
AUCTION DYNAMICS:
A VOLUME CONSTRAINED MBO SCHEME

MATT JACOBS , EKATERINA MERKURJEV , AND SELIM ESEDOḠLU

Abstract.
We show how auction algorithms, originally developed for the assigment problem, can be utilized
in Merriman, Bence, and Osher’s threshold dynamics scheme to simulate multi-phase motion by
mean curvature in the presence of equality and inequality volume constraints on the individual
phases. The resulting algorithms are highly efficient and robust, and can be used in simulations
ranging from minimal partition problems in Euclidean space to semi-supervised machine learning
via clustering on graphs. In the case of the latter application, numerous experimental results on
benchmark machine learning datasets show that our approach exceeds the performance of current
state-of-the-art methods, while requiring a fraction of the computation time.

1. Introduction. Threshold dynamics, also known as the MBO algorithm, is a
very efficient algorithm for approximating motion by mean curvature of an interface
or network of interfaces. Originally introduced by Merriman, Bence and Osher in [33],
the algorithm generates a discrete in time approximation to mean curvature motion
by alternating between two simple steps: convolution with a kernel and pointwise
thresholding. The principal advantages of the algorithm are: implicit representation
of the interface as in the phase field or level set methods, allowing for graceful handling
of topological changes; unconditional stability, where the time step size is restricted
only by accuracy considerations; and very low per time step cost when implemented
on uniform grids.

The goal of this paper is to extend the MBO algorithm and its many beneficial
properties to the case of multiphase volume constrained curvature motion. Volume
constrained curvature motion arises as L2 gradient descent for the perimeter of sets
functional with the additional proviso that each set must preserve certain volume
constraints. As a result, volume constrained curvature motion is central to many
interesting problems and applications; for example, finding equal volume tilings of
space with minimal surface area (still an open problem in 3 dimensions), and volume
constrained segmentation problems in computer vision and machine learning.

We obtain our scheme by appealing to a variational framework for the MBO
algorithm developed by Esedoḡlu and Otto in [13]. The framework is based on the
heat content energy, a non-local approximation to the perimeter of sets functional.
Esedoḡlu and Otto showed that each step of the MBO algorithm is equivalent to
minimizing the linearization of the heat content at the current configuration, which
may be interpreted as a minimizing movements scheme for the energy. This simple
variational approach gives a powerful tool to generalize threshold dynamics to a wide
variety of situations, including curvature motion of a multiphase network with non-
constant surface tensions [13, 12, 15], segmentation problems on graphs [45, 15, 23],
and in this paper to volume constrained curvature flow.

Applying the variational approach to our current situation essentially entails min-
imizing linearizations of the heat content energy subject to certain volume constraints.
Interestingly, the resulting minimization problem is equivalent to a famous combina-
torial optimization problem, the assignment problem. The assignment problem is a
member of a special family of linear programming problems known as minimum cost
flow problems. These problems have many practical applications, such as finding the
most efficient route to transport goods across a road network, and finding the best
way to allocate resources among a population.

1



There are many well-known algorithms for solving the assignment problem. We
choose to solve the problem using variants of the auction algorithm introduced by
Bertsekas in [5]. Our resulting scheme consists of alternating two steps: convolution
with a kernel, and assigning set memberships via an auction; hence the name auc-
tion dynamics. There are many reasons for favoring the auction approach. Auction
algorithms are easy to code and have an intuitive structure. In practice, the compu-
tational complexity of the auction step scales similarly to the convolution step, thus
preserving the efficiency of the original approach. Furthermore, the auction mecha-
nism can be generalized to handle the most complex volume constraints, where each
set must satisfy upper and lower volume bounds.

The remainder of the paper is organized as follows. We conclude the introduc-
tion with a summary of our contributions. Next, in Section 2, we give a summary
of previous work. In Section 3, we dive into the heart of the matter, the auction
dynamics algorithm. In particular, we give a detailed exploration of the assignment
problem and auction algorithms, and develop the auction variants needed for auction
dynamics. With the algorithm in hand, we consider two different applications of auc-
tion dynamics. In Section 4, we use auction dynamics to compute several examples of
volume preserving curvature flow in two and three dimensions. In Section 5, we apply
auction dynamics to the semi-supervised learning problem, a well-known clustering
problem in machine learning. Finally, we wrap up the paper with a brief conclusion
in Section 6.

Contributions. The following is a summary of the present paper’s contributions:

• We show how highly efficient auction algorithms of Bertsekas et. al. can be
utilized to solve an assignment problem that naturally arises in Merriman,
Bence, and Osher’s multi-phase threshold dynamics scheme in the presence
of constraints on the volumes of individual phases.
In particular, our work establishes a natural role for auction algorithms in
simulating geometric motion, such as multi-phase volume preserving motion
by mean curvature – a connection that was previously unnoticed.

• For certain applications, such as semi-supervised machine learning, it is more
realistic to impose upper and lower bounds on the volumes of phases than
strict equality constraints. In Section 3.3, we present an extension of the
auction algorithm to assignment problems with inequality constraints.
In turn, the new auction algorithm yields a version of the MBO scheme for
approximately solving minimal partition problems with inequality constraints
on the volumes of the phases.

• The new algorithms presented are unconditionally stable, and impose the
(equality or otherwise) volume constraints exactly at every iteration, re-
gardless of the time step size. Neither their complexity nor their accuracy in
satisfying the volume constraints depends on the smoothness of the interfaces.
As such, the algorithms are equally at home in Euclidean space as they are
on abstract graphs.

• In Section 4, the new algorithms are demonstrated on volume preserving
multi-phase motion by mean curvature in 2D and 3D. In some of the 3D exper-
iments with equal volume constraints on the phases, the new algorithms are
able to find the currently known best candidate for the minimal equal-volume
partition, the Weaire-Phelan structure, starting from a randomly shifted cu-
bic lattice as the initial condition.

2



• In Section 5, the new algorithms are demonstrated in the context of semi-
supervised machine learning via clustering (based on minimal partitions) on
graphs. On benchmark data sets such as the MNIST hand written digits
data set, the algorithms allow us to demonstrate that volume constraints,
even in the form of fairly loose inequality constraints, result in dramatic
improvements in the accuracy of recognition. In addition, the efficiency of
the new algorithms means completing the recognition task in a fraction of
the time taken by alternative techniques.

2. Previous Work. There are a number of related numerical schemes for volume
preserving versions of motion by mean curvature in the literature, mostly restricted to
the two-phase setting. Here, we briefly discuss the closest ones and highlight essential
differences.

Volume preserving mean curvature motion incurs the normal speed v⊥ = κ − κ̄
for each phase with piecewise smooth boundary, where κ denotes mean curvature and
κ̄ its average over the boundary of that phase. A typical computational approach, e.g.
in the level set [37] literature, is a literal implementation of this normal speed, which
entails approximating the mean curvature and its average explicitly, see e.g. [38, 50].
As noted in [42], the approximation of the average curvature especially is prone to
inaccuracies and can lead to an accumulation of errors. Instead, [42] notes that it can
be regarded as a Lagrange multiplier for the volume constraint, the appropriate value
of which can be determined by e.g. a line search procedure so that the constraint is
satisfied exactly at the end of the time step; it then demonstrates how to implement
this in the two-phase setting using threshold dynamics, thus resulting in an uncondi-
tionally stable algorithm (unlike its level set counterparts). The convergence of this
scheme was studied in [28] along with a simple extension from [1] to the multiphase
case where only one phase must satisfy a volume constraint. In [43], another explicit
time stepping level set approach, the Lagrange multiplier is estimated in terms of
the surface area and the mismatch in the constraint at the beginning of a forward
Euler time step. It is then observed that the constraint is approximately satisfied in
simulations in R2 and R3.

In this work, with an eye towards applications such as machine learning that are
formulated in the context of abstract graphs on which one may not speak of let alone
assume “smoothness” of interfaces, we seek unconditionally stable algorithms that
impose the volume constraint exactly, regardless of the time step size, by computing
the precise value of the Lagrange multipliers in the multi-phase setting. In [12, 47],
it is shown that in the two-phase situation, the search for the multiplier in [42] can
be replaced by a sort operation that allows satisfying the volume constraint exactly,
without assuming anything about the interface, even in the context of clustering on
graphs. In this paper, we present a similarly efficient, robust, and exact algorithm in
the full generality of the multi-phase setting.

Threshold dynamics has been previously utilized for solving minimal partition
problems in several contexts. In computer vision, threshold dynamics has been used
for image segmentation in [14] via the Mumford-Shah model. In machine learning,
graph based analogues of threshold dynamics have been introduced and used to solve
the semi-supervised learning problem [4, 17] (see [32] for additional applications). [45]
formulates some of the theory in [13] in the graph context, and [15, 23] contain some
extensions that may be useful for that setting. Finally, the effect of volume constraints
on classification accuracy for many of the benchmark data sets we present in Section
5 were recently explored in [2] using different numerical methods.

3



3. Auction Dynamics. Given a torus D = [0, 1]d, an N-phase partition Σ =

(Σ1, . . . ,ΣN ) of D is a collection of subsets Σi ⊂ D satisfying
⋃N
i=1 Σi = D and

Σi∩Σj = ∂Σi∩∂Σj . Our goal is to compute volume constrained curvature motion of
the network of interfaces {∂Σi ∩ ∂Σj}i 6=j . To set the stage, the unconstrained motion
arises as gradient descent for the potentially anisotropic surface energy:

(1) E(Σ,σ) =
∑
i6=j

∫
∂Σi∩∂Σj

σij(n(x))dHd−1(x),

where n(x) is the outward unit normal to a given interface at the point x, and
σij : Rd → R are the surface tensions, a collection of potentially anisotropic norms,
σij(n) = σji(n). We will restrict our attention to the special case where the surface
tensions σij are all constant multiples of the same norm (i.e. σij(n) = cijσ(n) for
some collection of constants c > 0). Under this assumption, it is natural to impose a
triangle inequality on the surface tension constants

(2) cij + cjk ≥ cik for all i, j, k pairwise distinct,

which in this case is equivalent to the lower semi-continuity of the surface energy (1).
The foundation of our approach is the variational framework for the MBO scheme

introduced in [13]. The framework is based upon a non-local approximation to (1), the
heat content energy. The heat content energy is defined on KN , the convex relaxation
of the space of N -phase partitions of D,

(3) KN = {u : D → [0, 1]N :

N∑
i=1

ui(x) = 1}.

