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Abstract. We propose a fast algorithm to approximate the optimal transport distance.
The main idea is to add a Fisher information regularization into the dynamical setting of
the problem, originated by Benamou and Brenier. The regularized problem is shown to
be smooth and strictly convex, thus many classical fast algorithms are available. In this
paper, we adopt Newton’s method, which converges to the minimizer with a quadratic
rate. Several numerical examples are provided.

1. Introduction

Optimal transport distances among histograms play crucial roles in applications, such
as image processing, machine learning, and computer vision [22, 27]. For example, the
metric has been widely used in image retrieval problems [25]. The successful usage of the
metric is mainly due to its many desirable theoretical properties, see [12, 27, 30]. However,
the current computation speed is still not a satisfactory. On one hand, the problem usually
relies on solving a very large dimensional linear program, whose dimension is quadratic in
the support of the histograms. Such a large dimension makes the numerics cumbersome
[10]. On the other hand, an optimal control formulation of the problem has been proposed,
known as the Benamou-Brenier formula [1]. In this setting, the discretized problem is a
constrained minimization, whose dimension is smaller than the one in a linear program.
But its objective function is nonlinear, non smooth, and lacks strict convexity. It also
has inequality constraints, i.e. the density functions are required to be non-negative. All
above facts slow down the speed of computation [24].

Parallel to optimal transport, Schödinger considered a similar problem in 1931 [17] (It is
different from his famous Schödinger equation). Nowadays, such a problem is understood
in the context of optimal transport, which adds the Fisher information into the Benamou-
Brenier formula [2, 5]. The Fisher information is a famous functional in statistical physics
[13] and has interesting connections with diffusion processes and optimal transport distance
[23, 30]. From the viewpoint of computation, it is the regularization term. The regularized
problem enjoys many nice properties, e.g. its minimizer stays positive and converges to
the one of original problem. We give a short review in section 2. However, it is not
straightforward to apply this regularization into computations. The main obstacle here
is that the spatial grids are no longer a length space (a space where one can define the
lengths of curves). Thus many techniques in optimal transport can not be applied.
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In this paper, we overcome the aforementioned difficulties using work in [7, 18], named
discrete optimal transport (Similar work has been discussed in [6, 21]). Based on this, we
form the Fisher information on spatial grids and apply it into the discretized Benamou-
Brenier formula. The regularized minimization is proved to be smooth and strictly convex,
which allows us to apply Newton’s method [16]. Our approach has the following highlights:
(1) It handles the inequality constraints by adding a “particular” barrier, which forces the
minimizer in the interior (density function stays positive) and keeps the objective function
smooth; (2) The regularized objective function is strictly convex and its Hessian matrix
is sparse. These two facts make each update in the algorithm simple, with an overall
quadratic convergence rate.

It is worth mentioning that, although the Fisher information is crucial in many disci-
plines [4, 13], its importance in computation is not well known yet. The Fisher information
in variational problems was started by Edward Nelson [2, 23]. Our discretized problems
share many similarities with Nelson’s work. In addition, the regularizations in optimal
transport have been discussed in the literature [4, 10, 19, 20]. In [10], the regularized
term is the linear entropy among the joint measures. This work adds the term in the
linear program while we put it into the optimal control. Moreover, the computation of the
Benamou-Brenier formula has been discussed in [24] based on proximal splitting methods
[3]. The proximal methods may take thousands of iterations while our Newton’s method
uses only about fifty steps.

The rest of paper is organized as follows: In section 2, we briefly review related problems
in continuous space. We propose and analyze the discrete problem using Newton’s method
in section 3. Numerical examples are provided in section 4.

2. Review

In this section, we briefly review optimal transport distance and its regularized problem.

