter dynam-
ics obeys “edge dynamics” (ED) (see Fig. 11) [346, 347].
(Note that people often use the term “link dynamics”
(LD), because it is common in physics to use the term
“link” for “edge”.) On finite networks, the final state of
a network is the perfect “consensus” of either opinion 0
or opinion 1 for every node. These two consensus config-
urations are the only absorbing states of the stochastic
process. Note that consensus is sometimes also called
“fixation” or “coordination”.

The best-studied phenomena in voter models include
the probability for a network to achieve consensus of a
particular opinion and the mean time to achieve consen-
sus. The consensus probability is the probability that
a consensus of one opinion (e.g., opinion 0) is reached.
With the complementary probability, a finite network
achieves a consensus of the other opinion (e.g., opinion 1).
When computing mean consensus time, one conditions on
the consensus being reached. Both consensus probabil-
ity and mean consensus time depend both on the initial
configuration of opinions and on network structure.

The duality relationship between voter models and
“coalescing RWs” (which are non-conservative) makes
analysis of RWs a powerful approach for calculating con-
sensus probability and mean consensus time [1, 343, 344,
348]. By definition, a coalescing RW [349] starts by plac-
ing a random walker on each node in a network, and
the walkers perform independent Poissonian edge-centric
CTRWs. If different walkers meet at a node, they coa-
lesce into one and continue as a single random walker.
On a finite network, all walkers eventually coalesce into
a single random walker.

When examining the dual process, we invert the time
and direction of edges [1, 343, 344, 348]. When proceed-
ing backwards in time, two individuals sometimes “col-
lide” in the dual process. Such a coalescence event cor-
responds to two individuals sharing a common ancestor
in the original opinion-formation process. After two in-
dividuals coalesce in the dual process, they behave as a
single individual.

The duality relationship guarantees that the consen-
sus probability Fi for opinion 0 when node vi initially
has opinion 0 and the other N − 1 nodes initially have
opinion 1 is given by the stationary density of the coalesc-
ing RW on the network that one obtains by reversing all
edges in an original network. Because all walkers even-
tually coalesce into a single walker, Fi is given by the
stationary density of the usual RW on the edge-reversed
network. If initially there are multiple nodes with opinion
0, then the consensus probability for opinion 0 is equal to
the sum of Fi over the nodes with initial opinion 0. The
mean consensus time is equal to the mean time needed
for all walkers to coalesce into one walker. This equal-
ity is useful for evaluating the mean consensus time for
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FIG. 11. Three updating rules for variants of the classical
voter model on a network. For illustration, assume that we
have an undirected and unweighted network. With edge-
dynamics (ED), one first selects one of the M = 5 edges
with equal probability (i.e., with probability 1/5 each). One
then selects one of the two directions of the edge with equal
probability 1/2, and then one performs an opinion-updating
step. In the most traditional voter model (VM), which has
node dynamics, one selects one of the N = 4 nodes with equal
probability 1/4. One then determines uniformly at random
the neighbor from which the selected node imports its opin-
ion. In the invasion process (IP), one first selects one of the
N = 4 nodes with equal probability 1/4 (as in the VM). One
then determines uniformly at random the neighbor to which
the selected node exports its opinion.

some networks, because the latter quantity is roughly ap-
proximated by the mean time for the first meeting of two
independent walkers whose initial location is selected uni-
formly at random [350–352]. Similar to the MFPT, the
mean time for two random walkers to meet is relatively
easy to calculate.

Consider a directed network. As a convention, we as-
sume that the directed edge from vi to vj indicates that
vi can coax vj into vi’s opinion. Even if the network
is undirected, one has to distinguish three rules of opin-
ion updating unless the network is regular [346, 347] (see
Fig. 11). We evaluate the consensus probability for these
three types of voter dynamics using the duality relation-
ship [123, 348].

