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Abstract

We propose a denoising method by integrating group sparsity and TV regularization based on

self-similarity of the image blocks. By using the block matching technique, we introduce some local

SVD operators to get a good sparsity representation for the groups of the image blocks. The sparsity

regularization and TV are unified in a variational problem and each of the subproblems can be efficiently

optimized by splitting schemes. The proposed algorithm mainly contains the following four steps:

block matching, basis vectors updating, sparsity regularization and TV smoothing. The self-similarity

information of the image is assembled by the block matching step. By concatenating all columns of the

similar image block together, we get redundancy matrices whose column vectors are highly correlated and

should have sparse coefficients after a proper transformation. In contrast with many transformation based

denoising methods such as BM3D with fixed basis vectors, we update local basis vectors derived from

the SVD to enforce the sparsity representation. This step is equivalent to a dictionary learning procedure.

With the sparsity regularization step, one can remove the noise efficiently and keep the texture well. The

TV regularization step can help us to reduced the artifacts caused by the image block stacking. Besides,

we mathematically show the convergence of the algorithms when the proposed model is convex (with

p = 1) and the bases are fixed. This implies the iteration adopted in BM3D is converged, which was not

mathematically shown in the BM3D method. Numerical experiments show that the proposed method is

very competitive and outperforms state-of-the-art denoising methods such as BM3D.
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I. INTRODUCTION

Image denoising is a fundamental low level computer vision task and has a long history. In this paper,

we focus on the classical additive Gaussian white noise removing problem. Mathematically, the observed

noisy image can be modeled as g = f + n, where f is the latent clean image and n is the Gaussian

noise with 0 mean. To restore f from g, thousands of methods have been proposed in the past several

decades.

To keep the non-continuity of f , TV was proposed in [1]. The bounded variation space admits piece-

wise constant functions and thus TV regularization is very efficient in denoising cartoon images. However,

small structures such as textures can not be identified by TV and these repetitive structures can be removed

together with the noise. To make a distinction between textures and noise, self-similarity information

was introduced to the denoising methods. The nonlocal means method [2] used the image blocks’s self-

similarity to average the pixels and texture preserving was greatly improved . The nonlocal means method

triggered the self-similarity study in recent years and a variety of methods based on different mathematical

tools were designed, such as nonlocal TV [3], block nonlocal TV [4] , BM3D [5] and so on.

Sparsity regularization is a hot research topic in the recent years. The strong assumption of the sparsity

method is that the image signal can be represented sparsely under some proper basis function. Usually,

the basis vectors or functions can be chosen as some well-known orthogonal basis such as FFT, DCT,

wavelets, SVD and so on. One of the representative methods for the sparsity regularization is BM3D

[5]. In this method, similar image blocks were stacked together into a 3D array to enforce the image

information and sparsity. By choosing proper basis vectors, this 3D matrix would have a very sparse

representation. Then each image block can be estimated by thresholding the sparse coefficients. BM3D

can produce state-of-the-art denoising results due to its nonlocal self-similarity. However, there are two

main flaws in this method. The first one is that the basis vectors are fixed and some image blocks might

not have enough sparse coefficients. We will design a numerical experiment to show this below. The other

is that artificial ringing effects will occur in the restoration due to the image block stacking method. In

fact, these phenomena can be reduced by using global TV.

Low-rank methods for image denoising have received much attention in recent years. It is not difficult

to observe that a matrix formed by the columns of some nonlocal similar patches in a natural image is

low-rank. By integrating the self-similarity property, this method can produce good restorations [6]. In
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fact, low-rank is a variant of sparsity regularization and is associated with an l0 minimization problem

for a matrix’s singular values. In low rank methods, the basis vectors are chosen as the SVD of a

matrix. However, the general low-rank problem is non convex and difficult to optimize. A good choice

to approximate the low-rank is to use the nuclear norm, which is defined by a sum of the singular values

of a matrix and it can be easily solved by a singular values thresholding method [7]. It is well-known

that the l1 norm is the tightest convex relaxation of l0. Thus in matrix completion, the nuclear norm

minimization can be regarded as a convex relaxation of low-rank problem since the nuclear norm is

defined by an l1 norm of a vector which is composed by a matrix’s singular values. Many methods such

as reweighting [8], truncated nuclear norm [9], weighted nuclear norm [10] and Schatten Norm [11] and

other methods [12] have been proposed to enforce the sparsity. However, these methods just enhance the

sparsity and do not consider the basis. In fact, a proper basis functions system is very important in a

sparse representation [13].

