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ABSTRACT

We propose a semi-supervised algorithm for processing and classi-
fication of hyperspectral imagery. For initialization, we keep 20%
of the data intact, and use Principal Component Analysis to discard
voxels from noisier bands and pixels. Then, we use either an Accel-
erated Proximal Gradient algorithm (APGL), or a modified APGL
algorithm with a penalty term for distance between inpainted pixels
and endmembers (APGL_Hyp), on the initialized datacube to inpaint
the missing data. APGL and APGL_Hyp are distinguished by perfor-
mance on datasets with full pixels removed or extreme noise. This
inpainting technique results in band-by-band datacube sharpening
and removal of noise from individual spectral signatures. We can
also classify the inpainted cube by assigning each pixel to its near-
est endmember via Euclidean distance. We demonstrate improved
accuracy in classification over data-mining techniques like k-means,
unmixing techniques like Hierarchical Non-Negative Matrix Factor-
ization, and graph-based methods like Non-Local Total Variation.

Index Terms— Hyperspectral imagery (HSI), data preprocess-
ing, image inpainting, image classification, image enhancement

1. INTRODUCTION

Hyperspectral imagery (HSI), wherein sensors capture data at hun-
dreds of different wavelengths, has numerous applications in agri-
culture, environmental science, mineralogy, medical imaging, and
surveillance, because of its fundamental ability to allow the identi-
fication of separate objects or materials that cannot be differentiated
on sight [1, 2]. However, this branch of study presents particular
difficulties: the sheer amount of data in an image can offer process-
ing challenges, and data often are rife with noise or trade spatial for
spectral resolution [3, 4].

To address these issues, pre-processing techniques are used to
remove noisy voxels, dead pixels, and water bands, as well as to
sharpen the image. Wavelet based methods and statistical meth-
ods are commonly used for HSI denoising [5, 6, 7]. [8] presents
a multihypothesis prediction technique for HSI data preprocessing
to achieve a denoised image with less intraclass variability and
greater spatial smoothness. In [9], a fusion technique is introduced
to combine the hyperspectral and LiDAR data to remove a large
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cloud shadow present during the acquisition of the HSI. Graph-
regularized low-rank representation method is utilized in [10] to
alleviate striping noise which is a ubiquitous phenomenon in HSI.
However, pre-processing and classification are generally considered
separate phases of hyperspectral analysis.

We propose a novel algorithm that can be used for both pre-
processing and classification. Our algorithm resides in the relatively
new field of hyperspectral impaiting [11, 12]. The heart of our al-
gorithm lies in an accelerated proximal gradient scheme (APGL) for
matrix completion to inpaint an initialized incomplete datacube [13].
This matrix completion method minimizes the rank of the inpainted
matrix, which is especially suited for hyperspectral imagery under
the assumption that most pixels should be linear combinations of
the underlying pure materials. The result is a versatile and robust
algorithm for hyperspectral noise reduction, pixel smoothing, and
classification. We demonstrate a band-by-band sharpening in our
inpainted datacube which corresponds to a lower signal-to-noise ra-
tio (SNR) per cluster, as well as the denoising of individual pixel
spectral signatures. The inpainted hyperspectral cube is also clean
enough that we can classify each pixel according to the nearest end-
member in Euclidean distance, which is not possible on the original,
noisier cube; this final thresholding step turns our pre-processing al-
gorithm into a classification scheme. In comparing APGL and our
modified APGL method (APGL_Hyp) to other existing classifica-
tion methods, we found that our algorithms performed strongly over
a breadth of datasets. Furthermore, because of the inherent sharpen-
ing effect, our algorithms displayed a robustness to images with full
pixel corruption. On the datasets worked with in this paper, our al-
gorithm ran in under five minutes in its entirety, and often took under
one minute for smaller datasets.

