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Abstract. Low-rank structures play important role in recent advances of many problems in
image science and data science. As a natural extension of low-rank structures for data with nonlin-
ear structures, the concept of the low-dimensional manifold structure has been considered in many
data processing problems. Inspired by this concept, we consider a manifold based low-rank reg-
ularization as a linear approximation of manifold dimension. This regularization is less restricted
than the global low-rank regularization, and thus enjoy more flexibility to handle data with nonlinear
structures. As applications, we demonstrate the proposed regularization to classical inverse problems
in image sciences and data sciences including image inpainting, image super-resolution, X-ray com-
puter tomography (CT) image reconstruction and semi-supervised learning. We conduct intensive
numerical experiments in several image restoration problems and a semi-supervised learning prob-
lem of classifying handwritten digits using the MINST data. Our numerical tests demonstrate the
effectiveness of the proposed methods and illustrate that the new regularization methods produce
outstanding results by comparing with many existing methods.
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1. Introduction. Regularization methods play important roles in many ill-
posed inverse problems arising in science and engineering. Examples include inverse
problems considered in signal processing and image sciences such as image denoising,
image impainting, image deconvolution [13, 1], just to name a few. Mathematically,
a image restoration problem can be viewed as reconstructing a clean image f from a
degraded image g based on the degradation relationship D(f) = g. It is challenging
to reconstruct f from g as the problem is usually ill-posed due to the highly under-
determined constraints and possible noise. Observations of natural image with prior
information such as piecewise smoothness, shape edges, textures, repetitive patterns
and sparse representations under certain transformations make regularization meth-
ods quite effective to handle image processing problems. Successful methods include
the total variation (TV) methods, nonlocal methods and wavelet tight frame meth-
ods [40, 4, 22, 19] and many others. Moreover, regularization methods can also be
considered in problems arising from data science. A typical example is semi-supervised
learning, where tasks aim at labeling data from a small amount of labeled training
data set. Regularization methods such as the harmonic extension method [47] have
been considered to this type of ill-posed problem. In this paper, we consider a different
regularization, called manifold based low-rank (MLR) regularization as a lineariza-
tion of manifold dimension, which generalizes the global low-rank prior knowledge for
linear objects to manifold-region-based locally low-rank for nonlinear objects.

The idea of the MLR proposed in this paper is inspired by a recent method
called the low-dimensional manifold model (LDMM) discussed in [36]. Using the
image patches discussed in nonlocal methods [4, 37], the LDMM interprets image
patches as a point cloud sampled in a low-dimensional manifold embedded in a high
dimensional ambient space, which provides a new way of regularization by minimizing
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Fig. 1. Left: A clean Barbara image and the corresponding patch manifold. Right: The point-
wise rank function Rank(RM,x) of the patch manifold with patch size 11 × 11.

the dimension of the corresponding image patch manifold. This can be explained as
a natural extension of the idea of low-rank regularization for linear objects to data
with more complicated structures. Moreover, the authors in [36] elegantly find that
the point-wisely defined manifold dimension can be computed as a Dirichlet energy
of the coordinate functions on the manifold, whose corresponding boundary value
problem can be further solved by a point integral method proposed in [34]. The
LDMM performs very well in image inpainting and super-resolution. This model is
later considered in collaborative ranking problems [31]. Based on weighted graph
laplacian (WGL), an improvement of LDMM called LDMM+WGL is proposed more
recently in [42].

In this paper, instead of representing the manifold dimension as a manifold-
derivative involved quantity [36], we propose a linear approximation of the manifold
dimension. Note that the quantity of the dimension at each point x ∈ M is the
same as the dimension of the tangent space at x. This quantity only depends on a
local neighborhood of x on M, which can be approximated as the rank of the co-
variance matrix generated by the set of K-nearest-neighbourhood (KNN) points of x
on M ⊂ Rn in the discretized sense. In other words, the low-dimensional property
of M at x can be linearly approximated as the low-rank property of the this corre-
sponding covariance matrix, which is essentially the same as the low-rank property
of the matrix RM,x formed by those KNN points near x. As an example illustrated
in Figure 1, we construct a patch manifold of the Barbara image using patch size
11 × 11. This leads to a set of image patches represented as a point clouds in R121.
The rank of RM,x for the Barbara image is color-coded in the right image of Figure
1, which clearly illustrates that Rank(RM,x) has low value for this natural image. As
a linear approximation of the DimM(x) proposed in [36], the manifold based quan-
tity Rank(RM,x) does not involve with any manifold differential operators, which has
potential to apply this concept to more general data processing problem such as a
preliminary example demonstrate in section 3. On the other hand, this consideration
is reasonable as the globally defined “Rank” can only handle linear objects, while this
manifold based locally defined Rank has advantages to regularize data with nonlinear
structures.

Based on the MLR prior knowledge, we use the matrix nuclear norm relaxation
for matrix rank as the method considered in low-rank matrix completion theory [9]
and apply MLR to the image patch manifold for image restoration problems including
image inpainting, image super-resolution and X-ray computer tomography (CT) image
reconstruction. It is clear the definition MLR relies on the construction of KNN
which is essentially dependent on the manifold structure. Therefore, a split-Bregman
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method [26] is considered to solve the proposed model by iteratively updating the
manifold structure and the objective image. Moreover, we also apply the proposed
regularization for a semi-supervised learning problem, where MLR is applied to a
labeling matrix with a fixed manifold structure provided by the input data. Our
numerical results tested for a benchmark data set of handwritten digits illustrate the
effectiveness of the proposed method.

The rest part of this paper is organized as follows. In Section 2, we discuss our
manifold based low-rank regularization for the image restoration problems including
image inpainting, image super-resolution and X-ray CT image reconstruction. De-
tailed models and numerical algorithms for various image processing problems are
discussed. In Section 3, we consider the manifold based low-rank model to a semi-
supervised learning problem. Intensive numerical experiments and comparisons with
existing methods are conducted in Section 4. We conclude our work in Section 5.