First, let’s consider a variant of the voter model that
focuses on the dynamics of edges [346, 347]. Under
these “edge dynamics” (ED), one selects a directed edge
vi → vj (i.e., from node vi to node vj) with probability

Aij/
∑N
i′,j′=1Ai′j′ in each step, and then node vj copies

vi’s opinion with probability 1. One then advances time
by 1/N , so each node is updated once per unit time on
average. The dynamics are equivalent to opinion dynam-
ics in which each edge has a Poisson process with rate
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NAij/
∑N
i′,j′=1Ai′j′ , and an event induces a local con-

sensus event. The dual process for ED is a coalescing
RW on the edge-reversed network in continuous time. (In
fact, it is a Poissonian edge-centric CTRW.) By modify-
ing Eq. (91), a single random walker satisfies the follow-
ing master equation:

dp(t)

dt
= p(t)(−Drev +A>) = −p(t)Lrev , (177)

where A> is the adjacency matrix of the edge-reversed
network, Drev is the diagonal matrix whose (i, i)th ele-

ment is sini , and Lrev is the combinatorial Laplacian of the
edge-reversed network. The consensus probability FED

i

for each node is given by the equilibrium of Eq. (177).
That is,

(FED
1 , . . . , FED

N )Lrev = 0 . (178)

We can obtain an intuitive understanding of Eq. (178)
by writing a recursive equation for the consensus proba-
bility when the process starts from a single node vi with
opinion 0 (i.e., for FED

i ). We obtain

FED
i =

N∑
j=1

Aij∑N
i′,j′=1Ai′j′

FED
{i,j} +

∑N
j=1Aji∑N

i′,j′=1Ai′j′
× 0 +

∑N
i′,j′=1;i′ 6=i,j′ 6=iAi′j′∑N

i′,j′=1Ai′j′
FED
i , (179)

where FED
{i,j} is the probability that one reaches the con-

sensus of opinion 0 starting from the configuration in
which vi and vj but no other nodes have opinion 0. To
prove that FED

{i,j} = FED
i + FED

j , imagine that there are

N different opinions rather than two, and suppose that
node vi (with i ∈ {1, . . . , N}) holds opinion i. One can
express the probability that opinion i or j eventually oc-
cupies the entire network either as FED

{i,j} or as FED
i +FED

j ,

so it follows that FED
{i,j} = FED

i + FED
j . By substituting

the latter relationship into Eq. (179), we obtain

N∑
j=1

AijF
ED
j = FED

i

N∑
j=1

Aji , (180)

and we note that Eq. (180) is equivalent to Eq. (178).
The quantity FED

i is the stationary density of the
edge-centric CTRW on the edge-reversed network. If
the network is undirected, we obtain Lrev = L and
p∗i = FED

i = 1/N (with i ∈ {1, . . . , N}). Therefore, the
likelihood of propagating an opinion does not depend on
which node is the seed of the opinion. If the network
is directed, we obtain a first-order approximation to the
consensus probability of a node by applying Eq. (94) for
the edge-reversed network [123]:

FED
i ≈ (const)× souti

sini
. (181)

Equation (181) is intuitive, because an out-edge indicates
that vi can enforce its opinion on another node, and an
in-edge indicates that vi listens to neighboring nodes.

In the traditional node-based “voter model” (VM) up-
dating rule, one selects a node vi uniformly at random
(i.e., with equal probability 1/N) in each time step. One
then selects an in-neighbor vj of vi with a probability
that is proportional to the weight of the in-edge from
that node (i.e., = Aji/s

in
i ), and vi copies the opinion of

vj with probability 1. One then advances time by 1/N so

that on average one node experiences one opinion update
per unit time. One can map the dynamics of the VM up-
dating rule to ED dynamics with a modified weighted
adjacency matrix A(Drev)−1, whose (i, j)th element is
equal to Aij/s

in
j . The master equation for a single ran-

dom walker on the edge-reversed network is thus

dp(t)

dt
= p(t)(−I + (Drev)−1A>) . (182)

