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Restoration of Atmospheric Turbulence-distorted
Images via RPCA and Quasiconformal Maps

Chun Pong Lau, Yu Hin Lai and Lok Ming Lui

Abstract—We address the problem of restoring a high-quality image from an observed image sequence strongly distorted by
atmospheric turbulence. A novel algorithm is proposed in this paper to reduce geometric distortion as well as space-and-time-varying
blur due to strong turbulence. By considering a suitable energy functional, our algorithm first obtains a sharp reference image and a
subsampled image sequence containing sharp and mildly distorted image frames with respect to the reference image. The
subsampled image sequence is then stabilized by applying the Robust Principal Component Analysis (RPCA) on the deformation fields
between image frames and warping the image frames by a quasiconformal map associated with the low-rank part of the deformation
matrix. After image frames are registered to the reference image, the low-rank part of them are deblurred via a blind deconvolution, and
the deblurred frames are then fused with the enhanced sparse part. Experiments have been carried out on both synthetic and real
turbulence-distorted video. Results demonstrate that our method is effective in alleviating distortions and blur, restoring image details
and enhancing visual quality.

Index Terms—Image restoration, Atmospheric turbulence, Robust Principal Component Analysis, Quasiconformal Theory
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1 INTRODUCTION

THE problems of restoring a clear image from a sequence
of turbulence-degraded frames are of high research

interest, as the effect of geometric distortions and space-
and-time-varying blur would significantly degrade image
quality. Under the effects of the turbulent flow of air and
changes in temperature, density of air particles, humidity
and carbon dioxide level, the refractive index changes ac-
cordingly and light is refracted through several turbulence
layers [1] [2]. Therefore, when we want to capture images
in locations where the temperature variation is large, for
instance, deserts, roads with tons of vehicles, objects around
flames, or from a long distance to perform long-range
surveillance or to take pictures of the moon, rays from the
objects would arrive at misaligned positions on the imaging
plane, and thus distorted images are formed. Moreover, for
a high-resolution video, even if the global oscillation of an
image frame is not too large, the deformation of the objects
in that image can be large. For example, in Figure 1, the left
image is an observed frame from a high-resolution mildly
distorted video, while the right image is the same image
zoomed in on a distorted object. If we just consider the
zoomed part in the video, the deformation would be large.
In general, there are two types of approaches to deal with
the problem, one being hardware-based adaptive optics
techniques [3] [4] and the other being image-processing-
based methods [5] [?] [?] [?] [9]. In this paper, we focus
on an image-processing-based method to restore the image.
Since we are working on a sequence of distorted images or
turbulence-degraded video, we assume the original image is
static and the image sensor is also fixed. In order to model
this problem, the mathematical model in this paper is based
on [10], [11],

It(x) = [Dt

(
Ht(I)

)
](x) + nt(x), t = 1, · · · , N (1)

where It, I, and nt are the captured frame at time t, the
true image, and the sensor noise respectively. The vector x

Fig. 1: Left: The original high resolution video frame with
mild distortion. Right: Zoomed object which has large de-
formation.

lies in the two-dimensional Euclidean space. Ht represents
the blurring operator, which is a space-invariant diffraction-
limited point spread function (PSF). Dt is the deforma-
tion operator, which is assumed to deform randomly. Note
each of the sequences {Dt} and {nt} are assumed to be
identically distributed random variables, and the subscripts
indicate the different actual outcomes that these variables
turn out to be at different time instants.

Atmospheric turbulence has two main degradations on
images: geometric distortion and blur. In this paper, we
propose a new framework to stabilize a severely distorted
video and reconstruct a sharp image with fine details. First,
we propose an iterative scheme to optimize an energy model
to subsample sharp and mildly distorted video frames, and
obtain a comparatively sharp reference image at the same
time. This speeds up the computation and extracts the useful
information from the original video. We then apply 2-step
stabilization to stabilize the subsampled video with Beltrami
coefficients, which further suppresses the distortion and
replaces some comparatively blurry images with sharper
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ones by image warping using optical flow and RPCA. After
that, we register the stabilized video with respect to the
reference image by optical flow. Furthermore, we separate
the video into a low-rank part and a sparse part by RPCA.
On one hand, we apply blind deconvolution to deblur the
low-rank part; on the other hand, we extract texture patches
in the sparse part by adaptive thresholding, apply guided
filtering to enhance the texture patches, and eventually fuse
the low-rank and sparse parts together to obtain the final
image.

2 PREVIOUS WORK

Since the video frames are corrupted by both blur and
geometric distortion, it is difficult to deal with them simul-
taneously, especially in the scenario where a large portion of
the images are severely degraded. The registration process
is furthered complicated by the lack of a good reference
frame for the observed image sequence. Meinhardt-Llopis
and Micheli [12] proposed a reference extraction method
which was coined the centroid method. In its scheme,
the deformation fields between each pair of images are
computed via optical flow and are assumed to have zero
mean. This is equivalent to assuming the ground truth to
be the temporal deformation mean of the frames. Next,
every image is warped with the mean vector field to obtain
a centroid image with respect to each image. Finally, the
temporal mean of the centroids is taken to be the resultant
image, in which the geometric deformations in the images
are approximately cancelled out. In [13], Micheli et al. used
a dynamic texture model to learn the parameters and put
them into a Kalman filter model to get a blurry image.
Finally, they used a Non-local Total Variation (NLTV) model
to deblur and obtain a clear image. The assumption that
the ground truth is the temporal deformation mean does
not hold realistically. While the centroid method usually
gives a good reference image, they cannot fully resolve the
distortion, especially in the case that a large portion of the
images are severely degraded. As the mean of the norms
of deformation fields of the images increases, the deviation
of the mean deformation of the images from the underlying
model mean is amplified, and thus the resultant centroid im-
ages (and their temporal mean) remain distorted. Also, the
temporal averaging makes the temporal mean of centroids
contain features that appear in only a few frames, and thus
ghost artifacts are formed.

Another method is the “lucky frame” approach [14],
which selects the sharpest frame from the video. This
method is motivated by statistical proofs [15] that given
sufficient video frames, there is a high probability that some
frame would contain sharp texture details. Since in practice
it is difficult to assume one can find a frame which is
sharp everywhere, Aubailly et al. [17] proposed the Lucky-
Region method, which selects at each patch location the
sharpest patch across the frames and fuses them together.
Anantrasirichai et al. [18] adopted this idea and introduced
frame selection prior to registration. However, the cost func-
tion introduced was coarse, and the selection was done in
one step by sorting. As a result, some of the selected frames
geometrically differ significantly from the reference image.
In addition, the cost function assumed the reference image

(i.e. the temporal intensity mean over all frames) to accu-
rately approximate the underlying true image, which is usu-
ally not the case. Another similar approach was proposed by
Roggemann [?], where a subsample is selected from images
produced by adaptive-optics systems to produce a temporal
mean with higher signal-to-noise ratio.

As atmospheric turbulence can severely distort video
frames, even if a satisfactory reference image is acquired,
the video may not be registered well onto it. A feasible
approach to enable registration is to stabilize the video
and reduce the deformation between each frame and the
reference image. Lou et al. [16] proposed to stabilize video
by sharpening each frame via spatial Sobolev gradient flow,
and temporally smoothing the video to reduce interframe
deformation. However, the distribution of the image inten-
sities is not preserved under Sobolev gradient sharpening,
and temporally smoothing produces ghost artifacts.

Zhu et al. [11] proposed a B-spline nonrigid registration
algorithm to tackle distortion, and a patch-wise temporal
kernel regression based near-diffraction-limited (NDL) im-
age restoration to sharpen the image. Finally, they use blind
deconvolution algorithm to deblur the fused image. How-
ever, NDL will further blur the image and produce some
defects on the fused image. Then Furhad et al. proposed a
frame selection criterion which is based on sharpness, in
which they perform some preprocessing to filter out heavily
blurred frames. They then propose spatiotemporal kernel
regression to fuse the image. However, if sharp but severely
distorted frames exist, they may be selected as deformation
is not considered. Then the filtered image sequence will con-
tain some distorted frames, which will degrade the reference
image and hence the final output.