For some u ∈ KN , a convolution kernel K, a time step δt, and constants cij the heat
content is given by

(4) HC√δt(u, c) =
1√
δt

N∑
i,j=1

cij

∫
D

ui(x)(K√δt ∗ uj)(x)dx

where K√δt(x) = 1
(δt)d/2

K(x/
√
δt). If u is the characteristic function of a partition

Σ then as δt→ 0 the heat content energy converges pointwise to

(5)
∑
i 6=j

cij

∫
∂Σi∩∂Σj

σK(n(x))dHd−1(x)

where σK(n) =
∫
Rd |x ·n|K(x)dx, thus explaining the connection between the surface

energy (1), the heat content (4), and the convolution kernel K [13]. See [16] for
explicit kernel constructions that induce a given surface norm σ.

At the heart of [13] is the discovery that the MBO algorithm may be derived by
successively minimizing linearizations of the heat content energy. Let Lδt(u, ·) be the
linearization of (4) at some u ∈ KN . Then the authors of [13] recover and generalize
the MBO scheme by considering the following iteration

(6) uk+1 = arg min
u∈KN

Lδt(u
k,u).

We can see the connection to the MBO scheme by explicitly solving (6). Let

(7) ψki (x) =
∑
j 6=i

cj,i(Kδt ∗ uj)(x),

4



then up to a constant factor the linearization is given by

(8) Lδt(u
k,u) =

N∑
i=1

∫
D

ψki (x)ui(x)dx.

It is easy to see that the global minimum, uk+1 ∈ KN , is the characteristic function
of a partition Σ = (Σ1, . . . ,ΣN ) given by pointwise thresholding

(9) Σk+1
i = {x ∈ D : i = arg min

1≤j≤N
ψkj (x)} for all 1 ≤ i ≤ N.

When the surface tensions are constant (i.e. cij = c for all i 6= j), the steps (7), cal-
culating convolution values, and (9), pointwise thresholding, are precisely the classic
MBO algorithm.

We now wish to extend the variational framework of the heat content energy to
volume constrained MBO schemes. We begin by considering the simplest case where
each phase must satisfy a volume equality constraint. Suppose we have a partition Σ
where each phase has some volume m(Σi) = vi with respect to the Lebesgue measure
m on D. The natural approach is to solve iteration (6) with the additional constraint
that the volume of each phase must stay fixed. Thus, the thresholding step is instead
replaced with the following minimization problem

(10) arg min
u∈KN

N∑
i=1

∫
D

ψki (x)ui(x)dx s.t.

∫
D

ui(x)dx = vi.

If we incorporate the volume constraints with a Lagrange multiplier λ, we see that
the solution to (10) is a partition Σ given by a λ∗ shifted thresholding

(11) Σi = {x ∈ D : i = arg min
1≤i≤N

ψi(x)− λ∗i },

where λ∗ is the optimal Lagrange multiplier. It then follows essentially immediately
from [41] that the scheme is consistent with volume preserving weighted curvature
flow. Furthermore, if K̂ ≥ 0 and the surface tension matrix C defined in (12) is con-
ditionally negative semi-definite (CNSD i.e. negative semi-definite on the orthogonal
complement of the vector of all 1’s)

(12) Cij =

{
0 if i = j,

cij otherwise

then the scheme is also unconditionally stable [13]. In what follows, we will assume
that the surface tension constants c > 0 satisfy the triangle inequality (2) and the
CNSD matrix condition. These conditions admit a large class of interesting surface
tensions, including Read-Shockley surface tensions (see [13] for a further discussion of
admissible surface tension constants).

While the scheme thus far seems straightforward, computing the optimal Lagrange
multiplier λ∗ is nontrivial if N > 2. This task is particularly difficult if one insists
on solving for the Lagrange multiplier and the configuration Σ simultaneously (as we
do). Our approach is to connect (10) to the assignment problem, a famous linear
programming problem with efficient solutions. The assignment problem is typically

5



posed as a maximization problem; thus, as a first step we will replace (10) with the
equivalent problem (13)

(13) arg max
u∈KN

N∑
i=1

∫
D

ai(x)ui(x)dx s.t.

∫
D

ui(x)dx = vi,

where ai(x) = (1−ψki (x)). However, rather than working with problem (13) directly,
we will consider a discretized version. Discretization is natural, as any implementation
of the scheme must be carried out on a finite grid. Discretization also allows us to
more clearly connect our approach to the assignment problem, which is typically posed
over a finite dimensional vector space. Let Dn = {x1, . . . , xn} ⊂ D be some n point
discretization of D. We discretize the volume constraints by requiring each phase to
occupy Vi points, where Vi are integers chosen so that

∑N
i=1 Vi = n and the ratios

Vi/n ≈ vi/m(D) are as close as possible. Since the convolution values ai(x) = (1 −
ψki (x)) are smooth functions, they have a well defined restriction to Dn. Finally, the

discrete analogue of KN is the set of functions {u : Dn → [0, 1]N :
∑N
i=1 ui(x) = 1},

which may also be represented as {u ∈ [0,∞)n×N :
∑N
i=1 ui(x) = 1}. Using the latter

representation we arrive at

(14) arg max
u≥0

N∑
i=1

∑
x∈Dn

aiui(x) s.t.
∑
x∈Dn

ui(x) = Vi,

N∑
i=1

ui(x) = 1.

In this form, problem (14) can be viewed as a special case of a family of lin-
ear programming problems. This family of problems stems from the minimum cost
flow problem, and includes famous problems such as the assignment problem, the
transportation problem and the maximum flow problem. We choose to focus on the
assignment problem, as it is the simplest of the problems and can be solved with an
intuitive economic approach.

3.1. The assignment problem. Given two disjoint sets X and L of equal size
r and a weight function w : X × L → R, the assignment problem seeks to find a
one-to-one matching M = {(x1, `1), . . . , (xr, `r)} of X and L (i.e. a bijection), such
that the total weight of the matching

(15)
∑

(x,`)∈M

w`(x)

is maximized. By representing the matching as a binary vector z, where z`(x) = 1 if
(x, `) are matched and z`(x) = 0 otherwise, we can restate the assignment problem
as the following optimization problem

(16) max
z:X×L→{0,1}

∑
x∈X

∑
`∈L

w`(x)z`(x) s.t.
∑
x∈X

zi(x) = 1,
∑
i∈I

zi(x) = 1.

If we relax the binary constraint on z, then (16) becomes the following linear pro-
gramming problem

(17) max
z≥0

∑
x∈X

∑
`∈L

w`(x)z`(x) s.t.
∑
x∈X

z`(x) = 1,
∑
`∈L

z`(x) = 1.

It turns out that the relaxation is exact, and we may substitute (17) for (16). This
follows from the fact that the solution to a bounded and feasible linear programming

6



problem always includes a vertex of the feasible polytope. The relaxed linear con-
straint set is the polytope {z ≥ 0 :

∑
x∈X z`(x) = 1,

∑
`∈L z`(x) = 1}. The vertices

of the polytope are precisely the vectors z whose entries are binary.
Observe that problem (14) is a special case of (17), with respect to a particular

choice of weights w`(x). We can obtain (14) from a generic instance of (17) by letting
X = Dn, splitting L into N similarity classes {Si}Ni=1 each of size Vi and setting
w`(x) = ai(x) for every ` ∈ Si. With those choices, (17) becomes

(18) max
z≥0

∑
x∈Dn

N∑
i=1

ai(x)
∑
`∈Si

z`(x) s.t.
∑
x∈Dn

z`(x) = 1,
∑
`∈L

z`(x) = 1.

The second constraint may be rewritten as
∑N
i=1

∑
`∈Si

z`(x) = 1, thus if we take
ui(x) =

∑
`∈Si

z`(x) we have nearly reduced problem (18) to problem (14). It remains
to reduce the first constraint. It is clear that

∑
x∈Dn

z`(x) = 1 implies
∑
x∈Dn

ui(x) =
Vi. To get the other direction, notice that the assignment of a person x to a particular
object ` ∈ Si does not change the value of the problem – it is enough to specify the
matching at the level of equivalence classes. Therefore problem (14) encodes the same
information as problem (18) and we see that (14) is a special case of (17).

For the remainder of the paper, we will focus on our special case (14) of the
assignment problem (see [6] for a similar discussion of the classic formulation (17)).
We will interchangeably represent matchings as vectors u in the feasible polytope and
as partitions Σ = (Σ1, . . . ,ΣN ) of Dn. Our goal for the remainder of this subsection
is to develop an intuition for (14), and develop the necessary setup for the auction
algorithm in Section 3.2.

It is particularly instructive to give a practical interpretation of (14). Imagine
that each phase is an institution that offers a limited number of memberships. For
example, the phases may be gyms, or clubs, or different Costco locations, etc. Imagine
that the points x ∈ Dn are people, and each person would like to become a member of
some phase. No person wants to have a membership in more than one phase, and each
phase only has Vi memberships available. Finally, imagine that the coefficients ai(x)
represent how much person x wants to be a member of phase i. Now we can think
of the solution to the assignment problem as the matching of people and phases that
maximizes the total satisfaction of the population. Ideally, each person would like to
become a member of their favorite phase. However, this is not possible if more than
Vi people want to be members of some phase i. The main difficulty of the assignment
problem is in understanding how to correctly handle these conflicts.

An interesting approach is to attempt to assign the memberships according to
a market mechanism. Imagine that each phase i has a membership price pi, and if
person x is a member of i then they must pay pi. This can help to resolve conflicts by
making the most popular phases more expensive. Assuming that every person acts
in their own best interest, x will want to buy a membership at the phase offering the
best value, i.e. x wants to be a member of any phase

(19) i∗ ∈ ics(x,p) = arg max
1≤i≤N

ai(x)− pi.