Optimal transport distance provides a particular metric between two histograms. The
problem was originally proposed by Monge in 1781 and then relaxed by Kantorovich in
1940s as follows: Given two densities ρ0, ρ1 supported on a compact, convex set Ω ⊂ Rd
with equal total mass, and c : Ω× Ω→ R+ a ground cost function. Consider

min
π

∫
Ω×Ω

c(x, y)π(x, y)dxdy , (1)

where the infimum is taken among all joint measures (transport plans) π(x, y) having
ρ0(x) and ρ1(y) as marginals, i.e.∫

Ω
π(x, y)dy = ρ0(x) ,

∫
Ω
π(x, y)dx = ρ1(y) , π(x, y) ≥ 0 .

In numerics, (1) is a well known linear program, and many available techniques can be
used. But they all involve a quadratic number of variables. E.g. if Ω is discretized into
N points, the problem needs to solve a linear program with N2 variables. This is difficult
for applications whenever Ω belongs to a large dimensional space.

An equivalent formulation of (1) was initially introduced by Brenier and Benamou in
2000 [1]. It connects the original problem with an optimal control setting. Associate the
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ground cost c with

c(x, y) := inf
γ
{
∫ 1

0
L(γ̇(t))dt : γ(0) = x , γ(1) = y} , (2)

where the infimum is taken among all possible continuous differentiable paths γ(t) in Ω
and L is assumed to be a strictly convex Lagrangian function. Then the optimal transport
problem (1) can be formulated as

inf
m,ρ

∫ 1

0

∫
Ω
L(
m(t, x)

ρ(t, x)
)ρ(t, x)dxdt , (3)

where the infimum is taken among all Borel flux functions m(t, x) with zero flux condi-
tion and density function ρ(t, x), such that ρ0 is continuously transported to ρ1 by the
continuity equation:

∂ρ(t, x)

∂t
+∇ ·m(t, x) = 0 , ρ(0, x) = ρ0 , ρ(1, x) = ρ1 .

(3) is significant for computations. This is because (3) requires many fewer variables than
(1), e.g. comparing [0, 1]×Ω with Ω×Ω. However, there are several difficulties associated

with (3). One difficulty is that ρ(t, x) may be 0, in which case the function m(t,x)
ρ(t,x) is no

longer smooth. This brings numerical difficulties and traditional optimization methods
are not suitable.

In this paper, we focus on c(x, y) = ‖x − y‖2, ‖ · ‖ is a 2-norm, i.e. L(γ̇) = ‖γ̇‖2. In
this case, the optimal transport distance is called the L2-Wasserstein metric. This choice
of c leads to a connection with the following regularized problem: Parallel to Monge and
Kantorovich, Schrödinger in 1931 discovered a similar transport problem, which is now
called the Schrödinger bridge problem (SBP).

To illustrate, we focus on SBP in an optimal control setting: Given two strictly positive
densities ρ0, ρ1 with equal mass, consider

inf
m,ρ

∫ 1

0

∫
Ω

m2(t, x)

ρ(t, x)
dxdt , (4)

where the infimum is taken among all drift flux function m(t, x) with zero flux boundary
condition and density function ρ(t, x) with Neumann boundary condition, such that the
Fokker-Planck equation holds

∂ρ

∂t
+∇ ·m(t, x) = β∆ρ , ρ(0, x) = ρ0 , ρ(1, x) = ρ1 .

The only difference between the optimal transport problem (3) and SBP (4) is the
diffusion term in the controlled dynamical system. Recently many rigorous connections
have been discovered. It was shown that the optimal value and minimizer of SBP converge
to those of the L2-Wasserstein metric as β → 0 in certain sense, see a review in [17]. Thus
one may consider (4) as a regularized approximation of (3).

More importantly, there is an equivalent and crucial formulation of (4) discovered in
[5, 29], which is essential for the computations throughout this paper. Consider

inf
m,ρ

∫ 1

0

∫
Ω
{m

2(t, x)

ρ(t, x)
+ β2(∇ log ρ(t, x))2ρ(t, x)}dxdt+ 2βD(ρ1|ρ0) , (5)
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where the infimum is taken among all flux function m(t, x) and density function ρ(t, x),
such that the continuity equation holds

∂ρ

∂t
+∇ ·m(t, x) = 0 , ρ(0, x) = ρ0 , ρ(1, x) = ρ1 .

