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In the social, behavioral, and economic sciences, it is an important problem to predict which
individual opinions will eventually dominate in a large population, if there will be a consensus, and
how long it takes a consensus to form. This idea has been studied heavily both in physics and
in other disciplines, and the answer depends strongly on both the model for opinions and for the
network structure on which the opinions evolve. One model that was created to study consensus
formation quantitatively is the Deffuant model, in which the opinion distribution of a population
evolves via sequential random pairwise encounters. To consider the heterogeneity of interactions in
a population due to social influence, we study the Deffuant model on various network structures
(deterministic synthetic networks, random synthetic networks, and social networks constructed from
Facebook data) using several interaction mechanisms. We numerically simulate the Deffuant model
and conduct regression analyses to investigate the dependence of the convergence time to equilibrium
on parameters, including a confidence bound for opinion updates, the number of participating
entities, and their willingness to compromise. We find that network structure and parameter values
both have an effect on the convergence time, and for some network topologies, the convergence
time undergoes a transition at a critical value of the confidence bound. We discuss the number of
opinion groups that form at equilibrium in terms of a confidence-bound threshold for a transition
from consensus to multiple-opinion equilibria.

I. INTRODUCTION

Social interactions play a central role in the process of
decision-making and opinion formation in populations of
humans and animals [1, 2]. Discussions among acquain-
tances, coworkers, friends, and family members often lead
interlocutors to adjust their viewpoints on politics, par-
ticipation in a social movement, adoption of technolog-
ical innovations, or other things [3–7]; and the predic-
tion of collective opinion formation in a population from
attributes of individuals is one of the most important
problems in the social sciences [8, 9]. Consensus dy-
namics is also a key problem in areas such as control
theory [10, 11] and collective dynamics more generally
[12]. From a physical and mathematical standpoint, the
study of opinion dynamics is one of the key motivating
examples for studying the effects of network structure on
dynamical processes on networks [13].

There are various methods for studying opinion for-
mation in social networks, such as through Bayesian
learning or generative social-interaction mechanisms [14].
Bayesian updating requires some unrealistic assumptions
about individuals’ knowledge and reasoning ability, and
it becomes computationally infeasible in complex settings
[1, 14]. Even in opinion models that do not suffer from
these issues, there remains significant arbitrariness in the
choice of specific models and parameters to use, and dif-
ferent choices can lead to markedly (and qualitatively)
different results [14, 15]. A substantial amount of work
on non-Bayesian approaches to opinion formation em-

ploys models and tools from dynamical systems, prob-
ability theory, and statistical physics [8]. Moreover, a
major theme in statistical physics is how global proper-
ties can emerge from local rules, which is similar to the
question in social sciences of how the collective opinion of
a population evolves as the result of individual attitudes
and the mutual influence of individuals on each other
[16]. Some notable generative models of opinion forma-
tion include voter models [17–20], majority-rule models
[21], models based on social-impact theory [22, 23], the
Sznajd model [24, 25], and bounded confidence models
[26–29].

Bounded-confidence models, first introduced (to our
knowledge) by Deffuant et al. [26, 30] and Hegsel-
mann and Krause [27, 28], capture the notion of a toler-
ance threshold based on experimental social psychology
[31, 32]. Bounded confidence reflects the psychological
concept of selective exposure, which refers to an individ-
ual’s tendency to favor information that supports their
views while neglecting conflicting arguments [33, 34].
The Deffuant model and the Hegselmann–Krause (HK)
model both consider a set of agents who hold contin-
uous opinions that can vary. Agents are connected to
each other by an interaction network, and neighboring
agents adjust their opinions at discrete time steps when-
ever their opinions are sufficiently close to each other.
The two models differ primarily in their communication
regime. In the HK model, agents interact with all of
their compatible neighbors simultaneously at each time
step, and they update their opinions to agree with the
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mean opinion of these neighbors. In contrast, the Def-
fuant model adopts a sequential updating rule and can be
viewed as a discrete-time repeated game that is played in
pairwise fashion among a set of agents until the agents’
opinions converge to either a single opinion or multiple
opinions [1, 35, 36]. One can also tune the speed at which
opinions converge in the Deffuant model through an addi-
tional parameter, sometimes called a cautiousness param-
eter, that describes openness to compromises. The Def-
fuant model was developed to study opinion-formation
processes in large populations in which people interact
in small groups (such as pairwise interactions in a net-
work), whereas the HK model is suitable for contexts
such as meetings with many participants. Two questions
have drawn considerable interest: (1) how does the pa-
rameter space influence the number of opinion groups in
an equilibrium state; and (2) how long does it take for a
system to reach an equilibrium state [26, 30, 37–39]?

Despite its seeming simplicity, the Deffuant model is
not analytically solvable in general, and most results
about it have been obtained from Monte Carlo simu-
lations. It has been shown numerically, for a few val-
ues of the cautiousness parameter, that consensus occurs
for large confidence bound values on complete graphs
with probability close to 1 in the large-population limit,
whereas multiple opinion groups persist at equilibrium
for low confidence bounds [30, 37, 39, 40]. However, dif-
ferent confidence-bound thresholds have been proposed
for transition from consensus to multiple opinion groups
at equilibrium. In the latter case, one can approximate
the number of groups by a function of the confidence-
bound value [30, 39]. Numerical simulations have sug-
gested that the time to opinion equilibrium is propor-
tional to the number of agents in the network [37]. More-
over, a higher value of the cautiousness parameter in-
creases not only the convergence speed but also the num-
ber of agents that hold extreme opinions at equilibrium
[37]. Numerical simulations also have illustrated the pos-
sibility of forcing or preventing a consensus within a pop-
ulation by manipulating the initial opinion distribution
[41, 42].

There has been some research that compares results
for the Deffuant model on complete graphs with those
on other networks. Results for complete graphs and
square lattices are similar for large confidence-bound
values, except that a few extreme opinions remain on
square lattices at equilibrium [30]. The Deffuant model
has also been simulated on random graphs generated by
Barabási–Albert (BA), Erdős–Rényi (ER), and Watts–
Strogatz (WS) mechanisms [40, 43–45]. However, differ-
ent assumptions and update rules are often used, and
this poses a major barrier for comparing results across
different networks.

There have also been efforts to study the Deffuant
model from an analytical perspective using a density
function that determines the agents’ density in opinion
space [38, 41]. Such an approach adopts a classical strat-
egy in statistical physics by deriving a rate equation (also

called a “master equation”) and can be interpreted as
taking the infinite limit of the number of agents [46].
These derivations have not led to analytical solutions of
the Deffuant model, but they require numerical integra-
tion only of the master equation, which is faster than run-
ning Monte Carlo simulations of the original model. Un-
fortunately, however, such density-based method requires
fairly restrictive assumptions, such as homogeneous mix-
ing and averaging agents’ opinions as the means of com-
promise.

The Deffuant model itself also has limitations, and
numerous efforts have been made to extend it in order
to better reflect reality. For instance, the confidence
bound imposes a boundary on interacting agents’ deci-
sion whether or not to adjust their opinions. A small
change in the difference between their opinions may lead
to a different decision being made. For this reason,
some scholars have proposed the use of smooth confidence
bounds, with which the attraction of agents decreases as
their opinion difference increases [47, 48]. Other general-
izations of the confidence bound include introducing het-
erogeneous tolerance thresholds in a population [30, 32]
and considering time-dependent thresholds [30]. Addi-
tionally, the Deffuant model can be extended naturally to
incorporate vector-valued opinions, as this only requires
redefining opinion distance [49].

Studies of variants of the Deffuant model often com-
pare new results with those of the original model. How-
ever, numerical simulations of the original model are usu-
ally performed for specific parameter values and net-
works. Moreover, conclusions are often drawn based
on visual inspection and sometimes rely on simplifying
assumptions. Furthermore, quantifying the confidence
bound and the cautiousness of a population is an open
question for many applications. These issues motivate us
to take a more systematic approach to the study of the
Deffuant model on networks.

We explore the dependence of convergence time and
the number of opinion groups at equilibrium on network
topology, confidence bound, the number of participating
agents, and their willingness to compromise. We conduct
regression analyses to model convergence time as a func-
tion of the parameters considered and study the quali-
tative behavior of opinion groups at equilibrium. The
networks that we study fall into three categories. The
first set of networks — complete graphs, cycles, prism
graphs, square lattices, and complete multipartite graphs
— are synthetic and deterministic. The Deffuant model
has been much studied on complete graphs and square
lattices due to their simple structures, and we extend
this list of simple network structures and compare simu-
lation results on these networks with those on more com-
plex structures. From our simulations on deterministic
graphs, we find that network topology and parameter val-
ues of the Deffuant model appear to have an intertwined
effect on convergence time, with the behavior of conver-
gence time undergoing a transition at a confidence-bound
threshold for some network structures. The second set of
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networks are (synthetic) random graphs, including cy-
cles with random edges, prisms with random edges, and
random graphs generated by an Erdős–Rényi model [50].
Due to their simplicity, these models are a good starting
point for understanding the Deffuant model on random
graphs. Our simulations suggest that the behavior of
convergence time on random-graph models is similar to
that on their counterpart deterministic networks. The
third set of networks are empirical and deterministic. In
particular, we use two Facebook100 networks, which
are constructed using Facebook “friendship” data [51],
and which are a type of network in which people have
discussions and opinions can change over time. Using
all three types of networks, we discuss the number of
opinion groups at equilibrium and phenomena such as a
confidence-bound threshold for a transition from consen-
sus to multiple-opinion equilibria.