In this paper, we propose a local SVD operators based sparsity and TV regularization method. This

method is developed by formulating the local nuclear norm denoising method [6] with a variational

problem, which is easily extended to many other problems. In fact, the local image block processing

is closely related to the Kronecker product of matrices. By using vectorization, we can get local SVD

based operators. These local SVD operators can help us to find good basis functions and get sparse and

redundant representations for image blocks. To reduce the artificial ringing caused by the image blocks

processing, a global TV regularization is integrated into the cost functional. The proposed minimization

problem can be efficiently solved by splitting schemes. Experimental results show that it can provide

some impressive denoising results. It has better performance than BM3D in both PSNR and visually, and

BM3D is often regarded as a state-of-the-art denoising algorithm.

The main contributions of this paper are as follows:

• We build a variational formulation for the block matching based low rank method. This new

formulation can be easily extended to many other image processing problems such as deblurring.

• We introduce the TV to the block matching based method and elegantly integrate it to the cost

functional.

• We propose a splitting denoising optimization algorithm and achieve state-of-the-art performance.

The convergence of the proposed algorithms can be obtained under some mild conditions.

Let us point out that the proposed method is self-contained and do not need training, which is different

from the data driven machine learning type algorithms such as convolutional neural network based
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techniques [14]–[16].

The rest of the paper is organized as follows: In section II, we will briefly introduce related work such

as BM3D and some SVD based methods. We present our proposed model in section III. In section IV,

the optimization scheme to solve the proposed model and some of the related details will be described.

The convergence results are contained in Section V. Section VI includes some experimental results and

comparisons with related methods. Finally, we will conclude the paper in section VII.

II. RELATED WORK

A. Notations

We first give some notation. Throughout this paper, we write matrices as bold letters such as U ,V ,P .

The lowercase letters stand for column vectors. Let f, g ∈ RN be images. We sometimes use the lowercase

letters f or vec(F ) to represent a column vector by stacking the columns of a matrix F , and the inverse

operator of vec is defined as array(f), i.e array(f) = F . The superscripts i, j in matrices such as P ij

always stand for different matrices. Similarly to [13], P ij is an extract matrix whose elements of each

row are zeros except for one with value 1. The symbol ⊗ stands for the Kronecker product.

B. BM3D and Low Rank

The BM3D method [5] is a famous denoising method. It has become a baseline algorithm to test the

performance of denoising algorithms. BM3D includes the following steps: the first step is block matching:

for each image block located at j, the similar image blocks with size
√
n×
√
n are collected in groups

with member number Ij . Image blocks in each group are stacked together to form a
√
n×
√
n× Ij 3-D

data array. Second, the sparsity regularization step, the 3-D arrays are decorrelated by using an invertible

3D transform such as DCT and then are filtered by thresholding. Finally, the restoration is obtained by

aggregating all the estimated image patches. These steps are formulated as a nice variational problem

by Danielyan et al. in [17]. In this paper, we will borrow representations from it. Based on the block

matching method, in [6], Ji et al. proposed a nuclear norm based method for a video denoising algorithm.

The method in [6] decorrelates the redundant information by thresholding the singular values of the SVD.

Since there is no a good SVD for an array whose dimension is more than 2 [18], in the SVD based

method, a common choice is to create n × Ij 2-D matrices by concatenating all columns of the patch.

i.e.

M j = [P 1jg,P 2jg, · · · ,P Ijjg],
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where P ij ∈ Rn×N , i = 1, 2 · · · , Ij are some extract matrices whose elements are binary and P ijg ∈ Rn

stands for a vectorized i-th most similar image block to the image patch at j. Locally, the restoration

problem can be written as

min
Xj

{
1

2
||M j −Xj ||2F + µj ||Xj ||∗

}
, (1)

where || · ||∗ is the nuclear norm defined as the sum of the singular values of Xj [6] and µj is a

regularization parameter. In order to extend this method, we will reformulate the problem (1) with basis

functions and sparse representations. Let the SVD of M j be

M j = U jΣM j (V j)
′
,

where ΣM j ∈ Rn×Ij is a diagonal matrix and U j ∈ Rn×n,V j ∈ RIj×Ij are orthogonal unitary matrices.