The equilibrium of the dynamics given by Eq. (182) gives
the consensus probability FVM

i for opinion 0 when only
node vi initially has opinion 0. By setting the left-hand
side of Eq. (182) to 0, we obtain

(FVM
1 , . . . , FVM

N ) = (FVM
1 , . . . , FVM

N )(Drev)−1A> ,
(183)

which is equal to the stationary density of a DTRW on
the edge-reversed network. Because Eqs. (177) and (182)
represent an edge-centric CTRW and a DTRW on the
same network, we obtain

FVM
i = sini F

ED
i (184)

for arbitrary networks (section III C 2). When a network
is undirected, the edge-reversed network is the same as
the original network, and we thereby see that

FVM
i =

si∑N
s`=1 s`

. (185)

When a network is directed, the first-order approxima-
tion is given by

FVM
i ∝ souti . (186)

In the so-called “invasion process” (IP) updating rule,
one first selects a node vi uniformly at random (i.e.,
with probability 1/N) at each time step to propagate
its opinion to one of its out-neighbors. One then selects
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an out-neighbor vj of vi with probability Aij/s
out
i (i.e.,

uniformly at random), and then node vj copies the opin-
ion of vi with probability 1. One then advances time by
1/N . One can map IP dynamics to ED dynamics with
the modified weighted adjacency matrix D−1A, whose
(i, j)th element is equal to Aij/s

out
i . The master equa-

tion for a single walker in the edge-reversed network is

dp(t)

dt
= p(t)(−DIP +A>D−1) , (187)

where DIP is the diagonal matrix whose (i, i)th element

is given by
∑N
j=1

(
Aji/s

out
j

)
. The consensus probability

F IP
i satisfies

(F IP
1 , . . . , F IP

N ) = (F IP
1 , . . . , F IP

N )A>D−1(DIP)−1 .
(188)

For an undirected network, p∗i ∝ 1/si solves Eq. (188),
so nodes with small strengths are good at disseminating
their opinions. For a directed network, the first-order
approximation to Eq. (188) is

F IP
i =

N∑
j=1

F IP
j Aij/s

out
i∑N

`=1A`i/s
out
`

≈
N∑
j=1

(const)×Aij/souti∑N
`=1A`i/(const)

∝ 1

sini
. (189)

G. DeGroot model

The “DeGroot model” is a deterministic model that
describes opinion-formation dynamics towards consensus
[353–355]. Control theorists have studied it as an ex-
ample of a decentralized consensus algorithm (or proto-
col) [356]. Although the DeGroot model is not usually
discussed as an application of RWs, there are relation-
ships between the extent of a node’s influence on the
final collective opinion in the DeGroot model and the
stationary density of RWs. Before proceeding with our
discussion, note that a recent generalization of the De-
Groot model combines the averaging rule of the former
with an appraisal mechanism (See Ref. [357] and refer-
ences therein.) to describe the dynamics of individuals’
self-appraisal and social power in a network [358].

In the DeGroot model, the opinion of node vi at dis-
crete time n is given by a continuous variable xi(n). One
assumes that node vj weighs the opinion xi(n) of node vi
with weight Aij to determine its opinion in the next time

step (i.e., xj(n+1)). The normalization is
∑N
i=1Aij = 1,

and the dynamics are given by

xi(n) =

N∑
j=1

Ajixj(n− 1) (i ∈ {1, . . . , N}) . (190)

In the DeGroot model, the column sum of A is equal
to 1 for every column, and recall that the row sum of
T is equal to 1 for every row in a DTRW. To see the
correspondence between the two models, it is convenient
to write Eq. (190) in vector form as follows:

x(n) = A>x(n− 1) , (191)

where x(n) = (x1(n), . . . , xN (n))>. Because the row
sum of A> equals 1, we can identify A> with T . The
DeGroot model and DTRWs are thus driven by the same
matrix, so their dynamics are essentially the same. The
only difference is that the state vector is multiplied on
the left in the RW, but it is multiplied on the right in
the DeGroot model. Up to rescaling, the models are
characterized by the same eigenvalues and eigenvectors.