The rest of our paper is organized as follows. First,
we introduce relevant definitions from network science,
define the Deffuant model in mathematical terms, and
present some important known results for the Deffuant
model on networks. We then describe our methodology
and introduce the networks and the approach that we
use for numerical simulations. We then conduct regres-
sion analyses on our simulation results to explore the de-
pendence of convergence time on network structure, con-
fidence bound, the number of participating agents, and
their cautiousness. We also discuss the phenomena that
we observe about the number of opinion groups at equi-
librium, and we discuss our results and their implications
for sociology. We give further details on our statistical
analysis in an appendix.

II. BACKGROUND

In this section, we recall relevant definitions from net-
work science. We then define the Deffuant model, give
some intuition about its design, and present some im-
portant known results about the Deffuant model on net-
works.

A. Basic definitions in network science

A network is a set of items (called nodes) with con-
nections (called edges) between them [52]. Many ideas
in network science originated in graph theory, and we
present some definitions [52, 53] that are pertinent to
our study. A graph G is a triple consisting of a node set
V (G), an edge set E(G), and a relation that associates
each edge with two nodes (not necessarily distinct) called
its endpoints. The simplest type of network is a graph.
Two nodes are adjacent, and are called neighbors of each
other, if and only if they are endpoints of the same edge.
The degree of a node is equal to the number of its neigh-
bors. A regular graph is a graph in which each node has
the same degree. A random-graph model is a probability

distribution on graphs that has some fixed parameters
and generates networks randomly in other respects.

B. The Deffuant model

In the Deffuant model, randomly-selected neighboring
agents interact in a pairwise manner and make a compro-
mise toward each other’s opinion whenever their opinion
difference is below a given threshold. (Otherwise, their
opinions do not change.) Consider a population of N
agents, who are connected to each other socially via a
network G; and let [a, b] ⊂ R be the opinion space. At
time t ∈ N, suppose that each agent i holds a time-
dependent opinion xi(t) ∈ [a, b]. Given an initial pro-
file ~x(0) ∈ [a, b]N , a confidence bound c ∈ [0, b − a],
and a cautiousness parameter that we call the multiplier
m ∈ (0, 0.5], the Deffuant model is the random process
(~x(t))t≥0 defined as follows. At time t, a pair of neighbor-
ing agents i and j 6= i are selected uniformly at random
(i.e., we select an edge uniformly at random) and update
their opinions according to the equations

xi(t+ 1) =

{
xi(t) +m∆j,i(t) , if |∆i,j(t)| < c ,
xi(t) , otherwise ,

xj(t+ 1) =

{
xj(t) +m∆i,j(t) , if |∆i,j(t)| < c ,
xj(t) , otherwise ,

(1)

where ∆j,i(t) = xj(t)− xi(t).
The Deffuant model uses a continuous opinion space,

as an individual’s stance on a specific matter can vary
smoothly from one extreme to another in many real-
world scenarios [8]. For instance, a political position (on
single dimension) is not typically simply “left” or“right”
but somewhere in between two extremes. The study of
opinion-formation processes has traditionally considered
an opinion to be a discrete variable, which is a reasonable
assumption for some applications. For instance, the clas-
sical voter model [17, 18] considers a binary variable that
specifies one’s decision in a vote. However, it is impor-
tant to develop models that incorporate more nuanced
opinions.

As in the original paper [26] that introduced the Def-
fuant model, most later studies treated the initial opin-
ions as being independent and identically distributed ac-
cording to the uniform distribution on the opinion space
[a, b]. We also adopt this convention, as our goal is to
explore the basic version of the Deffuant model in a sys-
tematic manner to provide a point of reference for results
of the model’s variants. Nonuniform initial opinion dis-
tributions are considered, for example, in [54].

The confidence bound c characterizes a population’s
tolerance of diverse viewpoints. If the opinion difference
between a pair of agents is smaller than this threshold,
they reduce their disagreement by making a compromise.
Otherwise, the two agents keep their current opinions af-
ter they interact (or perhaps are unwilling to discuss the
issue at all). In the extreme case of c = 0, no interaction



4

can lead to compromise, and the initial opinion profile is
a fixed point. At the other extreme, if c = b − a, any
pair of interacting agents will compromise their opinion
if they interact with each other

The multiplier m, which also called a convergence pa-
rameter in some papers [26, 30, 37, 49], specifies a pop-
ulation’s cautiousness in the modification of judgements.
A larger value of m indicates that individuals are more
willing to compromise. In the special case m = 0.5, pairs
of interacting agents agree on the mean of their opinions
whenever their opinion difference is below the confidence
bound. Most past work has examined homogeneous m,
but it would be interesting to examine the effects of het-
erogeneous levels of cautiousness. For example, [48] used
a smooth influence function in which agents whose opin-
ions have low uncertainty are more influential than agents
whose opinions have high uncertainty, and other types of
heterogeneity are also worth exploring.

The Deffuant model, in its original form [26], considers
the confidence bound and the multiplier to be constant in
time and homogeneous across the whole population. In
this setting, the mean opinion of two agents is the same
before and after their interaction.

Convergence of opinions is generally defined as the
appearance of a stable configuration in which no more
changes can occur. At equilibrium, the opinion distri-
bution is a superposition of Dirac delta functions in the
opinion space [a, b], such that consecutive spikes are sep-
arated by a distance of at least c. In other words, any two
agents either hold the same opinion or their viewpoints
differ by a distance of at least c. We use the notation
K ∈ N to denote the number of opinion groups at equi-
librium.

C. The Deffuant model on various networks

The agents in a Deffuant model are represented by
nodes of a network, and a pair of agents on a randomly
selected edge can interact with each other. To the best
of our knowledge, the Deffuant model has been stud-
ied on only a small subset of networks, which includes
complete graphs, square lattices, Erdős–Rényi (ER) ran-
dom graphs, Watts–Strogatz (WS) random graphs, and
Barabási–Albert (BA) random graphs [55].

The Deffuant model on complete graphs has received
considerable attention [26]. Complete graphs can be used
to model small communities, where everyone knows each
other, such as high-level political leaders in a country or
inhabitants of a village. Complete graphs are also some-
times used as approximations for individual communities
in large social networks, as individuals within commu-
nities are more closely connected with each other than
with outsiders [56, 57]. In the homogeneous mixing case,
the population’s opinions always reach equilibrium [38].
It has been shown numerically that a large confidence
bound c yields an equilibrium state of consensus, whereas
multiple opinion groups can persist for small values of c

[26, 30, 37, 39, 40]. Such results were also obtained in
simulations on square lattices, ER random graphs, WS
random graphs, and BA random graphs [16, 26, 45, 58].
Moreover, numerical simulations on complete graphs im-
ply that one can estimate the number of opinion groups
at equilibrium by K = 1/(2c) [26, 30, 39], and that mul-
tiplier m and the number N of participating agents do
not have a significant effect on K [26, 30]. However,
a later study [37] observed that the number of “major
opinion” groups that include many agents is a function
of c, whereas the number of “minor opinion” groups (i.e.,
groups of minorities) depends on m.

On square lattices, WS random graphs, and BA ran-
dom graphs, the Deffuant model includes behavior that
differs from the homogeneous mixing case. For instance,
simulations on square lattices and BA random graphs
suggest that K depends not only on c, but also on
N , when multiple opinion groups persist at equilibrium
[26, 45]. Simulations on WS random graphs indicate that
K depends on both c and network structures, and that
the presence of disorder (i.e., random “shortcut” edges)
seems to have only a slight effect on convergence time T
[43].

Existing research on the Deffuant model on ER ran-
dom graphs has focused mainly on adaptive networks,
which evolve along with the game [16, 58]. For WS ran-
dom graphs, the study of the model has centered around
opinion groups at equilibrium [43].

III. METHODS

For each network structure, we conduct a regression
analysis to examine convergence time as a function of
confidence bound, the number of participating agents,
and the multiplier that measures their cautiousness. We
then qualitatively study the behavior of the number of
opinion groups at equilibrium, as such an approach is
more natural than conducting regression analysis because
of the complex nature of opinion-group distributions.

A. Networks studied

We study the Deffuant model on a variety of networks
to develop a better understanding of the effect of net-
work structure on convergence time and the number of
opinion groups at equilibrium. Some of the networks
that we study have deterministic structures, and oth-
ers are random graphs. In Table I, we list the nota-
tions, definitions, and examples of these networks. Fi-
nally, we conduct numerical simulations using networks
that are constructed using Facebook “friendship” data
[51]. The first set of networks that we study are deter-
ministic graphs, including complete graphs (Kn), cycles
(Cn), prism graphs (Yn), square lattices (Sl), and com-
plete multipartite graphs (Kn,r). These networks have
been studied extensively because of their simple struc-
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Network Definition Example

Kn A complete graph Kn has n pairwise adjacent nodes [53].

Cn For n ≥ 3, a cycle Cn has node set {vj | j ∈ {1, . . . , n}} and edge
set {vjvj+1 | j ∈ {1, . . . , n− 1}} ∪ {vnv1} [53].

Yn For n ≥ 3, let {vj | j ∈ {1, . . . , n}} and {wj | j ∈ {1, . . . , n}} be
the node sets of two disjoint cycles. The prism Yn is defined as
the graph obtained by joining the two cycles at the set of edges
{vjwj | j ∈ {1, . . . , n}} [59].

Sl For a positive integer l, we define a square lattice Sl of side
length l as the graph with the node set {(x, y) | 0 ≤ x, y ≤
l, with x, y ∈ Z} and edges ((x1, y1), (x2, y2)) such that ‖(x1−
x2, y1 − y2)‖2 = 1.