2. Manifold based low-rank regularization for image restoration. In this
section, we consider the MLR method for image restoration problems including image
inpainting, image super-resolution and X-ray CT image reconstruction. The idea of
MLR is applied to a image patch manifold with a fixed patch size similar as the way
proposed in [36]. We further relax the problem of matrix rank minimization as a
problem of matrix nuclear norm optimization and solve the proposed optimization
problem based on the split Bregman iteration [26] and the singular value thresholding
algorithm [6].

The classical image restoration models mainly focus on local properties of the
objective image such as smoothes and jumps. Image features can be further en-
hanced due to its possible repetitive patterns non-locally. The nonlocal based image
restoration methods [4, 15, 22] extract and match non-local repetitive structures of
images using image patches. Given a discrete image f ∈ Rm×n defined on a domain
I = {1, 2, . . . ,m}× {1, 2, . . . , n}, a size τ = 2η+ 1 patch transform P can be defined
by:

(1)
P : Rm×n → Rτ

2×mn

f 7→ P(f), P(f)(s, x) = f̃(x+ s), s ∈P, x ∈ I ,

where x is the center of each patch, P = {−η,−η + 1, . . . , 0, 1, . . . , η − 1, η}2 repre-
sents the patch index set and f̃ ∈ R(m+2η)×(n+2η) is a proper extension (symmetric
extension in this paper) of f such that f̃(x) = f(x),∀x ∈ I . An essential observation
of nonlocal methods is that images can be restored by enhancing similar patterns
which may not lie in nearby regions of I domain. Therefore, comparing with the
direct regularization methods on the image domain of f , the quality of image restora-
tion can be usually improved using nonlocal methods. For instance, nonlocal based
variational methods [4, 22, 46] and nonlocal based wavelet frame based methods [38]
demonstrate outstanding image restoration results.

Given a patch matrix P(f), one can regard each patch P(f)(·, x) as a τ2 dimen-

sional column vector. Consequently, P(f) can be viewed as a set of points in Rτ2

.
To conduct further analysis of this point cloud, we model P(f) as a set of points

sampled on a manifoldM∈ Rτ2

. Thereafter, we also abuse the notation x as the cor-
responding point P(f)(·, x) on M. This manifold interpretation has been proposed
in existing work [37, 36]. More recently, [36] proposes a low dimensional manifold
model (LDMM) for image restoration. This work observes that the dimension of
patch manifoldM should intrinsically have a low-dimensional structure and proposes
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to regularize the dimension of the patch manifoldM for image restoration. Moreover,
the authors elegantly show that the dimension function Dim(M) at x ∈ M can be
represented by DimM(x) =

∑
1≤s≤τ2 ‖∇M(P(f)(s, ·))(x)‖22, which transforms the di-

mension regularization problem to be a variational partial differential equation model
that is proposed to solve using a point integral method discussed in [34]. Later on,
[31] generalized the LDMM model into matrix completions with better performance
than traditional low-rank regularized model in completing the Netflix matrix [2] which
does not have exactly global low rank.

2.1. Manifold based low-rank regularization for the patch manifold.
Inspired by the regularization of the manifold dimension represented as a manifold
derivative involved quantity [36], we propose a linear approximation of the manifold
dimension in the following way. Note that the quantity of dimension at each point
x ∈ M is the same as the dimension of the tangent space TxM at x which only
relies on a local neighborhood of x on M. In the discrete sense of M sampled as the
patch matrix P(f), the quantity dim(TxM) can be approximated as the rank of the
covariance matrix generated by the set of K-nearest-neighbourhood (KNN) points of
x in P(f). In other words, the low-dimensional property of M at x can be linearly
approximated as the low-rank property of the corresponding covariance matrix, which
is essentially the same as the low-rank property of the matrix formed by those KNN
points near x. More precisely, if we define the restriction operator RM,x as the KNN
points near x, then the low-dimensional prior knowledge of the patch manifold M at
x can be linearly approximated as the low-rank prior knowledge of the matrix formed
by points in RM,x denoted as RM,x(P(f)). Namely, we define the manifold based
rank at x as RankM(x) = Rank(RM,x(P(f))).

For image restoration problems, if the fidelity information is D(f) = g as a con-
straint where D is a degradation operator, by regularizing RankM(x) for all the point
x, we consider the following the manifold based low-rank regularization for image
restoration:

(2) min
M⊂Rτ2 ,f

∑
x∈I

Rank(RM,x(P(f)), s.t. P(f) ⊂M, D(f) = g,

On the one hand, the minimization of the rank, or the `0 norm of the singular value,
is NP hard to be optimized generally. Therefore, `1 norm of the singular value, or the
nuclear norm of the localized matrix, is an appropriate way to relax the local rank as
the pioneer work of low-rank matrix completion theory developed in [9]. The mini-
mization of nuclear norm can be solved by applying the singular value thresholding
(SVT) algorithm [6]. On the other hand, we observe that it is necessary to smoothen
the images, or enhance the features and textures in practice. Therefore, one can ap-
ply some positive/negative diffusion based regularization [24] to f to guarantee the
smoothness of the object image. For example, we choose the diffusion term as the
non-local gradient operator defined in (3).

(3) (∇Mf)(x, y) := (f(y)− f(x))
√
ω(x, y), x, y ∈ I .

Therefore, a MLR image restoration model can be stated as:

(4) min
M⊂Rτ2 ,f

∑
x∈I

‖RM,x(P(f))‖∗ +
λ

2
‖∇Mf‖22, s.t. P(f) ⊂M, D(f) = g,

when λ > 0 the regularization term λ
2 ‖∇Mf‖

2
2 represents a diffusion term which can

smoothen the regions. When λ < 0, the regularization represents inverse diffusion
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which can enhance the patterns [24, 23, 5]. Otherwise, λ = 0 leads the model (4)
identical to model (2) as a pure MLR regularized image restoration model.

