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Abstract. Classification of high dimensional data finds wide-ranging applications. In many
of these applications equipping the resulting classification with a measure of uncertainty may be
as important as the classification itself. In this paper we introduce, develop algorithms for, and
investigate the properties of, a variety of Bayesian models for the task of binary classification; via
the posterior distribution on the classification labels, these methods automatically give measures of
uncertainty. The methods are all based around the graph formulation of semi-supervised learning.

We provide a unified framework which brings together a variety of methods which have been
introduced in different communities within the mathematical sciences. We study probit classification
[43], generalize the level-set method for Bayesian inverse problems [24] to the classification setting,
and generalize the Ginzburg-Landau optimization-based classifier [5, 40] to a Bayesian setting; we
also show that the probit and level set approaches are natural relaxations of the harmonic function
approach introduced in [49]. We introduce efficient numerical methods, suited to large data-sets,
for both MCMC-based sampling as well as gradient-based MAP estimation. Through numerical
experiments we study classification accuracy and uncertainty quantification for our models; these
experiments showcase a suite of datasets commonly used to evaluate graph-based semi-supervised
learning algorithms.
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1. Introduction.

1.1. The Central Idea. Semi-supervised learning has attracted the attention
of many researchers because of the importance of combining unlabeled data with
labeled data. In many applications the number of unlabeled data points is so large
that labeling training data is expensive and time-consuming. Therefore, the problem
of effectively utilizing a combination of unlabeled and labeled information is very
important in machine learning research. This paper concerns the issue of how to
address uncertainty quantification in such classification methods. In doing so we bring
together a variety of themes from the mathematical sciences, including optimization,
PDEs, probability and statistics. We will show that a variety of different methods,
arising in very distinct communities, can all be formulated around a common objective
function

J(w) =
1

2
〈w,Pw〉+ Φ(w)
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for a real valued function w on the nodes of a graph representing the data points. The
matrix P is proportional to a graph Laplacian derived from the unlabeled data and
the function Φ involves the labelled data. The variable w is used for classification.
Minimizing this objective function is one approach to such a classification. A prob-
ability distribution related to the objective function has density P(w) proportional
to exp

(
−J(w)

)
; probability of the labelling variable w is high where the objective

function is small, and vice-versa. Uncertainty quantification corresponds to using the
probability distribution to compute expectations of test functions g, defined on the
nodes of the graph, which enable us to measure the variability of label variables, such
as means and variances: ∫

g(w)P(w)dw.

In the settings of interest this will typically be a very high dimensional integral, with
the dimension given by the number of unlabelled data points. Carrying out this
program requires computational algorithms to minimize J(w) or to draw samples,
via Monte Carlo Markov chain (MCMC) for example, from the probability distribu-
tion with density P(w). These algorithms exploit the fact that 1

2 〈w,Pw〉 is a graph
analogue of the Dirichlet energy and will leverage analogies with PDE-based method-
ologies involving the classical Euclidean Dirichlet energy in order to derive effective
computational methods. In this paper we will describe this confluence of ideas from
different parts of the mathematical sciences, show how our approach builds on a broad
range of advances in the field which we will review, and demonstrate the emergence
of a problem area with many open challenges for the mathematical sciences. We em-
phasize that the variety of probablistic models considered in this paper arise from
different assumptions concerning the structure of the data. Our objective is not to as-
sess the validity of these assumptions, which is a modelling question best addressed on
a case-by-case basis, but rather we develop an overarching computational framework
suitable for all the models arising from these different assumptions.

1.2. Literature Review. An effective method for semi-supervised learning is
to construct a similarity graph on both the unlabeled and labeled examples, and clas-
sify unknown labels by leveraging the graph structure. A central conceptual issue in
the setting of this problem is that labels are discrete, whilst similarity information is
often continuous. Strategies to work with both of these settings simultaneously are
at the heart of this subject. In [8], Blum et al. posed the binary semi-supervised clas-
sification problem using a graph min-cut problem. This is equivalent to a maximum
a posteriori (MAP) estimator with respect to a Bayesian posterior distribution for a
Markov random field (MRF) over the discrete state space of binary labels [48]; the
resulting optimization problem can be solved exactly in polynomial time. In general,
inference for multi-label discrete MRFs is intractable [16]. However, several approx-
imate algorithms exist for the multi-label case [10, 9, 28], and have been applied to
many imaging tasks [11, 4, 27].

The probit classification method, using Gaussian process priors, is described in
[43]; however in that book the prior does not depend on the unlabelled data. Gaussian
priors which depend on the unlabelled data may be constructed by using the Graph
Laplacian, an approach undertaken in [25, 20, 47, 49, 50]. The model defined in [49]
is equivalent to a continuum relaxation of the discrete state space MRF in [8]. The
Bayesian formulation which underpins our work in this paper was made explicit in
[25, 50] where a variety of likelihood models are used to condition on the labelled
data; the probit approach, for example, could be used to accomplish this. Probit
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utilizies the same prior as in [49] but the data is assumed to take binary values,
found from thresholding the underlying continuous variable, and thereby providing
a link between the combinatorial and continuous state space approaches described
in the previous paragraph. The probit methodology is often implemented via MAP
optimization – that is the posterior probability is maximized rather than sampled –
or an approximation to the posterior is computed, in the neighbourhood of the MAP
estimator [43]. For full posterior exploration, Gibbs sampling is often used [1] and
this methodology has been applied recently in [20]; furthermore methods designed
to break undesirable dependencies in the Gibbs sampler are introduced in [22]. In
the context of MAP estimation, the graph-based terms act as a regularizer, in the
form of the graph Dirichlet energy 1

2 〈w,Pw〉. A formal framework for graph-based
regularization can be found in [2, 3]. More recently, other forms of regularization have
been considered such as the graph wavelet regularization [36, 19].

Another link between discrete combinatorial optimization approaches and meth-
ods based on optimization over real-valued variables was made in the work of Bertozzi
et al. [5, 40]. The approach is based on the fact that the TV functional, when suit-
ably generalized to weighted graphs, coincides with the graph cut energy. Relaxation
of the TV functional is well-understood in the context of partial differential equa-
tions (PDE) and generalizing ideas applicable to the PDE Laplacian in the context
of the graph Laplacian leads to new optimization methods. Based on this reasoning,
in [5] the graph Ginzburg-Landau functional was used as a relaxation of the graph
TV functional for the task of binary classification. This was generalized to multi-
class classification in [18]. Following this line of work, several new algorithms were
developed for semi-supervised and unsupervised classification problems on weighted
graphs [23, 29]. A further connection with PDE based methods is the level-set ap-
proach to Bayesian inversion, introduced recently in [24]; this is very closely related
to our variant on the probit method, as we will demonstrate.

There are a wide range of methodologies employed in the field of uncertainty quan-
tification, and the reader may consult the books [37, 38, 45] and the recent article
[33] for details and further references. Underlying all of these methods is a Bayesian
methodology which is attractive both for its clarity with respect to modelling assump-
tions and its basis for application of a range of computational tools. Nonetheless it
is important to be aware of limitations in this approach, in particular with regard to
its robustness with respect to the specification of the model, and in particular the
prior distribution on the unknown of interest [32]. Whilst the book [43] conducts a
number of thorough uncertainty quantification studies for a variety of learning prob-
lems using Gaussian process priors, most of the papers studying graph based learning
referred to above primarily use the Bayesian approach to learn hyperparameters in
an optimization context, and do not consider uncertainty quantification.

1.3. Our Contribution. In this paper, we focus exclusively on the problem of
binary semi-supervised classification; however the methodology and conclusions will
extend beyond this setting. Our focus is on a presentation which puts uncertainty
quantification at the heart of the problem formulation, and we make four primary
contributions:

• we define a number of different Bayesian formulations of the graph-based
semi-supervised learning problem and we connect them to one another, to
binary classification methods and to a varierty of PDE-inspired approaches
to classification; in so doing we provide a single framework for a variety of
methods which have arisen in distinct communities and we open up a number
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of new avenues of study for the problem area;
• we highlight the pCN-MCMC method for posterior sampling which, based on

analogies with its use for PDE-based inverse problems [15], has the potential
to sample the posterior distribution in a number of steps which is independent
of the number of graph nodes;

• we introduce approximations exploiting the empirical properties of the spec-
trum of the graph Laplacian, generalizing methods used in the optimization
context in [5], allowing for computations at each MCMC step which scale well
with respect to the number of graph nodes;

• we demonstrate, by means of numerical experiments on a range of problems,
both the feasibility, and value, of Bayesian uncertainty quantification in semi-
supervised, graph-based, learning.

1.4. Overview and Notation. The paper is organized as follows. In section
2, we give some background material needed for problem specification. In section 3
we formulate the four Bayesian models used for the classification tasks. Section 4
introduces the MCMC and optimization algorithms that we use. In section 5, we
present and discuss results of numerical experiments to illustrate our findings; these
are based on four examples of increasing size: the house voting records from 1984 (as
used in [5]), the tuneable two moons data set [13], the MNIST digit data base [26]
and the hyperspectral gas plume imaging problem [12]. We conclude in section 6.

To aid the reader, we give here an overview of notation used throughout the
paper.