Kn,r For an integer r ≥ 2 and positive integers n1, n2, . . . , nr, a
complete r-partite graph Kn1,n2,...,nr is a graph whose node set
can be partitioned into r subsets (called partite sets) of sizes
n1, n2, . . . , nr, respectively, such that two nodes are adjacent if
and only if they are from two distinct subsets. We consider com-
plete r-partite graphs with equal-sized partite sets and denote
such graphs as Kn,r, where r equals the number of partite sets
and n (a multiple of r) is the size of the node set [60].

Cn,s For n ≥ 3 and s ∈ (0, n−3
n−1 ), we define Cn,s as follows: start

with Cn and add edges between non-adjacent nodes uniformly at
random until there are sn extra edges on the cycle Cn.

Yn,s For n ≥ 3 and s ∈ (0, n−4
n−1 ), we define Yn,s as follows: start with Yn

and add edges between non-adjacent nodes uniformly at random
until there are sn extra edges on the prism graph Yn.

G(n, p) For n ∈ N and p ∈ [0, 1], we generate random graphs from the
Erdős–Rényi (ER) G(n, p) model [50] as follows: start with n
disconnected nodes and place an edge between each distinct pair
with independent probability p.

TABLE I: Summary of the definitions of the synthetic networks on which we study the Deffuant model. In each example
network, solid black lines denote deterministic edges, and red dashed lines represent edges that are generated randomly.

tures. Our simulation results on these networks provide
references for comparison with conclusions on the vari-
ants of the Deffuant model as well on those of the origi-
nal Deffuant model on more complicated network struc-
tures. The second set of networks that we study consists
of random graphs, which are cycles with random edges
(Cn,s) (which are related to WS small-world networks
[61, 62]), prism graphs with random edges (Ln,s), and
random graphs generated by the Erdős–Rényi G(n, p)
model. Finally, we investigate the Deffuant model on

real social networks constructed using Facebook data.

B. Simulation specifications

Without loss of generality, we consider the Deffuant
model with opinions on the space [0, 1]. In other words,
we normalize the opinion dynamics so that each agent’s
opinion lies between 0 and 1 at any time step. We also
consider the multiplier m ∈ (0, 1), as opposed with the
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interval (0, 0.5] in the original model [26]. This gen-
eralization is useful, as interacting agents can perhaps
be convinced to believe in others’ opinions more than
their own. Moreover, considering m ∈ (0, 1) reveals in-
teresting phenomena that we will discuss in Section IV.
A few of the parameter values have specific interpreta-
tions. For example, for c = 1, any pair of interacting
agents makes convergent opinion adjustments that cor-
respond to interaction without a confidence bound. For
m = 0.5, each pair of interacting agents agrees on their
mean opinion whenever their opinion difference is below
c. Theoretically, there is no upper bound on the num-
ber of agents that one can consider in a population, but
running numerical simulations on extremely large popu-
lations is computationally intensive. For our simulations,
we use a maximum of N = 1000 agents, and one can in-
fer the behavior of the model for larger populations from
our regression analysis.

The convergence time T and the number K of opin-
ion groups at equilibrium are both difficult to predict, as
the initial opinion profile, the pair of agents that inter-
act at each time step, and the particular graphs gener-
ated by random graph ensembles are all stochastic. To
smooth out these sources of noise, we run 10 groups of in-
dependent simulations for each network in Section III A
and each combination of the values of N , c, and m that
we consider. During one simulation, we first generate a
group of N independent and identically distributed ini-
tial opinions from a uniform distribution on [0, 1], and we
then simulate the evolution of opinion dynamics accord-
ing to the Deffuant model.

In principle, equilibrium is reached only at infinitely
long times, as the opinion space is continuous and
opinions approach each other arbitrarily closely without
reaching the same value in finite times unless m = 0.5
[37]. However, the emergence of equilibrium is evident at
finite times, as consecutive opinion groups must be sepa-
rated by a distance of at least c to avoid merging. There-
fore, in practice, we need to set a convergence criterion in
our numerical simulations. For our study, we consider an
opinion profile to be at equilibrium if consecutive opinion
groups are separated by a distance of at least c and the
range of opinions in each group is below 0.02. Based on
some test runs, we also choose a bailout time of 109 itera-
tions for each simulation. If an equilibrium is reached by
the bailout time, we record the convergence time (T ) and
the number (K) of opinion groups. Otherwise, we record
T = 3.55× 109, a strict upper bound that is higher than
all possible convergence times, for the purpose of data
visualization.

IV. NUMERICAL SIMULATIONS AND
RESULTS

In this section, we study the Deffuant model on var-
ious deterministic, randomly generated, and real-world
networks by considering different network structures and

interaction mechanisms between pairs of agents. For each
network structure, we first conduct data exploration and
linear regression analysis to model convergence time (T )
as a function of the number (N) of participating agents,
confidence bound (c), and multiplier (m). We then dis-
cuss our qualitative observations about the number of
opinion groups at equilibrium (K). Because the process
of data exploration and regression analysis is similar, we
only give full details in Appendix A for a subset of the
parameter space for our simulations on complete graphs.

For our linear regression analysis, we use the method
of ordinary least squares, as the estimator is unbiased
and consistent if the errors have the same finite vari-
ance and are uncorrelated with the explanatory variables
[63]. If the errors are also normally distributed, ordinary
least squares is also the maximum likelihood estimator
[63]. We check these assumptions throughout our model-
selection process. For each set of parameters and network
structure that we consider, we conduct regression analy-
sis using the mean results of 10 different simulations. We
only use simulation results of networks with 100 or more
agents in order to reduce the stochasticity introduced by
the random initial opinion profile and to ensure a suffi-
cient quantity of data for testing the model assumptions.

A. Complete graphs

The simplest form of the Deffuant model allows any
pair of agents in a system to interact [26]. This is equiv-
alent to studying the model on a complete graph. Recall
that N denotes the number of nodes in a graph.

In Fig. 1, we summarize the values of ln(T ) that we
observe in simulations for various N , as these are repre-
sentative of the trends that we observe in all simulations.
We present a similar set of plots for all other network
structures in the following subsections.

Our data exploration suggests that the convergence
time has qualitatively different behavior for c < 0.5 and
c ≥ 0.5, so we consider different regression models for
these two cases. For model selection, we use the Akaike
information criterion (AIC) [65] to select the “best” sub-
set of predictors, as this method balances the trade-off
between the goodness of fit and the complexity of a
model. This model selection approach aims to minimize
the AIC value, which is defined by

AIC = 2 [p− ln(L)] , (2)

where p is the number of estimated parameters and L
is the maximum value of the likelihood function for the
model. The coefficient of determination, R2 ∈ [0, 1], is
a measure of goodness of fit of a regression model [66].
Values of R2 that are closer to 1 indicate better fits.
For instance, R2 = 0 implies that the response variable
cannot be predicted from the explanatory variables, and
R2 = 1 implies that the response variable can be pre-
dicted without error from the explanatory variables. Let
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FIG. 1: Convergence times for our simulations on N -node complete graphs for various N . These are representative of the trends
that we observe in all simulations. (We generate this and all subsequent figures of this type using the matplotlib library for
Python developed by J. D. Hunter [64].)
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FIG. 2: The number of opinion groups that persist at equilibrium in our simulations on complete graphs for various N . These
are representative of the trends that we observe in all simulations. We use grey color to represent simulations that did not
converge by the bailout time (109 iterations) in this and our subsequent figures of this type.

T̂i be the predicted value for the observed convergence
time Ti (i = 1, 2, . . . , n), and let T̄ = (

∑n
i=1 Ti)/n. One

then calculates

R2 =

∑n
i=1(T̂i − T̄ )2∑n
i=1(Ti − T̄ )2

. (3)

We use the AIC and R2 to measure the goodness of fit
and the simplicity of our regression models.

For c < 0.5, AIC-based model selection yields

ln(ln(T )) = β0 + β1N + β2N
2 + β3c

2 + β4Nc+ ε , (4)

and we give our estimates for the coefficients βj (with
j = 0, 1, . . . , 4) in Table II. (This is part of the regres-
sion output given by the software environment R [67].)
The column for t values gives the values of the t-statistic
for the hypothesis test with the null hypothesis that the
corresponding regression coefficient is 0. The column for
Pr(> |t|) gives the probability for a test statistic to be
at least as extreme as the observed t value if the null
hypothesis were true. A low value of Pr(> |t|) suggests
that it would be rare to obtain a result as extreme as the
observed value if the coefficient under consideration were
0, and hence we should keep the corresponding term in
our model. For Eq. (4), the values of the AIC and R2 are
−2037.1 and 0.8246, respectively.

βn Estimate Std. Error t value Pr(> |t|)
β0 2.139 1.380× 10−2 1.550× 102 < 2× 10−16

β1 7.124× 10−4 5.255× 10−5 1.356× 10 < 2× 10−16

β2 −3.763× 10−7 4.178× 10−8 −9.006 < 2× 10−16

β3 −9.922× 10−1 1.076× 10−1 −9.220 < 2× 10−16

β4 3.696× 10−4 8.983× 10−5 4.114 4.850× 10−5

TABLE II: Estimates of regression coefficients for Eq. (4). We
present estimates for regression coefficients accurate to four
significant figures in this and the following regression analyses
unless we state otherwise.

βn Estimate Std. Error t value Pr(> |t|)
β0 1.865 1.916× 10−2 9.734× 10 < 2× 10−16

β1 1.062 3.067× 10−3 3.463× 102 < 2× 10−16

β2 4.530× 10−1 2.398× 10−2 1.889× 10 < 2× 10−16

β3 6.262 3.646× 10−2 1.718× 102 < 2× 10−16

TABLE III: Estimates of regression coefficients for Eq. (5).