We remark that a close related work [20] imposed the low-rank regularization in
a non-local transform domain of images, which is applicable to recover images from
missing Fourier coefficients. In particular, to improve the robustness of the algorithm,
the low-rank regularization is considered to the grouped “similar patches”, which
can be regarded as a type of “locally low-rank regularization” although [20] did not
explicitly view the “low-rank” in manifold sense. In addition, this method considers
to group patches without sufficient overlapping, thus it only includes a rough sampling
on the patch manifold which may not be able to accurately reflect the low-dimensional
structure of the patch manifold.

2.2. MLR for image inpainting. Image inpainting [3] is a process to restore
images whose pixels are missing, over-written or corrupted. More precisely, the in-
painting problem aims at reconstructing an image f only based on its partial infor-
mation on a given set Ω ⊂ I . Such ill-posed problem is generally based on some
assumptions such that the object image f is piecewise smooth, or has repetitive tex-
tures. With these assumptions, regularization inpainting methods, such as variational
PDE based models [12, 41, 43], wavelet based models [14, 10, 7, 8, 17] and low di-
mensional manifold model [36] have been proposed.

We would like to demonstrate that MLR model can restore images and preserve
both the piecewise smooth regions and textures from a small random portion of in-
formation. As a special case of (4), the low-rank regularized image inpainting model
can be stated as:

(5) min
f, M⊂Rτ2

∑
x∈I

‖RM,x(P(f))‖∗ +
λ

2
‖∇Mf‖22, s.t. P(f) ⊂M, f |Ω = h|Ω.

In particular, if the index set Ω is picked as {1, s+1, 2s+1, . . .}×{1, s+1, 2s+1, . . .},
the problem is called sub-sampled super-resolution problem. As the nuclear norm in
the first term of the above problem depends on the manifold structure, we consider
to solve this problem by alternatively updating the manifoldM and solving f similar
as the method considered in [36]. The outline of solving (5) can be stated as follows:

(6)


fk+1 = arg minf

∑
x∈I ‖RMk,x(P(f)‖∗ + λ

2 ‖∇
k
Mf‖22,

s.t. P(f) ⊂Mk, f |Ω = h|Ω,
Mk+1 = P (fk+1).

To solve fk+1 from the first step in (6) with a fixed manifold structure Mk, we use
the split Bregman iteration [26]. After introducing an auxiliary variable α = P(f) ∈
Rτ2×mn, this problem can be reinterpreted as:

(7) min
f,α

∑
x∈I

‖RMk,xα‖∗ +
λ

2
‖∇Mkf‖22, s.t. P(f) = α, f |Ω = h|Ω.

Since each column of α may occur multiply times in different ‖RMk,xα‖∗, it is difficult
to simultaneously optimize several nuclear norms together. Therefore, denote the
image size as m × n, patch size as τ × τ , and the KNN size K, we introduce the
duplicate operator Q : Rτ2×mn → RKτ2×mn can be defined as:

(8) Q(α) = {Qx(α) = RMk,xα, x ∈ I }
5



Then, we denote Qx(α) = βx,∀x ∈ I such that ‖(RMk,x)α‖∗ = ‖βx‖∗. As a result,∑
x∈I ‖(RMk,x)α‖∗ =

∑
x∈I ‖βx‖∗ becomes a separable formula. Thus, Step 1 in

(6) can be reinterpreted as:

(9) min
f,{βx}

∑
x∈I

‖βx‖∗ +
λ

2
‖∇Mkf‖22, s.t. Qx(P(f)) = βx, f |Ω = h|Ω.

Therefore, the above the equality constraint Qx(P(f)) = βx can be solved by consid-
ering the following saddle point problem using a augmented Lagrangian formula with
the dual variable {Dx}:

min
f,{βx}

max
{Dx}

∑
x∈I

‖βx‖∗ +
λ

2
‖∇Mkf‖22 +

∑
x∈I

µ

2
‖Qx(P(f))− βx +Dx‖22,

s.t. f |Ω = h|Ω.
(10)

where µ is the parameter to control the augmented Lagrangian. Similar to the one-step
iterative method in the alternating direction method of multipliers (ADMM) and split
Bregman iteration [25, 26], The optimization problem (10) can be iteratively solved
as:
(11)
βl+1
x = arg min

βx
‖βx‖∗ +

µ

2
‖βx −Qx(P(f l))−Dl

x‖22, ∀x ∈ I ,

f l+1 = arg min
f

λ

2
‖∇Mkf‖22 +

∑
x∈I

µ

2
‖Qx(P(f))− βl+1

x +Dl
x‖22, s.t. f |Ω = h|Ω,

Dl+1
x = Dl

x + (Qx(P(f l+1))− βl+1
x ), ∀x ∈ I .

The first sub-optimization problem has a closed-form solution provided by the
singular value thresholding [6]. Namely,

(12) βl+1
x = T1/µ(Qx(P(f l)) +Dl

x).

where for any matrix X with a singular value decomposition X = USV , the singular
value thresholding operator T is provided as

(13) Tt(X) = UST V, ST = max(S − t, 0).

Next, we solve f l+1 in (11), The solution of the linear constrained minimization
problem satisfies the following Dirichlet boundary value problem:

(14)


(
−λ∆Mk +

∑
x∈I

µP>Q>xQxP
)
f = µP>

( ∑
x∈I

Q>x (βl+1
x −Dl

x)

)
.

f |Ω = h|Ω.