Recently, Robust Principal Component Analysis (RPCA)
is another tool to tackle the problem of atmospheric tur-
bulence. He et al. [20] proposed a low-rank decomposition
approach to separate the registered image sequence into
low-rank and sparse parts. The former has less distortion,
but is blurry and few detail texture image; on the other
hand, the latter contains texture information but is noisy.
Blind convolution is applied on the low-rank part to obtain
a deblurred result, which is combined with the enhanced
detail layer to get the final result. Xie et al. [21] proposed a
hybrid method, which assigns the low-rank image to be the
initial reference image. The reference is then improved by
solving a variational model, and the frames are registered to
the reference image. However, as the deformation between
the reference image and the observed frames may be large,
direct registration may produce errors.

3 CONTRIBUTIONS

3.1 Frame sampling
In a turbulence-distorted video sequence of a stationary ob-
ject and camera, all the frames are geometrically deformed
and blurry. In order to remove the distortion by atmospheric
turbulence, a good reference image is needed to obtain
accurate deformation fields between the reference image
and the observed frames. On the other hand, not all of the
frames are useful to extract a good reference and provide
useful information for image fusion. As a result, we propose
subsampling the original video to obtain useful frames.
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The proposed algorithm can obtain a sharper and less
deformed reference image and a good subsampled video by
optimizing an energy model, which balances the number of
subsampled frames and the quality of the reference image.

3.2 Internal stabilization

Suppose we have an image sequence in which a majority
of frames are mildly deformed from each other, but the
deformation of the remaining frames from the majority is
significant. We propose extracting the low-rank part of the
deformation fields among the frames via Robust Princi-
pal Component Analysis, in which the outlier deformation
fields and error produced in the deformation estimation are
diminished and reoriented. The frames are then warped
with the adjusted fields, which aligns them well while
avoiding heavy influence from outlier deformations.

3.3 Absorbing stabilization

Given an image sequence in which each frame is at most
mildly deformed from each other, and additional frames
which are deformed more severely, the latter can be sta-
bilized by registering each of its frames to the aligned
sequence. This allows for the incorporation of sharp but
heavily deformed frames, which provides more texture de-
tails for image fusion afterwards.

The mathematical background and implementation de-
tails of the above methods will be elaborated in the follow-
ing sections.

The remainder of this paper is organized as follows.
The mathematical background of the employed confor-
mal geometry techniques and Robust Principal Component
Analysis is described in Section 4. The numerical scheme
is described in detail in Section 5. The performance of the
method is evaluated on six sets of videos/images and is
compared with other techniques in Section 6. Finally, Section
7 presents the conclusions of the paper.

4 MATHEMATICAL BACKGROUND

4.1 Quasiconformal map

Quasiconformal maps are a generalization of conformal
maps. They are orientation preserving homeomorphisms
between Riemann surfaces with bounded conformality dis-
tortion.

Definition 4.1. Let f : C → C be a continuous function

with continuous partial derivatives
∂f

∂z
,
∂f

∂z̄
defined via f̃ :

R2 → C, f̃(x, y) := f(x+ iy), with

∂f

∂z
:=

1

2

∂f̃

∂x
+

1

2i

∂f̃

∂y
,

∂f

∂z̄
:=

1

2

∂f̃

∂x
− 1

2i

∂f̃

∂y
.

f is quasi-conformal provided that it satisfies the Beltrami
equation,

∂f

∂z̄
= µ(z)

∂f

∂z
(2)

for some complex-valued Lebesgue measurable function µ
satisfying ‖µ‖∞ < 1. µ is called the Beltrami coefficient (BC)
of f .

Given an orientation preserving homeomorphism φ, we
can find the corresponding BCs from the Beltrami equation:

µφ =
∂φ

∂z̄
/
∂φ

∂z

The Jacobian J of φ is related to µφ:

J(φ) =

∣∣∣∣∂φ∂z
∣∣∣∣2 (1− |µφ|2)

Since φ is an orientation preserving homeomorphism,
J(φ) > 0 and |µφ| < 1 everywhere. Hence, we must have
‖µφ‖∞ ≤ 1. For any closed subset D of C, ‖µφ|D‖∞ < 1.

Theorem 4.2 (measurable Riemann mapping theorem). Sup-
pose µ : C→ C is Lebesgue measurable and satisfies ‖µ‖∞ < 1;
then there is a quasiconformal homeomorphism ϕ from C onto
itself, which is in the Sobolev space W 1,2(C) and satisfies the
Beltrami equation in the distribution sense. Furthermore, by
fixing 0, 1, and∞, the associated quasiconformal homeomorphism
ϕ is uniquely determined.

Then a homeomorphism from C or D onto itself can
be uniquely determined by its associated BC. Under this
setting, if we are given a motion vector field between two
frames, we can calculate the BC of the map. Conversely, we
can also calculate the motion vector field if we have the
associated BC.

4.2 Linear Beltrami Solver
Lui et al. [22] proposed a linear algorithm, called Linear
Beltrami Solver, to reconstruct a quasiconformal map f
from its associated Beltrami coefficient µ = ρ + iτ on the
rectangular domain Ω in C. Let f = u+

√
−1v , we have

∇·
(
A

(
ux
uy

))
= 0,∇·

(
A

(
vx
vy

))
= 0, A =

(
α1 α2

α2 α3

)
;

(3)

where



α1 =
(ρ− 1)2 + τ2

1− ρ2 − τ2
;

α2 = − 2τ

1− ρ2 − τ2
;

α3 =
(ρ+ 1)2 + τ2

1− ρ2 − τ2
,

and u and v satisfy some

boundary conditions. In the discrete case, solving the above
elliptic PDEs (3) can be discretized as solving a sparse
symmetric positive definite linear system. Readers can refer
to [22] for details.

4.3 Optical Flow
Suppose we have a sequence of images, we can use op-
tical flow to estimate the motion vector field between two
images using the intensity difference between two images.
Intuitively, optical flow is our visual sense of motion. Math-
ematically, for a three-dimensional case (with two spatial
dimensions and a temporal dimension), a pixel at location
(x, y, t) with intensity I(x, y, t) will be moved by ∆x,∆y
and ∆t between the two image frames, and the following
brightness constancy constraint can be given:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (4)
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Fig. 2: Overall flow chart of the proposed algorithm.

By Taylor expansion, we have

I(x+ ∆x, y + ∆y, t+ ∆t)

≈ I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t (5)

So we have IxVx+ IyVy + It = 0. Thus, we have∇IT ·
−→
V =

−It. This is an equation in two unknowns and cannot be
solved as such. This is known as the aperture problem of
the optical flow algorithms.

4.3.1 Large Displacement Optical Flow
In the paper, we will use Large Displacement Optical Flow
to calculate the deformation fields between two image
frames. We give a brief review on it.

Large Displacement Optical Flow [?] is a coarse-to-fine
variational framework for optical flow estimation between
two image frames that incorporates descriptor matches in
addition to the standard brightness and gradient constancy
constraints. w(x) = (u, v) is denoted as the displacement
field between two images I1 and I2. Descriptor matches
wdescr(x) are obtained by matching densely sampled HOG
descriptors in the two images with approximate nearest
neighbour search.

w(x) is obtained by minimizing the energy functional:

E(w) =

∫
Ω

Ψ(|I2(x + w(x))− I1(x)|2)dx

+ γ

∫
Ω

Ψ(|∇I2(x + w(x))−∇I1(x)|2)dx

+ α

∫
Ω

Ψ(|∇u(x)|2) + |∇v(x)|2)dx

+ β

∫
Ω
δ(x)ρ(x)Ψ(|w(x)−wdescr(x)|2)dx,

Ψ(s2) =
√
s2 + 10−6

Here, I1 and I2 are the two input images, w := (u, v)
is the sought optical flow field, and x := (x, y) denotes a
point in the image. In the above equation, the first two terms
represent intensity and gradient constancy, the third term is

the robust smoothness constraint and the last term biases
the displacement field w(x) towards the confident descrip-
tor matches wdescr(x). δ(x) is a delta function indicating
whether a descriptor match is available in the location and
ρ(x) is the confidence of the match. Descriptor matches are
obtained by matching densely sampled HOG descriptors in
the two images. With the Large Displacement Optical Flow,
we can calculate the motion vector field between two images
even if the deformation between the two frames is relatively
large. Readers can refer to [?] for details.