For c ≥ 0.5, regression analysis suggests the model

ln(T ) = β0+β1 ln(N)+β2(c−1)2+β3(m−0.5)2+ε , (5)

where we list our coefficient estimates in Table III. For
Eq. (5), the values of the AIC and R2 are −3240.9 and
0.9964, respectively.
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The different forms of Eqs. (4) and (5) confirm our
conjecture based on data exploration that T undergoes
a transition at c = 0.5. More precisely, the regression
results suggest that the behavior of T differs for c ≤ 0.4
and c ≥ 0.5. To determine a more precise transition
point for c, one should conduct numerical simulations
using c ∈ (0.4, 0.5). For c < 0.5, the multiplier m has
no statistically significant impact on T . Moreover, T in-
creases with N for N < (β1+β4c)/(2β2), and it decreases
with c < 0.5. For c ≥ 0.5, the effects of N , c, and m on T
seem to be independent (or at least predominantly inde-
pendent) of each other. In particular, T increases with N
roughly linearly. We also observe that T increases with
(c−1)2 exponentially and has a minimum at c = 1, which
corresponds to interactions without a confidence bound.
In other words, for fixed N and m, the convergence time
on complete graphs is minimal when any pair of inter-
acting agents makes a convergent compromise. Further-
more, T increases with (m− 0.5)2 exponentially and has
a minimum at m = 0.5. This corresponds to the case
in which each pair of interacting agents agrees at their
mean opinion whenever their opinion difference is below
the confidence bound.

For each combination of N , c, and m, we average the
number K of opinion groups at equilibrium if and only
if at least 60% of simulations reach equilibrium within
the bailout time. Otherwise, we state that we observe a
“division” of opinion for the associated parameter com-
bination. We also use the same standard to determine
the number of opinions at equilibrium in our subsequent
numerical experiments.

In Fig. 2, we summarize the number of opinion groups
that persist at equilibrium in our simulations on complete
graphs. We observe that K depends on N only when the
confidence bound is c < 0.5, with the most dramatic
changes occurring in the region of c = 0.1. For c ≥
0.5, consensus is reached consistently. For c ∈ [0.1, 0.4],
we observe that K generally increases with N . For c ∈
[0.2, 0.4], we obtain K ∈ [1, 4]. At c = 0.1, we observe
that K ≥ 5 for N ≥ 200. Additionally, for c < 0.5
and N ≥ 600, we observe that K is generally larger for
m closer to 0.5. This is reasonable because, as m→ 0.5,
agents tend to agree on the mean of their opinions, which
reduces the length of time for opinions to stabilize, so
more opinion groups tend to persist at equilibrium.

B. Cycles

In this subsection, we explore the behavior of conver-
gence time and the number of opinion groups at equilib-
rium by simulating the Deffuant model on N -node cycles.
We will compare these simulation results to ones on cy-
cles with additional, randomly-placed “shortcut” edges
in Section IV F.

In Fig. 3, we summarize the values of ln(T ) that we
observe in our simulations on cycles. Our simulations
suggest that ln(T ) changes rapidly with m when c is close

Estimate Std. Error t value Pr(> |t|)
β0 −6.313× 10−1 3.054× 10−2 −2.067× 10 < 2× 10−16

β1 3.018 5.142× 10−3 5.870× 102 < 2× 10−16

β2 −2.630 6.357× 10−2 −4.137× 10 < 2× 10−16

β3 −1.624 7.708× 10−2 −2.107× 10 < 2× 10−16

β4 9.371 4.669× 10−2 2.007× 102 < 2× 10−16

β5 −7.642× 10−5 1.713× 10−5 −4.461 9.770× 10−6

TABLE IV: Estimates of regression coefficients for Eq. (6).

to 1. We speculate that a singularity arises at c = 1 and
m = 0.5 as N →∞. Our linear regression models cannot
capture singular points, so we exclude data points that
correspond to c ≥ 0.7 from our regression analysis for
cycles. Our regression analysis gives the model

ln(T ) = β0+β1 ln(N)+β2c+β3c
2+β4(m−0.5)2+β5Nm+ε ,

(6)
where we list our coefficient estimates in Table IV. For
Eq. (6), we obtain R2 ≈ 0.9991 and AIC ≈ −3257.6.

In contrast to complete graphs, our simulations on cy-
cles indicate that the dependence of T on N , c, and m
does not undergo a transition with respect to c. We ob-
serve that T decreases with c ∈ (0, 1], and, as c gets
closer to 1, the value of ln(T ) changes with m more
rapidly as N increases. Moreover, for N < −β4/β5, the
convergence time T obtains a global minimum at m =
0.5−(β5N)/(2β4) ∈ (0.5, 1) if N and c are held constant.
Furthermore, T increases with N for N < −β1/(β5m).
Additionally, the effects of N and m on T appear to be
weakly coupled.

In Fig. 4, we summarize the number of opinion groups
that arise in our simulations on cycles. A consensus is
reached for N ∈ [100, 700]. Athough some of our simula-
tions for N ∈ [800, 1000] do not converge by the bailout
time, we conjecture that all simulations on cycles with
large values of N will eventually converge, independent
of the values of c and m, if the Deffuant dynamics are
continued for sufficiently many iterations. A consensus
is reached when c ≥ 0.5 for N = 10 and when c ≥ 0.2 for
N = 50. This observation is reasonable as, with fewer
agents adjacent to each other on a cycle, their initial
opinions are more disperse, which compels them to form
more groups. Similar to complete graphs, we observe
that more opinion groups tend to emerge in the final
state as m → 0.5 if multiple opinion groups persist at
equilibrium.

C. Prism graphs

In this subsection, we explore the behavior of conver-
gence time and the number of opinion groups at equilib-
rium by simulating the Deffuant model on prism graphs.
Prism graphs are a special type of generalized Petersen
graph [68]. We will compare our simulation results on
prism graphs to those on prisms with additional random
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FIG. 3: Convergence time for simulations on N -node cycles for various N .
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FIG. 4: The number of opinion groups that persist at equilibrium in our simulations on cycles for various N .

Estimate Std. Error t value Pr(> |t|)
β0 1.062× 102 2.803 3.789× 10 < 2× 10−16

β1 4.319× 10−1 6.206× 10−3 6.960× 10 < 2× 10−16

β2 −1.790× 10−4 4.822× 10−6 −3.712× 10 < 2× 10−16

β3 7.759× 10 1.830× 10 4.239 2.890× 10−5

β4 −5.946× 102 3.400× 10 −1.749× 10 < 2× 10−16

β5 2.839× 102 5.924 4.792× 10 < 2× 10−16

β6 −1.332× 10−1 1.083× 10−2 −1.230× 10 < 2× 10−16

TABLE V: Estimates of regression coefficients for Eq. (7).

Estimate Std. Error t value Pr(> |t|)
β0 2.263 2.634× 10−2 8.592× 10 < 2× 10−16

β1 2.072× 10−1 3.160× 10−3 6.556× 10 < 2× 10−16

β2 −1.212 4.976× 10−2 −2.436× 10 < 2× 10−16

β3 7.507× 10−1 3.273× 10−2 2.294× 10 < 2× 10−16

β4 1.064 1.395× 10−2 7.624× 10 < 2× 10−16

β5 −6.056× 10−5 9.865× 10−6 −6.138 1.650× 10−9

TABLE VI: Estimates of regression coefficients for Eq. (8).

edges in Section IV G.

In Fig. 5, we summarize the values of ln(T ) that we
observe in our simulations on prism graphs. Similar to
our computations for complete graphs in Section IV A,
scatter plots of ln(T ) versus N , c, and m, exhibit qual-
itatively distinct behavior for c < 0.5 and c ≥ 0.5. We
thus conduct separate regression analyses for c < 0.5
and c ≥ 0.5. For c < 0.5, regression analysis suggests the

model

ln(T )2 = β0 + β1N + β2N
2 + β3c+ β4c

2 + β5(m− 0.5)2

+ β6Nc+ ε ,
(7)

where we list our coefficient estimates in Table V. For
Eq. (7), we obtain R2 ≈ 0.9919 and AIC ≈ 1301.9. For
c ≥ 0.5, regression analysis suggests the model√

ln(T ) = β0 + β1 ln(N) + β2c+ β3c
2 + β4(m− 0.5)2

+ β5Nc+ ε ,
(8)

where we list our coefficient estimates in Table VI. For
Eq. (8), we obtain R2 ≈ 0.9845 and AIC ≈ −4219.1.

Similar to the case of complete graphs, the different
forms of Eqs. (7) and (8) confirm our conjecture based on
data exploration that T undergoes a transition at c = 0.5.
According to Eqs. (7) and (8), T increases with N <
−(β1 +β6c)/(2β2) for c < 0.5, and T increases with N <
−β1/(β5c) for c ≥ 0.5. The effects of N , c, and m on T
are coupled to each other for prism graphs. Additionally,
T increases with respect to N more rapidly for c < 0.5
than for c ≥ 0.5. For c < 0.5 and N ≥ −β3/β6, the
convergence time T decreases with c ∈ (0, 1] if N and
m are held constant. For c < 0.5 and N < −β3/β6,
however, T obtains a global maximum at c = −(β3 +
β6N)/(2β4) ∈ (0, 0.5) if N and m are held constant. For
c ≥ 0.5 and N ≥ −(2β3 + β2)/β5, the convergence time
T decreases with c ∈ (0, 1] if N and m are held constant.
For c ≥ 0.5 and N < −(2β3 +β2)/β5, however, T obtains
a global minimum at c = −(β2 +β5N)/(2β3) ∈ (0.5, 1) if
N and m are held constant. With fixed values of N and
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FIG. 5: Convergence times for our simulations on N -node prism graphs for various N .
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FIG. 6: The number of opinion groups that persist at equilibrium in our simulations on prism graphs for various N .

c, the convergence time T obtains a global minimum at
m = 0.5.