In (14), since the duplication operators {Qx} have only one non-zero element in
each row, we have that for all x, (Q>xQx)ij =

∑
p(Q>x )ip(Qx)pj =

∑
p(Qx)pi(Qx)pj

which is always 0 if i 6= j. Therefore,
∑
x∈I

Q>xQx = WQ becomes a diagonal weight

matrix. Similarly, the patch manifold transform operator P also has only one non-zero

element in each row. After left multiplied by a diagonal matrix,

( ∑
x∈I

Q>xQx
)
P =

WQP is still a matrix with only one non-zero element in each row. Therefore,
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∑
x∈I

P>Q>xQxP = W is a diagonal weight matrix for the input image whose en-

tries is the occurrence of each pixel in all local regions of patch manifold {βx}. We
can consequently rewrite (14) as:

(15)

(−λ∆Mk + µW ) (f) = µP>
( ∑
x∈I

Q>x (βl+1
x −Dl

x)

)
,

f |Ω = h|Ω,

Denote the left hand side of the linear system as A = −λ∆Mk + µW , plugging the
boundary condition fΩ = hΩ into the first equation, we can solve f l+1 restricted in
Ωc as follows:

(16) f l+1|Ωc = (A|Ωc)−1(µP>(
∑
x∈I

Q>x (βl+1
x −Dl

x)−A|Ωh|Ω).

Therefore, combining (6), (11), (12) and (16), we can solve the MLR based image
inpainting model (5) as Algorithm 1. Note that the max number of inner iterations
can be chosen as 1 to reduce the computational time.

Algorithm 1 MLR based image inpainting (5)

Step 0. Using random value to inpaint an initialization of f0 such that f0|Ω = h|Ω
and corresponding M0 and RM0,x by calculating the KNN of P(f0), set k = 0.
while not converge do
Step 1.0. With a fixed Mk, set the initial value of fk+1,0 such that fk+1,0|Ω =
h|Ω and calculate the KNN to generate the localize operator RMk,x, dis-
cretized Laplacian operator ∆Mk , and duplicate operator Q, set {βk+1,0

x } =
{Qx(P(fk+1,0))} and l = 0. Define A = −λ∆Mk + µ

∑
x∈I

P>Q>xQxP.

while not converge do
Step 1.1. βk+1,l+1

x = T1/µ(Qx(Pfk+1,l) +Dk+1,l
x ),∀x ∈ I ,

Step 1.2. fk+1,l+1|Ωc = (A|Ωc)−1(µP>(
∑
x∈I

Q>x (βk+1,l+1
x −Dk+1,l

x )−A|Ωh|Ω),

Step 1.3. fk+1,l+1 = fk+1,l+1|ΩcχΩc + hχΩ,
Step 1.4. Dk+1,l+1

x = Dk+1,l
x + (Qx(P(fk+1,l+1))− βk+1,l+1

x ),∀x ∈ I ,
end while
Step 1.5. Take fk+1 = fk+1,l+1,
Step 2. Mk+1 = P(fk+1).

end while

2.3. MLR for X-ray CT reconstruction. As a special case of image restora-
tion, medical imaging plays important role in different clinical applications. Here,
we consider an application of our method to X-ray Computed Tomography (CT),
which aims at reconstructing images from their Radon transform. Mathematically,
the X-ray CT reconstruction problem can be essentially represented as a linear inverse
problem: Af = g, where A ∈ Rm×n is a measurement matrix representing the collec-
tion of discrete line integrations with different projection angles and along different
beamlets, f ∈ Rn is vectorized 2 dimensional image and g ∈ Rm is the corresponding
measurement. Given the geometry matrix A and g, the task of X-ray CT recon-
struction is to find an appropriate value of f [39, 28]. In literature, there are some
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classical methods available, such as the filtered back projection (FBP) type methods
[21, 16, 35, 33], the algebraic reconstruction techniques (ART) [27]. In practice, how-
ever, to minimize the radiation dose by reducing the number of projection angles and
beamlets, the amount of measurement m becomes much less than the dimension of
the object image n, which makes the reconstruction becoming an under-determined
problem with infinitely many solutions. As a result, previously mentioned FBP and
ART methods usually suffer from artifacts because of the insufficient measurements.
Regularization methods such as TV based medical imaging models [30] and wavelet
regularization based medical imaging models [29, 18] makes it possible to reconstruct
piecewise smooth or piecewise constant object images. However, it is still a big chal-
lenge to preserve tiny features due to possible over-smoothing, which motivate us to
propose a MLR CT imaging model to preserve both smooth pieces and tiny features.
This model is a special case of (4) with linear degradation operator D = A and λ = 0
as follows:

(17) min
f,M⊂Rτ2

∑
x∈I

‖RM,x(P(f))‖∗, s.t. P(f) ⊂M, Af = g.

Note that this model is also applicable for average filter based super resolution prob-
lem, Fourier domain inpainting problem, and image deconvolution problems.

To solve (17), similar as (10), after defining the duplication operator {Qx} and
localized patch manifold {βx}, by splitting the linear constraints Qx(P(f)) = βx,∀x ∈
I and Af = g, we obtain the saddle point problem of model (17) using the augmented
Lagrangian:

min
f,β

max
{D1,x},D2

∑
x∈I

‖βx‖∗ +
µ1

2

∑
x∈I

‖Qx(P(f))− βx +D1,x‖22 +
µ2

2
‖Af − g +D2‖22.

(18)

Similar as Algorithm 1, applying the ADMM we can design algorithm 2 for solving
CT reconstruction model (17).

3. Semi-supervised learning using MLR. As another advantage of the pro-
posed MLR, this idea can be adapted to handle various data processing problem.
Here, we propose the extension of this approach to a semi-supervised learning prob-
lem. Many other potential applications in data science will be investigated in our
future work.