As long as the spectral gap of T (i.e., A>) is posi-
tive, the stationary density of a DTRW is given uniquely
by the left eigenvector of T whose corresponding eigen-
value is 1. Under the same condition, the asymptotic
state of the DeGroot model is given by the correspond-
ing right eigenvector of A>. This eigenvector is x∗ =
(x∗1 , . . . , x

∗
N )> ∝ (1 , . . . , 1)>, and it corresponds to a

state with full consensus.
The initial opinion xi(0) of node vi affects the value

of the final opinion x∗1 = · · · = x∗N in consensus. If
x∗1 = · · · = x∗N is close to xi(0) (for a general set of ini-
tial conditions that we will specify below) one interprets
node vi as being influential. To quantify this idea, we

postulate that
∑N
i=1 F

DG,disc
i xi(n) is conserved over time

for positive constants FDG,disc
i (with i ∈ {1, . . . , N}),

where the superscript “disc” stands for discrete time and∑N
i=1 F

DG,disc
i = 1 gives the normalization. If such a

conserved quantity exists, one obtains

N∑
i=1

FDG,disc
i xi(0) =

N∑
i=1

FDG,disc
i x∗i = x1 = · · · = x∗N .

(192)

Equation (192) implies that FDG,disc
i quantifies the influ-

ence of vi on the final opinion in consensus. By imposing
this conservation law, one obtains

N∑
i=1

FDG,disc
i xi(n− 1) =

N∑
i=1

FDG,disc
i xi(n)

=

N∑
i=1

FDG,disc
j

 N∑
j=1

Ajixj(n− 1)

 .

(193)

By requiring that Eq. (193) holds for arbitrary xi(n− 1)
(with i ∈ {1, . . . , N}), we obtain

FDG,disc
i =

N∑
j=1

AijF
DG,disc
j . (194)

Equation (194) indicates that FDG,disc
i is the stationary

density of the DTRW whose transition-probability ma-
trix is A>.
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A continuous-time variant of the DeGroot model has
similar relationships [212]. Consider the continuous-time
DeGroot model [356]

dxi(t)

dt
=

N∑
j=1

Aji [xj (t)− xi (t)] , (195)

and note that we do not impose
∑N
j=1Aji = 1. The

asymptotic state of Eq. (195) is given by x∗1 = · · · = x∗N .
Similar to the discrete-time DeGroot model above, we
rewrite Eq. (195) as

dx(t)

dt
=
(
A> −Drev

)
x(t) ≡ −Lrevx(t) . (196)

Recall that Drev is the diagonal matrix whose (i, i)th ele-
ment equals sini , and Lrev is the combinatorial Laplacian
matrix for the edge-reversed network. The left eigen-
vector of Lrev corresponding to eigenvalue 0 gives the
stationary density of the Poissonian edge-centric CTRW
on the edge-reversed network. The corresponding right
eigenvector gives the asymptotic state of the continuous-
time DeGroot model. Moreover, this eigenvector is the
consensus state x∗ ∝ (1, . . . , 1)>. Equation (196) also
has another fascinating interpretation as linear synchro-
nization dynamics that results from linearizing nonlinear
systems such as coupled Kuramoto oscillators [51, 359].

Equation (196) yields

p∗
dx(t)

dt
= (p∗Lrev)x(t) = 0 , (197)

where p∗ = (p∗1, . . . , p
∗
N ), and p∗i is the stationary den-

sity of the edge-centric CTRW at node vi in the edge-
reversed network. Therefore, p∗x(t) is conserved, imply-

ing that
∑N
i=1 p

∗
i xi(0) =

∑N
i=1 p

∗
i x
∗
i = x∗1 = · · · = x∗N .