In Fig. 6, we summarize the number of opinion groups
that persist in our simulations on prism graphs. For
c ≥ 0.5, a consensus is reached for all simulations on
prism graphs. For c < 0.5, the equilibrium state is mostly
polarized into 2 distinct opinion groups if N ≥ 100
and can sometimes have more than 2 opinion groups for
N ∈ {10, 50}. Similar to our simulations on cycles in
Section IV B, we observe that large discrepancies in the
initial opinion distribution hinder the agents from agree-
ing with each other through their interactions on a prism
graph.

D. Square lattices

Apart from complete graphs, square lattices are the
most common deterministic networks on which the Def-
fuant model has been studied previously [30].

In Fig. 7, we summarize the values of ln(T ) that we
observe in our simulations on square lattices. For c < 0.5,
most of the simulations do not converge by the bailout
time, so we conduct regression analysis for c ≥ 0.5. Our
regression analysis suggests for c ≥ 0.5 that

ln(T )1/4 = β0 + β1 ln(N) + β2N + β3N
2 + β4c+ β5c

2

+ β6m+ β7m
2 + β8Nm+ ε ,

(9)
where we list our coefficient estimates in Table VII. For
Eq. (9), we obtain R2 ≈ 0.9908 and AIC ≈ −5684.4.

Similar to our observations for prism graphs, the effects

Estimate Std. Error t value Pr(> |t|)
β0 1.505 1.194× 10−2 1.261× 102 < 2× 10−16

β1 7.361× 10−2 2.550× 10−3 2.887× 10 < 2× 10−16

β2 −4.931× 10−5 1.358× 10−5 −3.630 3.110× 10−4

β3 1.336× 10−8 7.154× 10−9 1.868 6.227× 10−2

β4 −5.129× 10−2 1.288× 10−2 −3.982 7.790× 10−5

β5 3.154× 10−2 8.543× 10−3 3.692 2.460× 10−4

β6 −2.430× 10−1 4.093× 10−3 −5.938× 10 < 2× 10−16

β7 1.396× 10−1 3.654× 10−3 3.821× 10 < 2× 10−16

β8 1.544× 10−5 2.862× 10−6 5.395 1.030× 10−7

TABLE VII: Estimates of regression coefficients for Eq. (9).

of N , c, and m on T are coupled to each other for square
lattices. According to Eq. (9), T increases with N . If
N ≥ −β6/β8, the convergence time T increases with m ∈
(0, 1). Otherwise, T obtains a global minimum at m =
−(β6 +β8N)/(2β7) ∈ (0, 1) if N and c are held constant.
Moreover, T has a minimum at c = −β4/(2β5) ∈ (0.5, 1)
if N and m are held constant.

In Fig. 8, we summarize the number of opinion groups
that persist at equilibrium in our simulations on square
lattices. As with our results on prism graphs, a consensus
is reached for all simulations on square lattices for c ≥
0.5.
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FIG. 7: Convergence times for our simulations on various square lattices.
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FIG. 8: Summary of the number of opinion groups that persist at equilibrium in our simulations on square lattices.

E. Complete multipartite graphs

In this subsection, we consider complete multipartite
graphs Kn,r with r = n. We use the values r = 2, 5, 10,
and we note that one construe a complete graph Kn (see
Section IV A) as a complete multipartite graph Kn,r with
r = n. By varying the value of r, we explore the effect
of network density (i.e., the ratio of the number of edges
to the maximum possible number of edges [53]) on the
behavior of the Deffuant model.

In Fig. 9, we summarize the values of ln(T ) that we
observe in our simulations on complete r-partite graphs
(with r = 2, 5, 10) and number N of nodes with values
10, 50, 100, 200, 400, 600, 800, and 1000. For c < 0.6,
most of our simulations do not converge by the bailout
time (109 iterations), so we conduct regression analysis
for c ≥ 0.6. For c ≥ 0.6, our regression analysis suggests
the model given by Eq. (5), which has the same form as
the regression model of complete graphs when c ≥ 0.5
but has different coefficient values (see Table VIII). Note
that one can construe a complete graph of size N as a
complete N -partite graph.

The regression model in Eq. (5) suggests that the be-
havior of the convergence time on a general multipar-
tite graph is similar to that on a complete graph. As
the number r of partite sets increases, the growth rate
of T with respect to N decreases slightly if c and m are
held constant. In other words, as a complete multipartite
graph becomes more densely connected, adding agents to
a network increases the convergence time of the Deffuant
model at a slower rate if all other conditions remain the
same. Additionally, T increases with (m − 0.5)2 more

r β0 β1 β2 β3 AIC R2

2 1.489 1.093 4.843× 10−1 6.553 −2675.68 0.9966

5 1.672 1.074 3.252× 10−1 6.415 −2726.16 0.9969

10 1.763 1.068 3.330× 10−1 6.305 −2709.59 0.9965

TABLE VIII: Estimates of regression coefficients, AIC val-
ues, and coefficients of determination (R2) for Eq. (5) us-
ing our simulation results on complete r-partite graphs with
r = 2, 5, 10.

slowly as r increases.
In Fig. 10, we summarize the number of opinion groups

that persist at equilibrium in our simulations on complete
r-partite graphs (with r = 2, 5, 10). For r ∈ {5, 10},
consensus is reached for all c ≥ 0.5. We obtain consensus
in all of our simulations on bipartite graphs with c ≥ 0.6,
whereas some simulations fail to converge by the bailout
time for c = 0.5.

F. Cycles with random edges

We consider random graphs generated by the ensem-
ble CN,s (see Table I) for s = 0.1, s = 0.2, and s = 0.3.
Cycles with additional, random “shortcut” edges are re-
lated to Watts–Strogatz small-world networks [61, 62, 69]
(see also earlier work by Bollobás and Chung [70]), ex-
cept that nodes initially have degree 2, which yields (for
cycles that are not too small) a clustering coefficient of 0
for each node before random edges are added.

In Fig. 11, we summarize the values of ln(T ) that we
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FIG. 9: Convergence times for our simulations on N -node complete r-partite graphs (with r = 2, 5, 10) for various N .
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FIG. 10: The number of opinion groups that persist at equilibrium in our simulations on complete r-partite graphs (with
r = 2, 5, 10) for various N .
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FIG. 11: Convergence times for our simulations on CN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .
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FIG. 12: The number of opinion groups that persisted at equilibrium in simulations on CN,s given s = 0.1, s = 0.2, and s = 0.3
for various values of N .

observe in our simulations on CN,s for s = 0.1, s = 0.2,
and s = 0.3. Regression analysis suggests the model

ln(T )α = β0 + β1 ln(N) + β2N + β3N
2 + β4c+ β5c

2

+ β6(m− 0.5)2 + β7Nc+ ε ,
(10)

where the power-transformation parameter is α = −1/3,
α = −2/3, and α = −5/6 for s = 0.1, s = 0.2,
and s = 0.3, respectively. For s = 0.1, the Nc term
is statistically insignificant, and we thus drop it. In
Table IX, we summarize our coefficient estimates for
Eq. (10). For s = 0.1, we obtain AIC ≈ −10378.2 and
R2 ≈ 0.9853; for s = 0.2, we obtain AIC ≈ −10443.3 and
R2 ≈ 0.9829; and for s = 0.3, we obtain AIC ≈ −10719.2
and R2 ≈ 0.9816.

Our data exploration and regression analysis suggest
that T does not experience a transition with respect to
c. According to Eq. (10), T increases with N for s = 0.1,
s = 0.2, and s = 0.3. For s = 0.1, the convergence time
T obtains a global minimum at c = −β4/(2β5) ∈ (0, 1)
if N and m are held constant. For s ∈ {0.2, 0.3}, if
N ≥ −β4/β7, the convergence time T increases with c ∈
(0, 1]. If N < −β4/β7, then T obtains a global minimum
at c = −(β4 +β7N)/(2β5) if N and m are held constant.
Finally, T obtains a global minimum at m = 0.5 if N and
c are held constant.

Similar to our observations for prism graphs and square
lattices, the effects of N , c, and m on T are coupled to
each other for cycles with random edges, in contrast to
what we observed using our regression model of cycles
(see Eq. (6)), which has only one weak coupling term
Nm. Adding random shortcut edges to cycles signifi-
cantly decreases the convergence time. Additionally, T
increases much more slowly with N on CN,s than it does
for cycles.

In Fig. 12, we summarize the number of opinion groups
that persist at equilibrium in our simulations on cycles

with random edges. With only a small proportion (i.e.,
s = 0.1) of random edges, the number K of opinion
groups at equilibrium is roughly the same as what we
observed in our simulations on cycles (see Fig. 4). How-
ever, as more random edges are added, multiple opinion
groups start to emerge at equilibrium for c ≤ 0.3. We
conjecture that, as the proportion of random edges in-
creases, the behavior of K is more similar to the case of
complete graphs than that of cycles.

G. Prism graphs with random edges

We consider random graphs generated by the ensem-
ble YN,s (see Table I) for s = 0.1, s = 0.2, and s = 0.3.
We study the effect of random edges on the behavior of
the Deffuant model by comparing our simulation results
with the ones that we obtained for prism graphs in Sec-
tion IV C.