We are now led to a very interesting question: does there exist an equilibrium price
vector p∗ such that assigning memberships according to (19) gives a feasible matching?
The answer to this question is yes, and better yet the resulting assignment is optimal.

The connection between the assignment problem and the equilibrium price vector
p∗ comes from the duality theory of linear programming. As it turns out, the equilib-

7



rium price p∗ is in fact the optimal solution to the dual of the assignment problem.
In addition to the prices p, the dual problem introduces a set of variables π(x) for
each x ∈ Dn. The dual problem is

(20) min
p∈RN ,π∈Rn

N∑
i=1

pi +
∑
x∈Dn

π(x) s.t. π(x) + pi ≥ ai(x).

Note that the optimal value of π is entirely determined by p. Given any p, the best
choice for π is to set π(x) = max1≤i≤N ai(x) − pi. This shows that π(x) is exactly
the value of the best deal offered to x by any phase.

Our earlier statements about the equilibrium price vector p∗ can be justified by
invoking the complementary slackness (CS) condition. According to CS, a feasible
assignment u and a feasible dual pair (p,π) are optimal for their respective problems
if and only if

(21)
∑
x∈Dn

N∑
i=1

ui(x)(pi + π(x)− ai(x)) = 0.

Recalling the best choice for π, (21) implies that in the optimal matching, every
person is assigned a membership which satisfies the market strategy (19) using the
optimal price vector pc. This implies that the equilibrium price p∗ exists and p∗ = pc.

Now suppose that we have some price vector p which is not optimal for the dual
problem. By CS, it will not be possible to assign every membership according to (19),
there will necessarily be conflicts. However, we can attempt to construct a partial
assignment (partial matching). A partial assignment matches a subset of people in
S ⊂ Dn to phases {1, . . . , N} while ensuring that no more than Vi people are assigned
to any phase. A partial matching can be represented as a partition Σ of S into N
phases Σ = (Σ1, . . . ,ΣN ) such that |Σi| ≤ Vi for every phase i. Given a partial
matching Σ, if x ∈ Σi then it will be notationally convenient to say that the pair
(x, i) is in the matching. A partial assignment Σ and a price p satisfies CS if for every
phase i and every member x ∈ Σi, the pair (x, i) satisfies (19).

The most efficient algorithms for the assignment problem have the same basic
structure. They generate a sequence of price vectors pk and partial matchings Σk

such that Σk and pk satisfy CS. Each stage of the algorithm either increases the
size of the partial matching (a larger subset of Dn matched) or improves the prices
(with respect to the dual problem value). Since CS is preserved at every step, if the
partial matching becomes a complete matching then it is an optimal solution to the
assignment problem.

We will solve the assignment problem using auction algorithms. Auction algo-
rithms have a simple intuitive structure, are easy to code, and have excellent perfor-
mance. The main advantage of auction algorithms over the well-known Hungarian
algorithm [27, 34] is that auction algorithms perform local modifications of Σk and
pk at every step, whereas the Hungarian algorithm may need to consider global mod-
ifications.

3.2. Auction algorithms. In [5], Bertsekas developed the auction algorithm for
solving the classic assignment problem (17). Since the original paper, Bertsekas and
collaborators have improved upon the computational aspects of the auction algorithm,
and extended it to more general minimum cost flow problems (see [7] or [6] for an
exhaustive reference on auction algorithms). The most important references for this
work are [8] and [9]. In [8], Bertsekas and Castanon modified the auction algorithm to

8



more efficiently handle assignment problems with multiple identical objects as in (14).
In [9], Bertsekas, Castanon, and Tsaknakis introduced the reverse auction algorithm
for asymmetric assignment problems, which we will use in Section 3.3.

The basic idea of the auction algorithm is to drive price modifications and aug-
mentations of the partial matching by simulating an auction. In order to obtain a
membership, each person x must submit a bid b(x) to the phase of their choice. At
the start of the auction, the price of a membership at each phase i is set to a starting
value p0

i according to some initial price vector p0. As in a real life auction, if a person
x submits a bid b(x) to a phase i, the bid must exceed or match the current price
pi. Using the CS condition (19), we can split the phases into three sets, the high
demand phases H, the weak demand phases W , and the equilibrium phases E. The
high demand phases i ∈ H have more than Vi people who would like to purchase
a membership, the weak demand phases i ∈ W have fewer than Vi people and the
equilibrium phases i ∈ E have exactly Vi people. Everyone who wants a low demand
or equilibrium membership can submit a bid and immediately be accepted into the
initial partial matching, but there is a conflict at the high demand phases. The con-
flict is resolved by choosing the people who have submitted the largest bids. At any
step of the algorithm, if i is a high demand phase, then the set Σi consists of the Vi
people who have submitted the largest bids for phase i. As people submit bids, the
prices of the high demand phases will rise. Eventually, this will incentivize unmatched
people to switch their bid to a cheaper phase that may offer a better bang for their
buck. The algorithm terminates once all of the phases are in equilibrium.

We now discuss pricing and bidding strategies. Each phase is restricted to set-
ting one uniform membership price, regardless of how large individual bids may be.
Assuming that a phase does not want to lose members, the price should be set to
the amount that the least committed member is willing to pay. This amount is the
lowest bid that a phase received thus far. To make this strategy consistent across all
phases, assume that the empty spots in every weak demand phase i ∈W are filled by
phantom members who all bid the starting price p0

i .
Finding a bidding strategy that guarantees termination of the algorithm and

produces a complete matching satisfying CS turns out to be nontrivial. For a given
price vector p, if person x is a member of phase i then we must have i ∈ ics(x,p)
to satisfy CS. This suggests that in the course of the auction, an unmatched person
x should only submit bids to phases in ics(x,p). The subtlety lies in the question,
‘How much should person x be willing to bid?’ Obviously, x does not want to overbid,
otherwise prices may rise and a different phase will become optimal according to CS.
The largest bid, b(x), that x can submit to i∗ ∈ ics(x,p) while being guaranteed not
to violate CS is

(22) b(x) = pi∗ + (ai∗(x)− pi∗)− (ainext(x)− pinext),

where

(23) inext ∈ arg max
j 6=i∗

aj(x)− pj

is x’s second most desirable phase. With this bid, x is willing to allow the price of
i∗ to increase to at most the gap in value between the best and second best choice.
While x is matched to i∗, the price pi∗ cannot increase beyond b(x). Other prices are
non-decreasing, thus for the duration that (x, i∗) is part of the partial matching, this
pair satisfies CS.

9



Unfortunately, this bidding strategy does not work. A problem occurs when
there are multiple optimal objects for x, i.e. when |ics(x)| > 1. If this happens, both
i∗, inext ∈ ics(x,p) and thus the gap (ai∗(x) − pi∗) − (ainext(x) − pinext) = 0. In this
case, x is unable to raise the price of i∗. This situation may lead to a price war. In
a price war, multiple people compete for the same memberships without ever raising
the prices, trapping the algorithm in an infinite loop.

To circumvent this difficulty, one must relax the complementary slackness condi-
tion. For a given price vector p and a small ε > 0, a matched pair (x, i) satisfies the
ε-complementary slackness condition (ε-CS) if

(24) ai(x)− pi + ε ≥ max
1≤j≤N

ai(x)− pi.

It is now possible to create a bidding strategy that preserves ε-CS and guarantees that
the algorithm will always terminate. As before, an unmatched x will only submit bids
to i∗ ∈ ics(x,p); however, now x can bid up to

(25) b(x) = pi∗ + ε+ (ai∗(x)− pi∗)− (ainext(x)− pinext)

without overpaying according to ε-CS. Since (ai∗(x) − pi∗) − (ainext(x) − pinext) ≥ 0
this ensures that pi∗ increases by at least ε. This mimics real life auctions where
any bid must be larger than the current price by at least some fixed amount. Now,
starting from any initial price vector p0, the algorithm will be guaranteed to eventually
terminate [5]. We now give our version of the auction algorithm, which is equivalent
to the “similar object” auction variant in [8]:

Algorithm 1: Membership Auction [8]

Input: ε > 0, volumes V , coefficients a, initial prices p0 and people x ∈ Dn

Result: Final prices and complete ε-CS matching (Σ,p).
Initialization: For every i ∈ {1, . . . , N} mark all x as unassigned, set p = p0,
set Σ = ∅ ;

while some x is marked as unassigned do
for each unassigned x ∈ Dn do

Calculate ics(x,p) and choose some i∗ ∈ ics(x,p);
Set b(x) = pi∗ + ε+ (ai∗(x)− pi∗)− (ainext(x)− pinext);
if |Σi∗ | = Vi∗ then

Find y = arg minz∈Σi∗
b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set pi∗ = minz∈Σi∗ b(z);

else
Mark x as assigned and add x to Σi∗ ;
if |Σi∗ | = Vi then

Set pi∗ = minz∈Σi∗ b(z);
end

end

end

end
return (Σ,p)

The output of the auction algorithm is a complete matching Σ satisfying ε-CS,
and the final auction prices p. Representing the matching as a binary vector u and

10



using ε-CS we may conclude

(26)

N∑
i=1

pi +
∑
x∈Dn

max
1≤i≤N

[ai(x)− pi] ≤ nε+
∑
x∈Dn

N∑
i=1

ui(x)ai(x).

Thus, by weak duality, the final assignment u is at most nε away from being optimal.
In the special case where the coefficients ai(x) integers, an ε-CS matching is actually
optimal for any ε < 1

N [8].
We now give a quick sketch of the complexity. Assume that at the start of the

auction, the prices were initialized to zero and the partial matching was empty. Let
C = max

i∈{1,...,N},x∈Dn

ai(x) be the largest coefficient. Suppose in the course of the

algorithm that the price of some phase i exceeds C. If the algorithm has not yet
terminated, then there must be some low demand phase with price zero. This implies
that in the remainder of the auction, no person x will ever bid on phase i again,
since there must be a phase offering a better value. Thus, we have an upper bound
on the price of any phase. Suppose that some phase i is currently priced at pi, and
consider the number of bids required to raise the price. The worst possible case
occurs when every currently matched member has bid exactly pi (such a situation is
highly degenerate and rarely appears in practical applications). In this case, it will
take exactly Vi bids to raise the price. The price must rise by at least ε; thus, we
can conclude that the algorithm will terminate after at most NV dC/εe bids, where
V = max1≤i≤N Vi.