4.4 Low rank decomposition

In mathematics, the low-rank approximation is a minimiza-
tion problem, in which the cost function measures the fit
between a given matrix (the data) and an approximating
matrix (the optimization variable), subject to the constraint
that the approximating matrix has reduced rank.

Suppose we have a matrix R. our goal is to decompose
R into L + S, where L is the low-rank matrix and S is the
sparse matrix. We can obtain R bymin

L,S
rank(L) + λ‖S‖0,

s.t. L+ S = R,
(6)

where ‖E‖0 represents the number of non-zero entries in
the matrixE. Although the above problem follows naturally
from our problem formulation, the cost function is highly
non-convex and discontinuous, and the equality constraint
is highly non-linear. Therefore, Candes et al. [24] suggest
that the above problem can be efficiently solved, under quite
general conditions, by replacing the cost function,min

L,S
‖L‖∗ + λ‖S‖1,

s.t. L+ S = R,
(7)

where ‖E‖∗ represents the nuclear norm of E (the sum
of its singular values), ‖E‖1 represents the 1-norm of E
(the sum of absolute values of its entries), and λ is a
positive weighting factor. We call the above convex program
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Fig. 3: An illustration of quasi-conformal mappings. The
maximal magnification and shrinkage as well as the local
rotational angle are determined by the Beltrami coefficient
µ of the mappings.

Fig. 4: Block diagram for optimizing EQ(I, J).

Robust Principal Component Analysis (RPCA). For low-
rank decomposition in this paper, we apply the algorithm of
the Exact Augmented Lagrange Multiplier Method (EALM)
[25], where the above convexified optimization problem is
solved by Augmented Lagrange Multiplier method with the
augmented problem (L, S) = arg min

A,E
‖A‖∗ + λRPCA‖E‖1 +

〈Y,R−A− E〉+
µ

2
‖R−A− E‖2F .

5 PROPOSED ALGORITHM

In this section, we describe our proposed algorithm in
detail. Our algorithm can be divided into three main stages
(see Figure 2), namely, 1. Reference image extraction and
subsampling, 2. Stabilization and 3. Image fusion.

5.1 Reference image extraction and subsampling
To restore a turbulence-degraded video, a suitable reference
image capturing the geometric structures of objects in the
image frames is crucial. With a good reference image, the
geometric deformation under turbulence can be accurately
estimated through image registration between the reference
image and image frames. The extraction of the reference
image certainly relies on the image frames of the video.
However, under turbulence distortions, not all image frames
are useful for extracting a reference image. For example,
image frames with large geometric deformations and blurs
will not provide accurate information to extract the refer-
ence image. Therefore, it calls for developing an algorithm to
simultaneously subsample useful frames from the video and
extract the reference image from the subsampled frames.

We propose an iterative algorithm to subsample frames
of the video and extract an accurate reference image by

(a) Sharp observed
image in Chimney
sequence

(b) Laplacian im-
age of (A)

(c) Blurry observed
image in Chimney
sequence

(d) Laplacian im-
age of (C)

Fig. 5: Illustration of Sharpness indicator.

considering an optimization problem. Useful image frames
should be sharp and less distorted. On the other hand, if
more frames that are useful are subsampled, more informa-
tion can be used to extract the reference image. Therefore, it
is necessary to design an algorithm that optimizes between
the number of frames and the usefulness of these subsam-
pled frames.

Denote the image frames of a turbulence-degraded video
by {It = It(x, y)}Tt=1 , where (x, y) denotes a pixel in
the image domain Ω. Our goal is to search for an optimal
subsample of indices J ⊂ {1, 2, . . . , T}, such that a good
reference image Iref can be extracted from {Ii}i∈J . To
achieve this goal, we first need to quantitatively measure
the sharpness and geometric distortion of an image frame.
The sharpness S(I) of an image I can be measured by

S(I) = ‖∆I‖1 (8)

where ∆ is the Laplacian operator. In essence, ∆I is the
convolution of I with the Laplacian kernel, which captures
the features or edges of objects in the image (see Figure 5).
The magnitude of ∆I is higher for sharper images. Hence,
S(I) is larger for sharper images. For example, Figure 5(b)
and (d) show the Laplacian image of a sharp image (Figure
5(a)) and a blurry image (Figure 5(c)) respectively. The
magnitude in intensities of Figure 5(c) is obviously larger
than that of Figure 5(d). Hence, S(I) provides an effective
measurement for the sharpness of an image. For the ease of
implementation, we usually normalize S(I) to the range of
[0, 1].

Next, we need to quantitatively measure the geometric
distortion. An intuitive way to measure the geometric dis-
tortion between two images is to estimate the deformation
field between them. However, it involves high computa-
tional costs to compute the image correspondences. To alle-
viate this issue, we propose to measure the geometric distor-
tion between two images by measuring their dissimilarities
in intensities at every pixel. If two images are similar in in-
tensities, it requires less deformation to transform one image
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to another. Common measures of dissimilarity include the
sum of squared differences ‖Iref − Ii‖22, the sum of absolute
differences ‖Iref − Ii‖1 and the weighted sum of absolute
and gradient differences ‖Iref − Ii‖1 + γ‖∇Iref − ∇Ii‖1. In
this paper, we adopt the sum of squared differences as the
dissimilarity measure.

Now, in order to obtain an optimal subsample {Ii}i∈J∗

of the image frames as well as the optimal reference image
Iref, we propose to maximize the following energy func-
tional:

E(I, J) = α(1− e−ρ|J|)− EQ(I, J), (9)

where EQ(I, J) measures the sharpness and the geometric
distortion from the potential reference image I of the sub-
sampled frames {Ii}i∈J . The term EQ(I, J) will be defined
later. Here, α > 0 is a parameter balancing the first and
second terms in the energy functional. The first term is
an increasing function in the cardinality |J | of J , which
aims to subsample as many useful frames as possible for
the extraction of the reference image. Note that a con-
cave increasing function is chosen, as a marginal increase
in the size of the subsample has reduced effect on the
accuracy of the extracted reference image as the number
of subsampled frames increases. Therefore, by maximizing
the energy functional with the two combined terms, our
model simultaneously searches for a good reference image
together with a maximal subsample of sharp frames, whose
geometric distortions from the reference image are small.

Next, we proceed to defineEQ(I, J). Using the measures
of sharpness and geometric distortion described above,
EQ(I, J) can be formulated as follows:

EQ(I, J) =
1

|J |
∑
i∈J

[‖I − Ii‖22 + λsamp(1− S(Ii))], (10)

where λsamp > 0 is a positive constant for controlling the
importance of sharpness of the image frames. The first term
measures the geometric distortion of Ii from I . Clearly,
EQ(I, J) is small if the subsampled frames are sharp and
their geometric distortions from I are small.

To increase the energy functional E(I, J), the following
strategy can be applied. Fixing |J | = k, we consider the
following optimization problem:{

(Iref
k , J

k) = argminI,JEQ(I, J),

such that |J | = k.
(11)

Suppose k∗ = argmaxkα(1−e−ρk)−EQ(Iref
k , Jk). Then,

(Iref
k∗ , J

k∗) solves the optimization problem (9). In practice,
we compute the finite sequence {Ek := α(1 − e−ρk) −
EQ(Ik, Jk)}Tk=1 and pick the largest Ek∗ . Then, J∗ = Jk

∗

and Iref = Iref
k∗ solve our proposed optimization model.