• Z the set of nodes of the graph, with cardinality N ;
• Z ′ the set of nodes where labels are observed, with cardinality J ≤ N ;
• x : Z 7→ Rd, feature vectors;
• u : Z 7→ R latent variable characterizing nodes, with u(j) denoting evaluation

of u at node j;
• S : R 7→ {−1, 1} the thresholding function;
• Sε relaxation of S using gradient flow in double-well potential Wε;
• l : Z 7→ {−1, 1} the label value at each node with l(j) = S(u(j));
• y : Z ′ 7→ {−1, 1} or y : Z ′ 7→ R, label data;
• v : Z 7→ R with v being a relaxation of the label variable l;
• A weight matrix of the graph, L the resulting symmetric graph Laplacian;
• P the precision matrix and C the covariance matrix, both found from L;
• {qk, λk}N−1k=0 eigenpairs of L;
• U : orthogonal complement of the null space of the graph Laplacian L, given

by q⊥0 ;
• U` : orthogonal complement of the first ` eigenfunctions of the graph Lapla-

cian L.
• | · | denotes the Euclidean norm and 〈·, ·〉 the corresponding inner-product;
• GL : Ginzburg-Landau functional;
• µ0, ν0 : prior probability measures;
• µ and ν: (with suffices denoting different models);
• the measures denoted µ typically take argument u and are real-valued; the

measures denoted ν take argument l on label space, or argument v on a
real-valued relaxation of label space;

• N (m,Σ) denotes a Gaussian random variable with mean m and covariance
Σ;

• P and E denote the probability of an event, and the expectation of a ran-
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dom variable, respectively; the underlying probability measure will be made
explicit as a subscript when it is necessary to do so.

2. Problem Specification. In subsection 2.1 we formulate semi-supervised
learning as a problem on a graph. Subsection 2.2 defines the relevant properties
of the graph Laplacian and in subsection 2.3 these properties are used to construct
a Gaussian probability distribution; in section 3 this Gaussian will be used to define
our prior information about the classification problem. In subsection 2.4 we discuss
thresholding which provides a link between the real-valued prior information, and the
label data provided for the semi-supervised learning task; in section 3 this will be
used to definine our likelihood.

2.1. Semi-Supervised Learning on a Graph. We are given a set of points
denoted by Z = {1, . . . , N}, and a set of features X = {x1, . . . , xN} associated with
these points; each feature vector xj is an element of Rd, so that X ∈ Rd×N . Graph
learning starts from the construction of an undirected graph G with weights aij com-
puted from the feature set X. For graph semi-supervised learning, we are also given
a partial set of (possibly noisy) labels y = {y(j)|j ∈ Z ′}, where Z ′ ⊆ Z has size
J ≤ N . The task is to infer the labels for all nodes in Z, using the weighted graph
G and also the set of noisily observed labels y. In the Bayesian formulation which
we adopt the feature set X, and hence the graph G, is viewed as prior information,
describing correlations amongst the nodes of the graph, and we combine this with a
likelihood based on the noisily observed labels y, to obtain a posterior distribution on
the labelling of all nodes. Various Bayesian formulations, which differ in the specifi-
cation of the observation model and/or the prior, are described in section 3. In the
remainder of this section we give the background needed to understand all of these
formulations, thereby touching on the graph Laplacian itself, its link to Gaussian prob-
ability distributions and, via thresholding, to non-Gaussian probability distributions
and to the Ginzburg-Landau functional. An important point to appreciate is that
building our priors from Gaussians confers considerable computational advantages for
large graphs; for this reason the non-Gaussian priors will be built from Gaussians via
change of measure or push forward under a nonlinear map.

2.2. The Graph Laplacian. The graph Laplacian is central to many graph-
learning algorithms. There are a number of variants used in the literature; see [5, 41]
for a discussion. We will work with the symmetric Laplacian, defined from the weight
matrix A = {aij} as follows. We define the diagonal matrix D = diag{dii} with
entries dii =

∑
j∈Z aij . If we assume that the graph G is connected, then dii > 0 for

all nodes i ∈ Z. We can then define the symmetric graph Laplacian1 as

(1) L = I −D−1/2AD−1/2,

and the graph Dirichlet energy as J0(u) := 1
2 〈u, Lu〉. Then

(2) J0(D
1
2u) =

1

4

∑
{i,j}∈Z×Z

aij(u(i)− u(j))2.

1In the majority of the paper the only property of L that we use is that it is symmetric positive
semi-definite. We could therefore use other graph Laplacians, such as the unnormalized choice
L = D−A, in most of the paper. The only exception is the spectral approximation sampling algorithm
introduced later; that particular algorithm exploits empirical properties of the symmetrized graph
Laplacian. Note, though, that the choice of which graph Laplacian to use can make a significant
difference – see [5], and Figure 2.1 therein. To make our exposition more concise we confine our
presentation to the symmetric graph Laplacian.
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Thus, similarly to the classical Dirichlet energy, this quadratic form penalizes nodes
from having different function values, with penalty being weighted with respect to the
similarity weights from A. Furthermore the identity shows that L is positive semi-
definite. Indeed the vector of ones I is in the null-space of D − A by construction,
and hence L has a zero eigenvalue with corresponding eigenvector D

1
2 I.

We let (qk, λk) denote the eigenpairs of the matrix L, ordered so that

λ0 ≤ λ1 ≤ · · · ≤ λN−1 ≤ 2.

The upper bound of 2 may be found in [14, Lemma 1.7, Chapter 1]. The eigenvector

corresponding to λ0 = 0 is q0 = D
1
2 I and λ1 > 0, assuming a fully connected graph.

Then L = QΛQ∗ where Q has columns {qk}N−1k=0 and Λ is a diagonal matrix with

entries {λk}N−1k=0 . Using these eigenpairs the graph Dirichlet energy can be written as

(3)
1

2
〈u, Lu〉 =

1

2

N−1∑
j=1

λj(〈u, qj〉)2;

this is analogous to decomposing the classical Dirichlet energy using Fourier analysis.

2.3. Gaussian Measure. We now show how to build a Gaussian distribution
with negative log density proportional to J0(u). Such a prior prefers functions that
have larger components on the first few eigenvectors of the graph Laplacian, where
the eigenvalues of L are smaller. The corresponding eigenvectors carry rich geomet-
ric information about the weighted graph. For example, the second eigenvector of
L is the Fiedler vector and solves a relaxed normalized min-cut problem [41, 21].
The Gaussian distribution thereby connects geometric intuition embedded within the
graph Laplacian to a natural probabilistic picture.

To make this connection concrete we define diagonal matrix Σ with entries defined
by the vector

(0, λ−11 , · · · , λ−1N−1)

and define the positive semi-definite covariance matrix C = cQΣQ∗; choice of the
scaling c will be discussed below. We let µ0 := N (0, C). Note that the covariance
matrix is that of a Gaussian with variance proportional to λ−1j in direction qj thereby
leading to structures which are more likely to favour the Fiedler vector (j = 1),
and lower values of j in general, than it does higher values. The fact that the first
eigenvalue of C is zero ensures that any draw from µ0 changes sign, because it will
be orthogonal to q0.

2 To make this intuition explicit we recall the Karhunen-Loeve
expansion which constructs a sample u from the prior µ0 according to the random
sum

(4) u = c
1
2

N−1∑
j=1

λ
− 1

2
j qjzj ,

where the {zj} are i.i.d. N (0, 1). Since each qj with j ≥ 1 is orthogonal to q0 it follows
that u is orthogonal to q0 and the sign-change property is enforced because q0 is of
one sign.

2Other choices of the first eigenvalue are possible and may be useful but for simplicity of expo-
sition we do not consider them in this paper.
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We choose the constant of proportionality c as a rescaling which enforces the
property E|u|2 = N for u ∼ µ0 := N (0, C); in words the per-node variance is 1. Note
that, using the orthogonality of the {qj},

E|u|2 = c

N−1∑
j=1

λ−1j Ez2j = c

N−1∑
j=1

λ−1j .

Thus the normalization implies that

(5) c = N
(N−1∑
j=1

λ−1j

)−1
.

We reiterate that the support of the measure µ0 is the space U := q⊥0 = span{q1, · · · , qN−1}
and that, on this space, the probability density function is proportional to

exp
(
−c−1J0(u)

)
= exp

(
− 1

2c
〈u, Lu〉

)
,

so that the precision matrix of the Gaussian is P = c−1L. In what follows the sign of
u will be related to the classification; since all the entries of q0 are positive, working
on the space U ensures a sign change in u, and hence a non-trivial classification.

2.4. Thresholding and Non-Gaussian Probability Measure. For the mod-
els considered in this paper, the label space of the problem is discrete while the latent
variable u through which we will capture the correlations amongst nodes of the graph,
encoded in the feature vectors, is real-valued. We describe thresholding, and a relax-
ation of thresholding, to address the need to connect these two differing sources of
information about the problem. In what follows the latent variable u : Z → R is
thresholded to obtain the label variable l : Z → {−1, 1}. The variable v : Z → R
is a real-valued relaxation of the label variable l. The variable u will be endowed
with a Gaussian probability distribution. From this the variable l (which lives on a
discrete space) and v (which is real-valued, but concentrates near the discrete space
supporting l) will be endowed with non-Gaussian probability distributions.

Define the (signum) function S : R 7→ {−1, 1} by

S(u) = 1, u ≥ 0 and S(u) = −1, u < 0.

This will be used to connect the latent variable u with the label variable l. The
function S may be relaxed by defining Sε(u) = v|t=1 where v solves the gradient flow

v̇ = −∇Wε(v), v|t=0 = u for potential Wε(v) =
1

4ε
(v2 − 1)2.