If we chose U j and V j as bases, then we get for any Xj ∈ Rn×Ij ,

Xj = U jΣXj (V j)
′
.

Note that the coefficient matrix ΣXj may not be a diagonal matrix. If we require this representation

to be sparse under the condition ||M j −Xj ||2F = cσ2, then we can get the Lagrangian version of this

problem

min
ΣXj

{
1

2
||ΣM j −ΣXj ||2F + µj ||ΣXj ||1

}
. (2)

Here || · ||1 represents the “entry-wise” l1 norm, i.e. ||A||1 =
∑

ij |aij | for any matrix A = (aij).

It is not difficult to show that the problem (1) is equivalent to the sparsity regularization problem (2).

Proposition 1: Suppose U j ,V j are the left and right singular matrices of M j , i.e. (U j)
′
M jV j =

ΣM j , then we have that Σ∗Xj is a minimizer of (2) if and only if (Xj)∗ = U jΣ∗Xj (V j)
′

is a minimizer

of (1).

Proof: To simplify notations, we omit the superscript and subscript j for all the matrices and variables

in (1),(2) and proposition 1. Let us suppose ΣM = diag({σi}16i6min(n,I)). Then the minimizerX∗ of (1)

is related to a singular value shrinkage operator according to [7], i.e. X∗ = Udiag({max(0, σi−µ)})V ′ .

We just need to prove diag({max(0, σi−µ)}) is a minimizer of (2). Denote ΣM = ((σM )ij)n×I ,ΣX =

((σX)ij)n×I , then (σM )ij = δijσi, and problem (2) becomes a l1 − l2 minimization problem

min
(σX)ij


n∑
i=1

I∑
j=1

[
1

2
((σX)ij − (σM )ij)

2 + µ|(σX)ij |
] .

It is well-known that the above problem has a close-formed minimizer (σ∗X)ij = (σM )ij
|(σM )ij | max(0, |(σM )ij |−

µ). Please note (σM )ij = δijσi > 0 and µ > 0, then we have (σ∗X)ij = max(0, (σM )ij − µ) =
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(a) Clean (b) Noisy, 8.10 dB (c) 16.26 dB (d) 27.01 dB

Fig. 1. Denoising results with different basis functions.

δijmax(0, σi − µ). Thus Σ∗X = ((σ∗X)ij)n×I = diag({max(0, σi − µ)}) is a minimizer of problem (2).

Please recall that these two problems (1) and (2) are strictly convex and both of them have a unique

minimizer, and thus X∗,Σ∗X are their unique minimizers, respectively.

From the above analysis, we can see that the nuclear norm minimization problem is closely related

to an l1 minimization in a transformed domain with the transformation basis functions U j and V j .

However, we will show that the basis functions U j ,V j are not good enough to ensure that Xj has a

sparse representation. For simple comparison, we let M j be a noisy image displayed in Fig.1(b), the

restoration produced by the solution of the problem (2) with µj = 2230 are showed in Fig.1(c). We

test several µj and choose the result with the highest PSNR 16.26 dB for comparison. Next, we change

the basis functions U j ,V j as Û j , V̂ j and Û j , V̂ j are set as the singular matrices of the clean image

displayed in Fig.1(a). i.e. F = Û jΣF (V̂ j)
′
. Then we calculate ΣMj = (Û j)

′
M jV̂ j in problem (2), we

solve this problem again with µj = 260, and get the result demonstrated in Fig.1(d). We see that there

is much improvement in both PSNR and visual effect in Fig.1(d). The reason is very simple: we use

better basis vectors for the transformation. In the denoising problem, the Û j , V̂ j are not available since

the latent clean image F is unknown. However, this inspires us to update the basis function by using an

iteration method. We will formulated a local SVD operator based method in the next section.

III. PROPOSED MODEL

Our method is mainly based on (2). First, We reformulate (2) as a linear operator representation.