A straightforward implementation of the bidding steps in Algorithm 1 requires
O(V +N) operations. This can be sped up with special data structures. If we imple-
ment a priority queue for each Σi, we can complete a bid in O(log(V )+N) operations.
In all of our applications, V is several orders of magnitude larger than N ; thus, this
gives considerable savings. Combining this with the estimate for the maximum num-
ber of bids, we can conclude the algorithm has complexity O

(
NV (log(V ) +N)C/ε

)
.

Note that due to the presence of the constant C, this complexity is pseudo-polynomial
rather than polynomial.

The complexity can be improved using the idea of epsilon scaling (noted in [5]
and analyzed in [19, 20, 21]). Suppose that (Σ′,p′) is a matching and a price vector
satisfying rε-CS for some r > 1. What happens if we use p′ as the initial price vector
when we run the auction algorithm with ε? Since any starting price is admissible, the
algorithm will still produce a matching and price (Σ,p) satisfying ε-CS. However, if
r is not too large, then we should expect that p′ and p are not too different. This
suggests that the auction will not need to modify the prices very much, and thus
the algorithm will terminate quickly. Epsilon scaling takes advantage of this idea by
running the auction multiple times with successively smaller values of epsilon. The
final price vector of the previous run is used as the initial price vector in the next
run. Typically, one takes the sequence of decreasing epsilon values to be εk = C/αk

for some integer α > 1, stopping once εk <
δ
n for some small δ. Using ε scaling the

complexity can be improved to a weakly polynomial bound. We refer our readers
to [7] for the exact details and bounds using ε-scaling. For the problems that we
consider, the complexity of the auction algorithm using ε-scaling appears to grow
like O

(
NV (log(V ) + N) log(nC/δ)

)
(see [6] or [7] for a heuristic explanation of this

behavior).
Now we are ready to give the auction dynamics algorithm, Algorithm 2. Recall

that our goal is to simulate the evolution of a configuration Σ under volume preserving

11



curvature flow for some time t = m(δt). As we saw in the beginning of Section 3, we
obtain a consistent and unconditionally stable scheme by solving the iteration

(27) Σk+1 = arg min
Σ

Lδt(Σk,Σ) s.t. |Σi| = Vi for 1 ≤ i ≤ N

m times. This amounts to repeatedly taking convolutions of the configuration Σk

with a kernel K, and solving the assignment problem. As we have seen above, we
can solve the assignment problem efficiently using auctions. The auction dynamics
algorithm uses Algorithm 1 along with ε-scaling to quickly and accurately obtain a
solution. We give the algorithm below.

Algorithm 2: Auction Dynamics

Input: Discrete domain Dn, initial configuration Σ, surface tensions σ,
convolution kernel K, volumes V , time step δt, number of steps m,
auction error tolerance εmin, epsilon scaling factor α, initial epsilon
value ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
i (x) =

∑
j 6=i σij(Kδt ∗ Σkj )(x);

Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 1 (Membership Auction):
(Σout,pout) = Membership Auction(ε,V ,ak+1,p, Dn);

Set p = pout;
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout;
end

end

end
return Σm

3.3. Upper and lower volume bounds. In addition to strict volume preserv-
ing curvature flow, auction dynamics can be modified to allow the volume of each
phase to fluctuate between some bounds. This will be particularly useful in our ap-
plications to machine learning.

Suppose that each phase i must have at least Bi members and at most Ui members
for some integers Bi and Ui. To ensure that the resulting problem is feasible, we will
require Bi ≤ Ui and

∑N
i=1Bi ≤ n ≤

∑N
i=1 Ui. We will then need to solve the following

modified version of the assignment problem:

(28) max
u≥0

N∑
i=1

∑
x∈Dn

ai(x)ui(x) s.t.

N∑
i=1

ui(x) = 1, Bi ≤
∑
x∈Dn

ui(x) ≤ Ui.

This version of the problem introduces some complexities that were not present in
(14) and will require a more sophisticated approach.

Previously, we examined and solved the assignment problem from the perspective
of the people x ∈ Dn. The limited supply of memberships resulted in competition

12



between the people, which we resolved by introducing prices and simulating an auc-
tion. The upper bounds fit nicely into this perspective. The upper bounds indicate
that each phase has a limited number of memberships. However it is now possible
that the total supply of memberships

∑N
i=1 Ui exceeds the number of people n. The

upper bounds will still induce competition between the people, but any oversupply of
memberships means that the set of equilibrium prices will be larger. This will add a
wrinkle of difficulty, as not all equilibrium prices will be dual optimal.

The lower bounds are fundamentally different and require a new perspective.
Indeed, if some person x sees that there is an available membership in their most
desirable phase i, they will immediately join i without caring if some other phase j is
deficient (i.e. |Σj | < Bj). Instead, we must think about the lower bounds from the
perspective of the phases. Imagine that each phase must sell Bi memberships or they
will go out of business. If a phase i is having trouble attracting a sufficient number of
people, it will have to introduce an incentive ti to entice people to join. As a result, the
lower bounds induce a competition among the phases. Deficient phases will be forced
to offer competing incentives to attract the necessary number of members. Thus, in
order to satisfy the lower bounds, we will need to run a reverse auction [9] where the
phases bid on the people.

To properly understand the interaction between the prices and incentives, we
introduce the dual problem

(29) min
p≥0,t≥0,π∈Rn

N∑
i=1

piUi − tiBi +
∑
x∈Dn

π(x) s.t. pi − ti + π(x) ≥ ai(x).

As before, we will use the interplay between the primal and dual problems to drive the
search for the optimal solution. The key of course will be the complementary slackness
condition. The complementary slackness condition for (28) and (29) states that an
assignment u and dual variables (p, t,π) are optimal for their respective problems if
and only if

(30)

N∑
i=1

∑
x∈Dn

ui(x)(ai(x)− pi + ti − π(x))

+
N∑
i=1

pi(Ui −
∑
x∈Dn

ui(x)) +
N∑
i=1

ti(
∑
x∈Dn

ui(x)−Bi) = 0.

Recall that π is determined by p and t and is given by π(x) = max1≤i≤N ai(x) + ti−
pi. Now we can recognize that the complementary slackness condition has a simple
intuitive explanation. The first sum states that each person should be assigned to the
optimal phase based on prices and incentives (this should feel familiar). The second
sum states that phases charging membership prices must have the maximum number
of members Ui (i.e. no overpriced phases). Similarly, the third sum states that the
phases offering incentives must have the minimal number of members Bi (i.e. no
over-incentivized phases).

To ensure our auctions do not stall, we will once again turn to the ε-CS condition.
For this problem, we will say that a partial matching Σ and a price-incentive pair
(p, t) satisfy ε-CS if every matched pair (x, i) satisfies

(31) ai(x)− pi + ti + ε ≥ max
1≤j≤N

aj(x)− pj + tj .

13



As before, we can recognize this ε-CS condition as an ε relaxed version of the first sum
in (30). Unfortunately, the other two terms in (30) do not have useful ε relaxations.
As a result, we will need to carefully ensure that our auctions will satisfy the other
two terms exactly. We will say that a price p (an incentive t) is admissible for a
matching Σ if the second (third) term of (30) is satisfied.

We will solve (28) in two stages. First we will run Algorithm 3, a forward auction
algorithm similar to Algorithm 1, where the people compete for memberships. This
will produce a complete ε-CS matching satisfying the upper bound constraints but
possibly violating the lower bound constraints (we will call this upper feasible). Al-
gorithm 3 differs from Algorithm 1, as it simultaneously runs a mechanism to ensure
that no phase is over-incentivized. Note that this extra mechanism is only necessary
if one wants to use ε-scaling. In the absence of ε-scaling, phases cannot become over-
incentivized as long as t is initialized to 0. In the second stage we will feed the result
of the first stage into a reverse auction, Algorithm 4, where the phases compete for
people. This will produce an ε-CS matching that is both upper and lower feasible.
In addition, Algorithm 4 will have a mechanism to prevent phases from becoming
overpriced (this mechanism is necessary with or without ε-scaling). As a result, the
final output will be a complete and feasible ε-CS matching Σ with admissible prices
and incentives (p, t). This will be enough to conclude that Σ solves (28) with error
at most nε. In the special case that the coefficients a are all integers, the argument
used in [8] can be easily generalized to show that the solution is optimal if ε < 1

N .
Algorithm 3 is a relatively straightforward adaptation of the similar object auc-

tions and the asymmetric assignment auctions found in [7]. On the other hand, Al-
gorithm 4 appears to have a different structure than the reverse auctions considered
in [7]. Indeed, in our reverse auction we choose to work with prices and incentives
rather than the profit variable π. We find that working with prices and incentives
leads to a much faster runtime when N << n. Since both algorithms are specialized
for our current problem, we provide proofs that they terminate and have the desired
properties.

Proposition 3.1. Given initial prices and incentives p0, t0, and an empty match-
ing, Algorithm 3 produces an upper feasible ε-CS matching Σ with no over-incentivized
phases with time complexity O(NU(log(U) +N)(C+G)/ε), where U = max1≤i≤N Ui
and G = max1≤i,j≤N (p0

j − t0j )− (p0
i − t0i ).

Proof. Note that no phase can increase beyond Ui members, and no phase can
increase beyondBi members as long as di < 0. Therefore, the algorithm will not termi-
nate until the matching is complete, upper feasible, and there are no over-incentivized
phases. Throughout the auction, the number of unmatched people is non-increasing
and the variable d is entrywise non-decreasing. The monotonicity of these quantities
allows us to use the same complexity argument as in Algorithm 1. The above bound
will then immediately follow, where the factor G accounts for the prices and incentives
not being initialized to zero.

It remains to show that the algorithm preserves ε-CS at every step. The only
place where this algorithm differs from Algorithm 1 is when a person x wants to join
a phase i, where |Σi| = Bi and di < 0. Let d,d′ be the values before and after x is
added. Since d′i ≤ miny∈Σi

b(y), every person matched to i must satisfy ε-CS.