Semi-supervised learning is a learning paradigm aiming at labeling data from a
small amount of labeled training data set [48]. Mathematically speaking, given a
data set P = {x1, x2, . . . , xn} ⊂ Rd, the semi-supervised learning problem is to find
a label function L : P → {0, 1, 2, . . . , l} representing the label index of the each xi
with given prior knowledge of L in a labeled subset set S ⊂ P . The challenge of a
semi-supervised learning problem is to estimate an accurate assignment of L based on
a vey small portion information L(S). The general idea of semi-supervised learning
is to explore the manifold structure of the data based on an assumption that similar
unlabeled samples should be assigned the same classification. Based on this, diffusion
based models [47, 44, 43] has been considered to tackle this problem. In this section,
we would like to formulate a different way of estimating L from highly insufficient
labeled samples based on the MLR method.

Similar as notations discussed in [47, 44, 43], to solve the semi-supervised learning
problem, we define the cluster functions {φi(x)} which is partially assigned from the
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Algorithm 2 MLR based CT imaging (17)

Step 0. Using random value to inpaint an initialization of f0 and corresponding
M0 and RM0,x by calculating the KNN of P(f0), set k = 0.
while not converge do
Step 1.0. With a fixedMk, set the initial value of f0 and calculate the KNN to
generate the localize operator RMk,x, discretized Laplacian operator ∆Mk , and
duplicate operator Q, set β0 = Q(P(f0)) and l = 0.
while not converge do
Step 1.1. βk+1,l+1

x = T1/µ(Qx(Pfk+1,l) +Dk+1,l
1,x ),∀x ∈ I ,

Step 1.2. f l+1 = (µ1W + µ2A>A)−1(µ1P>(
∑
x∈I Q>x (βl+1

x + Dl
1,x)) +

µ2A>(g −Dl
2)),

Step 1.3. Dk+1,l+1
1,x = Dk+1,l

1,x + (Qx(P(fk+1,l+1))− βk+1,l+1
x ),∀x ∈ I ,

Step 1.4. Dl+1
2 = Dl

2 + (Af l+1 − g).
end while
Step 1.5. Take fk+1 = fk+1,l+1,
Step 2. Mk+1 = P(fk+1),

end while
where W =

∑
x∈I P>Q>QP is a diagonal weight matrix.

training data S.

φi(x) =

{
1, L(x) = i.

0, otherwise.
, x ∈ S, i = 0, 1, 2, . . . , l.

By viewing φi(x) a column vector with length n, we obtain a cluster matrix Φ =
(φ0, · · · , φl) ∈ Rn×(l+1). Therefore, if we can estimate all the components of Φ, or all
{φi(x)}, the value of all unknown L(x) for x ∈ P\S can be estimated by:

L(x) = arg max
i

φi(x), ∀x ∈ P\S.

Assume the point matrix P is sampled on a manifold M and define the local re-
striction operator RM,x as the restriction of a matrix to x-th point and its K-nearest
neighbourhood (KNN). Then by definition of Φ and φi(x), the rank of RM,xΦ equals
to the number of different labels occurred in the KNN. Based on the assumption that
similar data samples or nearby points should have similar classification, localization
of Φ should only include a few different labels, i.e., RM,xΦ has low-rank structure al-
though Φ might be a full-rank matrix. As an example, we consider the public available
MINST data set [32] which includes 70, 000 handwritten digits images. We simply
view each image as a point in Rd and pick the KNNs of each point (image) in terms
of Euclidean distance. Left image in Figure 2 shows that majority part of {RM,xΦ}
has low-rank structure from the ground truth of cluster matrix Φ. Interestingly, right
image in Figure 2 shows that the 20-nearest neighborhood of the first image, in which
two digits 5 and 3 appear because of their similar distribution in terms of Euclidean
distance. Therefore, the rank of RM,1Φ equals to 2.

Based on the observation that RM,xΦ has low-rank structure, the corresponding
MLR model for cluster matrix estimation can be stated as follows:

(19) min
Φ

∑
x∈I

‖(RM,x)Φ‖∗, s.t. P ⊂M, Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.

9



Fig. 2. Left Image: The histogram of Rank(RM,xΦ) from ground truth of images and labels.
Right Image: The 20-nearest neighborhood of the first point.

Different from the previous image restoration models, the geometric of manifoldM is
only determined by information from the data set P which is fixed and irrelevant to the
evolution of Φ. Correspondingly, with fixed localization of Φ, the model (19) is convex
and can be solved via standard ADMM. Since it is difficult to simultaneously minimize
all the restrictions of Φ, similar as the image restoration cases, we define a duplication
operator Q = {Qx}x such that QxΦ = RM,xΦ = ψx and ‖RM,xΦ‖∗ = ‖ψx‖∗. With
the auxiliary variables {ψx} and linear constraint QxΦ = ψx, we introduce a group of
dual variables {Dx} and obtain the following saddle point problem with the augmented
Lagrangian:

min
Φ,{ψx}

max
{Dx}

∑
x

(
‖ψx‖∗ +

µ

2
‖ψx −Qx(Φ)−Dx‖22

)
s.t. Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.

(20)

Similar as the image restoration case, with the definition of the duplication oper-
ator Q, because Q>Q =

∑
xQ>xQx = WQ which is a diagonal matrix, we can define

the left inverse operator as Q̃ = W−1
Q Q> such that Q̃Q = I. Standard ADMM brings

the outline of the iteration as follows:
(21)
ψk+1
x = arg minψx ‖ψx‖∗ + µ

2 ‖ψx −Qx(Φk)−Dk
x‖22,∀x ∈ P,

Φk+1 = arg minΦ

∑
x
µ
2 ‖ψ

k+1
x −Qx(Φ)−Dk

x‖22, s.t. Φ(x, i)|x∈S =

{
1, L(x) = i.

0, otherwise.