This will be used, indirectly, to connect the latent variable u with the real-valued
relaxation of the label variable, v. Note that Sε(·) → S(·), pointwise, as ε → 0, on
R\{0}. This reflects the fact that the gradient flow minimizes Wε, asymptotically as
t→∞, whenever started on R\{0}.

We have introduced a Gaussian measure µ0 on the latent variable u which lies in
U ⊂ RN ; we now want to introduce two ways of constructing non-Gaussian measures
on the label space {−1, 1}N , or on real-valued relaxations of label space, building on
the measure µ0. The first is to consider the push-forward of measure µ0 under the
map S: S]µ0. Then (

S]µ0

)
(l) = µ0

(
S(u(j)) = l(j), 1 ≤ j ≤ |Z|

)
.
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Thus S]µ0 is a measure on the label space {−1, 1}N . The second approach is to work
with a change of measure from the Gaussian µ0 in such a way that the probability
mass on U ⊂ RN concentrates close to the label space {−1, 1}N . We may achieve this
by defining the measure ν0 via its Radon-Nykodim derivative

(6)
dν0
dµ0

(v) ∝ e−
∑
j∈ZWε(v(j)).

We name ν0 the Ginzburg-Landau measure, since the negative log density function of
ν0 is the graph Ginzburg-Landau functional

(7) GL(v) :=
1

2c
〈v, Lv〉+

∑
j∈Z

Wε(v(j)).

The Ginzburg-Landau distribution defined by ν0 can be interpreted as a non-convex
ground relaxation of the discrete MRF model [48], in contrast to the convex relaxation
which is the Gaussian Field [49]. Since the double well has minima at the label values
{−1, 1}, the probability mass of ν0 is concentrated near the modes ±1, and ε controls
this concentration effect.

3. Bayesian Formulation. In this section we formulate four different Bayesian
models for the semi-supervised learning problem. The four models all combine the
ideas described in the previous section to define four distinct posterior distributions.
It is important to realize that these different models will give different answers to
the same questions about uncertainty quantification, just as different methods based
around optimization will give different classifications. The choice of which Bayesian
model to use is related to the data itself, and making this choice is beyond the scope
of this paper. Currently the choice must be addressed on a case by case basis, as
is done when choosing an optimization method for classification. Nonetheless we
will demonstrate that the shared structure of the four models mean that a common
algorithmic framework can be adopted and we will make some conclusions about the
relative costs of applying this framework to the four models.

We denote the latent variable by u(j), j ∈ Z, the thresholded value of u(j) by
l(j) = S(u(j)) which is interpreted as the label assignment at each node j, and noisy
observations of the binary labels by y(j), j ∈ Z ′. The variable v(j) will be used to
denote the real-valued relaxation of l(j) used for the Ginzburg-Landau model. Recall
Bayes formula which transforms a prior density P(u) on a random variable u into a
posterior density P(u|y) on the conditional random variable u|y:

P(u|y) =
1

P(y)
P(y|u)P(u).

We will now apply this formula to condition our graph latent variable u, whose thresh-
olded values correspond to labels, on the noisy label data y given at Z ′. As prior on u
we will always use P(u)du = µ0(du); we will describe three different likelihoods. We
will also apply the formula to condition relaxed label variable v, on the same label
data y, via the formula

P(v|y) =
1

P(y)
P(y|u)P(v).

We will use as prior the non-Gaussian P(v)dv = ν0(dv).
For the probit, level-set and atomic models, we now explicitly state the prior

density P(u), the likelihood function P(y|u), and the posterior density P(u|y); in the

8



Ginzburg-Landau case v will replace u and we will define the densities P(v),P(y|v)
and P(v|y). Prior and posterior probability measures associated with letter µ are on
the latent variable u; measures associated with letter ν are on the label space, or
real-valued relaxation of the label space.

3.1. Probit. The probit method is designed for classification and is described
in [43]; in that context Gaussian process priors are used and these do not depend on
label data. A recent fully Bayesian treatment of the methodology using unweighted
graph Laplacians may be found in the paper [20]. In detail our model is as follows.
Prior We take as prior on u the Gaussian µ0. Thus

P(u) ∝ exp
(
−1

2
〈u, Pu〉

)
.

Likelihood For any j ∈ Z ′

y(j) = S
(
u(j) + η(j)

)
with the η(j) drawn i.i.d from N (0, γ2). We let

Ψ(v; γ) =
1√

2πγ2

∫ v

−∞
exp

(
− t2/2γ2

)
dt

and note that then

P
(
y(j) = 1|u(j)

)
= P

(
N (0, γ2) > −u(j)

)
= Ψ(u(j); γ) = Ψ(y(j)u(j); γ);

similarly

P
(
y(j) = −1|u(j)

)
= P

(
N (0, γ2) < −u(j)

)
= Ψ(−u(j); γ) = Ψ(y(j)u(j); γ).

Posterior Bayes’ Theorem gives posterior µp with probability density function (pdf)

Pp(u|y) ∝ exp
(
−1

2
〈u, Pu〉 − Φp(u; y)

)
where

Φp(u; y) := −
∑
j∈Z′

log
(
Ψ(y(j)u(j); γ)

)
.

We let νp denote the push-forward under S of µp : νp = S]µp.
MAP Estimator This is the minimizer of the negative of the log posterior. Thus
we minimize the following objective function over U :

Jp(u) =
1

2
〈u, Pu〉 −

∑
j∈Z′

log
(

Ψ(y(j)u(j); γ)
)
.

This is a convex function, a fact which is well-known in related contexts, but which we
state and prove in the supplementary materials for the sake of completeness. In view
of the close relationship between this problem and the level-set formulation described
next, for which there are no minimizers, we expect that minimization may not be
entirely straightforward in the γ � 1 limit. This is manifested in the presence of
near-flat regions in the probit log likelihood function when γ � 1.
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Our variant on the probit methodology differs from that in [20] in several ways:
(i) our prior Gaussian is scaled to have per-node variance one, whilst in [20] the per
node variance is a hyper-parameter to be determined; (ii) our prior is supported on
U = q⊥0 whilst in [20] the prior precision is found by shifting L and taking a possibly
fractional power of the resulting matrix, resulting in support on the whole of RN ;
(iii) we allow for a scale parameter γ in the observational noise, whilst in [20] the
parameter γ = 1.

3.2. Level-Set. This method is designed for problems considerably more general
than classification on a graph [24]. For the current application, this model is exactly
the same as probit except for the order in which the noise η(j) and the thresholding
function S(u) is applied in the definition of the data.
Prior We again take as prior for u, the Gaussian µ0. Thus

P(u) ∝ exp
(
−1

2
〈u, Pu〉

)
.

Likelihood For any j ∈ Z ′

y(j) = S
(
u(j)

)
+ η(j)

with the η(j) drawn i.i.d from N (0, γ2). Then

P
(
y(j)|u(j)

)
∝ exp

(
− 1

2γ2
|y(j)− S

(
(u(j)

)
|2
)
.

Posterior Bayes’ Theorem gives posterior µls with pdf

Pls(u|y) ∝ exp
(
−1

2
〈u, Pu〉 − Φls(u; y)

)
where

Φls(u; y) =
∑
j∈Z′

( 1

2γ2
|y(j)− S

(
u(j)

)
|2
)
.

We let νls denote the pushforward under S of µls : νls = S]µls.
MAP Estimator Functional The negative of the log posterior is, in this case, given
by

Jls(u) =
1

2
〈u, Pu〉+ Φls(u; y).

However, unlike the probit model, the Bayesian level-set method has no MAP esti-
mator – the infimum of Jls is not attained and this may be seen by noting that, if the
infumum was attained at any non-zero point u? then εu? would reduce the objective
function for any ε ∈ (0, 1); however the point u? = 0 does not attain the infimum.
This proof is detailed in [24] for a closely related PDE based model, and the proof is
easily adapted.

3.3. Atomic Noise Model. This is a variant on the level-set method, but deals
with the fact that categorical data, whilst maybe noisy, will often be discrete. The
resulting data model could also be used within the Ginzburg-Landau formulation in
the next subsection, but we do not describe this explicitly. The prior we employ is
the Gaussian µ0, and in contrast to the level-set method, but like the probit method,
the observation is assumed to take values in the set {±1}. In the atomic noise model
the reporting of those values is accompanied by specified error rates [34], determined
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by the parameters p, q. Taking p = q = 1 in the following corresponds to exact data
with no error and is the same as level-set thresholding, or probit, in the limit γ → 0.
Prior We again take as prior for u the Gaussian µ0. Thus

P(u) ∝ exp
(
−1

2
〈u, Pu〉

)
.

Likelihood We assume that the observation has the sign of u with a specified prob-
ability. To be precise we assume that we have,

P(y = +1|u) = p, u ≥ 0, P(y = +1|u) = 1− q, u < 0

and
P(y = −1|u) = 1− p, u ≥ 0, P(y = −1|u) = q, u < 0.

This defines a piecewise constant function of u, with discontinuity at u = 0, for each
value y ∈ {±1}: we call this function χ(u; y). In particular we have

P(y(j)|u(j)) = χ(u(j); y(j))

Posterior Bayes’ Theorem gives posterior µat with pdf

Pat(u|y) ∝ exp
(
−1

2
〈u, Pu〉 − Φat(u; y)

)
.

where
Φat(u; y) = −

∑
j∈Z′

log
(
χ(u(j); y(j))

)
.