Proposition 3.2. Given the result of Algorithm 3, Algorithm 4 produces a com-
plete and feasible ε-CS matching Σ with no overpriced or over-incentivized phases
with time complexity O(n2N2(C +G)/ε) where G = maxi6=j(p

0
j − t0j )− (p0

i − t0i ).

14



Algorithm 3: Upper Bound Auction

Input: ε > 0, bounds B,U , coefficients a, initial prices p0, initial incentives
t0 and people x ∈ Dn

Result: Prices p, admissible incentives t, and complete ε-CS matching Σ
satisfying upper bounds.

Initialization: Mark all x as unassigned, set d = p0 − t0, set Σ = ∅ ;
while some x is marked as unassigned do

for each unassigned x ∈ Dn do
Calculate ics(x,p) and choose some i∗ ∈ ics(x,d);
Set b(x) = di∗ + ε+ (ai∗(x)− di∗)− (ainext(x)− dinext);
if |Σi∗ | = Ui∗ then

Find y = arg minz∈Σi∗
b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = minz∈Σi∗ b(z);

else if |Σi| = Bi and di < 0 then
Find y = arg minz∈Σi∗

b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = min(minz∈Σi∗ b(z), 0);

else
Mark x as assigned and add x to Σi∗ ;

end

end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)

Proof. It is clear that the algorithm will not terminate until the matching is
complete and lower feasible, and there are no over-priced phases. The algorithm will
never add people to an already full phase i with |Σi| = Ui, thus the matching stays
upper feasible. A phase only offers incentives if it has fewer than Bi members, and
any phase that has offered an incentive will never have more than Bi members. Thus,
no phase will become over-incentivized.

Next, we show that Σ is a complete ε-CS matching at every step of the algorithm.
Consider what happens when a phase i∗ is modified. Let (Σ,d) contain the values
before the modification and (Σ′,d′) afterwards.

First, we consider the case where |Σi∗ | < Bi∗ . In this case, Σ′i∗ must now have
Bi points. Let xf be the last point added to i∗. If d′i∗ = di∗ , then ∆(xf ) < 0 and
we can conclude that every person who had their membership switched to i∗ strictly
preferred i∗ over their previous membership. Since no other entry of d changed, the
new pair (Σ′,d′) still satisfies ε-CS. Otherwise, ∆(xf ) ≥ 0 and d′i = di −∆(xf )− ε.
Clearly, everyone who was in Σi is even happier to be in Σ′i∗ as d′i∗ < di∗ and other
entries of d didn’t change. Next, we check the other people whose membership didn’t
change. Let y be some person y ∈ Σ′j for some j 6= i∗. We need to show that
max1≤i≤N ai(y) − d′i − ε ≤ aj(y) − d′j . Only d′i∗ is different, so it is enough to show

15



Algorithm 4: Lower Bound Auction

Input: ε > 0, bounds B,U , coefficients a, initial prices p0, initial admissible
incentives t0, complete (but possibly lower infeasible) ε-CS matching
Σ0

Initialization: Set d = p0 − t0, set Σ = Σ0 ;
Result: complete and feasible ε-CS matching and admissible prices and

admissible incentives (Σ,p, t).
while there exists some i with (|Σi| < Ui and di > 0) or (|Σi| < Bi) do

for each i∗ with (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Bi∗) do
for each x /∈ Σi∗ do

Let j be x’s current phase;
Calculate ∆(x) = (aj(x)− dj)− (ai∗(x)− di∗);

end
while (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Bi∗) do

Find x ∈ arg miny/∈Σi∗
∆(y);

if |Σi∗ | < Bi∗ then
Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Bi∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

else
if ∆(x) + ε ≥ di∗ then

Set di∗ = 0;
else

Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Ui∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

end

end

end

end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)

ai∗(y)− d′i∗ − ε ≤ aj(y)− dj . By our choice of xf , we have

ai∗(y)− d′i∗ − ε = ai∗(y)− di∗ + ∆(xf ) ≤ ai∗(y)− di∗ + ∆(y) = aj(y)− dj .

Finally, we check the people who were switched to i∗. Let z be one of those people
and suppose that z was previously matched to phase r. Since ∆(xf ) ≥ ∆(z), we may
conclude

max
i 6=i∗

ai(z)− d′i ≤ ar(z)− dr + ε = ai∗(z)− di∗ + ε+ ∆(z) ≤ ai∗(z)− d′i∗ .

Next, we consider the case where |Σi∗ | < Ui∗ and di∗ > 0. This case is very
similar; however, there is one additional thing that can happen. Namely, it is possible

16



that d′i∗ can be set to zero before Σ′i∗ reaches Ui∗ members. As before, let xf be the
last person added to i∗ in the modification, and let yc = arg miny/∈Σ′i

∆(y). If xf exists

(possibly no one was added) then ∆(xf ) + ε < di∗ ≤ ∆(yc) + ε. Similar arguments
to the above now show that anyone in Σ′i∗ satisfies ε-CS. To check that every other
person satisfies ε-CS it is enough to show that yc satisfies ε-CS. Suppose that yc is
matched to a phase j. Then

ai∗(yc)− d′i∗ ≤ ai∗(yc) + ∆(yc) + ε− di∗ = aj(yc)− dj + ε,

which is enough to show ε-CS for yc. Thus, the algorithm preserves ε-CS.
Finally, we show that the algorithm terminates. Suppose that, for some i, the

quantity di decreases by more than 2(C + G) + ε from its starting value. Since
d0
i − G ≤ 0, it must be the case that |Σi| ≤ Bi. Immediately after di is lowered

to d0
i − C − 2G − ε, phase i must have exactly Bi members. If the algorithm has

not terminated, then there must be some j with more than Bj members, and thus
dj ≥ d0

j −G. For any x, we can then conclude that

ai(x)− di − (aj(x)− dj) ≥ ai(x)− aj(x) + d0
j − d0

i + 2C +G ≥ 0.

It then follows that |Σi| = Bi for the remainder of the auction, as it will always be
easier for other phases to incentivize people to leave phase j rather than phase i.

Notice that the same person cannot switch phasesN times unless one of the entries
of d has decreased. Thus, a phase i can enter a bidding stage at most Nn times before
di must decrease by at least ε. This gives us an upper bound of 2N2nd(C +G)/εe
bidding stages before the algorithm terminates. Quickselect can be used to find the k
smallest values of ∆(x) in time O(n) regardless of k. Thus, the worst case complexity
of the algorithm is O(n2N2(C +G)/ε).

Both Algorithms 3 and 4 are compatible with ε scaling. The prices and incen-
tives obtained from one iteration of Algorithms 3 and 4 together can be fed into the
next iteration. For the instances of (28) that we encounter, the complexity of both
algorithms using ε scaling appears to grow like O(nN(log(n) +N) log(nC/δ)), where
δ > 0 is the maximum error of the final solution.

With the upper and lower bound auction algorithms in hand, we can now give
the version of auction dynamics with upper and lower volume bounds, described by
Algorithm 5.

3.4. Auction dynamics with temperature. Finally, we conclude this section
with a variant of the auction dynamics algorithm that allows us to incorporate random
fluctuations due to temperature. There are several reasons to introduce temperature
effects into auction dynamics, two of these are:

• When using auction dynamics to solve minimal partition problems (e.g. data
segmentation in machine learning, optimal tessellations, etc.), temperature
can help the algorithm escape from local minima and find better solutions.
• Low temperature levels can be added to auction dynamics to help avoid de-

generate auction coefficients (which slow down the algorithm) without signif-
icantly changing the result.

In the classic threshold dynamics algorithm, one may incorporate temperature in the
style of rejection free Monte Carlo methods by randomizing the thresholding step.
The Monte-Carlo approach suggests randomly assigning each x to a phase i with

17



Algorithm 5: Auction Dynamics with Volume Bounds

Input: Domain Dn, initial configuration Σ, surface tensions σ, kernel K,
volume bounds B,U , time step δt, number of steps m, auction error
tolerance εmin, epsilon scaling factor α, initial epsilon ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
i (x) =

∑
j 6=i σij(Kδt ∗ Σkj )(x);

Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, incentives t = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 3 (Upper Bound Auction):
(Σout1,pout1, tout1) = Upper Bound Auction(ε,B,U ,ak+1,p, t, Dn);

Run Algorithm 4 (Lower Bound Auction): (Σout2,pout2, tout2) =
Lower Bound Auction(ε,B,U ,ak+1,pout1, tout1,Σout1);

Set (p, t) = (pout2, tout2);
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout2;
end

end

end
return Σm

probability:

(32) P(x ∈ Σk+1
i ) =

e−βψ
k+1
i (x)∑N

j=1 e
−βψk+1

j (x)
,

where β = 1
T is the inverse temperature. In the limit as T → 0 one recovers the

original MBO algorithm.
Unfortunately this approach is not compatible with auction dynamics. The vol-

ume constraints prevent us from assigning points independently. As a result, we
cannot introduce the randomness in the assignment step. Instead, we introduce tem-
perature before the assignment step by perturbing the coefficients ai(x) = (1−ψi(x)).
Given some probability distribution X = X(0, T ) on the reals with mean zero and
variance T , we perturb each coefficient ai(x) by an independent sample of X. This
approach maintains the same basic properties as the randomness strategy (32). As
T → 0, we recover the original algorithm and as T → ∞ the points are assigned
to phases completely randomly. In our implementations of temperature effects, we
choose the random variables to be normal random variables N(0, T ).

4. Curvature motion. We demonstrate our auction dynamics algorithm by
computing several examples of volume preserving mean curvature motion in two and
three dimensions. Since the focus of this work is to develop the necessary theory and
algorithms for the volume constrained case, we work with essentially the most basic
implementation of auction dynamics with the exception of the following well-known
and simple trick to enhance the spatial resolution. The intermediate steps arising
in each iteration of auction dynamics yields a smooth level set function (given by

18



ψ − p) that can be used (via interpolation) to estimate the fraction of each grid cell
occupied by a given phase. This allows for a sub-pixel accurate representation of the
characteristic functions of the phases. For applications requiring greater efficiency
or accuracy, one may turn to more sophisticated techniques developed for threshold
dynamics, e.g. [39, 40], which in principle extend to auction dynamics as well.