Now, to solve the optimization problem (11), an alternat-
ing minimization scheme is applied. Supposed λsamp and k
are fixed, and an initial subsampling J0 with |J0| = k is
arbitrary chosen. The iterative scheme can then be described
as follows:

1) Fixing I = I iter−1, we minimize EQ over J . Note
that ‖I − Ii‖22 and λsamp(1 − S(Ii)) can both be easily
calculated for each i. Denote ‖I−Ii‖2+λsamp(1−S(Ii))
by Ei. Arrange Ei such that:

Ei1 ≤ Ei2 ≤ ... ≤ Eij ≤ ... ≤ EiT . (12)

Algorithm 1 Subsampling and reference extraction

Input: Video sequence {It = It(x, y) : (x, y) ∈ Ω}Tt=1

Output: Subsampled image sequence {Ii}
Tsamp

i=1 with less
distortion and higher sharpness; Reference image
Iref(x, y)

1: Compute the sharpness S(Ii) of each frame {Ii}Ti=1

2: for k = 2 to T do
3: Obtain the initial reference image I0 = ĪJ0 , where J0

with |J0| = k is arbitrarily chosen
4: while DEQ > ε do
5: Calculate ‖I iter−1 − Ii‖22 for each i
6: CalculateEiter

Q by considering J which contains {Ii}
with the k smallest ‖I − Ii‖22 + λsamp(1− S(Ii))

7: I iter = ĪJ
8: Calculate the difference DEQ = Eiter−1

Q − Eiter
Q

between the current and previous subsamples
9: end while

10: Calculate the total energy Ek = α(1− e−ρk)− Efinal
Q

11: end for
12: return the subsampled sequence J∗ with the maximum

total energy and reconstruct the final reference image
Iref = ĪJ∗

Then, J∗ = {i1, i2, ..., ik} is the required minimizer. We
set J iter = J∗ and compute Eiter

Q = 1
k

∑
i∈J∗

Ei.

2) Next, fixing J = J iter, we minimize EQ over I . Note
that the second term 1

k

∑
i∈J

λsamp(1−S(Ii)) is a constant

since J is fixed. We only need to find I that mini-

mizes
1

k

∑
i∈J
‖I − Ii‖22. By differentiating with respect

to I(x, y), the minimizer is given by the temporal mean
ĪJ of {Ii}i∈J :

ĪJ iter =
1

k

∑
i∈J iter

Ii. (13)

We then set I iter = ĪJ iter .
Repeat step 1 and step 2 above until the difference DEQ =
Eiter−1
Q − Eiter

Q between the energies at the current and
previous steps is smaller than some hyperparameter ε. Note
that Eiter

Q is always lower than Eiter−1
Q , as each step in the

alternating scheme forces the energy to drop or remain the
same. Figure 4 illustrates the optimization of EQ(I, J).

The overall algorithm is summarized in Algorithm 1.

5.2 Stabilization

After the video is subsampled, sharp image frames with
comparatively smaller geometric distortions remain. The
subsampled frames can further be stabilized by warping
each image frame via a suitable deformation field. As a
result, a significant amount of geometric deformations can
be removed. The stabilization involves two procedures (see
Figure 6), namely, (1) Internal stabilization and (2) Absorb-
ing stabilization. We will describe each procedure in detail.

5.2.1 Internal stabilization

Although a subsample of frames has been chosen in the
previous step by minimizing geometric deformation, one
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Fig. 6: Block diagram for Stabilization.

(a) (b)

Fig. 7: Stabilizing the comparatively severely deformed
frames in the Road sequence. (a) Comparatively severely
deformed frame in subsampled sequence. (b) Stabilized.

may still not assume the subsampled frames are free of de-
formation and blur, if most frames of the original sequence
are severely distorted. As a result, they cannot be registered
properly. Unsatisfactory registration will seriously influence
the fusion of the images. In order to reduce the error
of registration, we propose a stabilization method which
further suppresses the distortion. See Figure 7.

Let {Isamp
j }Tsamp

j=1 be the subsampled frames obtained from
the previous step. Our goal is to obtain a new image
sequence {Istable

j }Tsamp

j=1 from {Isamp
j }Tsamp

j=1 with less oscillation,

such that each new frame is closer to the ground truth image
I .

Suppose the reference image Iref from the previous step
is close to I . Then, an intuitive way to stabilize {Isamp

j }Tsamp

j=1

can be done by warping each frame Isamp
j by the registration

map Dj
ref : Ω → Ω from Iref to Isamp

j . More specifically, we
obtain Istable

j by

Istable
j = I

samp
j ◦Dj

ref.

This approach to stabilize the video is effective if the ref-
erence image and video frames are both sharp and mildly
distorted. In our case, since the video is severely distorted by
turbulence, both the extracted reference image and the sub-
sampled frames may suffer from various levels of blur and
geometric distortion. Then objects in the reference image
may be too blurry or occluded for optical flow algorithms
to establish correct correspondences. As a result, this simple
method to stabilize the video by registering each frame to
the reference image is not applicable. To alleviate this issue,
a remedy is to consider the deformation map f ji : Ω → Ω
from I

samp
i to I

samp
j . It is much less likely that a particular

object is blurred or occluded in each of the frames Ij .
By incorporating data from all of Isamp

j , we can avoid the
aforementioned errors while reducing geometric distortions.

Our goal is to extract an accurate estimation of the
deformation map Dref

i : Ω → Ω from each frame I
samp
i

to the reference image. The registration map Dref
i can be
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represented by the deformation field
−−→
V ref
i , where

Dref
i (p) = p+

−−→
V ref
i (p) ∀p ∈ Ω.

Similarly f ji can be represented by a vector field
−→
V ji , where

f ji (p) = p+
−→
V ji (p) ∀p ∈ Ω.

Since the reference image is the temporal mean of the
subsampled frames, the temporal mean of the deformation

fields {
−→
V iref} is usually small. Mathematically, one can as-

sume that

∥∥∥∥∥
Tsamp∑
i=1

−→
V iref

Tsamp

∥∥∥∥∥
∞

≤ ε for small ε > 0.

Then the following proposition is a useful observation for
the extraction of Dref

i from {f ji }
Tsamp

j=1 .

Proposition 1. Suppose

∥∥∥∥∥
Tsamp∑
i=1

−→
V iref

Tsamp

∥∥∥∥∥
∞

≤ ε. Let D̃i(p) = p +

Tsamp∑
j=1

−→
V ji (p)

Tsamp
. Then D̃i ◦Di

ref ≈ id, i.e. ‖D̃i ◦Di
ref − id‖∞ ≤ ε.

Proof.

f ji ◦D
i
ref(p) = f ji (p+

−→
V iref(p))

= p+
−→
V iref(p) +

−→
V ji (p+

−→
V iref(p));

Dj
ref(p) = f ji ◦D

i
ref(p)

By averaging over j,

=⇒ p+

Tsamp∑
j=1

−→
V jref(p)

Tsamp
= p+

−→
V iref(p) +

Tsamp∑
j=1

−→
V ji (p+

−→
V iref(p))

Tsamp

=⇒ D̃i ◦Di
ref(p)− p =

Tsamp∑
j=1

−→
V jref(p)

Tsamp

=⇒ ‖D̃i ◦Di
ref − id‖∞ ≤ ε.

This proposition gives guidance on how one can esti-
mate Dref

i with D̃i from {f ji }
Tsamp

j=1 . Pick a pixel p of the
reference image Iref. Due to the turbulence, the position
of p is warped to Di

ref(p) in {Isamp
i }Tsamp

i=1 causing geometric
deformation in the image frames. To remove the geometric
deformation, one can warp the point Di

ref(p) by D̃i to a
new position D̃i(D

i
ref(p)). According to the proposition,

D̃i(D
i
ref(p)) is close to the original position of p in the

reference image Iref. Hence, the geometric deformation can
be suppressed.

On the other hand, by triangle inequality, it is easily to
observe that

‖D̃i(D
i
ref(p))− D̃j(D

j
ref(p))‖∞ ≤ 2ε for any i 6= j

(a) Mildly distorted
image before stabi-
lized

(b) Centroid
method,
PSNR=25.2853

(c) Internal
stabilization,
PSNR=27.4840

Fig. 8: Comparison of small deformed image stabilized in
Centroid method and Internal stabilization in Desert se-
quence.