We let νat denote the pushforward under S of µat : νat = S]µat.
MAP Estimator Functional This is the minimizer of the negative of the log pos-
terior. Thus we minimize the objective function:

Jat(u) =
1

2
〈u, Pu〉+ Φat(u; y).

We will not consider numerical methods for the atomic noise model because of space
limitations. However it may be a natural choice for some measurement scenarios,
hence its inclusion in this paper. Its behaviour is very similar to the Bayesian level
set method because its likelihood is also piecewise constant with respect to latent
variable u; and as with the Bayesian level set there is no minimizer for the MAP
estimation problem.

3.4. Ginzburg-Landau. For this model, we take as prior the Ginzburg-Landau
measure ν0 defined by (6), and employ a Gaussian likelihood for the observed labels.
This construction gives the Bayesian posterior whose MAP estimator is the objective
function introduced and studied in [5].
Prior We define prior on v to be the Ginzburg-Landau measure ν0 given by (6) with
density

P(v) ∝ e−GL(v).
Likelihood For any j ∈ Z ′

y(j) = v(j) + η(j)

with the η(j) drawn i.i.d from N (0, γ2). Then

P
(
y(j)|v(j)

)
∝ exp

(
− 1

2γ2
|y(j)− v(j)|2

)
.
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Posterior Recalling that P = c−1L we see that Bayes’ Theorem gives posterior νgl
with pdf

Pgl(v|y) ∝ exp
(
−1

2
〈v, Pv〉 − Φgl(v; y)

)
,

Φgl(v; y) :=
∑
j∈Z

Wε

(
v(j)

)
+
∑
j∈Z′

( 1

2γ2
|y(j)− v(j)|2

))
.

MAP Estimator This is the minimizer of the negative of the log posterior. Thus
we minimize the following objective function over U :

Jgl(v) =
1

2
〈v, Pv〉+ Φgl(v; y).

This objective function was introduced in [5] as a relaxation of the min-cut problem,
penalized by data; the relationship to min-cut was studied rigorously in [40]. The
minimization problem for Jgl is non-convex and has multiple minimizers, reflecting
the combinatorial character of the min-cut problem of which it is a relaxation.

3.5. Small Label Noise Limit. In the small label noise limit γ = 0 the probit
and level-set posteriors coincide with the atomic noise model in the limit where p =
q = 1. Furthermore all models then take the form of the Gaussian prior µ0 conditioned
to be positive on labelled nodes where y(j) = 1 and to be negative on labelled nodes
where y(j) = −1. This can be linked with the original work of Zhu et al [49, 50]
which based classification on the measure µ0 conditioned to take the value exactly 1
on labelled nodes where y(j) = 1 and conditioned to take the value exactly −1 on
labelled nodes where y(j) = −1. Thus we see explicit connections between a variety
of different Bayesian formulations of graph-based semi-supervised learning.

3.6. Uncertainty Quantification for Graph Based Learning. In Figure 1
we plot the component of the negative log likelihood at a labelled node j, as a function
of the latent variable u = u(j) with data y = y(j) fixed, for the probit, Bayesian level-
set, and atomic noise models. The log likelihood for the Ginzburg-Landau formulation
is not directly comparable as it is a function of the relaxed label variable v(j), with
respect to which it is quadratic with minimum at the data point y(j).

The probit, Bayesian level-set, and atomic noise models lead to posterior distribu-
tions µ (with different subscripts) in latent variable space, and pushforwards ν (also
with different subscripts) in label space. The Ginzburg-Landau formulation leads to
a measure νgl in label space. Uncertainty quantification in the widest sense is con-
cerned with completely characterizing these posterior distributions. In practice this
may be acheived by sampling using MCMC methods. In this paper we will study four
measures of uncertainty:

• we will study the empirical pdfs of the latent and label variables at certain
nodes;

• we will study the posterior mean of the label variables at certain nodes;
• we will study the posterior variance of the label variables averaged over all

nodes;
• we will use the posterior mean or variance to order nodes into those whose

classificaions are most uncertain and those which are most certain.
For the probit, level-set and atomic models, we interpret the thresholded variable

l = S(u) as the binary label assignments corresponding to a real-valued configuration
u. The node-wise posterior mean of l can be used as a useful confidence score of the
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Fig. 1. Plot of a component of the negative log likelihood for a fixed node j. We set γ = 1/
√

2
for probit and Bayesian level-set, and p = 0.8, q = 0.7 for atomic noise model. Since Φ(u(j); 1) =
Φ(−u(j);−1) for probit and Bayesian level-set, we omit the plot for y(j) = −1.

class assignment of each node. The node-wise posterior mean slj is defined as

(8) slj := Eν(l(j)),

with respect to any of the posterior measures (pushed forward from latent vari-
able space for probit, level-set and atomic models) ν. Note that slj ∈ [−1, 1] and

if q = ν(l(j) = 1) then q = 1
2 (1 + slj). For binary labels l(j) ∈ {±1} the mean

also contains the variance information, and hence the formula (8) captures posterior
variance. Specifically we have that

Varν(l(j)) = 4q(1− q) = 1− (slj)
2.

Later we will find it useful to consider the variance averaged over all nodes and hence
define3

(9) Var(l) =
1

N

N∑
j=1

Varν(l(j)).

Note that the maximum value obtained by Var(l) is 1. This maximum value is at-
tained under all the prior distributions we use in this paper. The deviation from this
maximum, under the posterior, is a measure of the information content of the labelled
data. Note, however, that the prior does contain information about classifications, in
the form of correlations between vertices; this is not captured in (9).

4. Algorithms. From Section 3, we see that for all of the models considered,
the posterior P(w|y) has the form

P(w|y) ∝ exp
(
−J(w)

)
, J(w) =

1

2
〈w,Pw〉+ Φ(w))

for some function Φ, different for each of the four models (acknowledging that in the
Ginzburg-Landau case the independent variable is w = v, real-valued relaxation of

3Strictly speaking Var(l) = N−1Tr
(
Cov(l)

)
.
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label space, where as for the other models w = u an underlying latent variable which
may be thresholded by S(·) into label space.) Furthermore, the MAP estimator is
the minimizer of J. Note that Φ is differentiable for the Ginzburg-Landau and probit
models, but not for the level-set and atomic noise models. We introduce algorithms
for both sampling (MCMC) and MAP estimation (optimization) that apply in this
general framework. The sampler we employ does not use information about the
gradient of Φ; the MAP estimation algorithm does, but is only employed on the
Ginzburg-Landau and probit models. The samplers do use properties of the precision
matrix P , which is proportional to the graph Laplcian L; in particular its spectral
properties are relevant. Figure 2 demonstrates the spectral properties of L for the
four examples that we will apply our algorithms to in section 5.

4.1. MCMC. We sample the posterior probability distribution using MCMC.
To date probit models have typically been sampled by means of a Gibbs methodology.

However for three reasons we consider sampling algorithms which apply directly
on all the nodes Z. These are: (i) we wish to highlight methods which apply to
the Ginzburg-Landau, level-set and atomic noise models which precludes the explicit
conditionally Gaussian, or truncated Gaussian, form of the methods described for
probit; (ii) all of our posterior distributions have a density with respect to the Gaussian
µ0 – that is their densities are proportional to that of µ0 – and as a result we may use
MCMC methods which, in the case where the graph Laplacian has a limit [39], have
the potential for delivering samples from the posterior in a number of steps which is
independent of the dimension N of the state space, as overviewed in [15]; (iii) these
MCMC methods are well-adapted to the use of approximation methods which exploit
structure in the spectral properties of the graph Laplacian. Other classes of MCMC
methods, such as the Gibbs samplers in [1, 22]; could be considered; and other priors,
relaxing the Gaussian structure, could be considered; but in taking these directions
then the development of MCMC methods with N−independent mixing rates which
can also exploit approximations of the spectral properties of the graph Laplacian is
an open research direction.

In order to induce scalability with respect to size of Z we use the pCN method
described in [15] and introduced in the context of diffusions by Beskos et. al. in
[7] and by Neal in the context of machine learning [31]. The standard random walk
Metropolis (RWM) algorithm suffers from the fact that the optimal proposal variance
or stepsize scales inverse proportionally to the dimension of the state space [35], which
is the graph size N in this case. The pCN method is designed so that the proposal
variance required to obtain a given acceptance probability scales independently of the
dimension of the state space (here the number of graph nodes N), hence in practice
giving faster convergence of the MCMC when compared with RWM [6]. We restate the
pCN method as Algorithm 1, and then follow with various variants on it in Algorithms
2 and 3. In all three algorithms β ∈ [0, 1] is the key parameter which determines the
efficiency of the MCMC method: small β leads to high acceptance probability but
small moves; large β leads to low acceptance probability and large moves. Somewhere
between these extremes is an optimal choice of β which minimizes the asymptotic
variance of the algorithm when applied to compute a given expectation.

The value ξ(k) is a sample from the prior µ0. If the eigenvalues and eigenvectors
of L are all known then the Karhunen-Loeve expansion (10) gives

(10) ξ(k) = c
1
2

N−1∑
j=1

λ
− 1

2
j qjzj ,
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Algorithm 1 pCN Algorithm

1: Input: L. Φ(u). u(0) ∈ U .
2: Output: M Approximate samples from the posterior distribution
3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.
4: while k < M do
5: w(k) =

√
1− β2u(k) + βξ(k), where ξ(k) ∼ N (0, C) via Eq.(10).