2. THE ALGORITHM

The algorithm we present has three main segments. First, the dat-
acube is initialized through discarding noisy or unwanted voxels.
This datacube is fed to the APGL inpainting scheme proposed in
[13], or a modified version of this algorithm which takes into ac-
count distance between inpainted pixels and endmembers. APGL
has been used in the past for Netflix user rating problems, but our
application to hyperspectral inpainting is a novel application of the
algorithm. Furthermore, our initialization step ensures that the algo-
rithm inpaints over noise and not useful data. Second, we create a
modified version of the APGL algorithm that takes prior knowledge
of endmembers into account; this runs nearly identically to APGL in



Fig. 1. Pixel Index Matrix (training set in red, discarded voxels in
blue)

standard circumstances, but outperforms APGL on datasets with a
significant amount of the original pixels missing. Our final step is to
classity the inpainted hyperspectral image, and we can now do this
via assigning each pixel to the cluster of its nearest endmember.

We assume pre-known endmembers. To discard the data in a
systematic manner, we construct an mn X B pixel index matrix for
the original m x n x B hyperspectral datacube. Pixels are ordered in
the index by distance to the closest endmember, and the top 20% are
kept as a training set. We use Principle Component Analysis (PCA)
to identify the bands of greatest variance and structure, introduce
twenty ! orderings of bands from the PCA coefficients , and assign
one of these orderings randomly to each pixel to ensure no bands
are deleted entirely. We then catalog the right bottom corner of this
matrix for removal of voxels in the original hyperspectral image. In
especially noisy cases, we discard entire pixels from the bottom of
the index matrix. Generally 25-35% of the data is discarded in the
initialization. For the inpainting stage, to capture some of the spatial
properties and relations in the data, we represent pixels as patches of
the full data cube. The initialization takes less than 5 seconds on all
datasets in this paper.

The core stage of our algorithm uses an accelerated proximal
gradient with line search technique for matrix completion to in-
paint the hyperspectral datacube. The minimization problem APGL
strives to solve is the following:

arg min || A(X) — bl[3 + pf| X (1

Here X is the reconstruction of the hyperspectral image, A is a linear
map which functions as a projection onto the index set of the known
pixels, b is the observed partial datacube, and || X||« is the nuclear
norm of X. In this case minimizing the nuclear norm is equivalent to
minimizing the rank of X, [14] [15], which corresponds to the small
number of endmembers in the hyperspectral image.

Equation (1) is a special case of the minimization problem of the
form:

min  F(X):= f(X)+ P(X) 2)
X GR‘NL Xn

where P : R™*™ — (—o0, 00| is a proper, convex, lower semicon-
tinuous function and f is convex smooth on an open subset of R™*™
containing domP = {X|P(X) < oo}. In the Equation (1) case,

FOX) = SIAG) ~ 8B, P(X) = X[l
and domP = R™*". The basic numerical technique to solve this
problem is to iteratively minimize with respect to f(X) by gradi-
ent descent, then with respect to P(X) by taking the proximal via
an SVD thresholding shrink operator [16]. APGL accelerates con-
vergence with a line search to solve for the optimal step 71 at each
iteration.

Itwenty chosen to accelerate this initialization

We further modify the APGL algorithm to take knowledge of
endmembers into account. APGL_Hyp solves:

. 1 A
arg _min_  LAC) ~ b3+ pll X[+ 51X~ OXE 3)

XeRmXn

where C'X is a projection of each pixel onto the nearest endmember,
with A as a weighing parameter; the ideal value was determined to
be A = 1072 after testing. To retain convexity, we calculate C'X 4
for each iteration, and thus C'X can be treated as a constant. The
modified proximal gradient minimization is then:

1 A
FX) = SIAX) = bz + 11X = CX[[ . P(X) = pl| X,

and the same numerical methods can be used. We employed a k-d
tree and used an approximate nearest neighbor search to calculate
the projection step (C' X) for the O(log n) complexity [17] [18], and
further shortened the max comparisons to e* /6, where e is the num-
ber of endmembers, to decrease computational time.

Initialization

1. Create pixel index matrix and training set, and remove
desired percentage of voxels.

2. Create patch matrix of stripped datacube and k-d tree of
endmember permutations.

Inpainting The following algorithm is taken directly from [13]
for the reader’s convenience. Changes to the algorithm for
APGL_Hyp are in boldface.