Algorithm 2 Internal stabilization

Input: Subsampled image sequence {Isamp
i }Tsamp

i=1

Output: Stabilized image sequence {Istable
i }Tsamp

i=1

1: for i = 1 to Tsamp do
2: for j 6= i do

3: Compute the deformation field
−→
V ji

4: end for
5: Apply RPCA on Vi to obtain {Li,p : p = 1, 2}
6: Calculate Beltrami representation µstable

i of
−−−→
V stable
i

7: Restrict ‖µ̂stable
i ‖∞ < 1

8: Reconstruct the fold-free deformation field
−−−→
V̂ stable
i by

applying LBS

9: Obtain Istable
i by warping Ii with

−−−→
V̂ stable
i

10: end for
11: return {Istable

i }Tsamp

i=1

Thus, the new image sequence {Istable
i := I

samp
i �

−→̃
Vi}

Tsamp

i=1

after warping has small oscillation provided that ε is small,

where � is the warping operator and
−→̃
Vi(p) := D̃i(p)− p.

This method has also been applied in [12], [27], and
has shown itself to be effective for suppressing geometric
distortion, provided that the deformation field is small and
the video is not too blurry.

However, in some cases, a few of the image frames
{Isamp
i } will contain deformations that differ significantly

from the remaining majority of frames. These outlying
deformed frames may originate from incorrect registration
via optical flow, or from subsampled frames which have
relatively larger displacement from the reference image.
Since the centroid method simply calculates the mean of the
motion vector fields, if there are some outlier deformations,
the centroid method will also capture those deformations
and hence the shape of those small deformed frames will
be deformed. To solve the problem, we propose to apply
RPCA on the deformation fields to suppress the outlier
deformations. See Figure 8.

For every frame I
samp
i , we calculate the deformation

fields
−→
V ji from the fixed frame Isamp

i to the other frames.
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Denote vectorized f as vec(f). Define

Vi :=

 | | |

vec(
−→
V 1
i ) vec(

−→
V 2
i ) · · · vec(

−−−→
V
Tsamp

i )
| | |


= Re(Vi) + i Im(Vi)

= Vi,1 + iVi,2, where Vi,1 := Re(Vi) contains the horizon-
tal displacement vectors, and Vi,2 := Im(Vi) contains the
vertical displacement vectors.

We then apply RPCA to decompose each of {Vi,p : p =
1, 2} into low-rank and sparse parts:

Vi,p = L∗i,p + S∗i,p
(L∗i,p,S∗i,p) = arg min

L,S
L+S=Vi,p

‖L‖∗ + λ‖S‖1 for p = 1, 2

Denote

L∗i,p =

 | | |

vec(
−−→
L1
i,p) vec(

−−→
L2
i,p) · · · vec(

−−−→
L
Tsamp

i,p )
| | |

 ,
where

−−→
Lji,p are deformation fields each of size X × Y . By

the above argument, in the presence of outlier deformation

fields, we obtain the stabilized deformation field
−−−→
V stable
i

in the mean of {
−−→
Lji,p}

Tsamp

j=1 . When the deformation fields
exhibit an overall pattern, the RPCA algorithm extracts the
part that resembles the other fields in the low-rank part,
whereas the outlying part is captured in the sparse matrix.
However, when there is no such pattern, then the low-rank
part extracted by RPCA will not correspond to any useful
pattern. We identify the absence of a general pattern by
observing the number of non-zero entries in the sparse part
by RPCA. If too many non-zero entries are present, we resort
to applying centroid method.

−−−→
V stable
i =


1

Tsamp

Tsamp∑
j=1

−−→
Lji,p if ‖S∗i,p‖0 <

XY Tsamp

2

1

Tsamp

Tsamp∑
j=1

−−→
V ji,p otherwise

.

On the other hand, warping an image with a non-
bijective deformation field may often cause unnatural ar-
tifacts. Since the object and the camera are static, we can
require that the deformation field is bijective. We can easily
enforce the bijectivity constraint by smoothing out the Bel-
trami coefficient, and guarantee the warped image is fold-
free. By Beltrami equation (2), we can calculate µstable

i , the

Beltrami representation of
−−−→
V stable
i for each i. Then we restrict

‖µstable
i ‖∞ < 1 by thresholding it, i.e.

µ̂stable
i =


µstable
i if |µstable

i | < 1

µstable
i

|µstable
i |+ ε

otherwise
.

As seen in Figure 3, at each position where the Beltrami
representation is thresholded, the orientation (i.e. arg(µ)/2)
of local deformation is preserved.

(a) (b) (c)

Fig. 9: Stabilizing the sharp and large deformed frames in
Chimney sequence. (a) Sharp and large deformed frame in
original sequence. (b) Stabilized (a). (c) Replaced frame in
stabilized sequence.

Then we can reconstruct the deformation field with the
Linear Beltrami Solver:

−−−→
V̂ stable
i := LBS(µ̂stable

i )

by enforcing boundary conditions. Then we warp Isamp
i with−−−→

V̂ stable
i for each i to obtain stabilized Istable

i ,

Istable
i = I

samp
i �

−−−→
V̂ stable
i , 1 ≤ i ≤ Tsamp, (14)

Then we obtain a stabilized image sequence {Istable
i }Tsamp

i=1

in which distortion is suppressed.

5.2.2 Absorbing stabilization
In the subsampling stage, we choose images which are both
sharp and at most minorly distorted. As a result, some of
the sharp images whose pixels are severely displaced are
discarded. It would be useful if we can make use of those
sharp but severely deformed video frames, because they
may contain textures which are sharper than any Internal
stabilized frame. However, we need to align them onto
the same positions and shapes to fuse them. As those
sharp frames are geometrically dissimilar to the reference
image, estimating the deformation fields between them and
the reference by optical flow would likely produce errors,
especially if features are not detected in some frames due to
occlusion or blurring. As such, warping them leads to large
registration errors. On the other hand, we have acquired a
stabilized video whose frames have little deformation from
the reference image. Features are unlikely to be occluded
or blurred out in all of these stabilized frames. Thus we
can make use of the ample information in the stabilized se-
quence to stabilize the sharp and severely deformed images,
and transform them to be minorly deformed. See Figure 9.

Suppose we have an Internal stabilized sequence and
the sharpest Tsamp frames in the original sequence, denoted
by H . Denote the subsampled sequence by G. We aim to
make use of as many sharp frames in H as possible. We
propose to replace the Internal stabilized frames whose
corresponding subsampled frames are not in H with frames
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Algorithm 3 Absorbing stabilization

Input: Internal stabilized image sequence {Istable
i }Tsamp

i=1 , orig-
inal video {Ii}Ti=1

Output: Absorbing stabilized image sequence {Isharp
j }Tsamp

j=1

1: Obtain the set of the subsampled video frames G and
that of original sequence H = {hj}

Tsamp

j=1 with maximal
sharpness

2: Obtain the intersection set G ∩H
3: for j = 1 to Tsamp do
4: if hj ∈ H \G then
5: Stabilize hj with respect to the Internal stabilized

sequence by (15) to give Isharp
j

6: end if
7: if hj ∈ G ∩H then
8: Take Isharp

j to be the Internal stabilized frame of hj
9: end if

10: end for
11: return {Isharp

j }Tsamp

j=1

in H \ G. The latter frames are not aligned well with Iref.
Their geometric distortions from Iref have to be suppressed
prior to registration. We name this procedure Absorbing
stabilization, as it absorbs sharp frames into the subsample.

Absorbing stabilization is carried out in a similar manner
with Internal stabilization. The only difference is that Inter-
nal stabilization acts on an element of the subsample with
respect to which it is stabilized, whereas the “absorbed”
sharp frames inH are not elements of either the subsampled
sequence or the stabilized sequence. Denoting the deforma-

tion field from sharp frame hj ∈ H to Istable
i by

−→
W i
j ,

Wj : =

 | | |

vec(
−→
W 1
j ) vec(

−→
W 2
j ) · · · vec(

−−−−→
W

Tsamp

j )
| | |

 ,
(15)

Wj,1 : = Re(Wj), Wj,2 := Im(Wj), (16)

Wj,p = L̃∗j,p + S̃∗j,p, (L̃∗j,p, S̃∗j,p) = arg min
L,S

L+S=Wj,p

‖L‖∗ + λ‖S‖1,

(17)

L̃∗j,p =

 | | |

vec(
−−→
L̃1
j,p) vec(

−−→
L̃2
j,p) · · · vec(

−−−→
L̃
Tsamp

j,p )
| | |

 ,
(18)

−−−−→
W

sharp
j =


1

Tsamp

Tsamp∑
i=1

−−→
L̃ji,p if ‖S̃∗i,p‖0 <

XY Tsamp

2

1

Tsamp

Tsamp∑
j=1

−−→
W j
i,p otherwise

, (19)

µ̂
sharp
j =


µ

sharp
j if |µsharp

j | < 1

µ
sharp
j

|µsharp
j |+ ε

otherwise
, (20)

−−−−→
Ŵ

sharp
j = LBS(µ̂

sharp
j ), I

sharp
j = hj �

−−−−→
Ŵ

sharp
j . (21)

Fig. 10: Block diagram for Detail extraction.