Dk+1
x = Dk

x +Qx(Φk+1)− ψk+1
x ,∀x ∈ P.

In (21), the first step can be solved by singular value thresholding operator de-
fined in (13) as ψk+1

x = T1/µ(Qx(Φk) − Dk
x). The equality constraint Φ(x, i)|x∈S ={

1, L(x) = i.

0, otherwise.
in the second step is an orthogonal projection operator. There-

fore, Φk+1 = Φ̃k+1χSc + Φ0χS , where Φ̃k+1 = (
∑
xQ>xQx)−1(

∑
xQ>x (ψk+1

x −Dk
x)) =

W−1
Q
∑
xQ>x (ψk+1

x −Dl
x)) = Q̃({ψk+1

x −Dk
x}x). Then the iteration can be re-sketched

10



as:

(22)


ψk+1
x = T1/µ(Qx(Φk)−Dl

x),∀x ∈ P,
Φk+1 = Q̃({ψk+1

x −Dk
x}x)χSc + Φ0χS ,

Dk+1
x = Dk

x +Qx(Φk+1)− ψk+1
x ,∀x ∈ P.

Given an appropriate initialization and sufficient iterations, we obtain the solution
of Φ and the corresponding columns φi(x). Therefore, the index set L(x) for x /∈ S
can be estimated by L(x) = maxi∈{0,1,2,...,l} φi(x), x /∈ S, which completes the full
estimation of L(x).

It is clear that a better initial guess of Φ0 can further improve the index com-
pletion result. Therefore, we propose to recursively update the initial guess Φ0 based
on the result from (22), the ultimate algorithm for semi-supervised learning can be
summarized in Algorithm 3.

Algorithm 3 MLR based semi-supervised learning algorithm

Step 0. From given point set P , generate the manifold M. With a fixed M,
calculate the KNN to generate the localize operator RM,x. Define the duplicate
operator Q such that Q(Φ) = Ψ = {(RM,x)Φ} with Qx(Φ) = ψx = (RM,x)Φ.
Obtain an initial guess of label function L0(x) by simply search each unlabeled
point’s nearest labeled neighborhood and duplicate the label, set k = 0.
while not converge do

Step 1. Set the initial value of Φk+1,0 by Φk+1,0(x, i) =

{
1, Lk(x) = i.

0, otherwise.
,

Set the auxiliary variables {ψk+1,0
x } = 0 and the dual variable {Dk+1,0

x } = 0,∀x,
set l = 0.
Step 2. Iterating as in (22) to solve a solution of Φk+1 for model (19).
Step 3. Updating Lk+1(x) = arg maxi φ

k+1
i (x).

end while

4. Numerical Experiments. In this section, we conduct numerical experi-
ments for the proposed MLR models to various image restoration problems, X-ray
CT imaging and semi-supervised learning. Our results validate that the proposed
method can successfully reduce the reconstruction error and preserve both edges and
repetitive patterns. For all image restoration results, besides the visual quality, we also
quantitatively evaluate the results of image restoration using the peak signal-to-noise
ratios (PSNR) value:

PSNR(f, f̃) = 10 log10

MN(fmax − fmin)2

‖f − f̃‖22
,

with the ground truth image f̃ , where fmax and fmin are its maximal and minimal
pixel values respectively and M , N are the size of the image. All the numerical
simulations are implemented by MATLAB in a PC with 32GB RAM and 32 CPUs of
2.7 GHz.

4.1. Image inpainting and super-resolution. In the first experiment, we test
Algorithm 1 to inpaint images from random missing pixels, in which the index set Ω
is uniformly randomly chosen with fixed rate. Figure 3 shows the restoration results
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Ground Truth Incomp. image (5.90 dB) Harmonic Ext. (22.46 dB)

Wavelet (22.83 dB) TV (21.97 dB) MLR (λ = 0, 22.47 dB)

LDMM (23.73 dB) LDMM+WGL (25.84 dB)MLR (λ = −20, 26.09 dB)

Fig. 3. Image inpainting results of 256× 256 Barbara image from 10% random available pixels
using different methods.

of Barbara image from same 10% random available pixels using different methods.
It can be seen that the traditional wavelet based method [7], the classical harmonic
extension method and TV based method [11] cannot preserve the textures in this
low rate of available information because given information in the texture part is
recognized as some noise in these two restored images. Both purely manifold based
low-rank model and the LDMM method [36] have much better estimation and preser-
vation of the textures, while the low-rank regularization of the patch manifold may
generate some artifacts which breaks some smooth regions. The proposed method
include both manifold based low-rank and inverse diffusion (λ = −20 for image in-
painting) can enhance the recovered image to obtain a better texture and smooth
region representation. Our method provides comparable results with the most recent
proposed LDMM + Weighted graph laplacian (LDMM+WGL) method [42].

Due to non-convexity of the model, we also numerically verify the convergence
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Fig. 4. Convergence curve of Algorithm 1 for Barbara image inpainting from 10% random
sampled pixels. Left: logarithm of object function

∑
x∈I ‖βx‖∗ + λ

2
‖∇Mkf‖22. Right: logarithm of

the relative error between {Qx(P(f))} and {βx}.

of the algorithm 1. For the numerical simulations shown as above, the convergence
curves of the object function

∑
x∈I ‖βx‖∗+

λ
2 ‖∇Mkf‖22 and the relative error of linear

constraints
∑
x∈I ‖Qx(P(f)) − βx‖2 are shown in Figure 4, which validate that for

the proposed Algorithm 1, the object function converges to a stable value and the
relative error of linear constraint converges to zero.