Herem, ρ satisfies the same boundary conditions as in (4) andD(ρ1|ρ0) :=
∫

Ω ρ
1(x) log ρ1(x)dx−∫

Ω ρ
0(x) log ρ0(x)dx . Since the boundary densities ρ0, ρ1 are fixed, we treat D as a constant

in (5).

Derivation of (5). The main idea relating between (4) and (5) involves a change of vari-
able. Construct a new flux function m(t, x) to represent the one m(t, x) in (4):

m(t, x) = m(t, x)− β∇ρ(t, x) . (6)

Substituting m(t, x) into (4), the problem is as follows. First, the Fokker-Planck equation
is rewritten in terms of m by a continuity equation:

∂ρ

∂t
+∇ ·m− β∆ρ =

∂ρ

∂t
+∇ ·m = 0 .

Second, following the observation

∇ρ = ρ∇ log ρ ,

the SBP’s cost functional becomes∫ 1

0

∫
Ω

m2

ρ
dxdt =

∫ 1

0

∫
Ω

(m + β∇ρ)2

ρ
dxdt =

∫ 1

0

∫
Ω

(m + βρ∇ log ρ)2

ρ
dxdt

=

∫ 1

0

∫
Ω
{m

2

ρ
+ β2(∇ log ρ)2ρ+ 2βm · ∇ log ρ}dxdt .

We claim that the coefficient of β is a constant. Since∫ 1

0

∫
Ω
m · ∇ log ρdxdt

=−
∫ 1

0

∫
Ω

log ρ∇ ·mdxdt Integration by parts w.r.t. x

=

∫ 1

0

∫
Ω

log ρ
∂ρ

∂t
dxdt =

∫
Ω

∫ 1

0
log ρ

∂ρ

∂t
dtdx Fubini’s theorem

=

∫
Ω
ρ log ρ|t=1

t=0dx−
∫ 1

0

∫
Ω
ρ
∂

∂t
log ρdxdt Integration by parts w.r.t t

=

∫
Ω
{ρ1 log ρ1 − ρ0 log ρ0}dx−

∫ 1

0

∫
Ω

1

ρ
· ρ · ∂ρ

∂t
dxdt

=

∫
Ω
{ρ1(x) log ρ1(x)− ρ0(x) log ρ0(x)}dx

=Constant

where the second last equality comes from the spatial integration by parts: notice that m
has a zero flux condition, then

∫
Ω
∂ρ
∂t dx = −

∫
Ω∇ ·mdx = 0. Combining the above three

steps and denoting m by m, we finish the derivation. �
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(5) is the main problem considered in this paper. In this formulation, the main difference
between (3) and (5) is

I(ρ) =

∫
Rd

(∇ log ρ(x))2ρ(x)dx ,

which is named Fisher information. In physics and engineering studies, I is a fundamen-
tal functional [13]. Nice properties involving Fisher information, diffusion processes and
optimal transport theory have been discussed [30]. Here we apply Fisher information as
the regularized term, and focus on its following numerical advantages:

(i) I keeps the density function strictly positive in the minimization;
(ii) I brings strict convexity to the original optimal transport problem.

In next section, we shall design a fast and simple algorithm to solve (5), and adopt its
solution to approximate the one in L2-Wasserstein metric. This idea can be generalized
for any ground cost c, see details in the discussion section.

3. Algorithm

In this section, we form (5) as a finite dimensional minimization problem using the
discretization developed in [7, 8, 14, 18]. The discretized problem is shown to be smooth
and strictly convex, so that Newton’s method can be applied.