5.2.3 Registration
From subsection 3.1, we obtain a reference image Iref,
whose geometric structure is similar to the underlying
truth. Suppose now we have Absorbing stabilized sequence
{Isharp
j }Tsamp

j=1 and Iref. Note that the geometric deformation of
the Absorbing stabilized sequence is now suppressed and
thus the error of the registration can be reduced. Applying
Large Displacement Optical Flow, we have vector fields

{
−−→
V ref
j }

Tsamp

j=1 from each Absorbing stabilized frame Isharp
j to

Iref. By Beltrami equation (2), we can calculate µref
j , the

Beltrami representation of
−−→
V ref
j for each j. Then we restrict

‖µ̂ref
j ‖∞ < 1 by thresholding it, i.e.

µ̂ref
j =


µref
j if |µref

j | < 1

µref
j

|µref
j |+ ε

otherwise
. (22)

We can obtain −−→
V̂

reg
j := LBS(µ̂ref

j )

by enforcing boundary conditions. Then we warp Isharp
i with−−→

V̂
reg
j for each j to obtain registered Ireg

j ,

I
reg
j = I

sharp
j �

−−→
V̂

reg
j , 1 ≤ j ≤ Tsamp, (23)

Then we obtain a registered image sequence {Ireg
i }

Tsamp

i=1 .

5.3 Image fusion
5.3.1 Detail extraction
From the above we now have a stabilized-then-registered
sequence at hand. As there are blurry regions in each
frame but at different spatial locations, we aim to extract
information from each frame to produce an image as sharp
and with as many texture details as possible. We adopt
a modified version of the image fusion scheme from [20].
Figure 10 illustrates the process of Detail extraction.

In [20], patches on the adaptive-thresholded sparse part
are added together with weights to form a detail layer. The
weights are obtained by smoothing the binary patches with
guidance from their corresponding selected sharp patch, i.e.

W i = HG(ΩiBW, Ω̂
i). (24)

where HG is a guided filter.
The detail layer is then obtained by the weighted sum

LD =
M∑
k=1

W iΩ̂i. (25)
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(a) (b) (c) (d) (e)

Fig. 13: The reference images extracted from the Chimney and Desert sequences. (a) Observed. (b) Temporal mean. (c)
Mean of low-rank by RPCA. (d) Centroid method [12]. (e) Proposed method. The PSNR of (b), (c), (d), (e) from Desert
sequence are 23.9529, 24.6360, 26.0220, 27.4715 respectively. Note that blind deconvolution has not been applied to those
results.

TABLE 1: Performance of the restoration methods evaluated by PSNR and SSIM

Sequence SGL Centroid Two-stage NDL Proposed

Car 21.1054 29.3143 26.1112 29.1757 31.7101
0.7086 0.8842 0.7994 0.8703 0.9162

Carfront 16.7093 19.5172 15.3815 19.9009 24.0959
0.6801 0.8163 0.5448 0.8136 0.9137

Desert 20.8255 27.7507 25.2696 22.9450 31.2749
0.6985 0.8837 0.7886 0.7563 0.9385

Road 23.9782 30.0300 26.5800 27.4061 33.8682
0.7638 0.8608 0.7827 0.8036 0.9063

(a) (b) (c)

Fig. 11: Detail extraction from [20] and our modified version.
(a) Low-rank part. (b) Summing sparse parts and adding
onto low-rank part. (c) Taking maximum of absolute values
(whenever overlapping) of sparse parts and adding onto
low-rank part.

Since the patch size K can be large, the 1-positions in the
binary image may be relatively close, and the patches may
spatially overlap each other. As seen in our experiments, the
fused detail intensities go out of bounds if there is overlap
among the patches. See Figure 11. As a remedy, instead
of a weighted sum, we first multiply each patch with its
corresponding weight Ω̃i = W iΩ̂i, and then pick for each
spatial position the intensity with the highest absolute value

amongst the patches, i.e.

LD(x, y) = Ω̃i0(x, y), (26)

where i0 = arg max
i
{|Ω̃i(x, y)|}. The detail layer LD with

weight β is held on to be fused in the next section.

5.3.2 Deblurring

While deblurring an image, the texture details are often
overly sharpened, producing undesired artifacts. In accor-
dance with [20], after RPCA is applied for detail extraction,
the texture details are captured in the sparse part. Therefore,
the low-rank part keeps the coarse structure and is blurry.
Thus blind deconvolution [26] is directly implemented on
the low-rank part ILR, which is then fused with the texture
detail layer LD

Ifinal = deblur(ILR) + βLD.

Degradation caused by blur is generally modelled as fol-
lows,

G = F ⊗ h+ n, (27)
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(a) (b) (c)

(d) (e) (f)

Fig. 12: Original frames from Desert sequence. (a)
Groundtruth. (b) A relatively clear and slightly distorted
frame. (c,d,e,f) Distorted and blurry frames.

where G is the blurred image, F is the latent sharp image,
h is the blur kernel. The blind deconvolution algorithm can
be regarded as the following:

(F̂ , ĥ) = argminF,h‖Z − h⊗ F‖
2 + λ1Rf (F ) + λ2Rh(h),

(28)
where Rf and Rh are the regularization terms used to
restrain F and h based on their prior knowledge. The sparse
regularization term in [26] is defined as

Rf (F ) = ‖ρ(Fx) + ρ(Fy)‖1, (29)

where Fx and Fy are the image gradients of F in horizontal
and vertical directions respectively, and ρ(·) is defined as

ρ(x) =

{
−θ1|x| x ≤ lt
−(θ2x

2 + θ3) x > lt.
(30)

Here, lt, θ1, θ2, θ3 are fixed parameters. Sparsity is also im-
posed to regularize the blur kernel h as follows:

Rh(h) = ‖h‖1. (31)

For the details for solving the optimization problem (28), we
refer the reader to [26].

6 EXPERIMENTAL RESULT AND DISCUSSION

In this section, detailed experimental justification of the
proposed method will be illustrated. Firstly, we show the
improvement of the reference image compared to several
methods. Then, we show the importance of subsampling the
video sequence, which not only obtains a better reference
image but also reduces the computation time. Next, the
advantages of stabilization are illustrated by comparing to
those registering the frames alone. Finally, both qualitative
and quantitative measures are used to evaluate the perfor-
mance of the proposed algorithm comparing with several
state-of-the-art methods. Peak Signal to Noise Ratio (PSNR)

Fig. 14: The energy plot of the Desert sequence, with λ =
200, ρ = 0.1, α = 340.

(a) (b)

(c) (d)

Fig. 15: (a) is the fusion result of original Car sequence. (b) is
the fusion result of the subsampled Car sequence. (c) and (d)
are the zoomed part of (a) and (b) respectively. The PSNR
of (a) and (b) are 28.4158 and 29.3634 respectively. Note that
blind deconvolution has not been applied to those results.

and Structural Similarity Index (SSIM) are computed to
assess the quality of the restored images objectively.