We thereby see that p∗i quantifies the influence of node
vi on the final opinion, similar to the case of the discrete-
time DeGroot model.

VI. CONCLUSIONS AND OUTLOOK

Random walks play a central role in network science.
As we have seen in this review, RWs are at the core of nu-
merous methods to extract information from networked
systems, and they serve as a leading-order model for (con-
servative) diffusion processes on networks. Because con-
ventional RWs are linear processes, they are amenable to
analysis. For example, one can exploit methods from lin-
ear algebra to characterize dynamics in terms of modes
relaxing on different time scales, and one can even de-
rive analytical solutions (e.g., via recursive equations)
for quantities such as mean first-passage time (MFPT).
The simplicity of RWs is crucial, because associated dy-
namical properties on networks can be analyzed exactly,
allowing one to uncover mechanisms by which network
structure affects dynamical processes, which is perhaps

the primary goal of studying dynamical processes on net-
works [46]. Many nonlinear processes (e.g., reaction–
diffusion systems) include terms related to linear diffu-
sion, so studying RWs on networks also yields important
insights into the linear stability (and weakly nonlinear
regimes) of numerous nonlinear processes.

Random walks have been studied thoroughly (espe-
cially on networks) for many decades, but there remains
much exciting work to be done. In the following para-
graphs, we discuss a few important directions in the study
of RWs on networks. As with the rest of our paper, these
suggestions are far from exhaustive, and we look forward
to seeing new theory and applications of RWs. As we
have discussed at length, RWs have connections both to
many other processes and to a diverse variety of applica-
tions, and we look forward especially to new, unexpected
connections that will come to light in the coming years.

One prominent research direction is “non-backtracking
RWs”, which have opened new perspectives in recent
years in topics such as community detection [246–248],
because of the convenient properties of their spectrum
for sparse networks. Non-backtracking spreading pro-
cesses have also been used in the examination of network
centralities [245], percolation theory [243, 244], and the
design of efficient immunization algorithms [249]. Non-
backtracking RWs are a type of second-order Markov
chain (see Section IV B 2), and their further study may
provide algorithms for clustering and other applications
that are more efficient and/or realistic than current ones.
As we have illustrated in this review, one can define dif-
ferent types of RWs on the same network, and different
RWs lead to different processes, algorithms, and insights.

Intrinsically, community detection and other forms of
clustering are a type of model reduction, as one seeks
to represent a given network (or dynamical process on
a network) using a smaller amount of information. In-
foMap (see Section V C 3) is a community-detection al-
gorithm that is constructed explicitly on this principle.
Related techniques include coarse-graining RWs in a way
that preserves the spectral properties of relevant matri-
ces [360, 361], external equitable partitions [362], and
using computational group theory to find “hidden” sym-
metries in networks [363]. More generally, RWs are
at the heart of flow-based algorithms, and they have
been exploited to examine node centralities (see Sec-
tion V B), community structure (see Section V C), and
core–periphery structure (see Section V D). It may also
be fruitful to exploit similar ideas to examine other types
of network properties (e.g., “role similarity” [312, 364],
“rich clubs” [365, 366], and approximately multipartite
structure [367]). Random walks have also been used for
some studies of community structure in temporal and
multilayer networks [65, 219–221] as well as for examin-
ing diffusion processes and centralities in such networks
[59, 222, 223, 225, 263, 265, 266], and much more re-
mains to be discovered in such applications. In temporal
networks, for example, it is important to consider the rel-
ative timescales of the network dynamics and the RW dy-
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namics. Novel types of RWs also play an important role
in examining higher-order network structure. Examples
include the spacey RW [253, 368], RWs on hypergraphs
[369], and RWs on simplicial complexes [370].