3.1. Problem formulation. We start with applying a finite graph to discretize the spa-
tial domain Ω ⊂ Rd. For concreteness, assume that Ω = [0, 1]d and G = (V,E) is a uniform
lattice graph with equal spacing ∆x = 1

n on each dimension. Here V is a vertex set with

N = (n+ 1)d nodes, and each node, i = (ik)
d
k=1 ∈ V , 1 ≤ k ≤ d, 0 ≤ ik ≤ n, represents a

cube with length ∆x:

Ci(x) = {(x1, · · · , xd) ∈ [0, 1]d : |x1 − i1∆x| ≤ ∆x/2, · · · , |xd − id∆x| ≤ ∆x/2} ;

E is an edge set, where i+ ev
2 := edge(i, i+ ev) and ev is a unit vector at v-th column.

Denote a discrete probability set

P(G) = {p = (pi)i∈V :
∑
i∈V

pi = 1 , pi ≥ 0 , i ∈ V } ,

where pi represents a probability on node i, i.e.

pi ≈
∫
Ci(x)

ρ(x) dx ,

where ρ(x) is the density function in continuous space. The interior of P(G), the set of all
strictly positive measures, is denoted by Po(G). Assume two given measures p0 = (p0

i )i∈V ,
p1 = (p1

i )i∈V ∈ Po(G).

Let the discrete flux function be m = (mi+ ev
2

)i+ ev
2
∈E , where mi+ ev

2
represents the

discrete flux on the edge i+ ev
2 , i.e.

mi+ ev
2
≈
∫
Ci+ ev

2
(x)
mv(x) dx ,
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where m(x) = (m1(x), · · · ,mv(x), · · · ,md(x)) is the flux function in continuous space.
The discrete zero flux condition is described as follows:

mi+ ev
2

= 0 , if i = (ik)
d
k=1 with ik = 0 or n, for k = 1, · · · , d .

We propose the cost functional and constraint for (5) by using the following definitions.
The discrete divergence operator is:

div(m)|i =
1

∆x

d∑
v=1

(mi+ 1
2
ev
−mi− 1

2
ev

) .

The discretized cost functional needs special treatment [7, 8]. Take the kinetic energy

K(m, p) =
∑

i+ ev
2
∈E

m2
i+ 1

2
ev

gi+ 1
2
ev

,

and the discrete Fisher information

I(p) :=
∑

i+ ev
2
∈E

1

∆x2
(log pi − log pi+ev)2gi+ 1

2
ev
,

where gi+ 1
2
ev

:= 1
2(pi + pi+ev) is the discrete probability on edge i + ev

2 ∈ E, which is a

simple average of discrete measures supported at nodes i and i+ ev. The choice of gi+ 1
2
ev

is not unique. For example, it can be a logarithmic mean of pi, pi+ev . But representing
probabilities as a weight on the edge is necessary, since it allows the discrete integration
by parts formula with respect to a discrete measure, see [7] for details.

We further introduce a time discretization. The time interval [0, 1] is divided into L
intervals with endpoints tl = l ∗∆t, ∆t = 1

L+1 , l = 0, 1, · · · , L, L+ 1. Thus ρ(t, x), m(t, x)

are represented by p = (pi,l) ∈ R|V |L, m = (mi+ ev
2
,l) ∈ R|E|L, where 1 ≤ i ≤ N, 1 ≤ l ≤ L

and |V |, |E| are numbers of vertices, edges respectively.

Combining the above spatial discretization and a forward finite difference scheme on
time variable, we arrive at the discretized Schrödinger bridge problem:

min
m,p

L∑
l=1

∑
i+ ev

2
∈E

{
m2
i+ ev

2
,l

(pi,l + pi+ev ,l)/2
+

β2

∆x2
(log pi,l − log pi+ev ,l)

2 pi,l + pi+ev ,l
2

}

subject to

pi,l ≥ 0 ;

pi,l+1 − pi,l
∆t

+
1

∆x

d∑
v=1

(mi+ 1
2
ev ,l
−mi− 1

2
ev ,l

) = 0 ;

pi,0 = p0
i , pi,L+1 = p1

i , i ∈ V , l = 1, · · · , L .
(7)