For an image g ∈ RN , please recall M j = [P 1jg,P 2jg, · · · ,P Ijjg], and ΣM j = (U j)′M jV j . Let
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(V j)
′

= [vj1, v
j
2, · · · , v

j
Ij

], then

ΣMj = (U j)′[P 1jg,P 2jg, · · · ,P Ijjg][vj1, v
j
2, · · · , v

j
Ij

]
′

=

Ij∑
i=1

(U j)′P ijg(vji )
′
.

and obtain

vec(ΣM j ) =

Ij∑
i=1

(
vji ⊗

(
(U j)′P ij

))
g.

We denote the local SVD operator as

T j =

Ij∑
i=1

vji ⊗ ((U j)
′
P ij), (3)

thus we have

vec(ΣM j ) = T jg.

Based on the above analysis, we propose the following general model for denoising:

min
f

1

2

J∑
j=1

||T j(f − g)||22 +

J∑
j=1

µj ||T jf ||p + µTV (f)

 , (4)

where T j is a block matching local SVD operator defined in (3). j ∈ {1, 2, · · · , J} are locations of

pixels. || · ||p is the p norm in which p can be chosen as 0 (low rank) or 1 (nuclear norm). TV is the

discrete isotropic TV operator which has the following discrete expression

TV (f) = ||∇f ||2,1,

where ∇f = ((I ⊗ D1)f, (D2 ⊗ I)f) and D1, D2 are two 1D difference matrices with respect to

x-direction and y-direction. While || · ||2,1 has the precise representation ||A||2,1 =
∑N

i=1

√
a2i1 + a2i2

when A = (aij)N×2 ∈ RN×2. µi > 0, µ > 0 are regularization parameters.

The first term in (4) is a fidelity term in transformation domain, which requires the transform coefficients

of clean image f and noisy image g are similar. The second term in (4) is a priority term which controls

the sparsity of the transform coefficients of f . Finally, the third term is a constraint in spatial domain

which controls the smoothness of the reconstructed small image patches.

Theoretically, the U j ,V j in the local SVD operator T j can be set as any orthogonal matrices. However,

as mentioned earlier, inappropriate basis matrices may lead the image patch groups to not have a sparse

representation.

On the block local SVD operator T j , we have the following properties:

Proposition 2: (T j)
′
T j =

∑Ij
i=1(P

ij)
′
P ij , and

∑J
j=1(T

j)
′
T j =

∑J
j=1

∑Ij
i=1(P

ij)
′
P ij is invertible.
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Proposition 3: For any y ∈ RnIj , (T j)
′
y =

∑Ij
i=1(P

ij)
′
U jarray(y)vji .

Proposition 4: ker(
∑J

j=1(T
j)
′
T j) = {0}.

The proofs of these propositions are not difficult. Here we omit the proof details and leave them to

the readers.

(4) is not smoothed and to solve it directly would often be slow. However, it can be efficiently optimized

by popular splitting methods such as ALM [19], ADMM and Split Bregman [20].

IV. ALGORITHM

A. Algorithm

To solve (4), we can introduce auxiliary variables αj ∈ RnIj and α = [α1, α2, · · · , αJ ] ∈ RnIj×J ,

then one can get the following constrained minimization problem

min
α,f

{
1
2

∑J
j=1 ||αj − T jg||2 +

∑J
j=1 µj ||αj ||p + µTV (f)

}
,

s.t. αj = T jf, for j = 1, 2, · · · , J.

The standard Augmented Lagrangian method produces the following scheme:

(αk, fk) = arg min
f,α

1

2

J∑
j=1

||αj − T jg||2 +

J∑
j=1

µj ||αj ||p

+µTV (f) +
η

2

J∑
j=1

||αj − T jf − λk−1j ||2
 ,

λkj = λk−1j + δ
(
T jfk − αkj

)
.

(5)

By applying alternating minimization, it becomes

αk = arg min
α

{
1
2

∑J
j=1 ||αj − T jg||2 +

∑J
j=1 µj ||αj ||p

+η
2

∑J
j=1 ||αj − T jfk−1 − λ

k−1
j ||2

}
,

fk = arg min
f

{
µTV (f) + η

2

∑J
j=1 ||αkj − T jf − λ

k−1
j ||2

}
,

λkj = λk−1j + δ
(
T jfk − αkj

)
, j = 1, 2, · · · , J.