6: Calculate acceptance probability α(u(k), w(k)).
7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).
8: end while

where c is given by (5), the zj , j = 1 . . . N −1 are i.i.d centred unit Gaussians and the
equality is in law.

4.2. Spectral Projection. For graphs with a large number of nodes N , it is
prohibitively costly to directly sample from the distribution µ0, since doing so involves
knowledge of a complete eigen-decomposition of L, in order to employ (10). A method
that is frequently used in classification tasks is to restrict the support of u to the
eigenspace spanned by the first ` eigenvectors with the smallest non-zero eigenvalues
of L (hence largest precision) and this idea may be used to approximate the pCN
method; this leads to a low rank approximation. In particular we approximate samples
from µ0 by

(11) ξ
(k)
` = c

1
2

`

`−1∑
j=1

λ
− 1

2
j qjzj ,

where c` is given by (5) truncated after j = `−1, the zj are i.i.d centred unit Gaussians
and the equality is in law. This is a sample from N (0, C`) where C` = c`QΣ`Q

∗

and the diagonal entries of Σ` are set to zero for the entries after `. In practice, to
implement this algorithm, it is only necessary to compute the first ` eigenvectors of
the graph Laplacian L. This gives Algorithm 2.

Algorithm 2 pCN Algorithm With Spectral Projection

1: Input: L. Φ(u). u(0) ∈ U .
2: Output: M Approximate samples from the posterior distribution
3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.
4: while k < M do
5: w(k) =

√
1− β2u(k) + βξ

(k)
` , where ξ

(k)
` ∼ N (0, C`) via Eq.(11).

6: Calculate acceptance probability α(u(k), w(k)).
7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).
8: end while
9: return uk

The accuracy of Algorithm 2 as an approximation of Algorithm 1 depends to a
large extent on the size of the eigenvalues of L in the following sense:

(12) E|ξ(k)|2 − E|ξ(k)` |
2 = c

N−1∑
j=1

λ−1j − c`
`−1∑
j=1

λ−1j

where the expectation is with respect to the centred unit Gaussians {zj}. Note that the
examples shown in Figure 2 gives an indiciation of the quality of this approximation;
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the size and number of the smallest eigenvalues of L play a very important role in
determining whether the difference in (12) is small.

4.3. Spectral Approximation. Spectral projection often leads to good clas-
sification results, but may lead to reduced posterior variance and a posterior distri-
bution that is overly smooth on the graph domain. We propose an improvement on
the method that preserves the variability of the posterior distribution but still only
involves calculating the first ` eigenvectors of L. This is based on the empirical ob-
servation that in many applications the spectrum of L saturates and satisfies, for
j ≥ `, λj ≈ λ̄ for some λ̄. Such behaviour may be observed in b), c) and d) of
Figure 2; in particular note that in the hyperspectal case ` � N . We assume such
behaviour in deriving the low rank approximation used in this subsection. (See sup-
plementary materials for a detailed discussion of the graph Laplacian spectrum.) We
define Σ`,o by overwriting the diagonal entries from ` to N − 1 with λ̄−1. We then set
C`,o = c`,oQΣ`,oQ

∗, and generate approximate samples from µ0 by setting

(13) ξ
(k)
`,o = c

1
2

`,o

`−1∑
j=1

λ
− 1

2
j qjzj + c

1
2

`,oλ̄
− 1

2

N−1∑
j=`

qjzj ,

where c`,o is given by (5) with λj replaced by λ̄ for j ≥ `, the {zj} are centred unit
Gaussians, and the equality is in law. Importantly samples according to (13) can be
computed very efficiently. In particular there is no need to compute qj for j ≥ `, and

the quantity
∑N−1
j=` qjzj can be computed by first taking a sample z̄ ∼ N (0, IN ), and

then projecting z̄ onto U` := span(q`, . . . , qN−1). Moreover, projection onto U` can be
computed only using {q1, . . . , q`−1}, since the vectors span the orthogonal complement
of U`. Concretely, we have

N−1∑
j=`

qjzj = z̄ −
`−1∑
j=1

qj〈qj , z̄〉,

where z̄ ∼ N (0, IN ) and equality is in law. Hence the samples ξ
(k)
`,o can be computed

by

(14) ξ
(k)
`,o = c

1
2

`,o

`−1∑
j=1

λ
− 1

2
j qjzj + c

1
2

`,oλ̄
− 1

2

(
z̄ −

`−1∑
j=1

qj〈qj , z̄〉
)
.

The error induced by this approximation can be characterized through the formula

(15) E|ξ(k)|2 − E|ξ(k)`,o |
2 = (c− c`,o)

N−1∑
j=1

λ−1j + c`,o

N−1∑
j=`

(
λ−1j − λ̄

−1).
Under the stated empirical properties of the graph Laplacian, we expect this to be a
better approximation of the prior variance than the approximation leading to (12).

The vector ξ
(k)
`,o is a sample from N (0, C`,o) and results in Algorithm 3.

4.4. MAP Estimation: Optimization. Recall that the objective function for
the MAP estimation has the form 1

2 〈u, Pu〉 + Φ(u), where u is supported on the
space U . For Ginzburg-Landau and probit, the function Φ is smooth, and we can
use a standard projected gradient method for the optimization. Since L is typically
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(a) MNIST49 (b) Two Moons (c) Hyperspectral (d) Voting Records

Fig. 2. Spectra of graph Laplacian of various datasets. See Sec.5 for the description of the
datsets and graph construction parameters.

Algorithm 3 pCN Algorithm With Spectral Approximation

1: Input: L. Φ(u). u(0) ∈ U .
2: Output: M Approximate samples from the posterior distribution
3: Define: α(u,w) = min{1, exp(Φ(u)− Φ(w)}.
4: while k < M do
5: w(k) =

√
1− β2u(k) + βξ

(k)
`,o , where ξ

(k)
`,o ∼ N (0, C`,o) via Eq.(14).

6: Calculate acceptance probability α(u(k), w(k)).
7: Accept w(k) as u(k+1) with probability α(u(k), w(k)), otherwise u(k+1) = u(k).
8: end while
9: return uk

ill-conditioned, it is preferable to use a semi-implicit discretization as suggested in
[5], as convergence to a stationary point can be shown under a graph independent
learning rate. Furthermore, the discretization can be performed in terms of the eigen-
basis {q1, . . . , qN−1}, which allows us to easily apply spectral projection when only a
truncated set of eigenvectors is available. We state the algorithm in terms of the (pos-
sibly truncated) eigenbasis below. Here P` is an approximation to P found by setting
P` = Q`D`Q

∗
` where Q` is the matrix with columns {q1, · · · , q`−1} and D` = diag(d)

for d(j) = c`λj , j = 1, · · · , `− 1. Thus PN−1 = P.

Algorithm 4 Linearly-Implicit Gradient Flow with Spectral Projection

1: Input: Qm = (q1, . . . qm), Λm = (λ1, . . . , λm), Φ(u), u(0) ∈ U .
2: while k < M do
3: u(?) = u(k) − β∇Φ(u(k))
4: u(k+1) = (I + βPm)−1u(?)

5: end while

5. Numerical Experiments. In this section we conduct a series of numerical
experiments on four different data sets that are representative of the field of graph
semi-supervised learning. There are four main purposes for the experiments. First
we perform uncertainty quantification, as explained in subsection 3.6. Secondly, we
study the spectral approximation and projection variants on pCN sampling as these
scale well to massive graphs. Finally we make some observations about the cost and
practical implementation details of these methods, for the different Bayesian models
we adopt; these will help guide the reader in making choices about which algorithm
to use. We present the results for MAP estimations in the supplementary materials,
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alongside the proof of convexity of the Probit MAP estimator.
The quality of the graph constructed from the feature vectors is central to the

performance of any graph learning algorithms. In the experiments below, we follow
the graph construction procedures used in the previous papers [5, 23, 29]; those pa-
pers, together, applied graph partitioning to all of the datasets that we use here and
so provide important guidance. Moreover, we have verified that for all the reported
experiments below, the graph parameters are in a range such that spectral clustering
gives a reasonable performance. The methods we employ lead to refinements over
spectral clustering (improved classification) and, of course, to uncertainty quantifica-
tion (which spectral clustering does not address).

5.1. Data Sets. We introduce the data sets and describe the graph construction
for each data set. In all cases we numerically construct the weight matrix A, and then
the graph Laplacian L.4

5.1.1. Two Moons. The two moons artificial data set is constructed to give
noisy data which lies near a nonlinear low dimensional manifold embedded in a high
dimensional space [13]. The data set is constructed by sampling N data points uni-
formly from two semi-circles centered at (0, 0) and (1, 0.5) with radius 1, embed-
ding the data in Rd, and adding Gaussian noise with standard deviation σ. We set
N = 2, 000 and d = 100 in this paper; recall that then the graph size is N and each
feature vector has length d. We will conduct a variety of experiments with different
labelled data size J , and in particular study variation with J . The default value,
when not varied, is J at 3% of N , with the labelled points chosen at random.

We take each data point as a node on the graph, and construct a fully connected
graph using the self-tuning weights of Zelnik-Manor and Perona [46], with K = 10.
Specifically we let xi, xj be the coordinates of the data points i and j. Then weight
wij from i to j is defined by

(16) wij = exp
(
−‖xi − xj‖

2

2τiτj

)
,

where τj is the distance of the K-th closest point to the node j.