3.2. Properties of the discretized problem. (7) is a finite dimensional optimization
problem, which contains both equality and inequality constraints. We demonstrate that
the discrete Fisher information plays the role of penalty function, which is similar to the
one used in barrier methods for constrained optimization.
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For simplicity, we denote (7) by

min {
T∑
l=1

K(m, p)|l + β2I(p)|l : (m, p) ∈ Θ} ,

where the notation |l represents the cost functional at time tl, and the constraint set forms

Θ = {(m, p) ∈ R|E|L × R|V |L : (m, p) satisfies (7)} .
The interior of the feasible set Θ is

interior(Θ) = {(m, p) : (m, p) ∈ Θ and pi,l > 0, for any i ∈ V , l = 1, · · · , L} .

In the following theorem, we show that (7) has certain good properties, which allows
us to apply Newton’s method [16].

Theorem 1. The objective function of problem (7) is strictly convex for (m, p) ∈ interior(Θ).
Moreover, the minimizer (m∗, p∗) ∈ interior(Θ) is unique.

The main idea of the proof is as follows. Since the objective function is a summation of
functions on each time tl, we only need to estimate K(m, p) + β2I(p), where p represents

a vector in R|V | for fixed level l.

(1) We show that I becomes positive infinity on the boundary of the probability set.
This lets us to conclude that the minimizer is obtained in the interior(Θ).

Lemma 2. I(p) = +∞, if p ∈ P(G) \ Po(G).

(2) We prove strict convexity of the objective function in the interior(Θ).

Lemma 3. K(m, p) + β2I(p) is strictly convex in the interior(Θ).

We let N(i) represent the adjacent set in G, neighborhood of node i, i.e. N(i) = {j ∈
V : edge(i, j) ∈ E}.

Proof of Lemma 2. We show that I(p) is positive infinity on the boundary, i.e.

lim
mini∈V pi→0

I(p) = +∞ .

Suppose the above is not true, there exists a constant M > 0, such that if there exists
some i∗ ∈ V , pi∗ = 0, then

M ≥ I(p) =
∑

i+ ev
2
∈E

1

∆x2
(log pi − log pi+ev)2 pi + pi+ev

2

≥
∑

i+ ev
2
∈E

1

∆x2
(log pi − log pi+ev)2 1

2
max{pi, pi+ev} .

(8)

Each term in (8) is non-negative, thus

(log pi − log pi+ev)2 max{pi, pi+ev} ≤ 2M < +∞ ,

for any edge(i, i+ ev) ∈ E. Since pi∗ = 0, the above formula further implies that for any
ĩ ∈ N(i∗), pĩ = 0. This is true since if pi∗ 6= 0, we have

lim
pi∗→0

(log pi∗ − log pĩ)
2 max{pi∗ , pĩ} = +∞ .
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Similarly, we show that for any nodes ˜̃i ∈ N (̃i), p˜̃i
= 0. We iterate the above steps a finite

number of times. Since the lattice graph is connected and the set V is finite, we obtain
pi = 0, for any i ∈ V . This contradicts the assumption that

∑
i∈V pi = 1, which finishes

the proof. �

Proof of Lemma 3. We prove that K(m, p) + β2I(p) is strictly convex in the interior(Θ)
by the following two steps.

First, we show that I(p) is strictly convex in the variable p with a constraint
∑

i∈V pi =
1, pi > 0, for any i ∈ V . We shall show

min
σ
{σTIppσ : σTσ = 1 ,

∑
i∈V

σi = 0} > 0 . (9)

Here Ipp = ( ∂2

∂pi∂pj
I(p))i∈V,j∈V ∈ R|V |×|V |, and

∑
i∈V σi = 0 is the constraint for p lying

on the simplex set Po(G).