We begin by considering two different equal volume tessellations of the torus. In
Figure 1, the starting configuration is 64 randomly shifted squares of equal volume.
After evolving under auction dynamics, the final configuration is a hexagonal lattice,
which has optimal isoperimetric quotient among all equal volume tilings of the plane
[22]. Thus, the algorithm finds the lowest energy state as one would hope. A more
interesting example is given in Figure 2. The starting configuration consists of 17 equal
volume rectangles. In the case of 17 subunits, it is impossible to tile the torus with
hexagons [31]. Indeed, the final configuration contains a heptagon and a pentagon.
Nevertheless, most of the shapes are hexagons and visual inspection suggests that all
of the triple junction angles are nearly 120 degrees. Therefore, the final configuration
is a plausible local minimizer of the interfacial perimeters.

Fig. 1: Initial condition: Randomly shifted 8 columns of 8 squares that have identical
areas. Periodic boundary conditions.

Next, we consider random Voronoi diagrams in 2 and 3 dimensions. Figure 3
depicts the evolution of a random Voronoi diagram in the plane. The network im-

19



Fig. 2: Initial condition: Randomly shifted 17 rectangles that have identical areas.
Periodic boundary conditions. After a long time, there is still one phase with five and
another with seven neighbors.

mediately undergoes topological changes – all of quadruple junctions in the initial
configurations split and form triple junctions. Figure 4 shows the evolution of a single
“grain” in a random Voronoi diagram in 3 dimensions, Figure 5 shows the same grain
and several of its neighbors at the final time. One can clearly see many topological
changes in the faces of the grain. Quadruple junctions split and collide throughout the
evolution. Both examples clearly show that one must anticipate topological changes
in the course of the flow.

Finally, we consider equal volume tilings in 3 dimensions. Our starting configu-
ration is a randomly shifted cubic lattice with 8 phases. Unlike the two dimensional
case above, where the flow easily found the optimal solution, the 3 dimensional en-
ergy landscape appears to be littered with local minima. Regardless of how the cubes
are shifted, the configuration evolves to a final state where each grain assumes the
shape shown in Figure 6 – a 12 sided polytope built from 4 trapezoids, 4 rhombi, and 4
hexagons. A simple calculation shows that the isoperimetric quotient of this structure
is considerably worse than several well-known tilings of 3-space. On the other hand,
if we run the flow in the presence of temperature, the random fluctuations allow us to
escape the local minima. Figure 7 shows an experiment with temperature where the
final configuration assumes the structure of what is thought to be the most efficient

20



Fig. 3: Initial condition: Voronoi diagram of 160 points taken uniformly at random
on [0, 1]2. Periodic boundary conditions. Each phase preserves its initial area.

partition of 3-space, the Weaire-Phelan structure [46]. This experiment suggests that
auction dynamics with temperature may be a very useful tool for exploring minimal
tilings in 3 dimensions.

5. Semi-Supervised Learning. Given a set of data points {x1, . . . , xn} = V ⊂
RD, a fixed collection of labels {1, . . . , N}, and a small training subset F ⊂ V of points
whose ground-truth labels are known, the semi-supervised learning (SSL) problem
asks to correctly label the remaining points in V \ F . Any solution to the problem
is a partition Σ = (Σ1, . . . ,ΣN ) of V where Σi is the set of points that are assigned
label i.

For many real life data sets, information about the sizes of the various classes is
often available in advance. For example, the distribution of digits in postal codes and
tax returns is very well-known. As a result, we will further assume that each phase
should satisfy certain provided volume equality or volume bound constraints. As we
will see in Section 5.3, incorporating class size information improves classification
accuracy, especially when the training set is small (i.e. |F | << |V|). Notably, there is
still a marked improvement even when one can only estimate very rough size bounds.

21



Fig. 4: One “grain” from a total of 32. Initial condition: Voronoi diagram of 32 points
taken uniformly at random on the 3-torus. Each phase preserves its initial volume.

5.1. Variational and graphical models. Variational models for the SSL prob-
lem find solutions by minimizing energies of the form

(33) E(Σ) = R(Σ) + Fid(Σ)

where R is a regularizing term favoring “smooth” partitions and Fid is a penalty term
which incorporates information from the training data F . We will modify this model
slightly and only consider the regularizing term R. To incorporate the training data
F and class size information we will simply impose the constraints

(34) Bi ≤ |Σi| ≤ Ui, Fi ⊂ Σi for all 1 ≤ i ≤ N

where Bi and Ui are upper and lower bounds on the class sizes and Fi ⊂ F is the set
of training points labelled i.

In order to define R, we need to give a notion of “smoothness” for partitions of
V. To do so, we give V the structure of a weighted graph G = (V,W ). The weight
matrix W : V × V → R is a symmetric matrix where the entries W (x, y) describe the
how strongly the points x and y are connected. With this structure, R is typically
taken to be some variant of the weighted graph cut:

(35) Cut(Σ) =
1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y),

22



Fig. 5: At final time, from a couple of other angles, with a few of its neighbors showing.

Fig. 6: The initial and final configurations of the volume preserving flow on a randomly
shifted cubic lattice. Each image shows two of the grains. The final configuration is
fixed under the flow, but is not the global minimizer of the surface energy.

which penalizes partitions which place strongly connected points in different classes.
Combining the graph cut with the constraints (34) we will find solutions to the SSL
problem by solving:

(36) arg min
Σ

1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y) s.t. Fi ⊂ Σi, Bi ≤ |Σi| ≤ Ui.

5.2. Auction dynamics on graphs. There are many possible convex relax-
ations of the graph cut. We will consider the natural analogue of the heat content
energy on graphs, the graph heat content (GHC)

(37) GHC(u,W ) =

N∑
i=1

∑
x,y∈V

W (x, y)ui(x)(1− ui(x)),

where u : V → KN is an element of the convex relaxation of the space of N -phase
partitions of V. In analogy to the continuum heat content, we may obtain a graph

23



Fig. 7: Running the flow on the 8 subunit cubic lattice with temperature fluctuations
leads to the Weaire-Phelan structure. The Weaire-Phelan structure contains two dis-
tinct subunits shown in the first two images, the truncated hexagonal trapezohedron
on the left and the pyritohedron on the right. The bottom image shows how 3 of the
subunits fit together.

MBO scheme by successively minimizing linearizations of GHC [15, 23]. Up to a
constant term, the linearization of (37) at a partition Σ is given by

(38) LΣ(u) =

N∑
i=1

∑
x∈V

ui(x)
∑
y/∈Σi

W (x, y).

Our goal is to obtain a scheme which minimizes (36). As long as W is a PSD
matrix, GHC will be concave. Therefore, successively minimizing linearizations of
(36) will dissipate the energy. The points x ∈ F must have their labels fixed, so we
only need to minimize the linearizations over x ∈ V \ F . Thus, at every step we are
led to solve:

(39) arg min
u:V\F→KN

N∑
i=1

∑
x∈V\F

ψi(x)ui(x) s.t. Bi − |Fi| ≤
∑

x∈V\F

ui(x) ≤ Ui − |Fi|

24



Table 1: Benchmark datasets

Dataset Dimension Points Classes W construction timing (s)
MNIST 784 70,000 10 149.04

Opt-Digits 64 5,620 10 2.03
Three Moons 100 1,500 3 0.025

where ψi(x) =
∑
y/∈Σi

W (x, y). Under some very simple transformations, the above
problem is equivalent to the upper and lower volume bound assignment problem (28).
Thus we may solve (39) using Algorithms 3 and 4.

The set of data points V is finite and therefore necessarily compact. The en-
ergy (36) decreases with each iteration of auction dynamics. Combining compactness
and monotonicity, we may conclude that the iterations eventually converge to a local
minimum. Due to the concavity of GHC, we cannot guarantee that the local mini-
mum is unique or independent of the initial condition. We can tackle this difficulty
by incorporating temperature (as described in Section 3.4). The random tempera-
ture fluctuations allow the algorithm to escape local minima and find lower energy
solutions. Nonetheless, experimental results show that auction dynamics finds high
quality solutions even without temperature (c.f. Tables 3-6).

It remains to construct the weight matrix W . In the graph setting, W essentially
plays the role of the convolution kernel K. This suggests setting W (x, y) = f(|x− y|)
for some decreasing function f . However, we do not want to connect all points x and
y. The data points V typically cluster near a low dimensional manifold embedded in
RD. To best reflect this manifold structure, we only connect the k nearest neighbors
of each point and set the remaining entries of W to zero. Under these assumptions
a popular choice for the weights are the Zelnick-Manor and Perona (ZMP) weight
functions [49]:

(40) W (x, y) = exp

(
−|x− y|2

σ(x)σ(y)

)
where σ(x), σ(y) are local scaling parameters for x, y respectively. We will take σ(x) =
|x−xr| where xr is the rth nearest neighbor of x for some r ∈ {0, 1, . . . , k}. In general,
this construction will not produce a PSD matrix. Thus we take as our final weight
matrix W ′ = WTW .

5.3. Experimental results. To demonstrate the efficiency and accuracy of the
auction dynamics approach to the SSL problem, we test against several benchmark
machine learning datasets: Opt-Digits, MNIST, COIL, and Three Moons. We con-
sider the performance of our algorithm both with and without temperature and with
a wide range of class size constraints. All experiments were run using C code on a
single processor core. k-nearest neighbors were calculated using the kd-tree code in
the VLFeat library. Table 1 shows the timing information for VLFeat. Initial seg-
mentations were computed using the Voronoi diagram construction described in [23].
All of our subsequent timing information in Table 2 includes the time required to
initialize the segmentation and run the auction dynamics iterations.

On each dataset, we build the weight matrix using the ZMP construction detailed
above and choose the nearest neighbor and scaling parameters k and r experimentally.
The auction error tolerance, εmin, the scaling parameter, α, and the initial error term

25



ε0 are set to 10−7, 4 and 0.1 respectively. Without temperature, we run auction

dynamics either until convergence or until the relative energy change |Ek+1−Ek|
Ek+1

drops

below 10−4. If we introduce temperature, then we run a fixed number of iterations
and extract the lowest energy configuration that was found.