Incomplete image LDMM LDMM+WGL MLR method

5.66dB 21.73dB 23.22 dB 22.17dB

6.41dB 28.11dB 28.82dB 29.17dB

7.16dB 32.02dB 32.06 dB 32.05dB

Fig. 5. Image inpainting for 256 × 256 Barbara image. From top to bottom shows the image
inpainting results from 5%, 20% and 40% random available pixels.
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We further test the proposed model for different level of available information
and conduct comparisons with the LDMM method. Figure 5 shows other Barbara
image inpainting results from 5%, 20% and 40% random available information. In
the case of using 5% available information, the MLR model produces a qualitatively
and quantitatively better result than the one obtained from LDMM. However, the
image from LDMM+WGL method has the highest PSNR, although it qualitatively
produces more artifacts near the mouth region. In the case of using 10% available
information, although the proposed MLR model produces an image with the highest
PSNR value, it is hard visually distinct results from MLR and LDMM+WGL. Thus,
MLR and LDMM+WGL are comparable and better than LDMM in this case. MLR
and LDMM+WGL methods produce similar high quality results when the sampling
rate increases to 20% available information although this rate of information may
also be quite challenging to other existing methods. All three methods produces very
good results with 40% information. Moreover, we also apply the proposed image
inpainting model to other images to test the capability of the MLR for handling
texture and carton parts. For images with more textures such as the fingerprint
image, the baboon image and the boat image, Figure 6 shows that the proposed
MLR method can still preserve more features. In particular, at the bottom part of
the fingerprint image highlighted by the red box, the LDMM method generates some
vertical artifacts while the MLR method produce more accurate estimation. The
LDMM+WGL method successfully improves the inpainting results from the LDMM
method, but some vertical artifacts still remain. For the boat image in Figure 6, we
observe that the proposed MLR method can restore more isolated line structures on
the top of the boat as highlighted by red boxes while the LDMM method tends to
remove the thin lines. The LDMM+WGL method produces a comparable result with
the one from MLR method. For the baboon image, since the texture is too tiny and
not repeated frequently, all methods do not provide a result with clear skin and beard
structure. The LDMM+WGL method seems to enlarge the artifacts in this case.
On the other hand, for images with less textures such as the peppers image, Figure
6 shows that the proposed method can reduce the possibility of generating artifacts
which should not exist. For example, at the center of the green pepper (highlighted by
the red box), and at the center of the camera support (highlighted by the red box), the
artifacts from the LDMM method and the LDMM+WGL method break the smooth
regions while the proposed MLR method preserves the smooth parts because the
smooth regions also include repetitive patterns and formulate the low-rank structure.

Additionally, we also implement the MLR method for image inpainting from man-
ual scratches. Figure 7 shows that compared to the wavelet based image inpainting
model [7], the proposed model has much better quality of recovering the fingerprint
structure in terms of both the visualization and the PSNR value. Moreover, for the
second row with wider scratches, the proposed MLR model has better estimation of
the fingerprint pattern other than simply smoothen the scratched regions.

In the second experiment, we show the results of super-resolution. In [36], the
authors conduct the super resolution as a special type of image inpainting problem
with highly coherent fixed index set Ω = {1, s+ 1, 2s+ 1, . . .} × {1, s+ 1, 2s+ 1, . . .}.
Using the same model and algorithm as the image inpainting problem, the results of
this super-resolution problem from sub-sampled pixel are shown as follows in 8. It
can be seen that the super-resolution result is better than results from traditional
bi-cubic interpolation and comparable to results from the LDMM method and the
LDMM+WGL method.

As another case of super resolution, the problem is assumed as image restoration
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Fig. 6. Image inpainting for different images from 10% available pixels. From top to bottom:
Ground truth, incomplete images, results from LDMM [36], results from LDMM+WGL [42], results
from MRL, respectively.
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Incomplete image Wavelet model [7] MLR method

12.73dB 24.91dB 29.97dB

9.97dB 21.24dB 25.74dB

Fig. 7. Image inpainting for Fingerprint image corrupted by two different type of scratches and
texts. The bottom images of each row include two zoom-in regions highlighted by red boxes.

from filtered low resolution version of images. Define an average operator A, the input
low resolution image fL = A(f), which provide a linear constraint fidelity condition
and similar as the medical imaging model (17). Using the formula (18) and applying
Algorithm 2, the super resolution results from 4 × 4 and 8 × 8 average filtered low
resolution images are shown in Figure 9. The proposed MLR method produces more
detailed information and sharper images than bi-cubic interpolation and LDMM in
[36].

4.2. X-ray CT Reconstruction. It is quite challenging to reconstruct satis-
factory image for the X-ray CT problem with a small amount of radiation dose. In
this section, we apply the model (18) and Algorithm 2 to the fan-beam projection
measurement of images with reduced number of projection views. We consider the
CT imaging for a human chest slice (See Figure 10) from the data of ”Low Dose
CT Grand Challenge” provided by Dr. Cynthia McCollough, the Mayo Clinic, the
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Bi-Cubic interp. LDMM LDMM+WGL MLR method

21.06dB 21.64dB 21.32dB 21.87dB

19.08dB 20.21dB 20.31dB 20.47dB

Fig. 8. Super resolution from image subsampling. From top to bottom shows the image super
resolution results for down sample rate 4 × 4 and 8 × 8. From left to right shows the result from
Bi-cubic interpolation, low-dimension manifold based method and the proposed MLR method.

Bi-Cubic interpolation LDMM method MLR method

22.93dB 23.52dB 23.71dB

21.61dB 22.33dB 22.42dB

Fig. 9. Super resolution from average. From top to bottom shows the image super resolution
results for down sample rate 4 × 4 and 8 × 8. From left to right shows the result from Bi-cubic
interpolation, LDMM method and the proposed MLR method.
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Regarding to the linear fidelity Af = g, the ground truth image and the object image
f has resolution 256 × 256 and the Radon transform measurement g in this section
always includes 512 projection lines in each projection view. Therefore, #PROJ

projection views represents the measurements has Card(g)
Card(f) = #PROJ×512

2562 = #PROJ
128

portion of the object function. The huge sparse geometric matrix A is generated by
Siddon’s method [45] as pre-process.