By direct computations,

∂2

∂pi∂pj
I(p) =


− 1
pipj

1
∆x2

tij if j ∈ N(i) ;
1
p2i

∑
k∈N(i)

1
∆x2

tik if i = j ;

0 otherwise ,

(10)

where

tij = (pi − pj)(log pi − log pj) + (pi + pj) > 0 .

Hence

σTIpp(p)σ =
1

2

∑
(i,j)∈E

tij{(
σi
pi

)2 + (
σj
pj

)2 − 2
σi
pi

σj
pj
}

=
1

2

∑
(i,j)∈E

tij(
σi
pi
− σj
pj

)2 ≥ 0 ,

where 1
2 is due to the convention that each edge (i, j) ∈ E is summarized twice.

We next show that the strict inequality in (9) holds. Suppose (9) is not true, there
exists a unit vector σ∗ such that

σ∗TIppσ∗ =
1

2

∑
(i,j)∈E

tij(
σ∗i
pi
−
σ∗j
pj

)2 = 0 .

Then
σ∗1
p1

=
σ∗2
p2

= · · · σ
∗
n

p|V |
. Combining this with the constraint

∑
i∈V σ

∗
i = 0, we have

σ∗1 = σ∗2 = · · · = σ∗|V | = 0, which contradicts that σ∗ is a unit vector. �

Secondly, we prove that K(m, p) + β2I(p) is strictly convex in (m, p). Since (m, p) is in
the interior, we have pi > 0, thus the objective function is smooth. We shall show that

λ(m, p) > 0 , for any (m, p) ∈ interior(Θ) ,

where

λ(m, p) := min
h,σ

(
h
σ

)T
{
(
Kmm Kmp
Kpm Kpp

)
+ β2

(
0 0
0 Ipp

)
}
(
h
σ

)
(11)
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subject to

h ∈ R|E|, σ ∈ R|V | , hTh+ σTσ = 1 ,
∑
i∈V

σi = 0 .

Here λ(m, p) is the smallest eigenvalue of Hessian matrix for the objective function on the
interior of constraint Θ, with tangent vectors (h, σ).

We show that K(m, p) is a smooth, convex function in interior of Θ. We have

K(m, p) =
∑

i+ ev
2
∈E

2m2
i+ ev

2

pi + pi+ev
.

Since x2

y is convex when y > 0 and pi + pi+ev is concave on variables pi, pi+ev > 0. Then

K is convex. From (9), we have

J (h, σ) :=

(
h
σ

)T (Kmm Kmp
Kpm Kpp

)(
h
σ

)
+ β2σTIppσ ≥ 0 . (12)

We claim that the inequality in (12) is strict. Suppose there exists (h∗, σ∗), such that (12)
is zero, i.e.

J (h∗, σ∗) = 0 .

In this case, from (9), σ∗ = 0 . Thus (12) forms

J (h∗, σ∗) = h∗TKmmh∗ = 0 .

Since Kmm = diag( 4
pi+pi+ev

)i+ ev
2
∈E is strictly positive, we have h∗ = 0, which contradicts

the fact that hTh+ σTσ = 1.

Proof of Theorem 1. It is now easy to prove Theorem 1. From Lemma 2, we know the
minimizer of (7) is taken in the interior of the constraint set. Following Lemma 3, (7) has
a unique minimizer. �

3.3. Algorithm. We are ready to present the proximal Newton’s method for (7) based on
Theorem 1. The general setting of the proximal Newton’s method is as following. Let us
concatenate m and p together and introduce the new variable u = (m, p)T ∈ R|E|L+|V |L.
The problem (7) can be then formulated as

min
u

f(u) subject to Au = b , p ≥ 0 ,

where f : R|E|L+|V |L → R+ is the objective function of (7), A ∈ R|E|L+|V |L, b ∈ R|V |L
are used for representing linear constraints of (7), and p ≥ 0 enforces pi,l ≥ 0.