3. Let o > 0 be a fixed regularization parameter, let n €
(0,1) be a given constant. Let X° = X' = 0 ¢
R™ ™ Jett’ =t~ =1landlet7° =14 A.

4. Repeat the following loop until convergence: for k =
0,1,2,..., generate X1 according to the following
iteration:

(a) Set Yk = Xk + tk;%(xk _ Xk—l)

(b) Calculate CXk1,

(¢) Set7p = 177—'“’1

(d) Forj=0,1,2,...
Set G = Y* — ()7 MAT(AYP) -
b) A (XX — CX*1).
Compute Sz (G) = UDiag(o — w/7)+ VT
If F(S5(G)) < Q=(5S7(G)),
Set ¢ = 7;, break
Else,
Set 7j11 = min{n~'7;, 7%}
end
end

(e) Set X*!' =5, (@)

k
() Set ¢+1 — 1EV/IFAES?

5. Recreate the hyperspectral image from the patches.
Classification

6. Assign each pixel to the cluster of its nearest endmem-
ber.
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Fig. 2. Kiwi at 100th Band

Fig. 3. Random Pixel from Kiwi

3. PRE-PROCESSING RESULTS

3.1. Datacube Sharpening

The inpainting stage of our algorithm outputs cleaner band-by-band
images. Visually, this is evident in Figure 1. To quantify this, we take
the Signal-to-Noise Ratio (SNR) of the datacube. For each band, we
take the weighted average of the mean over the standard deviation
(/o) of each cluster as determined by the ground truth, and then
take the average of this ratio over all of the bands. For the Kiwi
dataset, the SNR of the original datacube is 10.6185. The SNR of
the datacube inpainted using APGL is 24.1549, and the SNR of the
datacube inpainted using APGL_Hyp is 24.6162.

3.2. Signature Smoothing

Similar to band-by-band sharpening, our inpainted datacube dis-
played a smoothing of the pixel signatures while retaining fidelity
to the pixel shape (Figure 2). We examined the total variation of
each pixel divided by the mean of the pixel; the average of all of
these values in the original kiwi datacube is 0.0774, but for APGL
and APGL_Hyp it is 0.0080, nearly an order of magnitude lower.
This indicates that our algorithm could be used as pre-processing
on a noisy datacube before endmember extraction algorithms are
employed, to ensure that the endmembers extracted are as clean as

possible.
4. CLASSIFICATION RESULTS

For classification, we threshold each pixel into a cluster by assign-
ing it to its nearest endmember. We compare APGL and APGL_Hyp
to three algorithms chosen to represent a broad range of hyperspec-
tral classification techniques. K-Means is a common data-mining
technique used in machine learning, Hierarchical Non-Negative Ma-
trix Factorization (H2NMF) [19] is a linear unmixing model relying
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Fig. 4. Algorithms run on Original Salinas-A Dataset
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Fig. 5. Algorithms run on Salinas-A Dataset with 10% Pixels Re-
placed by Noise

on matrix factorization, and Non-Local Total Variation (NLTV) is
a graph-based method which minimizes an energy functional [20].
Experiments unless otherwise noted were run on Dell Optiplex 9020
with Intel(R) Core i7 3.2 GHz running Windows 7 Professional with
Service Pack 1, on MATLAB R2015a.

4.1. Urban Dataset

The first dataset tested on is the Urban dataset from HYDICE, which
contains 307 x 307 pixels and 162 clean spectral bands. This dataset
has the advantage of only having six classes of material: road, dirt,
house, metal, tree, grass. We compared classifications to a ground
truth originally taken from a structured sparse algorithm [21], and
corrected pixel-by-pixel by eye with both the RGB and spectral sig-
natures for reference. To preserve space, we only present quantita-
tive results.

Table 1. Comparison of Numerical Results on the Urban Dataset

Original Dataset 10% Replaced by Noise
Time Accuracy Time Accuracy
K-Means 3.75s 65.30% 8.17s 69.34%
H2NMF 7.83s 73.21% 14.17 s 63.27%
NLTV 260.33s | 81.60% | 315.72s 45.67%
APGL 149.09s | 82.95% | 408.08 s 81.68%
APGL_Hyp | 275.24s | 8297% | 880.20s 82.04%

4.2. Salinas-A Dataset

Salinas-A scene was a small subscene of Salinas image, which was
acquired by the AVIRIS sensor over Salinas Valley. It contains 86 X
83 pixels and 204 bands with six ground truth clusters. This was run
on on Lenovo Yoga with Intel(R) Core i7 running Windows 10. The
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overall accuracies and visual clustering results are shown in Table 2
and Fig. 4.