(6)

We note that if the local SVD operator T j is fixed as a patch based SVD of g, then T jfk−1 may not

be sparse enough. This will lead to α not being sparse. In order to make the transformation coefficients

α be more sparse, we must adjust the local SVD operator T j . Inspired by the solution of αk (proposition

(5) (6)), we choose a good T j as following

T j,k =

Ij∑
i=1

vj,ki ⊗
(

(U j,k)
′
P ij
)
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Here, the local left-singular matrix U j,k ∈ Rn×n and right-singular matrix (V j,k)
′ ∈ RIj×Ij are the

SVD

[P 1j ĝ,P 2j ĝ, · · · ,P Ijj ĝ] = U j,kΣj
ĝ(V

j,k)
′
,

(V j,k)
′

= [vj,k1 , vj,k2 , · · · , vj,kIj ].

where ĝ = ( g
1+η + ηfk−1

1+η ). Thus in our method, the basis functions U j,k and V j,k are updated during

the iteration. This updating process can make the transformation coefficients more sparse, and we can

get improved restoration results. This is different from the BM3D method. In that algorithm, the basis

functions are chosen as DCT or wavelet basis functions and they are all fixed.

Therefore, the iteration becomes

T j,k =

Ij∑
i=1

vj,ki ⊗
(

(U j,k)
′
P ij
)
, (7)

αk =arg min
α

1

2

J∑
j=1

||αj − T j,kg||2 +

J∑
j=1

µj ||αj ||p (8)

+
η

2

J∑
j=1

||αj − T j,kfk−1 − λk−1j ||2
 , (9)

fk =arg min
f

µTV (f) +
η

2

J∑
j=1

||αkj − T j,kf − λk−1j ||2
 , (10)

λkj =λk−1j + δ
(
T j,kfk − αkj

)
, j = 1, 2, · · · , J. (11)

Both of the two minimization subproblems can be efficiently solved. For subproblem α, there is a

closed-form solution represented by the soft and hard thresholding operators when p = 1 and p = 0,

respectively.

Proposition 5: For p = 1 in subproblem (8), αkj = S(T j,kĝ+
ηλk−1

j

1+η ,
µj

1+η ), where S is a shrink operator

and S(f, µ) = f
|f | max{|f | − µ, 0}.

Proposition 6: For p = 0 in subproblem (8), then αkj = H(T j,kĝ +
ηλk−1

j

1+η ,
√

2µj

1+η ) is a minimizer of

subproblem (8), where H is a hard thresholding operator and H(f, µ) =

 0, |f | 6 µ,

f, |f | > µ.
Remark: the subproblem (8) is strictly convex when p = 1 and thus the minimizer is unique. However,

when p = 0, this subproblem is non-convex and it may have many minimizers. One can see this from

the proof.
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As to the subproblem of f , it is a ROF model [1] with a local SVD operator. It can be solved quickly

by Split Bregman iteration [20]. We list the iteration scheme in the following:

(fk,l, ql) = arg min
f



η
2

∑J
j=1 ||αkj − T j,kf − λ

k−1
j ||2

+η1
2 ||q1 − (I ⊗D1)f − bl−11 ||2

+η1
2 ||q2 − (D2 ⊗ I)f − bl−12 ||2

+µ||q||2


,

bl+1
1 = bl1 + (I ⊗D1)fk,l − ql1,

bl+1
2 = bl2 + (D2 ⊗ I)fk,l − ql2.

By applying the alternating algorithm again, we have the TV inner iteration:

(
η
∑J

j=1(T
j,k)′T j,k + η14

)
fk,l = hk,l,

ql1 = S1((I ⊗D1)f + bl−11 , (D2 ⊗ I)f + bl−12 , µη1 ),

ql2 = S1((D2 ⊗ I)f + bl−12 , (I ⊗D1)f + bl−11 , µη1 ),

bl+1
1 = bl1 + (I ⊗D1)fk,l − ql1,

bl+1
2 = bl2 + (D2 ⊗ I)fk,l − ql2,

(12)

where 4 = I ⊗
(
(D1)

′
D1
)

+
(
(D2)

′
D2
)
⊗ I is the discrete Laplacian matrix, and

hk,l = η
∑J

j=1(T
j,k)′(αkj − λ

k−1
j ) + η1

((
I ⊗ (D1)

′)
(ql−11 − bl−11 ) +

(
(D2)

′ ⊗ I
)

(ql−12 − bl−12 )
)
,

S1 is an isotropic soft thresholding operator which has the expression

S1(x, y, µ) =
x√

x2 + y2
max{

√
x2 + y2 − µ, 0}.