5.3.1. Benchmark datasets. Here we detail the various datasets that we tested
our algorithm against.

Opt-Digits: Opt-Digits is a database of 5620 handwritten digits [25]. The data
is recorded as an 8 × 8 integer matrix, where each element is between 0 and 16.
The dataset may be downloaded at https://archive.ics.uci.edu/ml/datasets/Optical+
Recognition+of+Handwritten+Digits. We construct the weight matrix using the 15
nearest neighbors and local scaling by the 7th nearest neighbor.

MNIST: MNIST is a data set of 70,000 grayscale 28 × 28 pixel images of hand-
written digits (0-9). Each of the digits is centered and size normalized. The MNIST
dataset may be downloaded at http://yann.lecun.com/exdb/mnist/ The data set is
separated into 60,000 training images and 10,000 test images. We combine them to
create a single set of 70,000 images to test against. We perform no preprocessing on
the images. We construct the weight matrix using the 15 nearest neighbors with local
scaling based on the 7th nearest neighbor.

COIL: The Columbia Object Image Library (COIL-100) is a database of 128
× 128 pixel color images of 100 different objects photographed at various different
angles [35]. In [36] the authors processed the COIL images to create a more difficult
benchmark set. The red channel of each image is downsampled to 16 × 16 pixels
by averaging over blocks of 8 × 8 pixels. The images are then further distorted and
downsampled to create 241 dimensional feature vectors. Then 24 of the objects are
randomly selected and randomly partitioned into 6 different classes. Discarding 38
images from each class leaves 250 images per class for a total of 1500 points. This
benchmark set may be found at http://olivier.chapelle.cc/ssl-book/benchmarks.html.
We construct the weight matrix using the 4 nearest neighbors and local scaling by the
4th nearest neighbor.

Three Moons: The Three Moons synthetic data set consists of three half circles
embedded into R100 with Gaussian noise. The standard construction is built from
circles centered at (0, 0), (3, 0), (1.5, 0.4) with radii of 1,1, and 1.5 respectively. The
first two half circles lie in the upper half plane, while the third circle lies in the lower
half plane. The circles are then embedded into R100 by setting the remaining 98
coordinates to zero. Finally, Gaussian noise with mean zero and standard deviation
0.14 is added to each of the 100 coordinates. We construct the dataset by sampling
500 points from each of the three circles, for a total of 1500 points. The weight matrix
was built using the 15 nearest neighbors with local scaling by the 7th nearest neighbor.

5.3.2. Results and comparison to other methods. In Tables 3-6, we present
the results of our algorithm on Opt-Digits, MNIST, COIL and Three Moons. The
algorithm is tested both with and without temperature and using several different
volume bounds. We set the upper and lower bounds, U and B respectively, to be
Bi = Vi(1−x) and Ui = Vi(1 +x) where Vi is the ground truth volume of phase i and
x ∈ {0, 1

10 , . . . ,
4
10}. When temperature is used, we set T = 0.1. All reported results

were averaged over 100 trials where F was chosen at random in each trial.

26

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
http://yann.lecun.com/exdb/mnist/
http://olivier.chapelle.cc/ssl-book/benchmarks.html


In general, we have observed that volume bounds increase the accuracy of the
segmentation especially when the training set is extremely small. More notably, this
advantage persists even when one can only estimate very rough volume bounds. For
example, using only 0.05% of the training data on the MNIST dataset, we obtain a
nearly 91.5% accuracy rate even when the upper and lower bounds deviate 30% from
the true class size. We also see that incorporating temperature improves accuracy by
finding lower energy solutions. Temperature is particularly effective in conjunction
with volume bounds, as the bounds help ensure that the lower energy solutions are
non-trivial.

A thorough comparison to other methods is presented in Tables 7 and 8. Our
procedure achieves an accuracy that is better than or comparable with some of the
best recent methods. A notable advantage of auction dynamics is that it is able to
perform very well even with a very low number of labeled points. Indeed, we obtain
high quality results at fidelity percentages that are out of reach for other state-of-the-
art methods for the SSL problem.

Table 2: Timing (in seconds)

Data Set Bounds 1.0 1.2 1.4 no size
Fid. % 1.0 0.8 0.6 constraints

MNIST 5% 9.992 / 0.555 7.501 / 0.339 7.202 / 0.298 7.180 / 0.279
0.05% 10.83 / 2.629 9.353 / 1.857 9.103 / 1.219 8.033 / 0.637

OptDigits 20% 0.741 / 0.022 0.589 / 0.015 0.585 / 0.014 0.584 / 0.014
0.4% 0.862 / 0.035 0.732 / 0.034 0.723 / 0.034 0.627 / 0.021

COIL 25% 0.022 / 0.002 0.019 / 0.001 0.019 / 0.001 0.019 / 0.001
3% 0.026 / 0.002 0.022 / 0.002 0.021 / 0.002 0.019 / 0.001

Three Moons 5% 0.09 / 0.005 0.08 / 0.005 0.08 / 0.005 0.06 / 0.003
0.25% 0.09 / 0.008 0.09 / 0.006 0.08 / 0.007 0.06 / 0.006

Bold= with temperature, not bold= without temperature

Table 3: Optdigits Results.

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.4% 93.04% 92.38% 91.70% 91.06% 89.96% 85.29%
86.87% 86.80% 86.16% 85.57% 85.10% 83.38%

0.5% 95.96% 95.18% 94.66% 93.84% 93.06% 89.76%
91.76% 91.06% 90.39% 89.87% 89.31% 87.98%

0.75% 98.07% 97.19% 96.62% 96.33% 95.85% 94.68%
95.90% 95.07% 94.34% 93.89% 93.62% 93.00%

1% 98.39% 97.57% 97.14% 96.91% 96.75% 96.33%
97.11% 96.24% 95.69% 95.40% 95.26% 95.04%

Bold= with temperature, not bold= without temperature

27



Table 4: MNIST Results

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.05% 94.84% 93.89% 93.17% 91.48% 89.66% 83.49%
91.00% 89.83% 88.10% 87.12% 85.87% 82.62%

0.075% 96.42% 95.83% 94.93% 94.02% 92.95% 90.72%
94.65% 93.31% 91.95% 90.99% 90.53% 89.40%

0.1% 96.88% 96.39% 95.87% 95.20% 94.87% 93.16%
95.96% 94.70% 93.79% 93.05% 92.74% 92.12%

0.2% 97.28% 96.92% 96.79% 96.70% 96.64% 96.54%
96.85% 96.15% 95.99% 95.88% 95.84% 95.83%

0.5% 97.38% 97.22% 97.20% 97.20% 97.19% 97.19%
97.16% 96.90% 96.89% 96.89% 96.88% 96.88%

1.0% 97.43% 97.31% 97.31% 97.31% 97.31% 97.30%
97.31% 97.18% 97.17% 97.16% 97.15% 97.15%

Bold= with temperature, not bold= without temperature

Table 5: COIL Results

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

3% 79.23% 79.17% 79.27% 79.54% 79.47% 79.41%
76.26% 77.47% 78.33% 78.91% 79.138% 79.40%

4% 85.05% 85.10% 85.17% 85.24% 85.13% 85.12%
82.70% 83.80% 84.53% 84.96% 85.01% 85.10%

5% 88.58% 88.72% 88.73% 88.64% 88.60% 88.55%
86.71% 87.79% 88.32% 88.56% 88.57% 88.54%

10% 93.73% 93.73% 93.73% 93.72% 93.73% 93.74%
93.12% 93.68% 93.73% 93.71% 93.73% 93.74%

Bold= with temperature, not bold= without temperature

6. Conclusion. In this paper, we have derived a new, accurate and efficient
method for computing volume-constrained curvature motion. Our method is derived
from the variational formulation of threshold dynamics based on the heat content
energy. Using the variational framework, we demonstrate a novel and surprising
connection between volume constrained MBO schemes and the assignment problem.
We then propose an efficient scheme for computing the motion based on specially

28



developed variants of auction algorithms.
Our resulting scheme, auction dynamics, has many desirable properties. The

interfaces are represented implicitly and thus topological changes are handled effort-
lessly. The volume constrained heat content energy is a Lyapunov functional for our
scheme, thus we can guarantee unconditional gradient stability independently of the
time step size. Our auction based approach ensures that the volume constraints are
satisfied exactly at every iteration, this allows our algorithm to be viable in situations
where phase boundaries are rough or poorly resolved.

In addition, auction dynamics is highly flexible and can be used for a wide range
of applications. We show how to adapt the algorithm to include random fluctuations
due to temperature and solve segmentation problems on weighted graphs. In the
application to the SSL problem, our algorithm is particularly effective. We are able
to obtain highly accurate solution with training set sizes that are unprecedentedly
small compared to other state-of-the-art methods. In the continuum setting, auction
dynamics (particularly in conjunction with temperature) shows great promise as a
tool for computing minimal partitions of space. We hope that the algorithm will
prove to be useful for further exploration in this area.

Acknowledgments. Matt Jacobs and Selim Esedoḡlu were supported by NSF
DMS-1317730.

Table 6: Three Moons Results.

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.25% 92.38% 92.68% 90.91% 88.20% 86.40% 84.52%
88.06% 91.01% 87.87% 87.73% 86.08% 85.70%

0.5% 97.66% 97.64% 94.80% 92.79% 90.29% 90.22%
94.84% 94.31% 93.16% 92.24% 91.38% 90.97%

0.75% 98.54% 98.09% 95.86% 94.85% 94.16% 93.53%
96.74% 96.20% 94.95% 93.66% 93.52% 93.04%

1% 98.80% 98.22% 96.62% 95.34% 95.04% 94.04%
97.90% 97.10% 95.99% 95.61% 95.26% 94.53%

Table 7: Accuracy Comparison to Other Methods

MNIST (supervised approaches)
Method Accuracy

boosted stumps* [26, 30] 92.3-98.74%
k-nearest neighbors* [29, 30] 95.0-97.17%

neural/conv. nets* [29, 10, 30] 95.3-99.65%
nonlinear classifiers* [29, 30] 96.4-96.7%

SVM* [29, 11] 98.6-99.32%
Proposed (55% fidelity) 99.14%

- Note that algorithms, marked by *, use substantially more data for training.