At the k-th iteration, the proximal Newton’s method first minimizes the quadratic
approximation of f around uk by ignoring a constant:

min
u

(u− uk)T∇f(uk) +
1

2
(u− uk)THk(u− uk) subject to Au = b ,

where Hk ∈ R(|E|L+|V |L)×(|E|L+|V |L) is the Hessian matrix of f at uk. Because Auk = b,
the above constrained optimization is equivalent to solving

dk = arg min
d

dT∇f(uk) +
1

2
dTHkd subject to Ad = 0 . (13)
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Then dk serves as the search direction, and uk+1 is updated as

uk+1 = uk + αkd
k

with some step size αk > 0.

In addition, there are several important computational remarks. First, a feasible solu-
tion u0 = (m0, p0) ∈ Θ is needed. This can be done using the following approach:

(1) Consider p0 as the time linear interpolation of p0, p1:

p0
i,l = (1− tl)p0

i + tlp
1
i ; (14)

(2) Construct the discrete flux function m by a discrete gradient function. Denote a

vector Φ ∈ R|V |L. We form

m0
i+ ev

2
,l = Φi+ev ,l − Φi,l , (15)

where Φ satisfies

p0
i,l+1 − p0

i,l

∆t
+

d∑
v=1

∑
i+ ev

2
∈E

(Φi+ev ,l − Φi,l) = 0 .

By solving the above linear equations, m0 is uniquely determined.

Under this approach, p0
i,l > 0 since (14) holds when p0

i , p
1
i are positive. Thus (m0, p0) ∈

interior(Θ).

Second, A is the discrete divergence operator, w.r.t. (t, x). The projection operator to
(7)’s linear constraint, used in initialization and Newton step (13), can be dealt with by
solving a discrete elliptic equation, where the fast Fourier transform method is available
[24].

Last, the Hessian matrix Hk is a highly sparse matrix. This is because the objective
function f is a summation of each spatial (edge) and time level. Thus the nonzero entries
of Hessian matrix exist only on each edge and time level tl. This is especially true for the
Hessian operator of Fisher information reported in (10).

Based the above discussion, the proposed algorithm is as follows:

Proximal Newton Method for Wasserstein metric
Input: Discrete probabilities p0, p1;

Parameter β > 0, step size αk ∈ (0, 1), discretization parameters ∆x, ∆t,
θ ∈ [0, 1].

Output: The minimizer u∗ = (m∗, p∗) and minimal value f(u∗).

0. Follow (14), (15) find a feasible path u0 = (m0, p0)T ;
1. for k = 1, 2, · · · while not converged
2. dk = arg mind d

T∇f(uk) + 1
2d

THkd subject to Ad = 0 ;
3. uk+1 = uk + αkd

k .
4. end
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Based on Theorem 1, the minimizer of (7) is taken in the interior of Θ, in which f
is smooth and strongly convex (in the neighborhood of minimizer). The computational
cost per iteration lies in the quadratic programming subproblem in line 3, where we can
take advantage of the sparsity of Hk. The proximal Newton method has q-quadratic
convergence rate when the objective function is strongly convex and step size is chosen
sufficiently small. We refer readers to [16] for details.

Remark 1. Here the strict positivity condition on p0, p1 can be relaxed. The optimization
problem (7) is still valid even if p0, p1 are not strictly positive. In this case, Theorem 1
ensures that the computed path pi,l is strictly positive, for 1 ≤ l ≤ L.

Remark 2. It is also worth noting that the Fisher information introduces an important
convexity into minimization (7), see details in (12). This is because that the Hessian
matrix of Fisher information, shown in (10), introduces a graph Laplacian like matrix,
whose smallest positive eigenvalue ensures the quadratic convergence rate of the proposed
Newton’s method.

4. Numerical examples

In this section, we present several numerical examples using MATLAB to demonstrate
the effectiveness of the proposed method. Throughout the experiments, we adopted a step
size αk ≡ 0.3, and the following stopping criterion for the algorithm

|f(uk+1)− f(uk)|
|f(uk)|

< 10−5.