The linear equation of fk,l in (12) can be efficiently solved by Gauss-Seidel iteration since
∑J

j=1(T
j,k)′T j,k =∑J

j=1

∑Ij
i=1(P

ij)
′
P ij is a invertible diagonal matrix.

We summary the proposed BMLSVDTV method in algorithm (1)

Algorithm 1: BMLSVDTV denoising algorithm

Set the initial f0 = g and some regularization parameters η, η1, µ, µj , for k = 1, 2, · · ·

Step 1, Block Matching: for each image block of ĝ = g
1+η + ηfk

1+η at j, find the Ij most similar image

block. This is equivalent to obtaining the extract matrix P ij , j = 1, 2, · · · , J, i = 1, 2, · · · , Ij .

Step 2, Basis updating: Get the local SVD transform operator T j,k by (7).

Step 3, Sparsity Regularization: Compute αk with soft or hard thresholding operator by proposition

(5) or (6).
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Step 4, TV Regularization: Solve the TV subproblem (10) with several Bregman iterations (12) to

get fk. If fk satisfies the stopping criterion ||f
k−fk−1||
||fk−1|| < ε or reaches the maximum iteration

number, then stop and get the restoration result, else, go to the next step.

Step 5, Lagrangian multiplier updating Calculate (11) and go to step 1.

V. CONVERGENCE ANALYSIS

If we set p = 1, then the proposed model (4) is strictly convex since the first term is strictly convex

by the proposition 2. With a fixed basis T j , we can show the convergence of the iteration scheme (5)

and (6) as follows.

Theorem 1: For p = 1, suppose f∗ is the minimizer of problem (4), ∀0 < δ < 2, then the sequence

fk produced by the iteration scheme (5) is converged and lim
k→∞

fk = f∗.

Proof: The proof can be followed by some standard discussions of augmented Lagrangian method with

operator splitting such as [21]–[23].

The difference between the iteration scheme (5) and (6) is that αk is updated by a given fk−1 in

alternating minimization scheme (6) while αk, fk in scheme (5) are updated simultaneously. Similarly,

we have the following convergence result for this alternating scheme:

Theorem 2: . For p = 1, suppose f∗ is the minimizer of problem (4), let δ = 1, then the sequence fk

produced by the iteration scheme (6) is converged and lim
k→∞

fk = f∗.

Proof: The proof is very similar as theorem 1.

Similar convergence results also can be found in [24] for splitting Bregman method, Douglas-Rachford

Splitting [25] and augmented Lagrangian method [23] etc..

Let us point out if the basis T j is updated, then this problem becomes a non-convex, and we have

not got its convergence yet. However, numerical experiments show that one can obtain some better

restorations with updating T j . Thus in practical computing, we use some updating bases.

VI. EXPERIMENTS

A. Implementation Details

Let us mention that both the sparsity regularization and the basis updating in the proposed algorithm

can be implemented block by block because of the linear structure of the energy.

There are some parameters in the proposed method. Generally speaking, the reconstructed results are

affected by these parameters. For all the cases, we let the penalty parameter η = 9, and the time step
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be δ = 0.01. The parameter
√
n which is the size of image blocks are empirically set according to

the levels of the noise. For σ = 10, 20, 30, 50, 75, 100, we set
√
n = 6, 6, 7, 8, 8, 9, respectively. For

ease of computation, we set the number of each image block group Ij as a constant. We simply let

Ij = 40, 40, 50, 60, 70, 90 for noise with σ = 10, 20, 30, 50, 75, 100. The TV regularization parameters µ

are set as µ = 0.1 when σ <= 20 and µ = 0.2 when σ > 20. As for the sparsity regularization parameters

µj , we let µj = nσ2local(1 + η) when p = 0. Here the local noise variance σ2local can be determined by

some simple local noise estimation technique [26], [27]. As for the parameter of the sparse norm p,

we have tested some images under different noise levels and it appears that l0 norm can produce better

results than l1. Thus in the following experiments, we just list the results produced by l0.