For CT imaging from 15, 30 and 60 views, the CT reconstruction results from
the proposed MLR method are shown in Figure 10. It can be seen that the proposed
model performs better than the wavelet based method [18] in term of both the visual
quality and the PSNR value. For wavelet based method, stronger regularization
as in Figure 10 would remove the small features since they would be recognized as
artifacts or noise, while weaker regularization cannot remove the artifacts caused
by insufficient projection angles. In particular, in the case with 15 projections, the
wavelet based method cannot recover the main vessels at the right side while our
method still produce very good results. Moreover, for 60 projections, the zoom-in
part shows that the proposed model can successfully reconstruct these tiny features,
which is important for futher clinical diagnosis and therapy.

Additionally, to further illustrate the effectiveness of the MLR method for CT
image reconstruction, we test our method by applying the geometric matrix to a
natural image. Figure 11 show that for inverse Radon transform of natural image
with apparent textures from all 15, 20 and 30 projection views, the proposed method
has even greater advantage comparing to the wavelet based CT reconstruction method
since the traditional wavelet based method cannot distinguish the texture from the
artifacts caused by the low-dose projection.

4.3. Semi-supervised Learning. Our final experiment is conducted to test the
proposed MLR method for handwritten digits recognition based on the MINST data
which is initially provided and processed in [32], as shown in Figure 12, including
totally 70, 000 different 28 × 28 “handwritten digits” images. As a special case of
semi-supervised learning problem, we regard each image as a 784 dimensional vector,
and view all the images as a set of 70, 000 points in R784. Therefore, the vectorized
images can formulate a point matrix P ∈ R784×70000. The labels {L(x)} can possibly
take the value from 0, 1, 2, . . . , 9.

For initial purpose of MINST data, the given indices set S has size 60, 000 and
one need to estimate the rest 10, 000 index with lowest error. Recently, the full
70, 000 indices set can be roughly reconstructed from 50−100 given indices and some
diffusion based methods. For example, [47] proposed an initial graph Laplacian based
method. Later on, [43] proposed a weighted graph Laplacian method, from which the
inpainting accuracy can exceed 80% from merely 70 of given indices.

In this experiment, we apply the MLR based Algorithm 3 to this semi-supervised
learning problem. In particular, we attempt to reconstruct all the 70, 000 labels of
the MINST data [32] from uniformly random sampled 35, 50, 70, 100, and 700 labels.
For each sampling rate, we take 10 different random samples for comparisons. Figure
13 shows the success rate of label estimation by graph Laplacian (GL) [47], weighted
graph Laplacian (WGL) [43], and the proposed manifold based locally low-rank ap-
proximation based model (MLR). The first five images in Figure 13 shows the success
rate for each individual random sample with a fixed number of sample indices. The
last image in Figure 13 shows the average success rate which is naturally monotone
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15 Projections 30 Projections 60 Projections

20.83dB 23.79dB 25.81dB

24.04dB 28.08dB 31.29dB

Fig. 10. Fan-beam imaging for a clinical X-ray scanned chest slice from 15, 30 and 60 projection
views. The first row shows the ground truth image from a resized (256 × 256) human chest slice,
where the left bottom and right bottom images are the zoom-in views of the regions enclosed by
the red rectangles. The second row shows the results obtained from the wavelet tight frame based
model [18]. The third row shows the results obtained from the proposed MLR based method.

increasing with respect to the number of sample indices. It can be clearly observed
that the proposed method has the highest accuracy of estimation for almost all the
random samples. In terms of average success rate, the proposed model outperforms
the previously proposed graph Laplacian and weighted graph Laplacian based meth-
ods. We remark that further improvement can be expected if special treatments for
shape recognition and similarity can be conducted which will be our future work.

5. Conclusions. In this paper, we propose a manifold based low-rank regular-
ization method for image restoration and semi-supervised learning. The proposed
regularization can be viewed as a point-wise linearization of the manifold dimension,
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15 Projections 20 Projections 30 Projections

21.69dB 22.39dB 23.37dB

23.25dB 24.50dB 25.84dB

Fig. 11. Fan-beam imaging for Barbara image from 15, 20 and 30 projection views, respectively.
The first row shows the result by wavelet tight frame based model. The second row shows the result
from the proposed MLR based method.

Fig. 12. First 100 ”hand writing number” images of MINST data.

which generalize the concept of low-rank regularization for linear objects as a concept
of manifold based low-rank for nonlinear objects. Using the proposed regularization,
we investigate new methods of image inpaining, image super-resolution and X-ray
CT image reconstruction. We further extend this method to a general data analysis
problem, semi-supervised learning. Intensive numerical experiments demonstrate that
the proposed MLR method is comparable to or even outperforms the existing wavelet
based models [7, 18] and PDE based models [47, 43, 36].

Several directions will be investigated in our future work. For instance, the cur-
rent method can be adapted to handle images with noisy input. It is also an important
problem to explore a better method to pick the “local regions” or manifold represen-
tation. For example, for semi-supervised learnings, the left image in Figure 2 shows
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35 Samples 50 Samples 70 Samples

100 Samples 700 Samples Average

Fig. 13. Success rate of label estimation by graph Laplacian, weighted graph Laplacian, and
proposed MLR methods.

that the KNN obtained by Euclidean distance may still include some ambiguity. In
particular, some KNNs may have local rank as high as 7 or 8, which reduces the reli-
ability of local low rank regularization. Therefore, developing a data-driven approach
to non-Euclidean geometry for MLR will be a very interesting direction to investigate
in our future work.
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LDMM+WGL for comparisons.
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