5.1.2. House Voting Records from 1984. This dataset contains the voting
records of 435 U.S. House of Representatives; for details see [5] and the references
therein. The votes were recorded in 1984 from the 98th United States Congress, 2nd

session. The votes for each individual is vectorized by mapping a yes vote to 1, a
no vote to −1, and an abstention/no-show to 0. The data set contains 16 votes that
are believed to be well-correlated with partisanship, and we use only these votes as
feature vectors for constructing the graph. Thus the graph size is N = 435, and
feature vectors have length d = 16. The goal is to predict the party affiliation of
each individual. We pick 3 Democrats and 2 Republicans at random to use as the
observed class labels; thus J = 5 corresponding to less than 1.2% of fidelity points.
We construct a fully connected graph with weights given by (16) with τj = τ = 1.25
for all nodes j.

5.1.3. MNIST. The MNIST database consists of 70, 000 images of size 28× 28
pixels containing the handwritten digits 0 through 9; see [26] for details. Since in this
paper we focus on binary classification, we only consider pairs of digits. To speed up

4The weight matrix A is symmetric in theory; in practice we find that symmetrizing via the map
A 7→ 1

2
A+ 1

2
A∗ is helpful.

18



calculations, we subsample randomly 2, 000 images from each digit to form a graph
with N = 4, 000 nodes; we use this for all our experiments except in subsection 5.4
where we use the full data set of size N = O(104) for digit pair (4, 9) to benchmark
computational cost. The nodes of the graph are the images and as feature vectors we
project the images onto the leading 50 principal components given by PCA; thus the
feature vectors at each node have length d = 50. We conduct a variety of experiments
with different labelled data dimension J , and in particular study variation with J .
The default value, when not varied, is J at 4% of N , with the labelled points chosen
at random. We construct a K-nearest neighbor graph with K = 20 for each pair of
digits considered. Namely, the weights Aij are non-zero if and only if one of i or j
is in the K nearest neighbors of the other. The non-zero weights are set using (16)
with K = 20. This is the only example we consider in this paper that does not have
a fully connected graph.

We choose the four pairs (5, 7), (0, 6), (3, 8) and (4, 9). These four pairs exhibit
increasing levels of difficulty for classification. This fact is demonstrated in Figures
3a - 3d, where we visualize the datasets by projecting the dataset onto the second
and third eigenvector of the graph Laplacian. Namely, each node i is mapped to the
point (Q(2, i), Q(3, i)) ∈ R2, where L = QΛQ∗.

(a) (4, 9) (b) (3, 8) (c) (0, 6) (d) (5, 7)

Fig. 3. Visualization of data by projection onto 2nd and 3rd eigenfuctions of the graph Lapla-
cian for the MNIST data set, where the vertical dimension is the 3rd eigenvector and the horizontal
dimension the 2nd. Each subfigure represents a different pair of digits. We construct a 20 nearest
neighbour graph under the Zelnik-Manor and Perona scaling [46] as in (16) with K = 20.

5.1.4. HyperSpectral Image. The hyperspectral data set analysed for this
project was provided by the Applied Physics Laboratory at Johns Hopkins University;
see [12] for details. It consists of a series of video sequences recording the release of
chemical plumes taken at the Dugway Proving Ground. Each layer in the spectral
dimension depicts a particular frequency starting at 7, 830 nm and ending with 11, 700
nm, with a channel spacing of 30 nm, giving 129 channels; thus the feature vector has
length d = 129. The spatial dimension of each frame is 128 × 320 pixels. We select
7 frames from the video sequence as the input data, and consider each spatial pixel
as a node on the graph. Thus the graph size is N = 128 × 320 × 7 = 286, 720. The
classification problem is to classify pixels that represent the chemical plumes against
pixels that are the background.

We construct a fully connected graph with weights given by the cosine distance:

wij =
〈xi, xj〉
‖xi‖‖xj‖

.

This distance is small for vectors that point in the same direction, and is insensitive
to their magnitude. We consider the symmetric Laplacian defined in (1). Because
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it is computationally prohibitive to compute eigenvectors of a Laplacian of this size,
we apply the Nyström extension [44, 17] to obtain an approximation to the true
eigenvectors and eigenvalues; see [5] for details pertinent to the set-up here. We
emphasize that each pixel in the 7 frames is a node on the graph and that, in particular,
pixels across the 7 time-frames are also connected. Since we have no ground truth
labels for this dataset, we generate known labels by setting the segmentation results
from spectral clustering as ground truth. The default value of J is 8, 000, and labels
are chosen at random. This corresponds to labelling around 2.8% of the points. We
only plot results for the last 6 frames of the video sequence since the first frame does
not contain the chemical plume.

5.2. Uncertainty Quantification. In this subsection we demonstrate both the
feasibility, and value, of uncertainty quantification in graph classification methods. We
employ the probit and the Bayesian level-set model for most of the experiments in
this subsection; we also employ the Ginzburg-Landau model but since this can be
slow to converge, due to the presence of local minima, it is only demonstrated on the
voting records dataset. The atomic noise model has a similar piecewise constant log
likelihood as for the Bayesian level-set method, and so we omit experiments on the
atomic noise model. The pCN method is used for sampling on various datasets to
demonstrate properties and interpretations of the posterior.

5.2.1. Visualization of Marginal Posterior Density. In this subsection, we
contrast the posterior distribution P(v|y) of the Ginzburg-Landau model with that of
the probit and Bayesian level-set (BLS) models. The graph is constructed from the
voting records data with the fidelity points chosen as described in subsection 5.1. In
Figure 4 we plot the histograms of the empirical marginal posterior distribution on
P(v(i)|y) and P(u(i)|y) for a selection of nodes on the graph. For the top row of Figure
4, we select 6 nodes with “low confidence” predictions, and plot the empirical marginal
distribution of u for probit and BLS, and that of v for the Ginzburg-Landau model.
Note that the same set of nodes is chosen for different models. The plots in this row
demonstrate the multi-modal nature of the Ginzburg-Landau distribution in contrast
to the uni-modal nature of the probit posterior; this uni-modality is a consequence
of Proposition 1. For the bottom row, we plot the same empirical distributions for 6
nodes with “high confidence” predictions. In contrast with the top row, the Ginzburg-
Landau marginal for high confidence nodes is essentially uni-modal since most samples
of v evaluated on these nodes have a fixed sign.

We also observe that the pCN algorithm converges far more quickly for probit than
for Ginzburg-Landau, because of the presence of multiple modes in the latter; this is
manifest in the fact that the posteriors for Ginzburg-Landau are less well converged
than for probit, for a similar amount of algorithmic time; this issue is quantified
in subsection 5.4. This undesirable feature of Ginzburg-Landau sampling can be
ameliorated by choosing a larger value of ε; however this then leads to a probability
measure which is further from the label space which it relaxes. The Bayesian level-set
method behaves similarly to probit as is to be expected from the fact that, in the
limit γ → 0, they are formally identical as discussed in subsection 3.5.

5.2.2. Posterior Mean as Confidence Scores. We construct the graph from
the MNIST (4, 9) dataset following subsection 5.1. The noise variance γ is set to 0.1,
and 4% of fidelity points are chosen randomly from each class. The probit posterior
is used to compute (8). In Figure 5 we demonstrate that nodes with scores slj closer

to the binary ground truth labels ±1 look visually more uniform than nodes with slj
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(a) Ginzburg-Landau (Low) (b) Probit (Low) (c) BLS (Low)

(d) Ginzburg-Landau (High) (e) Probit (High) (f) BLS (High)

Fig. 4. Visualization of marginal posterior density for low and high confidence predictions
across different models. Each image plots the empirical marginal posterior density of a certain node
i, obtained from the histogram of 1 × 105 approximate samples using pCN. Columns in the figure
(e.g. a) and d)) are grouped by model. From left to right, the models are Ginzburg-Landau, probit,
and Bayesian level-set respectively. From the top down, the rows in the figure (e.g. a)-c)) denote the
low confidence and high confidence predictions respectively. For the top row, we select 6 nodes with
the lowest absolute value of the posterior mean slj , defined in Eq.(8), averaged across three models.
Note that the same set of nodes is chosen for different models. These nodes represent outliers in
the dataset that are hard to classify, and hence more likely to induce a multi-modal marginal in
the Ginzburg-Landau model. For the bottom row, we select nodes with the highest average posterior
mean slj . These nodes represent nodes that are classified with greatest certainty to the class label

+1. We present the posterior mean slj on top of the histograms for reference. The experiment
parameters are: ε = 10.0, γ = 0.6, β = 0.1 for the Ginburg-Landau model, and γ = 0.5, β = 0.2 for
the probit and BLS model.

far from those labels. This shows that the posterior mean contains useful information
which differentiates between outliers and inliers that align with human perception.

5.2.3. Posterior Variance as Uncertainty Measure. In this set of experi-
ments, we show that the posterior distribution of the label variable l = S(u) captures
the uncertainty of the classification problem. We use the posterior variance of l, aver-
aged over all nodes, as a measure of the model variance; specifically formula (9). We
study the behaviour of this quantity as we vary the level of uncertainty within cer-
tain inputs to the problem. We demonstrate empirically that the posterior variance
is approximately monotonic with respect to variations in the levels of uncertainty in
the input data, as it should be; and thus that the posterior variance contains useful
information about the classification. We select quantities that reflect the separability
of the classes in the feature space.