In Fig. 13, we summarize the values of ln(T ) that we
observe in our simulations on YN,s for s = 0.1, s = 0.2,
and s = 0.3. Similar to our results for prism graphs in
Section IV C, we observe qualitatively distinct behavior
of the convergence time for c < 0.5 and c ≥ 0.5 for the
Deffuant model on YN,s. Therefore, we conduct separate
regression analyses for these two cases. For c < 0.5, our
regression analysis suggests the model

ln(T ) = β0 + β1N + β2N
2 + β3c+ β4c

2

+ β5(m− 0.5)2 + β6Nc+ ε ,
(11)

where we list our coefficient estimates in Table X. For
s = 0.1, we obtain AIC ≈ −592.1 and R2 ≈ 0.9613; for
s = 0.2, we obtain AIC ≈ −427.99 and R2 ≈ 0.9283; and
for s = 0.3, we obtain AIC ≈ −482.58 and R2 ≈ 0.9336.
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s β0 β1 β2 β3 β4 β5 β6 β7

0.1 5.485× 10−1 −3.140× 10−2 6.760× 10−5 −2.908× 10−8 1.820× 10−1 −1.101× 10−1 −9.576× 10−2 N/A

0.2 2.763× 10−1 −2.351× 10−2 4.343× 10−5 −1.653× 10−8 1.779× 10−1 −1.084× 10−1 −8.901× 10−2 −1.008× 10−5

0.3 2.031× 10−1 −1.977× 10−2 3.548× 10−5 −1.090× 10−8 1.452× 10−1 −8.829× 10−2 −7.934× 10−2 −1.093× 10−5

TABLE IX: Estimates of regression coefficients for Eq. (10). For s = 0.1, the Nc term is statistically insignificant, so we drop
it.
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FIG. 13: Convergence times for our simulations on YN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .

For c ≥ 0.5, our regression analysis suggests the model

ln(T ) = β0+β1 ln(N)+β2c+β3c
2+β4(m−0.5)2+β5Nc+ε ,

(12)
where we list our coefficient estimates in Table XI. For
s = 0.1, we obtain AIC ≈ −2596.67 and R2 ≈ 0.9914; for
s = 0.2, we obtain AIC ≈ −2693.1 and R2 ≈ 0.9922; and
for s = 0.3, we obtain AIC ≈ −2912.41 and R2 ≈ 0.9947.

The different forms of Eqs. (11) and (12) support our
conjecture based on our data exploration that T under-
goes a transition at c = 0.5. If c and m are held con-
stant, the convergence time T obtains a maximum at
N = −(β1+β6c)/(2β2) for c < 0.5 and at N = −β1/(β5c)
for c ≥ 0.5. Moreover, T increases with (m − 0.5)2

exponentially and has a minimum at m = 0.5. If N
and m are held constant, T decreases with c < 0.5.
For c ≥ 0.5, if N ≥ −(β2 + 2β3)/β5, the convergence
time T decreases with c; otherwise, T has a minimum at
c = −(β2 + β5N)/(2β3) ∈ (0.5, 1] for N and m are held
constant. In contrast to the coupling effects of N , c, and
m that we observed in our simulations on prism graphs,
simulations on YN,s suggest that only a weak coupling
term Nc exists in the regression model (see Eqs. (11)
and (12)). Additionally, adding random edges to prism
graphs decreases T more significantly for c < 0.5 than
for c ≥ 0.5.

In Fig. 14, we summarize the number of opinion
groups that arise in our simulations on prism graphs
with randomly-generated extra edges. As we observed
for prism graphs, consensus is always reached on prism

graphs with random edges for c ≥ 0.5. However, for
c < 0.5 and N ≥ 50, we observe K ≥ 2, in contrast
to K ≈ 2 for prism graphs. Therefore, when a popula-
tion’s confidence bound is small, adding random edges to
prism graphs is more favorable to expediting the process
of opinions dividing into distinct groups than reaching
agreement among the population.

H. Erdős–Rényi networks

We now consider random graphs generated by the
Erdős–Rényi G(N, p) model, where p ∈ [0, 1] is an in-
dependent probability for there to be an edge between a
pair of nodes. Erdős–Rényi graphs are one of the best-
studied models of network science, and they have been
used in previous studies of the Deffuant model on net-
works [16, 40, 58, 71]. However, existing research on
the Deffuant model on ER random graphs has focused
primarily on adaptive networks that evolve along with
the game [16, 58]. In our simulations, we consider the
ER G(N, p) model for p = 0.1, 0.2, . . . , 0.9. Complete
graphs are a special case of the ER G(N, p) model, as
one obtains a complete graph for the parameter value
p = 1.

In Fig. 15, we show a subset of the values of ln(T ) that
we obtain in our simulations. These values are represen-
tative of the observed trends in all of our simulations. As
in our simulations on complete graphs, we observe qual-
itatively distinct behavior for T for c < 0.5 and c ≥ 0.5.
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FIG. 14: The number of opinion groups that persist at equilibrium in our simulations on YN,s for s = 0.1, s = 0.2, and s = 0.3
for various values of N .

s β0 β1 β2 β3 β4 β5 β6

0.1 1.225× 10 1.240× 10−2 −6.048× 10−6 −6.132 −1.087× 10 6.183 −5.739× 10−3

0.2 1.309× 10 1.067× 10−2 −5.535× 10−6 −1.699× 10 1.088× 10 6.964 −4.199× 10−3

0.3 1.353× 10 8.670× 10−3 −4.073× 10−6 −2.060× 10 1.764× 10 6.879 −3.324× 10−3

TABLE X: Estimates of regression coefficients for Eq. (11).

s β0 β1 β2 β3 β4 β5

0.1 3.528 1.200 −4.263 2.628 6.720 −2.061× 10−4

0.2 3.300 1.161 −3.242 2.002 6.634 −1.808× 10−4

0.3 3.193 1.116 −2.436 1.465 6.671 −5.580× 10−5

TABLE XI: Estimates of regression coefficients for Eq. (12).

Therefore, we conduct separate regression analyses for
these two cases. For c < 0.5, regression analysis suggests
the model

ln(ln(T )) = β0+β1N+β2N
2+β3c

2+β4(m−0.5)2+β5Nc+ε ,
(13)

where we list estimates for the coefficients in Table XII.
Random graphs generated by the ER G(N, p) model are
a source of stochasticity for the opinion dynamics. It is
thus not surprising that we observe a larger number of
outliers for our ER simulations than for complete graphs.
Let q ∈ [0, 1] be the proportion of data points that we
identify as outliers and thus exclude from our regression
analysis.[80] For c < 0.5, we conduct a regression anal-
ysis for the G(N, p) graphs for p = 0.7, p = 0.8, and
p = 0.9, as q > 0.15 for smaller values of p (and this
would undermine the reliability of the regression analy-
sis). For p = 0.7, we obtain q ≈ 0.1133, AIC ≈ −1515.5,
and R2 ≈ 0.8360; for p = 0.8, we obtain q ≈ 0.0767,
AIC ≈ −1658.1, and R2 ≈ 0.8114; and for p = 0.9, we
obtain q = 0.05, AIC ≈ −1774.1, and R2 ≈ 0.7984. For
c ≥ 0.5, our regression analysis suggests the model in

Eq. (5) for each value of p that we consider. For each p,
Table XIII summarizes our estimates for the coefficients
βj (j = 0, 1, 2, 3), together with the corresponding values
of AIC and R2.

The different forms of Eqs. (5) and (13) support our
conjecture from our data exploration that T undergoes a
transition at c = 0.5. For c < 0.5, the convergence time T
increases with N < −β1/(2β2) for p ∈ {0.7, 0.8} and with
N < −(β1+β5c)/(2β2) for p = 0.9. For p ∈ {0.7, 0.8}, the
convergence time T decreases with c < 0.5. For p = 0.9,
if N ≥ −β3/β5, then T increases with c < 0.5; otherwise,
T obtains a maximum at c = −β5N/(2β3) ∈ (0, 0.5).
For c < 0.5, Eq. (13) suggests that ln(T ) is proportional
to exp

(
(m− 0.5)2

)
, which contrasts with our regression

model for complete graphs (see Eq. (4)), which do no ex-
hibit a statistically significant influence of m on T . For
c ≥ 0.5, our regression model for the ER G(N, p) model
is the same as what we obtained for complete graphs, so
the behavior of T with respect to N , c, and m is similar
in that parameter regime. For large values of p, the es-
timated coefficients are very close to those for complete
graphs. This suggests that it is probably accurate to use
a mean-field approximation to study convergence time on
the Erdős–Rényi G(N, p) model if p is close to 1.

In Fig. 16, we summarize the number of opinion groups
that arise in our simulations of the Deffuant model on
random graphs generated by the ER G(N, p) model.
When the connection probability p is close to 1, the be-
havior of K is similar to what we observed for complete
graphs. As p→ 0, the major qualitative difference is that
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FIG. 15: Convergence times for our simulations on random graphs generated by the Erdős–Rényi G(N, p) model. We conduct
simulations for p = 0.1, 0.2, . . . , 0.9, and we present a subset of our plots to illustrate the observed trends.
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FIG. 16: The number of opinion groups that persist at equilibrium in our simulations on random graphs generated by the
Erdős–Rényi G(N, p) model. We conduct simulations for p = 0.1, 0.2, . . . , 0.9, and we present a subset of our plots to illustrate
the observed trends.

opinions sometimes fail to converge within the bailout
time for small values of c.

I. Facebook friendship networks

We now simulate the Deffuant model on two Facebook
“friendship” networks [51] — one of Swarthmore College
and the other of the California Institute of Technology
(Caltech) — from one day in autumn 2005. We consider
the largest connected component (LCC) of each network.
For the Swarthmore network, the LCC has 1657 nodes
and 61049 edges. The LCC of the Caltech network has
762 nodes and 16651 edges.