One can also combine RWs with other dynamical pro-
cesses to model real-world phenomena in fascinating and
insightful ways. For example, one can couple RWs to
other processes in multilayer networks [59, 371], where it
is important to study scenarios such as infection spread-
ing coupled to human/animal mobility (and more gener-
ally to study diffusion dynamics coupled to other types
of dynamics). One very successful family of models
that combines multiple types of dynamics is metapopu-
lation models of biological contagions, in which individu-
als move from one subpopulation to another in some way
(e.g., according to an RW) and infection events occur
within each subpopulation [202, 203]. Metapopulation
models, reaction–diffusion models [86], and many other
dynamical processes on networks often feature diffusion
in the form of a simple, memoryless Poisson process. The
use of more complicated and realistic RW processes such
as higher-order Markov chains (see Section IV B 2) and
CTRWs driven by non-Poissonian renewal processes (see
Sections II B and III C) may yield interesting results.

Various types of RWs continue to be employed actively
for a diverse array of applications. We mentioned several
examples in Section I, and we now indicate a few more
applications of different types of RWs. For example, a
“hungry RW” (taking some inspiration from the arcade
game Pac-Man) has yielded insights into anomalous dif-
fusion in bacteria [78], Lévy flights can help capture fea-
tures of animal foraging [9, 11], multiplicative RWs are a
useful approach for examining the dynamics of financial
markets [20, 21], self-avoiding random walks have helped
improve understanding of polymer chains [18, 19], the
stochastic dynamics of neuronal firing have been studied
using Ornstein–Uhlenbeck processes (a type of CTRW
with a leak term) [13, 14], and the dynamics of correlated
novelties (and Kauffman’s so-called “adjacent possible”)
have been modeled using an RW on a growing network
(representing the growing space of possible innovations)
[372].

In the coming years, we expect that RWs will continue
to play a crucial role in physics, computer science, biol-
ogy, sociology, and numerous other fields. The study of
RWs continues to yield fascinating, important, and in-
spiring insights. Given how much random walkers have
contributed to our scientific knowledge, they must be ex-
hausted by now (see Fig. 12).
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[147] M. Löwe and F. Torres. On hitting times for a sim-
ple random walk on dense Erdös–Rényi random graphs.
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[350] C. Cooper, R. Elsässer, H. Ono, and T. Radzik. Coa-
lescing random walks and voting on connected graphs.
SIAM J. Disc. Math., 27:1748–1758, 2013.

[351] N. Masuda. Voter model on the two-clique graph. Phys.
Rev. E, 90:012802, 2014.

[352] Y. Iwamasa and N. Masuda. Networks maximizing
the consensus time of voter models. Phys. Rev. E,
90:012816, 2014.

http://www.mapequation.org/apps/MapDemo.html
http://www.mapequation.org/apps/MapDemo.html


51

[353] R. P. Abelson. Mathematical models of the distribu-
tion of attitudes under controversy. In N. Frederiksen
and H. Gulliksen, editors, Contributions to Mathemati-
cal Psychology, pages 141–160. Holt, Rinehart and Win-
ston, New York, NY, USA, 1964.

[354] M. H. DeGroot. Reaching a consensus. J. Am. Stat.
Assoc., 69:118–121, 1974.

[355] M. O. Jackson. Social and Economic Networks. Prince-
ton University Press, Princeton, NJ, USA, 2008.

[356] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consen-
sus and cooperation in networked multi-agent systems.
Proc. IEEE, 95:215–233, 2007.

[357] N. E. Friedkin and E. C. Johnsen. Social Influence
Network Theory: A Sociological Examination of Small
Group Dynamics. Cambridge University Press, Cam-
bridge, UK, 2011.

[358] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo.
Opinion dynamics and the evolution of social power in
influence networks. SIAM Rev., 57:367–397, 2015.

[359] F. A. Rodrigues, T. K. DM. Peron, P. Ji, and J. Kurths.
The Kuramoto model in complex networks. Phys. Rep.,
610:1–98, 2016.