Figure 6 plots the posterior variance Var(l) against the standard deviation σ of the
noise appearing in the feature vectors for the two moons dataset; thus points generated
on the two semi-circles overlap more as σ increases. We employ a sequence of posterior
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(a) Fours in MNIST (b) Nines in MNIST

Fig. 5. “Hard to classify” vs “easy to classify” nodes in the MNIST (4, 9) dataset under the
probit model. Here the digit “4” is labeled +1 and “9” is labeled -1. The top (bottom) row of the
left column corresponds to images that have the lowest (highest) values of slj defined in (8) among
images that have ground truth labels “4”. The right column is organized in the same way for images
with ground truth labels 9 except the top row now corresponds to the highest values of slj . Higher slj
indicates higher confidence that image j is a 4 and not a “9”, hence the top row could be interpreted
as images that are “hard to classify” by the current model, and vice versa for the bottom row. The
graph is constructed as in Section 5, and γ = 0.1, β = 0.3.

computations, using probit and Bayesian level-set, for σ = 0.02 : 0.01 : 0.12. Recall
that N = 2, 000 and we choose 3% of the nodes to have the ground truth labels as
observed data. Within both models, γ is fixed at 0.1. A total of 1 × 104 samples
are taken, and the proposal variance β is set to 0.3. We see that the mean posterior
variance increases with σ, as is intuitively reasonable. Furthermore, because γ is
small, probit and Bayesian level-set are very similar models and this is reflected in
the similar quantitative values for uncertainty.

Fig. 6. Mean Posterior Variance defined in (9) versus feature noise σ for the probit model and
the BLS model applied to the Two Moons Dataset with N = 2, 000. For each trial, a realization
of the two moons dataset under the given parameter σ is generated, and 3% of nodes are randomly
chosen as fidelity. We run 20 trials for each value of σ, and average the mean posterior variance
across the 20 trials in the figure. We set γ = 0.1 and β = 0.3 for both models.

A similar experiment studies the posterior label variance Var(l) as a function of
the pair of digits classified within the MNIST data set. We choose 4% of the nodes as
labelled data, and set γ = 0.1. The number of samples employed is 1 × 104 and the
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proposal variance β is set to be 0.3. Table 1 shows the posterior label variance. Recall
that Figures 3a - 3d suggest that the pairs (4, 9), (3, 8), (0, 6), (5, 7) are increasingly
easy to separate, and this is reflected in the decrease of the posterior label variance
shown in Table 1.

Digits (4, 9) (3, 8) (0, 6) (5, 7)
probit 0.1485 0.1005 0.0429 0.0084
BLS 0.1280 0.1018 0.0489 0.0121

Table 1
Mean Posterior Variance of different digit pairs for the probit model and the BLS model applied

to the MNIST Dataset. The pairs are organized from left to right according to the separability of
the two classes as shown in Fig.3a - 3d. For each trial, we randomly select 4% of nodes as fidelity.
We run 10 trials for each pairs of digits and average the mean posterior variance across trials. We
set γ = 0.1 and β = 0.3 for both models.

The previous two experiments in this subsection have studied posterior label
variance Var(l) as a function of variation in the prior data; specifically as a function
of the noise defining the feature vectors in two moons, and on the pair of digits used
to classify in MNIST. We now turn and study how posterior variance changes as a
function of varying the likelihood information, again for both two moons and MNIST
data sets. In the two moons data set we freeze the feature vector noise at σ = 0.06. In
Figures 7a and 7b, for the two moons and MNIST (4, 9) data sets respectively, we plot
the posterior label variance against the percentage of nodes observed. We observe that
the observational variance decreases as the amount of labelled data increases. Figures
8a and 8b plot the posterior label variance as the observational noise γ is varied in
the probit model, for both the two moons and MNIST (4, 9) data sets; we fix 3%
and 4% of randomly chosen nodes as observed labels in parts (a) and (b) of the
figure respectively. Note that, as the observational variance increases, so too does the
posterior label variance. Furthermore the level set and probit formulations produce
similar answers for γ small, reflecting the discussion in subsection 3.5.

In summary of this subsection, the label posterior variance Var(l) behaves in-
tuitively as expected as a function of varying the prior and likelihood information
that specify the statistical probit model and the Bayesian level-set model; further-
more these two Bayesian models produce quantitatively similar reults because they
are formally identical when noise γ → 0. The uncertainty quantification thus provides
useful, and consistent, information that can be used to inform decisions made on the
basis of classifications.

5.3. Spectral Approximation and Projection Methods. Here we discuss
Algorithms 2 and 3, designed to approximate the full (but expensive on large graps)
Algorithm 1. In the first subsection we consider the voting records problem. This is
small enough to compare the posterior distribution obtained from spectral projection
and approximation with full sampling, and thereby verify their properties. Armed
with this information we then study the hyperspectral problem in the next subsection;
this problem is too large to be amenable to full sampling.

5.3.1. Applications to Voting Records. We study how the spectral projec-
tion and approximation methods, Algorithm 2 and Algorithm 3, compare in perfor-
mance with the full posterior distribution sampled via Algorithm 1. We do this by
comparing the posterior mean of the thresholded variable slj in each case, and the
results are shown in Figure 9. This clearly demonstrates that spectral projection does
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(a) Two Moons (b) MNIST49

Fig. 7. Mean Posterior Variance as in (9) versus percentage of labelled points for the probit
model and the BLS model applied to the Two Moons dataset and the 4-9 MNIST dataset. For two
moons, we fix N = 2, 000 and σ = 0.06. For each trial, we generate a realization of the two moons
dataset while the MNIST dataset is fixed, and select at random a certain percentage of nodes as
labelled. We run 20 trials for each percentage of fidelity, and average the mean posterior variance
across trials. We set γ = 0.1 and β = 0.1 for both models.

(a) Two Moons (b) MNIST

Fig. 8. Mean Posterior Variance as in (9) versus the noise parameter γ, applied to the Two
Moons dataset and the 4-9 MNIST dataset. For two moons, we fix N = 2, 000 and σ = 0.06. For
each trial, we generate a realization of the two moons dataset while the MNIST dataset if fixed, and
select randomly 4% percentage of nodes as labelled. We run 20 trials for each percentage of fidelity,
and average the mean posterior variance across trials. We set γ as in the figure axis and β = 0.3
for both models.

not perform as well as spectral approximation: Algorithm 3 yields results close to the
full posterior obtained from Algorithm 1. In contrast the spectral projection Algo-
rithm 2 tends to underestimate the posterior variance, resulting in mean label values
biased towards the values −1 or 1.

5.3.2. Applications to Hyperspectral Imaging. In Figures 10 and 11 we
apply the Bayesian level-set model to the hyperspectral image dataset; the results
for probit are similar (when we use small γ) but have greater cost per step, because
of the cdf evaluations required for probit. The figures show that the posterior mean
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Fig. 9. Node-wise posterior mean slj of the full Laplacian, spectral truncation, and spectral
approximation method of the probit model with the voting records dataset. The horizontal axis
denotes the index of the nodes (voters), and the vertical axis denotes the values of slj of the node j.
The per node mean absolute difference for spectral projection versus full is 0.1577; it is 0.0261 for
spectral approximation versus full. We set γ = 0.1 and β = 0.3, and set the truncation level ` = 150.

slj is able to differentiate between different concentrations of the plume gas. We

have also coloured pixels with |slj | < 0.4 in red to highlight the regions with greater
levels of uncertainty. We observe that the red pixels mainly lie in the edges of the
gas plume, which conforms with human intuition. As in the voting records example
in the previous subsection, the spectral approximation method has greater posterior
uncertainty, demonstrated by the greater number of red pixels in Fig.10 compared
to Fig.11. We conjecture that the spectral approximation is closer to what would be
obtained by sampling the full distribution, but we have not verified this as the full
problem is too large to readily sample.

In Figure 12 we study optimization via the MAP estimator of the Ginzburg-
Landau model, employing the Algorithm 4. Assuming that the results of Bayesian
level-set sampling are accurate classifiers we deduce that the Ginzburg-Landau MAP
estimator, since similar, is also a good classifier. However it would be unfeasible as the
basis for sampling on this problem, again because of multi-modality of the posterior.

5.4. Comparitive Remarks About The Different Models. At a high level
we have shown the following concerning the three models based on probit, level-set
and Ginzburg-Landau:

• Probit and Bayesian level-set behave similarly, for posterior sampling, espe-
cially for small γ, since they formally coincide when γ = 0. Bayesian level
set is considerably cheaper to implement in Matlab because the norm cdf
evaluations required for probit are expensive; this property of probit could
perhaps be addressed directly via dedicated programming.

• Probit and Bayesian level-set are superior to Ginzburg-Landau for posterior
sampling; this is because probit has log-concave posterior, whilst Ginzburg-
Landau is multi-modal.

• Ginzburg-Landau provides the best hard classifiers, when used as an opti-
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Fig. 10. Posterior mean slj of the hyperspectral image dataset using Bayesian level-set model
with spectral approximation. Each node is identified with the corresponding spatial pixel, and the
values of slj are plotted on a [−1, 1] color scale on each pixel location. In addition, we highlight the

regions of uncertain classification by coloring the pixels with |slj | < 0.4 in red. The truncation level

` is set to be 40, and λ̄ = 1.0. We set γ = 0.1, β = 0.08 and use M = 2× 104 MCMC samples. We
create the label data by subsampling 8, 000 pixels (≈ 2.8% of the total) from the labelings obtained
by spectral clustering.