Table 2. Comparison of Numerical Results on the Salinas-A Dataset

Original Dataset 10% Replaced by Noise
Time | Accuracy | Time Accuracy
K-Means 1.04 s 69.52% 4.60s 50.90%
H2NMF 241s 70.08% 1.75s 58.36%
NLTV 53.83s | 80.42% | 54.23s 71.02%
APGL 2998s | 76.93% | 33.57s 76.78%
APGL Hyp | 6595s | 69.60% | 77.73s 72.57%

4.3. Chemical Plume Dataset

The next dataset tested on is a chemical plume dataset, taken from
frames of a hyperspectral video provided by the John Hopkins
University Applied Physics Laboratory. These images were taken
by long wave infrared spectrometers 2km from the release of the
plume at an elevation of approximately 1300 feet, with dimensions
128 x 320 pixels, and 129 clean spectral bands [22]. It presents a
unique challenge in terms of classification: as the image was taken
in the infrared range, there is interference from heat vortexes in the
desert; the plume itself is diffuse and invisible to the naked eye, and
the spectral signatures of the atmosphere and the mountains filter
through the plume; the dataset itself is noisy and no form of pre-
processing has been run. We compared our results to a hand-made
ground truth using [23, 24] as our guide and the first five principle
bands to pick out clusters.

Table 3. Comparison of Numerical Results on the Chemical Plume
Dataset

Original Dataset 10% Replaced by Noise
Time | Accuracy Time Accuracy
K-Means 1.15s 70.90% N/A N/A
H2NMF 224 63.42% 2.04s 64.02%
NLTV 91.33s | 66.21% | 102.57s 61.56%
APGL 29.79s | 86.37% 29.59 s 85.76%
APGL Hyp | 47.66s | 86.40% 48.16 s 85.60%

5. ROBUSTNESS TO FULL PIXEL REMOVAL

APGL and APGL_Hyp are distinguished by their performance on
datasets with full pixel removal. Both algorithms are resilient to this
treatment, retaining nearly identical percentage accuracies on the
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Fig. 7. Algorithms run on Chemical Plume Dataset with 10% Pixels
Replaced by Noise
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Fig. 8. APGL and APGL _Hyp run on Chemical Plume Dataset with
Full Pixel Removal

chemical plume dataset all the way to 20% pixel removal. Greater
removal of pixels resulted in the first major deviation between APGL
and APGL _Hyp inpainting: consistently, APGL_Hyp classifies with
a higher percent accuracy, as well as maintaining structure of the
image. In examining pixel-by-pixel the signatures of the fully ze-
roed pictures, APGL leaves a number of pixels fully zero, while
APGL_Hyp can partially reconstruct the original signature. Figures
8 shows results from both APGL and APGL_Hyp for 30% and 50%
removal.

Table 4. Accuracy with Percent Full Pixel Removal (PFPR)

PFPR | APGL | APGL Hyp
10% | 85.99% | 85.83%
20% | 8531% | 85.36%
30% | 81.85% | 83.45%
50% | 60.66% | 69.80%
70% | 48.61% | 51.95%

6. CONCLUSION

In this paper we present the framework for a new type of dual
hyperspectral sharpening and classification scheme. Using APGL
or modified APGL inpainting on a specially initialized datacube,
we can produce band-by-band sharpening, pixel smoothing, as
well as classification that is highly robust to noise. While APGL
and APGL_Hyp have slightly longer run-times than k-means and
H2NMEF, this is made up for by accuracy and resistance to noise, as
well as the breadth of datasets it performs proficiently on. Finally,
APGL_Hyp demonstrates the ability to reconstruct and classify
images with significant percentages of the pixels missing entirely.
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