For all experiments, the parameters λsamp and ρ in the
energy model (9) in the subsampling stage are in the range
of [200, 500] and 0.1 respectively. For the registration stage,
the parameters of the Large Displacement Optical Flow [?]
used are the default setting. For our modified version of
the image fusion scheme from [20], we perform adaptive
thresholding by assigning 1 to entries whose absolute dif-
ference with the norm of the mean of the 7 × 7 window
centered at itself is greater than a threshold taken from the
range [0.5, 2], and 0 elsewhere. The patch size K is taken
to be 7, and the weight τ in unsharp masking is taken to
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(a) Ground truth (b) A frame from the synthetic
sequence

(c) Sobolev gradient-Laplacian
method [16]

(d) Centroid method [12], de-
blurred with [26]

(e) Two-stage reconstruction
method [28]

(f) Near-diffraction limited
method [11], deblurred with
[26]

(g) Proposed method

Fig. 17: Comparison of results on the Carfront sequence

be 1.7. The fusion weight β applied on the detailed layer
LD is in the range of [0, 1]. For the deblurring stage, we
apply blind deconvolution to obtain the final output. Two
separate sets of parameters are used for the synthetic image
sequences and real sequences. In the synthetic experiments,
the blur kernel is set to be 5 × 5, the noise level is chosen
within the interval [0.02, 0.1], the deblurring weight is set
to be 0.02 and all other parameters are set to default. The
details of the parameters can be found in [26] and its project
page.1 For real sequences, we set the same parameters to
(7,9,0.03,0.2) to obtain the outputs. The proposed algorithm
is implemented in Matlab with MEX and C++. All the exper-
iments are executed on an Intel Core i7 3.4GHz computer.

The proposed method is compared with four repre-
sentative methods: Sobolev gradient-Laplacian method [16]
(SGL), Centroid method [12] (Centroid), the data-driven
two-stage approach for image restoration [28] (Two-stage)
and near-diffraction-limited-based image restoration for re-
moving turbulence [11] (NDL). For the Two-stage method,
it was originally applied to restore a sharp image from an
underwater video which was distorted by water waves. As
videos degraded by water turbulence are generally treated
as if under large distortion with mild blur, Two-stage still
gets reasonable results and thus the comparison is valid.
The codes of SGL [16], Two-stage [28] and NDL [11] are
provided by the respective authors, and the parameters
used are default setting.

6.1 Quality of subsampled reference image

The visual quality of the reference images obtained by
the proposed algorithm, temporal averaging, the temporal
average of the low-rank and the centroid method [12] are
compared qualitatively in this subsection. The reference
images are shown in Figure 13: the first column (a) are

1. http://www.cse.cuhk.edu.hk/leojia/programs/deblurring/
deblurring.htm

the observed image from ’Chimney’ and ’Desert’ sequences
while the other four columns are the reference images gen-
erated by temporal mean (b), mean of low rank (c), centroid
method (d) and proposed algorithm (e). In the Chimney
sequence, the subsampled reference image is sharper and
preserves more details than the other three methods. This is
because the subsampled sequence only consists of sharp and
mildly distorted images, and hence the obtained reference
image is clearer. For the other methods, the blurry and
severely deformed frames are also taken into account so
the reference image is corrupted. For an even more severely
turbulence-degraded video (Desert sequence), the blurring
effect is more noticeable. For the mean of the low-rank
part, the general geometric structure is extracted and so
sharp edges are preserved. However, most texture details
will go to the sparse part, so the details are removed. For
the centroid method, the texture details are kept as every
image is warped by an average deformation field, and there
is no direct manipulation on image intensities except inter-
polation. However, since the centroid method is based on
the strong zero-mean assumption of the deformation fields
between ground truth and the distorted sequence, which
does not usually hold for turbulence-distorted video, the
geometric structure may not be well kept. For the proposed
method, the reference image is reconstructed from a good
subsampled sequence, which minimizes the energy (9) con-
sidering similarity and sharpness and improves iteratively.
As a result, the edges are sharp, the geometric structure
is preserved and the texture details are kept. The energy
plot of (9) is shown in Figure 14. The PSNR of the reference
images also justify the result.

6.2 Importance of subsampling

In this subsection, we will illustrate the importance of sub-
sampling. We compare the fusion results with and without
subsampling. We register each video sequence to their cor-
responding reference image, which is the temporal mean of

http://www.cse.cuhk.edu.hk/leojia/programs/deblurring/deblurring.htm
http://www.cse.cuhk.edu.hk/leojia/programs/deblurring/deblurring.htm
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(a) Ground truth (b) A frame from the synthetic
sequence

(c) Sobolev gradient-Laplacian
method [16]

(d) Centroid method [12], de-
blurred with [26]

(e) Two-stage reconstruction
method [28]

(f) Near-diffraction limited
method [11], deblurred with
[26]

(g) Proposed method
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Fig. 20: Comparison of results on the Car sequence

the sequence. Then fusion is applied to the two registered
video sequences. Visual comparison and quantitative mea-
sures will be used to justify the result. Comparing (c) to
(d) in Figure 15, noticeable artifacts can be observed in the
edges of the wheel and the overall image is also blurry. In
contrast, comparing to the fusion result of the original video,
the wheel in the subsampled sequence is free of artifacts,
is sharper and has clearer edges. This observation can be
explained by two factors:

1) Since the subsampled video is obtained by maximizing
the energy that depends on the number of frames in
the subsampled sequence, their similarity to the refer-
ence image, and their sharpness, the subsampled image
frames mainly consist of comparatively sharp and less
deformed image frames. Fewer noisy components are
included in the sparse part in the fusion stage, and
hence the result has a sharper edge and richer texture
details are preserved.

2) Since the reference image is constructed by a sharper
and mildly distorted video sequence, the reference im-

age is sharper and better preserves geometric structure.
This has been justified in subsection 6.1. Therefore the
alignments of the registered frames are more accurate,
and the frames are thus more similar to the reference
image. Therefore, the fusion artifacts due to poor regis-
tration become insignificant.

6.3 Importance of stabilization
This subsection demonstrates the importance of stabiliza-
tion by applying low-rank decomposition on the deforma-
tion fields. Since stabilization is mainly used for enhancing
the registration results, some fusion results will be shown,
and the performance will be evaluated by visual comparison
and PSNR. We will show the importance of the stabilization
by comparing the fusion results with and without stabiliza-
tion. Figure 19 shows the fusion result of the subsampled
Car sequence with stabilization and that without stabiliza-
tion, which is (b) in Figure 15. The details are kept in a vivid
way as the registration is more accurate and so the fusion is
more satisfactory. Also, the details are sharper as absorbing
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(c) Sobolev gradient-Laplacian
method [16]

(d) Centroid method [12], de-
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Fig. 21: Comparison of results on the Desert sequence

stabilization is applied. (See zoomed parts in Figure 19).
The stabilization plays an important role in the proposed
algorithm and makes a significant improvement because
the geometric deformation of the video frames is further
suppressed before registration. Therefore, the registration
error can be reduced. Moreover, the Absorbing stabilization
stabilizes the sharp but severely distorted frames. As a
result, more texture details are kept in the fusion stage and
thus the PSNR of the fusion result using stabilization is

higher.

On the other hand, the proposed stabilization scheme
can be treated as a preprocessing step for registration. To
illustrate this idea, we incorporate the stabilization scheme
with the symmetric constraint-based B-spline registration
proposed by Zhu and Milanfar [11]. This method is a com-
mon tool to tackle the turbulence-degraded video and gives
satisfactory registration results in most cases. However, if
the turbulence is strong in the sense that the frames are
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method [16]

(d) Centroid method [12], de-
blurred with [26]
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(f) Near-diffraction limited
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Fig. 22: Comparison of results on the Road sequence

very blurry and severely distorted, the method may not
obtain a good result.The registration results along with their
corresponding fusion results are shown in Figure 16 and
Figure 18. As shown in Figure 16, the registration results
are improved significantly in the sense that the textures are
not distorted (zoomed part (f) and (h)) and the edges are
sharp (zoomed part (j) and (l)) after applying stabilization.
As a result, the fusion result has also shown a significant
improvement by stabilization in Figure 18.

6.4 Simulated Experiment
To quantitatively evaluate the performance of the proposed
algorithm, several sets of video sequences (namely Desert
and Road) are generated with severe simulated turbulence
distortions. Each frame of the simulated sequences is gener-
ated from a single image by randomly selecting width×height

250
positions, and considering an image patch centered at each
chosen position. A uniform motion vector patch with the
same size of the image patch is generated, whereas the vec-
tor is randomly generated from a normal distribution for 2-
vectors. Each vector patch is then smoothed with a Gaussian
kernel and entrywise multiplied with a distorting strength
value. The overall motion vector field is then generated by
adding up the vector patches wherever overlapping. The
image is then warped by the generated motion vector field.