B. Numerical Results

We take 8 images to test the performance of the proposed algorithm. To show its impressive denoising

results, the most related TV, KSVD and BM3D are used to make some comparisons. All the PSNR

values for these four methods can be found in Table I. It is well-known that the denoising result may

be affected by some parameters in these regularization methods. For KSVD and BM3D, we use the

codes provided by the authors and adopt the suggested parameters. For TV, we test several regularization

parameters under each noise level for one image such as ’Monarch’ and take the results with the highest

PSNR for comparison, then we use the same parameters for all other 7 images. One can see that the

proposed method outperforms the other methods in almost all the cases. Compared to the BM3D, which

is a state-of-the-art denoising method, the improved PSNR is about 0.35 dB better on average.

As to the visual effects, our method can reduce the artificial ringings effect which is caused by stacking

the image blocks in the BM3D method, thanks to the existence of TV in the proposed method. Also,

similar to the KSVD, the basis functions in our method are adaptive and thus can make the sparse

representation better than the fixed ones. Our model can then keep the texture better. We take 2 example

images, one is the simple image ’Square’, which is almost piece-wise constant and has strong geometric

structures, the other is ’Barbara’, which contains much repeated texture. To show the performance under

different levels of noise, for ’Square’ image, we show the result under low level noise with standard

deviation σ = 10 and high level with σ = 100. For ’Barbara’ image, we just list the image contaminated

by heavy Gaussian noise with standard deviation σ = 100. The Fig. 3, Fig. 5 and Fig. 8 demonstrate

the restored results produced by the four methods. The TV in Fig. 3(c) can keep the strong edges

well under low level noise, but produces some false edges due to the heavy noise (see Fig.6(c) and

Fig.9(c)). Also, the repeated texture details are almost be removed due to its weak texture preserving
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ability. See Fig.8(c) and Fig.9(i) for examples. The KSVD and BM3D have better performance on texture

restoration. However, in the smooth areas, the BM3D may produce some ringing effects as displayed in

Fig.6(e),Fig.6(k) and Fig.9(e). These artificial effects can be well controlled in the proposed method by

adding the TV regularization, see the enlarged areas image in Fig.6(f),Fig.6(l) and Fig.9(f). One can find

that the restorations in these figures contain the cleanest strong edges and smooth areas. Moreover, our

model can improve the texture preserving ability by basis updating, one can take Fig.9(k) and Fig.9(l) for

comparison. It is easy to find that the restored textures in Fig.9(l) are cleaner than the ones in Fig.9(k).

For better comparison, in Fig.10, we show the removed noise for Fig.8. Both of the removed noise by

the BM3D and proposed method have little information, in fact, ours has less than BM3D’s.

As mentioned early, the basis functions U j,k,V j,k in the proposed method are adaptive. Thus, similar

to KSVD, we can show the basis functions for each image. However, the number of the basis functions

U j,k = (uj,k1 , uj,k2 , · · · , uj,kn ) in our method is very large and we can not show all of them. From SVD,

we can see that the eigenvector uj,k1 related to the first largest eigenvalue plays the most important role

in sparse representation. Thus, we just show this eigenvector uj,k1 for each image block. For 256× 256

image shown in Fig.5, by using the sliding window technique which is adopted by KSVD and BM3D

with 3 pixels steps, we get J = 86 × 86 images patches with size 9 × 9, for each 9 × 9 image patch

and its similar block groups, we display uj,k1 ∈ R81, j = 1, 2, · · · , J in Fig.7. In this figure, each red

image block is a 9 × 9 array of uj,k1 , and the total number of the image blocks is 86 × 86. From this

basis functions, one can find near the strong edges, the basis are almost binary and it can represent the

non-continuous edges well. Meanwhile, the basis functions in the tiny edges or smooth areas have many

oscillations and they can represent the textures well. This is totally different from BM3D, which employs

a fixed dictionary such as DCT or wavelets.