In Fig. 17, we summarize the values of ln(T ) that we
observe in simulations. For c < 0.5, most of the simu-
lations on both networks fail to converge by the bailout
time, so we consider only the results of c ≥ 0.5 in our

regression analysis. For the Swarthmore network, we ob-
tain a regression model of

T− 7
8 = β0 + β1c+ β2c

2 + β3(m− 0.5)2 + ε , (14)

where we list our estimates for the coefficients in Ta-
ble XIV. For Eq. (14), we obtain AIC ≈ −1279.02 and
R2 ≈ 0.9987. For the Caltech network, we obtain a re-
gression model of

T− 2
3 = β1c+ β2c

2 + β3(m− 0.5)2 + ε , (15)

where we list our estimates for the coefficients in Ta-
ble XV. For Eq. (15), we obtain AIC ≈ −1001.8 and
R2 ≈ 0.9981.

For both networks, the variables c and m have an inter-
twined effect on T . Moreover, if m is held constant, the
convergence time T has a minimum at c = −β1/(2β2) ∈
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p β0 β1 β2 β3 β4 β5

0.7 2.098 8.744× 10−4 −4.854× 10−7 −8.606× 10−1 2.294× 10−1 N/A

0.8 2.111 8.328× 10−4 −4.349× 10−7 −7.874× 10−1 1.255× 10−1 N/A

0.9 2.117 7.901× 10−4 −4.327× 10−7 −8.926× 10−1 1.200× 10−1 2.323× 10−4

TABLE XII: Estimates of regression coefficients for Eq. (13).

p β0 β1 β2 β3 AIC R2

0.1 1.953 1.050 4.412× 10−1 6.362 −3156.1 0.9958

0.2 1.931 1.053 4.500× 10−1 6.290 −3194.2 0.9961

0.3 1.918 1.055 4.512× 10−1 6.275 −3215.1 0.9962

0.4 1.886 1.060 4.453× 10−1 6.270 −3233.7 0.9963

0.5 1.827 1.068 4.548× 10−1 6.284 −3209.2 0.9963

0.6 1.870 1.062 4.499× 10−1 6.255 −3233.6 0.9964

0.7 1.851 1.065 4.470× 10−1 6.242 −3213.7 0.9963

0.8 1.873 1.061 4.555× 10−1 6.289 −3267.4 0.9966

0.9 1.838 1.067 4.676× 10−1 6.261 −3251.8 0.9965

1 1.865 1.062 4.530× 10−1 6.262 −3240.9 0.9964

TABLE XIII: Estimates of regression coefficients, AIC values,
and coefficients of determination (R2) for Eq. (5) from our
simulation results on ER random graphs. For comparison, we
also include the coefficients for the complete graphs (which
arises from the ER model with connection probability p = 1)
that we studied in Section IV A.
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FIG. 17: Convergence times for our simulations on the largest
connected components of the Swarthmore and Caltech Face-
book networks from the Facebook100 data set [51].

(0.5, 1). If c is held constant, T increases with (m−0.5)2.
The convergence time for both of the networks has qual-
itatively similar behavior as what we observed for cycles
with random edges (see Section IV F) of corresponding
sizes for s = 0.1 and 0.2. This empirical observation
suggests that simulating the Deffuant model on random
graphs generated by these and similar networks (e.g., WS
networks) may yield some useful insights about the con-
vergence time for the Deffuant model on social networks.

In Fig. 18, we summarize the number of opinion groups
that persist at equilibrium in our simulations on the
LCCs of the Swarthmore and the Caltech Facebook net-
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FIG. 18: The number of opinion groups that persist at equilib-
rium in our simulations on the largest connected components
of the Swarthmore and Caltech Facebook networks.

Estimate Std. Error t value Pr(> |t|)
β0 1.338× 10−4 5.718× 10−6 2.340× 10 < 2× 10−16

β1 1.419× 10−4 1.533× 10−5 9.258 6.81× 10−12

β2 −7.964× 10−5 9.963× 10−6 −7.993 4.13× 10−10

β3 −7.208× 10−4 3.989× 10−6 −1.807× 102 < 2× 10−16

TABLE XIV: Estimates of regression coefficients for Eq. (14).

works. In both networks, consensus occurs for all c ≥ 0.5.
For c < 0.5, at least half of the simulations fail to con-
verge within the bailout time, but those that converge
suggest that K increases as c approaches 0. In contrast,
our simulations of Deffuant dynamics on cycles with ran-
dom edges reached equilibrium within bailout time (see
Section IV F).

V. CONCLUSIONS AND DISCUSSION

We studied the Deffuant model on several types of de-
terministic and random networks. For each of these net-
works, we systematically examined the number of groups
of different opinions in these networks and the conver-
gence time to reach equilibrium as a function of the
number (N) of agents that participate in the opinion dy-
namics, the population’s confidence bound (c), and their
cautiousness (which we measure using the multiplier m).
For the convergence time to equilibrium, we used both
numerical simulations and regression analyses to obtain
qualitative and quantitative insights. For the number K
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Estimate Std. Error t value Pr(> |t|)
β1 6.662× 10−3 9.431× 10−5 7.063× 10 < 2× 10−16

β2 −4.201× 10−3 1.056× 10−4 −3.979× 10 < 2× 10−16

β3 −7.608× 10−3 2.117× 10−4 −3.593× 10 < 2× 10−16

TABLE XV: Estimates of regression coefficients for Eq. (15).

of opinion groups at equilibrium, we used our numerical
simultions to examine the qualitative behavior of differ-
ent types of networks.

We obtained many insights from our systematic com-
putations. Studying the effect of network structure on
dynamical processes (such as opinion models) is a difficult
problem, and we were able to achieve several interesting
insights about the intertwined effect of network topology
and the parameter values of the Deffuant model on the
convergence time T . For example, our regression analysis
suggests that the convergence time T undergoes a transi-
tion at a critical value of the confidence bound (c = 0.5)
on complete graphs and prism graphs but not on cycles.
We also illustrated that the interplay among the effects
of N , c, and m on the convergence time T of the Deffuant
model can be rather different qualitatively for different
families of networks. For instance, the effects of the three
parameters on T are independent on complete graphs and
complete multipartite graphs for large values of c (these
are mean-field situations), whereas N and m are weakly
coupled for cycles, and all three parameters are coupled
for prism graphs and square lattices.

Our results also shed further light on educated guesses
and other claims that have appeared in the literature.
We examined quantitatively how convergence time T in-
creases with the number N of agents in a network, and
we thereby obtained several insights for different network
topologies. For example, although [37] speculated that T
is proportional to N , our regression results indicate that
the linear relationship need not hold and that it depends
on the underlying network topology. Additionally, sev-
eral papers have concluded based on numerical simula-
tions for a few values of the multiplier m that consensus
occurs for the Deffuant model for several networks (e.g.,
ER networks, WS networks, and BA networks) when
the confidence bound is large, whereas multiple opinion
groups persist at equilibrium for low confidence bounds
[30, 37, 39, 40]. However, different transition thresholds
(e.g., 0.25, 0.3, and 0.5) have been proposed for the con-
fidence bound. In the synthetic networks that we study
(except for cycles and cycles with random edges), our
simulation results suggest that a transition threshold of
c ∈ [0.4, 0.5] is most likely for large populations. For
c ≥ 0.5, consensus occurs on all of our families of deter-
ministic networks (both synthetic and empirical) except
for bipartite graphs. For c < 0.5, more opinion groups
persist at equilibrium as node degree increases for our
simulations on k-regular graphs given by cycles (for which
the degree is k = 2 for each node), prism graphs (k = 3
for each node), and complete graphs (of progressively

larger size, starting from N = 10 nodes, and hence of pro-
gressively larger degree for each node). This is possibly
because agents who have a higher node degree in a reg-
ular graph have more neighbors with “competing” opin-
ions, which gives the agents less time to make up their
minds, so more opinion groups remain at equilibrium.
Additionally, it was proposed in [30, 39] based on numer-
ical simulations that one can approximate the number of
opinion groups at equilibrium by K = b1/(2c)c for large
population. Our simulations show that this statement
is not true in general. For instance, for simulations on
prism graphs, K = 2 for c ≥ 0.3 when N is large.

Our simulations suggest that the equilibrium number
K of opinion groups is similar for random graph models
and appropriate counterpart deterministic networks (at
least for the network families that we study). For exam-
ple, adding a small number of random edges per node
(i.e., the number of random edges divided by total num-
ber of nodes is small) to cycles and prism graphs does
not have an obvious impact on K. We conjecture that
K approaches the situation for complete graphs as the
proportion of random edges on cycles and prism graphs
increases. For the Erdős–Rényi G(N, p) model, we ob-
served that the behavior of K is similar to that on com-
plete graphs when the edge generation probability p is
close to 1. This suggests that it would be useful to study
the Deffuant model on ER graphs using a mean-field ap-
proximation, especially as useful results have been ob-
tained for other dynamical processes in this way [13].

Our results provide insight into the convergence of
opinion dynamics into stable groups of different opin-
ions and on how long it takes to achieve such groups in
differently-structured populations. For instance, when it
is desirable to achieve a consensus among many individu-
als (especially in a potentially contentious situation), one
may try to obtain agreement as quickly as possible, and
it is useful to obtain a better understanding of which net-
work structures can best achieve such useful outcomes.
It is also noteworthy that one topic in early studies of
bounded-confidence models such as the Deffuant model
was to examine how extremism can take hold in a pop-
ulation [47, 48, 72], and (perhaps especially given recent
events) it seems useful to revisit such applications of these
models. In developing models further for such applica-
tions, it will be important to incorporate recent insights,
such as those in [9].