Note that the distortion effects are accumulated where the
patches overlap. For each image frame, a Gaussian blur is
applied to make them blurry. In the simulated experiments,
the chosen patch size is 65 × 65, and the mean of the
Gaussian kernel is slightly shifted for each image patch.
See Figure 12. The Desert and Road sequences consist of
100 frames each, among which 70 frames are degraded
under severe distortion and the rest are deformed relatively
mildly. The distorting strengths of severely distorted frames
are in the range of [1, 1.5] while those of mildly distorted
frames are in [0.2, 0.3]. The Carfront sequence is a data set
obtained from [18] which contains mildly distorted frames
when compared with the Desert and Road sequences. Note
that the Carfront sequence is cropped from the original
sequence. The Car sequence contains 80 frames, among
which only 15 are mildly distorted frames and the others
are severely distorted. The distorting strengths of the mildly
distorted frames and the severely distorted frames are in
the ranges of [0.3, 0.5] and [1, 1.5] respectively. It serves
as an extreme test case where most of the frames are
severely degraded. 1 gives the PSNR and SSIM values for
all restoration results of five different restoration algorithms.
Each sequence has two rows, where the first row denotes the
PSNR values and the second row denotes the SSIM values.
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Fig. 23: Comparison of results on the Chimney sequence

6.4.1 Mildly distorted sequences

The Carfront sequence contains mildly distorted frames
only and all the turbulence strength of images are similar.
The restoration results of the Carfront sequence are shown
in Figure 17. Since the deformations among Carfront frames
are small, the restoration result of Centroid method and pro-
posed algorithm are comparable. For the Carfront sequence,
Centroid keeps the geometric structure well but the result is
blurry. The shape of the restored image by SGL is slightly
distorted and the intensities are unnatural. Two-stage dis-
torts the image in a ripple-like pattern. NDL also keeps the
structure relatively well but some artifacts are produced.
The proposed algorithm keeps both the geometric structure

and local details well.

6.4.2 Strongly distorted sequences

The majority of the frames in the Desert and Road sequences
are strongly distorted, whereas the remaining are mildly
distorted. The restoration results of the sequences are shown
in Figure 21 and Figure 22. Since the deformations among
Desert and Road frames are large, the restoration result of
the proposed algorithm differs from existing methods. As
the imaged objects are significantly displaced across frames,
the temporal smoothing effect of the centroid method pro-
duces noticeable blur. This is more observable in the Desert
experiment, where the many vertical edges are obscured
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Fig. 24: Comparison of results on the Water Tower sequence

by the blur, whereas in the Road sequence, thin strips
parallel to the road are also diminished. A similar tem-
poral smoothing effect manifests in SGL as overlapping
shadowy artifacts. Intensity overshoots and jagged edges
are observed in the results by NDL, likely because sym-
metric constraint-based B-spline registration cannot handle
random discontinuous displacements across the temporal
domain. In comparison, the proposed algorithm preserves
clear edges and texture details. It is because the mildly
distorted and sharp frames are selected and a good reference
iamge is obtained in the subsampling stage. As a result, the
proposed algorithm outperforms existing methods.

6.4.3 Extreme case: severely distorted sequence
Most of the frames in the Car sequence are severely dis-
torted, even more so than the Desert and Road sequences.
Moreover, the distortions of the mildly distorted frames
in the Car sequence are stronger than those in the Desert
and Road sequences. The restoration results are shown in
Figure 20. The result produced by the centroid method

is fairly blurry, and its intensity contrast is significantly
lower than other methods. Besides the intensity overshoots,
several regions of the SGL result are noticeably deformed.
The NDL result has fewer deformed regions, but it is rela-
tively blurry, and straight edges are not preserved as well
as the other methods. The proposed algorithm preserves
geometric structure well and produces a clear image with
minimal artifacts. The reason of the proposed algorithm
outperforming the other methods in this extreme case is
that the stabilization stage further suppresses the geometric
deformation of the subsampled sequence. Therefore, a better
registration result is achieved.

6.5 Real experiments

We have also tested our proposed method on two real
turbulence-distorted sequences, namely the Chimney and
Water Tower sequences. A point of interest of real sequences
is that among the two detriments of atmospheric distortion,
blur is much more prominent than geometric deformation.
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(a) (b)

(c) (d)

(e) zoomed (a) (f) zoomed (b) (g) zoomed (c) (h) zoomed (d)

(i) zoomed (a) (j) zoomed (b) (k) zoomed (c) (l) zoomed (d)

Fig. 16: (a) is the 17th frame of original Desert sequence. (b) is
the 17th frame of symmetric constraint-based B-spline regis-
tered sequence [11]. (c) is the 17th frame of stabilized Desert
sequence. (d) is the 17th frame of symmetric constraint-
based B-spline registered sequence after stabilization.

The restoration results of the sequences are shown in Figures
23 and 24.

As texture details in real sequences are mostly blurred,
the ability of reconstruction schemes to extract sharp details
is particularly crucial. In the presence of severely blurred
frames, the Two-stage method cannot preserve texture de-
tails of both sequences and produces blurry results, as
seen in Figure 23(l),(s) and Figure 24(l),(s). The temporal
averaging in the centroid method also smooths out edges

(a) (b)

Fig. 18: (a) is the NDL fusion result of symmetric constraint-
based B-spline registered Desert sequence. (b) is the NDL
fusion result of the stabilized symmetric constraint-based
B-spline registered Desert sequence. The PSNR of (a) and
(b) are 23.4055 and 27.8921 respectively. Note that blind
deconvolution has not been applied to those results.

(a) (b)

(c) (d) (e) (f)

Fig. 19: (a) is the fusion result of subsampled Car sequence.
(b) is the fusion result of the stabilized Car sequence. (c), (e)
and (d), (f) are the zoomed part of (a) and (b) respectively.
The PSNR of (a) and (b) are 29.3634 and 30.3384 respectively.
Note that blind deconvolution has not been applied to those
results.

and sharp features as seen in Figure 23(k),(r). In this aspect,
the Sobolev gradient-Laplacian method and near-diffraction
limited method performs better, and reconstructs results
with sharp details. However, due to varied reasons, the
overall intensity distribution of their results differ from that
of the original sequence. As a result, the pixel intensities
of their results look unnatural. This is exemplified by the
presence of dark strips in Figure 23(j),(m),(q),(t) and Figure
24(j),(q). The proposed algorithm produces images with rel-
atively clear details, and preserves the intensity distribution
of the original frames.

On the other hand, the severity of geometric deformation
in real sequences cannot be underestimated, as exemplified
by Figure 23(b). An ideal reconstruction scheme must accu-
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rately resolve such distortion. In lieu of an absent ground
truth image, we compare the reconstructed results to the
satisfactory original frame Figure 23(a). The near-diffraction
limited method result show noticeable structure difference
from Figure 23(a). The zoomed part Figure 23(m) shows
vertical stretching, and Figure 23(t) highlights an additional
kink on the right. The Two-stage reconstructed result is
too blurry to identify the geometric structure within. In
comparison, our proposed method preserves the geometric
structure as well as the Sobolev gradient-Laplacian method
and the centroid method.

In both of the above aspects, the proposed method is
among the top performers.

7 CONCLUSION

The proposed algorithm produces better-aligned images
compared to existing schemes when geometric deforma-
tion is severe. In addition, depending on the purpose of
the reader, our algorithm can be partially implemented to
suit their needs. For instance, to extract a stabilized video
sequence from a distorted video sequence, the Deforma-
tion Removal algorithm can be applied. If computational
time is essential and the need for sharpness is relaxed,
the references extracted in subsection 5.1 would suffice.
This enables near real-time stabilization of geometrically
deformed video. Moreover, the stabilization scheme can be
used as a prepossessing of registration and obtain a better
registration result.

However, due to the severity of distortions in the ob-
served frames, a feature-matching optical flow scheme is
required to obtain reliable deformation fields. In addition,
numerous optical flow operations are required to obtain
deformation fields. As a result, the algorithm is compu-
tationally expensive. We encourage interested readers to
improve the algorithm and suggest suitable optical flow
schemes.
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