VII. CONCLUSION AND DISCUSSION

We have proposed a local SVD operators based sparsity and TV regularization method for image

denoising. Sparsity and TV are naturally unified in a variational energy and can produce some impressive

restoration results. The local SVD basis functions can improve the texture recovering ability and the global

TV can reduce some artificial ringing effects in the restoration. However, the computational cost is heavy

due to the existence of block matching and local SVD. Generally speaking, with our unoptimized matlab

codes on a PC equipped with 3.2 GHz CPU, for images with size 256 × 256, for each outer iteration,

the block matching step will take about 16 seconds, the basis updating and sparsity regularization will

take about 20 seconds and the TV step is fast and will take less than 0.3 seconds. But the efficiency of
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σ = 10 σ = 20

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers(256× 256) 33.34 34.25 34.68 34.88 29.67 30.80 31.29 31.49

Monarch(256× 256) 32.98 33.67 34.12 34.93 29.04 29.90 30.35 31.14

C.man(256× 256) 32.66 33.74 34.18 34.34 28.88 30.00 30.48 30.68

Square(256× 256) 39.55 42.76 44.45 47.17 35.83 37.73 38.70 40.59

House(256× 256) 34.35 35.93 36.71 36.68 31.25 33.11 33.77 33.83

Barbara(512× 512) 30.70 34.45 34.98 35.31 26.54 30.85 31.78 32.18

Boat(512× 512) 32.52 33.66 33.92 33.96 29.25 30.38 30.88 30.95

Hill(512× 512) 32.55 33.38 33.62 33.67 29.54 30.20 30.72 30.75

Average 33.58 35.22 35.84 36.37 30.00 31.62 32.24 32.70

σ = 30 σ = 50

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers(256× 256) 27.65 28.80 29.28 29.56 25.21 26.08 26.68 26.97

Monarch(256× 256) 26.89 27.85 28.36 28.95 24.32 25.32 25.82 26.37

C.man(256× 256) 26.89 28.02 28.64 28.70 24.60 25,70 26.12 26.43

Square(256× 256) 33.64 34.37 35.85 36.80 30.59 30.27 32.40 32.82

House(256× 256) 29.50 31.18 32.09 32.39 27.21 28.00 29.69 30.20

Barbara(512× 512) 24.78 28.57 29.81 30.15 23.31 25.47 27.23 27.62

Boat(512× 512) 27.51 28.46 29.12 29.17 25.50 25.97 26.78 26.95

Hill(512× 512) 28.00 28.45 29.16 29.19 26.21 26.32 27.19 27.29

Average 28.11 29.46 30.28 30.62 25.87 26.64 27.74 28.09

σ = 75 σ = 100

TV KSVD BM3D Proposed TV KSVD BM3D Proposed

Peppers(256× 256) 23.40 23.64 24.73 25.10 22.16 21.96 23.39 23.64

Monarch(256× 256) 22.36 22.81 23.90 24.46 21.00 20.67 22.52 23.03

C.man(256× 256) 22.96 23.44 24.33 24.56 21.87 21.57 23.07 23.27

Square(256× 256) 28.69 27.68 30.06 30.60 27.15 25.91 28.38 29.11

House(256× 256) 25.47 25.04 27.50 28.12 24.21 23.60 25.87 26.63

Barbara(512× 512) 22.40 22.97 25.12 25.48 21.75 21.87 23.62 24.28

Boat(512× 512) 24.06 24.04 25.12 25.25 23.07 22.86 23.97 24.15

Hill(512× 512) 24.92 24.89 25.68 25.80 23.99 24.01 24.58 24.75

Average 24.28 24.31 25.80 26.17 23.15 22.77 24.43 24.86

TABLE I

THE PSNR VALUES FOR DIFFERENT METHODS UNDER SEVERAL LEVELS GAUSSIAN NOISE.
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Fig. 2. The 8 test images. From left to right and top to bottom, Peppers, Monarch, Camera man, Square, House, Barbara,

Boat, and Hill.

our codes can be greatly improved by optimization since the same block matching step in BM3D just

costs less than 1 second. It also can be further improved by parallel processing with a GPU. We do not

discuss the implementation efficiency in this paper.

The proposed method can be easily extended to image deblurring, inpainting and even segmentation.

Due to the limited page space, we could not include these. We will consider these in an upcoming paper.
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