29



Table 8: Accuracy Comparison to Other Methods

MNIST

Method/ % Labeled Nodes 0.25% 0.5% 1.0%

TVP [48] 83.7% 86.3% 90.8%
multiclass MBO [17] 73.0% 90.1% 94.9%
LapRF (m = 1) [48] 84.2% 90.9% 95.1%
TVRF (m = 1) [48] 93.4% 96.4% 96.8%
LapRF (m = 2) [48] 91.0% 94.2% 95.6%
TVRF (m = 2) [48] 94.6% 96.6% 96.7%

Proposed (No constraints) 96.68% 97.18% 97.30%
Proposed (Exact volume constraints) 97.32% 97.38% 97.43%

OptDigits

Method/ % Labeled Nodes 0.89% 1.78% 2.67%

LapRLS [3, 44] 92.3% 97.6% 97.3%
sGT [24, 44] 91.4% 97.4% 97.4%

SQ-Loss-I [44] 95.9% 97.3% 97.7%
MP [44] 94.7% 97.0% 97.1%

LapRF (m = 1) [48] 79.0% 95.2% 96.8%
TVRF (m = 1) [48] 95.9% 97.2% 98.3%

Proposed (No constraints) 95.39% 97.74% 98.12%
Proposed (Exact volume constraints) 98.31% 98.64% 98.72%

COIL

Method/ % Labeled Nodes 3.3% 6.7% 10%

multiclass MBO [18] 72.9% 85.4% 91.5%
convex method [2] 72.7% 85.2% 93.4%
LapRLS [3, 44] 78.4% 84.5% 87.8%

sGT [24, 44] 78.0% 89.0% 89.9%
SQ-Loss-I [44] 81.0% 89.0% 90.9%

MP [44] 78.5% 90.2% 91.1%
LapRF (m = 1) [48] 71.7% 87.0% 91.0%
TVRF (m = 1) [48] 80.3% 90.0% 91.7%

Proposed (No constraints) 81.50% 91.21% 93.63%
Proposed (Exact volume constraints) 81.57% 91.41% 93.73%

Three Moons

Method/ % Labeled Nodes 1.66% 3.33% 5%

multiclass MBO [17] 68.3% 84.1% 94.3%
LapRF (m = 1) [48] 95.1% 96.4% 98.1%
TVRF (m = 1) [48] 96.4% 98.2% 98.4%
LapRF (m = 2) [48] 96.4% 97.9% 98.5%
TVRF (m = 2) [48] 96.4% 98.2% 98.6%

Proposed (No constraints) 97.46 % 98.49% 98.79%
Proposed (Exact volume constraints) 99.34% 99.48% 99.51%

REFERENCES

30



[1] Jing An. Volume preserving threshold dynamics for grain networks. Technical report, University
of Michigan, 2015.

[2] E. Bae and E. Merkurjev. Convex variational methods for multiclass data segmentation on
graphs. To appear in Journal of Mathematical Imaging and Vision, 2017.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434, 2006.

[4] Andrea L. Bertozzi and Arjuna Flenner. Diffuse interface models on graphs for classification
of high dimensional data. Multiscale Modeling and Simulation, 10(3):1090–1118, 2012.

[5] Dimitri Bertsekas. A distributed algorithm for the assignment problem. Technical report, MIT,
May 1979.

[6] Dimitri Bertsekas. Linear network optimization. MIT Press, 1991.
[7] Dimitri Bertsekas. Network Optimization: Continuous and Discrete Models. Athena Scientific,

1998.
[8] Dimitri Bertsekas and David Castanon. The auction algorithm for the transportation problem.

Annals of Operations Research, 20:67–69, 1989.
[9] Dimitri Bertsekas, David Castanon, and Haralampos Tsaknakis. Reverse auction and the

solution of asymmetric assignment problems. SIAM J. on Optimization, 3:268–299, 1993.
[10] D.C. Cireşan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. Flexible, high

performance convolutional neural networks for image classification. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence, pages 1237–1242, 2011.

[11] D. Decoste and B. Schölkopf. Training invariant support vector machines. Mach. Learn.,
46(1):161–190, 2002.

[12] M. Elsey and S. Esedoglu. Threshold dynamics for anisotropic surface energies. AMS Mathe-
matics of Computation, 2016.

[13] S. Esedoḡlu and F. Otto. Threshold dynamics for networks with arbitrary surface tensions.
Communications on Pure and Applied Mathematics, 68(5):808–864, 2015.

[14] S. Esedoḡlu and Y.-H. Tsai. Threshold dynamics for the piecewise constant Mumford-Shah
functional. Journal of Computational Physics, 211(1):367–384, 2006.

[15] Selim Esedoḡlu and Matt Jacobs. Convolution kernels, and stability of threshold dynamics
methods. Technical report, University of Michigan, 2016.

[16] Selim Esedoglu, Matt Jacobs, and Pengo Zhang. Kernels with prescribed surface tension and
mobility for threshold dynamics schemes. Submitted, 2016.

[17] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner, and A. G. Percus. Multiclass data
segmentation using diffuse interface methods on graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(8):1600–1613, 2014.

[18] C. Garcia-Cardona, E. Merkurjev, A.L. Bertozzi, A. Flenner, and A.G. Percus. Multiclass data
segmentation using diffuse interface methods on graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(8):1600–1613, 2014.

[19] A.V. Goldberg. Solving minimum-cost flow problems by successive approximation. In STOC
87, November 1986.

[20] A.V. Goldberg. Efficient graph algorithms for sequentialand parallel computer. Technical
report, Laboratory for Computer Science, M.I.T., 1987.

[21] A.V. Goldberg and R.E. Tarjan. Solving minimum cost flow problems by successive approxi-
mation. In Proc. 19th ACM STOC, May 1987.

[22] Thomas Hales. The honeycomb conjecture. Discrete and Computational Geometry, 25(1):1–22,
2001.

[23] M. Jacobs. A fast MBO scheme for multiclass data classification. In Sixth International
Conference on Scale Space and Variational Methods in Computer Vision, 2016.

[24] T. Joachims et al. Transductive learning via spectral graph partitioning. In International
Conference on Machine Learning, volume 20, page 290, 2003.

[25] C Kaynak. Methods of combining multiple classifiers and their applications to handwritten
digit recognition. Master’s thesis, Institute of Graduate Studies in Science and Engineering,
Bogazici University, 1995.

[26] B. Kégl and R. Busa-Fekete. Boosting products of base classifiers. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 497–504, 2009.

[27] Harold Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2, 1955.

[28] T. Laux and D. Swartz. Convergence of thresholding schemes incorporating bulk effects. ArXiv
e-prints, January 2016.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] Y. LeCun and C. Cortes. The MNIST database of handwritten digits.

31



[31] Peter McMullen and Egon Schulte. Abstract Regular Polytopes. Macmillan, 2002.
[32] E. Merkurjev, J. Sunu, and A. L. Bertozzi. Graph MBO method for multiclass segmentation

of hyperspectral stand-off detection video. In Proceedings of the International Conference
on Image Processing, pages 689–693, 2014.

[33] B. Merriman, J. K. Bence, and S. J. Osher. Diffusion generated motion by mean curvature.
In J. Taylor, editor, Proceedings of the Computational Crystal Growers Workshop, pages
73–83. AMS, 1992.

[34] James Munkres. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1), 1957.

[35] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library (coil-100). Technical
report, Columbia University, 1996.

[36] Alexander Zien Olivier Chapelle, Bernhard Scholkopf. Semi-Supervised Learning. The MIT
Press, 2006.

[37] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based
on Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49, 1988.

[38] D. Peng, B. Merriman, S. Osher, H.-K. Zhao, and M. J. Kang. A PDE-based fast local level
set method. Journal of Computational Physics, 155(2):410–438, 1999.

[39] S. J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature. PhD
thesis, The University of British Columbia, 1996.

[40] S. J. Ruuth. A diffusion generated approach to multiphase motion. Journal of Computational
Physics, 145:166–192, 1998.

[41] S. J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature. Journal
of Computational Physics, 144:603–625, 1998.

[42] S. J. Ruuth and B. Wetton. A simple scheme for volume-preserving motion by mean curvature.
Journal of Scientific Computing, 19(1):373–384, 2003.

[43] R. I. Saye and J. A. Sethian. The voronoi implicit interface method for computing multiphase
physics. Proceedings of the National Academy of Sciences, 108:19498–19503, 2011.

[44] A. Subramanya and J. Bilmes. Semi-supervised learning with measure propagation. Journal
of Machine Learning Research, 12:3311–3370, 2011.

[45] Y. van Gennip, N. Guillen, B. Ostimg, and A. L. Bertozzi. Mean curvature, threshold dynamics,
and phase field theory on finite graphs. Milan Journal of Mathematics, 82:3–65, 2014.

[46] D. Weaire and R. Phelan. A counter-example to kelvin’s conjecture on minimal surfaces.
Philosophical Magazine Letters, 69:107–110, 1994.

[47] X. Xu, D. Wang, and X. Wang. An efficient threshold dynamics method for wetting on rough
surfaces. arXiv:1602.04688, February 2016.

[48] K. Yin, X.-C. Tai, and S. Osher. An effective region force for some variational models for
learning and clustering. UCLA CAM Report, pages 16–18, 2016.

[49] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. Advances in neural
information processing systems, 2004.

[50] H.-K. Zhao, B. Merriman, S. Osher, and L. Wang. Capturing the behavior of bubbles and drops
using the variational levl set approach. Journal of Computational Physics, 143:495–512,
1998.

32


	Introduction
	Previous Work
	Auction Dynamics
	The assignment problem
	Auction algorithms
	Upper and lower volume bounds
	Auction dynamics with temperature

	Curvature motion
	Semi-Supervised Learning
	Variational and graphical models
	Auction dynamics on graphs
	Experimental results
	Benchmark datasets
	Results and comparison to other methods


	Conclusion
	References