Our systematic approach for studying the Deffuant
model on various network structures is also applicable to
other bounded-confidence models and models of opinion
dynamics more generally. For example, the Hegselmann–
Krause model was invented and subsequently attracted
much research about the same time as the Deffuant
model. It would be interesting to study the HK model
using a systemic approach that is similar to the one in
the present paper. One can also generalize bounded-
confidence models to incorporate population heterogene-
ity, such as by drawing cautiousness parameters from
a distribution (analogous to what is done in threshold
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models of social influence [13, 73]) rather using the same
constant for all individuals, as openness to compromise
is different for different people. Our regression approach
should also be useful more generally for studying dynam-
ical processes on networks, including more general struc-
tures such as multilayer networks [74], temporal networks
[75], and adaptive networks [76].

Appendix A: Statistical Analysis

In this appendix, we illustrate our statistical analysis
in detail. For concreteness, we discuss our analysis in the
context of the Deffuant model on complete graphs. We
performed the same procedure for all of our regression
analyses.

The scatter plots in Fig. 19 suggest that the conver-
gence time (T ) depends on the number of participating
agents (N), the population’s confidence bound (c), and
possibly on their cautiousness (which we measure using
the multiplier m). In particular, the relationship between
T and c seems to undergo a transition at a critical value
c = 0.5, below which we observe a larger variation in T .
In Fig. 20, we show separate scatter plots for c < 0.5 and
c ≥ 0.5 to illustrate the qualitatively distinct behavior in
the two regimes.

First, let’s consoder the case c < 0.5. We start by
fitting a normal linear model

T = β0 + β1N + β2N
2 + β3c+ β4c

2 + β5m+ β6m
2

+ β7mc+ β8Nc+ β9Nm+ ε ,
(A1)

where βj (with j = 0, 1 . . . , 9) are coefficients to be esti-
mated and we assume that ε is an independent and nor-
mally distributed error with mean 0 and constant vari-
ance for every observation. To account for the curvature
observed in Fig. 20, we include explanatory variables up
to the second order in the model in Eq. (A1). We will
subsequently drop statistically insignificant variables in
a model-reduction procedure.

Before proceeding with model selection, we check the
validity of our model assumptions. In Fig. 21, we check
the assumption that the errors have 0 mean and con-
stant variance by plotting studentized residuals versus
the response values predicted by Eq. (A1). Ideally, vari-
ance should be constant in the vertical direction, and the
scatter should be symmetric vertically about 0. How-
ever, Fig. 21 indicates that the variance is not constant,
as the points follow a clear wedge-shaped pattern, with
the vertical spread of the points increasing with the fitted
values. In Fig. 21, we check the assumption of normal-
ity by plotting the sample quantiles versus the quantiles
of a normal distribution. Data generated from a normal
distribution should closely follow the 45◦ line through
the origin, but this is contradicted by the Q–Q plot in
Fig. 21. Therefore, the diagnostics show the necessity
of stabilizing the variance and thereby making the data
more like a normal distribution.

Model AIC R2

Eq. (A1) 8146.1 0.5272

Eq. (A3) −2040.4 0.8164

Eq. (4) −2037.1 0.8246

TABLE XVI: Values of AIC and R2 of regression models
that we consider for our simulations on complete graphs with
c < 0.5. They are accurate to 5 and 4 significant figures,
respectively.

Estimate Std. Error t value Pr(> |t|)
β0 4.024 5.038× 10−2 7.988× 10 < 2× 10−16

β1 1.062 3.039× 10−3 3.495× 102 < 2× 10−16

β2 −1.316 1.277× 10−1 −1.031× 10 < 2× 10−16

β3 7.346× 10−1 8.472× 10−2 8.671 < 2× 10−16

β4 −6.261 3.704× 10−2 −1.690× 102 < 2× 10−16

β5 6.262 3.612× 10−2 1.733× 102 < 2× 10−16

TABLE XVII: Estimates of regression parameters for
Eq. (A4).

The one-parameter Box–Cox method [77] is a popular
way to determine a transformation on strictly positive
responses [78]. A Box–Cox transformation maps T to
T (λ), where the family of transformations indexed by λ ∈
R is defined by

T (λ) =

{
Tλ−1
λ , if λ 6= 0 ,

ln(T ) , if λ = 0 .
(A2)

In Fig. 22, we show that the confidence interval for λ at
the 95% confidence level is roughly [−0.2, 0]. We choose
to set λ = 0, as this corresponds to taking a natural
logarithm. The diagnostics of the new model suggest
another log transformation, leading to the model

ln(ln(T )) = β0 + β1N + β2N
2 + β3c+ β4c

2 + β5m

+ β6m
2 + β7mc+ β8Nc+ β9Nm+ ε ,

(A3)
where we assume that ε is an independent and normally-
distributed error with mean 0 and constant variance for
every observation. The variance for ε is not necessarily
the same for Eq. (A1) and (A3). However, we use the
same notation for ε, with the understanding that it is of
course allowed to be different for different models.

This time, Fig. 23 shows approximately constant vari-
ance in the vertical direction, and the scatter is roughly
symmetric vertically about 0. There are no studentized
residuals outside the [−3, 3] range, revealing no serious
outliers. In Fig. 23, the points closely follow the 45◦ line
through the origin. Therefore, our model assumptions
appear to be reasonable for Eq. (A3).

It is also important to minimize the number of regres-
sion terms in our models. AIC-based model selection
drops the first-order term of c and all terms that include
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FIG. 19: Scatter plots of convergence time (T ) on complete graphs versus the number of agents (N), the confidence bound (c),
and the multiplier (m). (We drew this figure using the software environment R [67].)

200 400 600 800 1000

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

Number of players (N)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

Confidence bound (c)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

0.2 0.4 0.6 0.8

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

Multiplier (m)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

200 400 600 800 1000

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

Number of players (N)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

0.5 0.6 0.7 0.8 0.9 1.0

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

Confidence bound (c)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

0.2 0.4 0.6 0.8

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

Multiplier (m)

C
o
n
ve

rg
e
n
c
e
 t
im

e
 (

T
)

FIG. 20: Scatter plots of T versus N , c, and m using simulation results on complete graphs with confidence bound (top) c < 0.5
and (bottom) c ≥ 0.5. (We drew this figure using the software environment R [67].)

m to yield Eq. (5). The diagnostic graphs of Eq. (4) are
similar to those in Fig. 23 and are therefore acceptable.

Cook’s distance [79] measures the influence of a data
point in a least-squares regression analysis. A commonly
used threshold for detecting highly influential observa-
tions is 8/(ñ− 2p̃), where ñ is the number of observations
and p̃ is the number of fitting parameters. Fig. 24 re-
veals 3 influential observations. We remove these 3 points
and give the resulting estimates (accurate to 4 significant
figures) for the coefficients βj (with j = 0, 1, . . . , 4) of
Eq. (4) in Table II.

In Table XVI, we summarize the values of AIC and
R2 for the regression models that we consider for simula-
tions on complete graphs with c < 0.5. The substantial
increase in R2 and decrease in AIC indicate that our fi-
nal model (see Eq. (4)) has a much better goodness-of-fit
and a considerably simpler form than our original model
(see Eq. (A1)).

For c ≥ 0.5, we go through a similar model-selection
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FIG. 21: (a) Studentized residuals versus fitted values and (b)
normal Q–Q plot of studentized residuals for Eq. (A1) using
our simulation results on complete graphs with c < 0.5. In
panel (a), the red dashed reference line is the horizontal line
through the origin. Ideally, variance should be constant in
the vertical direction, and the scatter should be symmetric
vertically about 0. In panel (b), the red dashed reference line
is the 45◦ line through the origin. Data generated from a
normal distribution should closely follow the red dashed line.
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FIG. 22: Profile log-likelihood plot for the parameter λ of the
Box–Cox transformation.

process for c < 0.5 and thereby obtain

ln(T ) = β0 + β1 ln(N) + β2c+ β3c
2 + β4m+ β5m

2 + ε .
(A4)

We include an ln(N) term in the full model (see Eq. (A4))
to account for the linear dependence of T on N that
Fig. 20 suggests. AIC-based model selection indicates the
statistical significance of the ln(N) term. For Eq. (A4),
we obtain AIC ≈ −3248.9 and R2 ≈ 0.9965. In Ta-
ble XVII, we give the estimates for the coefficients βj
(with j = 0, 1, . . . , 5) of Eq. (A4).

Table XVII suggests combining m and m2 into a single
term (m− 0.5)2, and it also suggests combining c and c2

into (c − 1)2. The model with the combined terms has
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FIG. 23: (a) Studentized residuals versus fitted values and
(b) normal Q–Q plot of studentized residuals for Eq. (A3)
using simulation results on complete graphs with c < 0.5.
The red dashed reference lines in panels (a) and (b) are, re-
spectively, the horizontal line through the origin and the 45◦

line through the origin. These diagnostic plots show that our
model assumptions of normally distributed errors with mean
0 and constant variance are reasonable for Eq. (A3).
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FIG. 24: Cook’s distances for the regression model defined
by Eq. (4). The red dashed line is a horizontal line through
8/(ñ− 2p̃), where ñ is the number of observations and p̃ is the
number of fitting parameters. This line gives the threshold for
detecting highly influential observations that are particularly
worth checking for validity.

AIC ≈ −3240.9 and R2 ≈ 0.9964, which are very close
to those of Eq. (A4) but have two fewer coefficients to
estimate. Therefore, we update our model for c ≥ 0.5 to
obtain the simpler model in Eq. (5).
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