[360] D. Gfeller and P. De Los Rios. Spectral coarse graining
of complex networks. Phys. Rev. Lett., 99:038701, 2007.

[361] D. Gfeller and P. De Los Rios. Spectral coarse graining
and synchronization in oscillator networks. Phys. Rev.
Lett., 100:174104, 2008.

[362] N. O’Clery, Y. Yuan, G. B. Stan, and M. Barahona.
Observability and coarse graining of consensus dynam-
ics through the external equitable partition. Phys. Rev.
E, 88:042805, 2013.

[363] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E.
Murphy, and R. Roy. Cluster synchronization and iso-
lated desynchronization in complex networks with sym-
metries. Nat. Comm., 5:4079, 2014.

[364] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong,
S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and
L. Li. RolX: Structural role extraction & mining in
large graphs. In Proc. 18th ACM SIGKDD Internat.
Conf. Knowledge Discovery and Data Mining (KDD
’12), pages 1231–1239, 2012.

[365] S. Zhou and R. J. Mondragón. The rich-club phe-
nomenon in the Internet topology. IEEE Comm. Lett.,
8:180–182, 2004.

[366] V. Colizza, M. A. Serrano A. Flammini, and A. Vespig-
nani. Detecting rich-club ordering in complex networks.
Nat. Phys., 2:110–115, 2006.

[367] M. E. J. Newman and E. A. Leicht. Mixture models
and exploratory analysis in networks. Proc. Natl. Acad.
Sci. USA, 104:9564–9569, 2007.

[368] T. Wu, A. R. Benson, and D. F. Gleich. Gen-
eral tensor spectral co-clustering for higher-order data.
arXiv:1603.00395, 2016.

[369] L. Lu and X. Peng. High-ordered random walks and
generalized Laplacians on hypergraphs. LNCS, 6732:14–
25, 2011.

[370] S. Mukherjee and J. Steenbergen. Random walks on
simplicial complexes and harmonics. Rand. Struct. Al-
gor., 49:379–405, 2016.

[371] V. Nicosia, P. S. Skardal, V. Latora, and A. Arenas.
Spontaneous synchronization driven by energy trans-
port in interconnected networks. arXiv:1405.5855, 2014.

[372] F. Tria, V. Loreto, V. D. P. Servedio, and S. H. Strogatz.
The dynamics of correlated novelties. Sci. Rep., 4:5890,
2014.

[373] R. Ghosh and K. Lerman. Rethinking centrality: The
role of dynamical processes in social network analysis.
Disc. Cont. Dyn. Syst. Ser. B, 19:1355–1372, 2014.

[374] B. Bollobás. Random Graphs. Cambridge University
Press, Cambridge, UK, second edition, 2001.


	Random walks and diffusion on networks
	Abstract
	 Contents
	I Introduction
	II Random walks on the line
	A Discrete time
	B Continuous time

	III Random walks on networks
	A Notation
	B Discrete time
	1 Definition and temporal evolution
	2 Stationary density
	3 Relaxation time
	4 Exit probability
	5 Mean first-passage and recurrence times
	6 Cover time

	C Continuous-time random walks (CTRWs)
	1 Node-centric walks
	2 Edge-centric walks


	IV Random walks on generalized networks
	A Multilayer networks
	B Temporal networks
	1 Activity-driven model
	2 Memory networks


	V Applications
	A Search on networks
	B Ranking
	1 PageRank
	2 Laplacian centrality
	3 TempoRank
	4 Random-walk betweenness centrality

	C Community detection
	1 Markov-stability formulation of modularity
	2 Walktrap
	3 InfoMap
	4 Multilayer modularity

	D Core–periphery structure
	E Respondent-driven sampling
	F Consensus probability and time of voter models
	G DeGroot model

	VI Conclusions and Outlook
	 Acknowledgments
	 References