We used regularization parameter β2 = 10−6 for all experiments except β2 = 10−5 in
Example 3. We show curves of objective values versus iteration number for all examples,
and plot the status of the density at different time.

We first show a one-dimensional synthetic example. Specifically, we consider the densi-
ties

p0
i = exp

(
−(xi − 0.4)2

0.01

)
+ 0.01, p1

i = exp

(
−(xi − 1.6)2

0.01

)
+ 0.01,

on the interval [0, 2]. The space and time were discretized uniformly with N = 40 and
T = 50 with xi = i

20 . We normalized p0 and p1 so that
∑

i∈V p
0
i =

∑
i∈V p

1
i = 1.

The second example is similar to example 1, but in a two-dimensional case. Let

p0
i = exp

(
−‖xi − (0.2, 0.5)‖2

0.01

)
+ 0.01, p1

i = exp

(
−‖xi − (1.5, 1.5)‖2

0.01

)
+ 0.01

be defined on [0, 2]× [0, 2]. We adopted spatial and time discretization with N = 202 and
T = 30, xi = ( i110 ,

i2
10), and normalized the densities so that

∑
i∈V p

0
i =

∑
i∈V p

1
i = 1.
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Figure 1. Curves of objective value versus iteration numbers for Example
1 (left) and Example 2 (right).
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Figure 2. The density p at different time. Left: contour plots of p in
Example 1. Right: contour plots of p in Example 2.

In what follows, we present two gray-scale image examples. In Example 3, a square
is smoothly split into two; see Fig. 4. In the last example, we used two images from
the MNIST database of handwritten digits [15]. One is a image of handwritten ‘4’ and
the other is ‘1’. The images are of size 28 × 28, and the time space is discretized using
L = 30. The results are shown in Fig. 3 and 5. It can be seen that the initial image is
continuously transported to the other. As we have observed, adding Fisher information
(diffusion process) reduces the number of computation iterations drastically. However it
also blurs each frame of the movie. One can use further image denoising techniques to
remove the noise in each frame, e.g. [26].
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Figure 3. Curves of objective value versus iteration numbers for Example
3 (left) and Example 4 (right).

t = 0 t = 1/5 t = 2/5

t = 3/5 t = 4/5 t = 1

Figure 4. Motions for Example 3
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Figure 5. Motions for MNIST example

5. Discussion

In this paper, we proposed a new model for L2-Wasserstein metric using regulariza-
tion via Fisher information. The regularized term brings strict convexity to the original
problem and handles its inequality constraints.

In fact, the Fisher information can be used for computations of optimal transport dis-
tance with a generalized ground cost. E.g. associating c with a Lagrange function L in
(2), we introduce a regularized minimization:

inf
m,ρ
{
∫ 1

0

∫
Ω

[L(
m

ρ
)dx+ β2I(ρ)]dxdt :

∂ρ

∂t
+∇ ·m = 0 , ρ(0, x) = ρ0 , ρ(1, x) = ρ1} ,

where β is a small positive constant and I is the Fisher information. In this case, a
discretized problem similar to (7) can be introduced, and Theorem 1 holds under suitable
conditions of L.

In future work, we shall continue to study some theoretical questions introduced by
the model. E.g. (1) How does the discretized minimization approximate the continuous
limit? (2) For general ground cost, what is the effect of Fisher information on the original
problem’s minimizer and minimal value when β goes to zero.

Acknowledgement: We would like to thank Professors Shui-Nee Chow, Wilfrid Gangbo
and Haomin Zhou for many discussions on related topics.
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[22] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet and J. Virieux. Measuring the misfit between seis-

mograms using an optimal transport distance: application to full waveform inversion. Geophysical
Journal International, (205) 1: 345–377, 2016.

[23] Edward Nelson. Derivation of the Schrödinger Equation from Newtonian Mechanics, Physical Review
150 (4): 1079, 1966.
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