Fig. 11. Posterior mean slj of the hyperspectral image dataset using Bayesian level-set model
with spectral projection. Each node is identified with the corresponding spatial pixel, and the values
of slj are plotted on a [−1, 1] color scale on each pixel location. In addition, we highlight the regions

of uncertain classification by coloring the pixels with |slj | < 0.4 in red. The truncation level ` is set

to be 40. We set γ = 0.1, β = 0.08 and use M = 2× 104 MCMC samples. We create the label data
by subsampling 8, 000 pixels (≈ 2.8% of the total) from the labelings obtained by spectral clustering.

mizer (MAP estimator), and provided it is initialized well. However it be-
haves poorly when not initialized carefully because of multi-modal behaviour;
in constrast probit has a convex objective function and hence a unique mini-
mizer. (See supplementary materials for details of the relevant experiments.)
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Fig. 12. Classification result of the hyperspectral image dataset using the Ginzburg-Landau
MAP estimator. We identify each node with its corresponding spatial pixel, and plot the threshold
value of the MAP estimator. We perform Algorithm 4 projected onto the first Neig = 40 eigenvectors
of the graph Laplacian. We set ε = 1, γ = 2.2, and creat the label data by subsampling 8, 000 pixels
(≈ 2.8% of the total) from the labelings obtained by spectral clustering.

Note that although probit has log concave posterior, and that this drives its
computational benefits, it works on latent variable space, and not on label space where
the Ginzburg-Landau method operates. Although we have not reported results using
the atomic noise model, these are similar to Bayesian level-set due to the structurally
identical form of the log likelihood, which is piecewise constant for both cases.

We expand on the details of these conclusions by studying run times of the algo-
rithms. All experiments are done on a 1.5GHz machine with Intel Core i7. In Table 2,
we compare the running time of the MCMC for different models on various datasets.
We use an a posteriori condition on the samples u(k) to empirically determine the
sample size M needed for the MCMC to converge. Note that this condition is by
no means a replacement for a rigorous analysis of convergence using auto-correlation,
but is designed to provide a ballpark estimate of the speed of these algorithms on real
applications. We now define the a posteriori condition used. Let the approximate
samples be {u(k)}. We define the cumulative average as ũ(k) = 1

k

∑k
j=1 u

(j), and find
the first k such that

(17) ‖ũ(kT ) − ũ((k−1)T )‖ ≤ tol,

where tol is the tolerance and T is the number of iterations skipped. We set T = 5000,
and also tune the stepsize parameter β such that the average acceptance probability
of the MCMC is over 50%. We choose the model parameters according to the experi-
ments in the sections above so that the posterior mean gives a reasonable classification
result.

We note that the number of iterations needed for the Ginzburg-Landau model
is much higher compared to Probit and the Bayesian level-set (BLS) method; this is
caused by the presence of multiple local minima in Ginzburg-Landau, in contrast to

5According to the reporting in [30].
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Data Voting Records MNIST49 Hyperspectral
(Tol) tol = 1× 10−3 tol = 1.5× 10−3 tol = 2× 10−2

(N) N = 435 N ≈ 1.1× 104 N ≈ 2.9× 105

(Neig) Neig = 435 Neig = 300 Neig = 50
(J) J = 5 J = 440 J = 8000
Preprocessing t = 0.7s t = 50.8s t < 60s5

probit t = 8.9s,M = 104 t = 176.4s,M = 1.5× 104 5410.3s,M = 1.5× 104

BLS t = 2.7s,M = 104 t = 149.1s,M = 1.5× 104 970.8s,M = 1.5× 104

GL t = 161.4s,M = 1.8× 105 - -

Table 2
Timing for MCMC methods. We report both the number of samples M and the running time of

the algorithm t. The time for GL on MNIST and Hyperspectral is omitted due to running time being
too slow. J denotes the number of fidelity points used. For the voting records, we set γ = 0.2, β = 0.4
for Probit and BLS, and γ = 1, β = 0.1 for Ginzburg-Landau. For MNIST, we set γ = 0.1, β = 0.4.
For Hyperspctral, we set γ = 1.0, and β = 0.1.

the log concavity of probit. Probit is slower than BLS due to the fact that evaluations
of the CDF function for Gaussians is slow.

6. Conclusions and Future Directions. We have introduced a Bayesian ap-
proach to uncertainty quantification for graph-based classification methods. We de-
velop algorithms to sample the posterior and to compute MAP estimators and, through
numerical experiments on a suite of applications, we have investigated the properties
of the different Bayesian models, and the algorithms explored to study them.

Some future directions of this work include improvement of the current inference
method, connections between the different models in this paper, and generalization to
multiclass classification. For example, one could accelerate the current scheme by ap-
plying gradient information in the MCMC proposal while maintaining the dimension
independence of pCN. Alternatively, we could apply techniques other than MCMC
such as variational methods to approximate the posterior expectation. The current
MCMC method is also slow for the Ginzburg-Landau model due to the presence of
local extrema. An interesting question is whether there are more efficient means of
sampling from this distribution. One could study the small noise limit of the various
posterior measures from different models. For example, the small noise limit of the
probit and Bayesian level-set models coincide, and hence one would expect the two
models to have similar posterior distributions when γ is small. For multiclass classifi-
cation, one could vectorize the latent variable (as in existing non-Bayesian multiclass
methods [18, 29], and applying multi-dimensional analogues of the likelihood functions
used in this paper. Hierarchical methods could also be applied to account for the un-
certainty in the various hyperparameters such as the label noise γ, or the length scale
ε in the Ginzburg-Landau model. Finally, we could study in more detail the effects
of either the spectral projection or the approximation method. One could attempt
to quantify the quality of the spectral approximation/truncation algorithm in terms
of the posterior distribution, either analytically on some tractable toy examples, or
empirically on a suite of representative problems.
Acknowledgements AMS is grateful to Omiros Papaspiliopoulos for illuminating
discussions about probit and the atomic noise model.
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[39] N. G. Trillos and D. Slepčev, A variational approach to the consistency of spectral cluster-

ing, Applied and Computational Harmonic Analysis, (2016).
[40] Y. Van Gennip and A. L. Bertozzi, Γ-convergence of graph Ginzburg-Landau functionals,

Advances in Differential Equations, 17 (2012), pp. 1115–1180.
[41] U. Von Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007),

pp. 395–416.
[42] U. Von Luxburg, M. Belkin, and O. Bousquet, Consistency of spectral clustering, The

Annals of Statistics, (2008), pp. 555–586.
[43] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Regression, (1996).
[44] C. K. Williams and M. Seeger, Using the Nyström method to speed up kernel machines,

in Proceedings of the 13th International Conference on Neural Information Processing
Systems, MIT press, 2000, pp. 661–667.

[45] D. Xiu, Numerical Methods For Stochastic Computations: A Spectral Method Approach,
Princeton University Press, 2010.

[46] L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, in Advances in neural in-
formation processing systems, 2004, pp. 1601–1608.

[47] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, Learning with local and
global consistency, Advances in neural information processing systems, 16 (2004), pp. 321–
328.

[48] X. Zhu, Semi-supervised learning literature survey, Technical Report TR1530.
[49] X. Zhu, Z. Ghahramani, J. Lafferty, et al., Semi-supervised learning using Gaussian fields

and harmonic functions, in ICML, vol. 3, 2003, pp. 912–919.
[50] X. Zhu, J. D. Lafferty, and Z. Ghahramani, Semi-supervised learning: From Gaussian

fields to Gaussian processes, (2003).

30



Appendix.

6.1. Spectral Properties of L. The spectral properties of L are relevant to the
spectral projection and approximation algorithms from the previous section. Figure
2 shows the spectra for our four examples. Note that in all cases the spectrum is
contained in the interval [0, 2], consistent with the theoretical result in [14, Lemma
1.7, Chapter 1]. The size of the eigenvalues near to 0 will determine the accuracy
of the spectral projection algorithm. The rate at which the spectrum accumulates
at a value near 1, an accumulation which happens for all but the MNIST data set
in our four examples, affects the accuracy of the spectral approximation algorithm.
There is theory that goes some way towards justifying the observed accumulation;
see [42, Proposition 9, item 4]. This theory works under the assumption that the
features xj are i.i.d samples from some fixed distribution, and the graph Laplacian
is constructed from weights wij = k(xi, xj), and k satisfies symmetry, continuity
and uniform positivity. As a consequence the theory does not apply to the graph
construction used for the MNIST dataset since the K-nearest neighbor graph is local;
empirically we find that this results in a graph violating the positivity assumption on
the weights. This explains why the MNIST example does not have a spectrum which
accumulates at a value near 1. In the case where the spectrum does accumulate at a
value near 1, the rate can be controlled by adjusting the parameter τ appearing in the
weight calculations; in the limit τ = ∞ the graph becomes an unweighted complete
graph and its spectrum comprises the the two points {0, λ} where λ → 1 as n → ∞
– see Lemma 1.7 in Chapter 1 of [14].

6.2. MAP Estimation as Semi-supervised Classification Method. We
first prove the convexity of the probit negative log likelihood.

Proposition 1. Let Jp(u) be the MAP estimation function for the probit model:

Jp(u) =
1

2
〈u, Pu〉 −

∑
j∈Z′

log
(

Ψ(y(j)u(j); γ)
)
.

If y(j) ∈ {±1} for all j then Jp is a convex function in the variable u.

Proof. Since P is semi positive definite, it suffices to show that∑
j∈Z′

log
(

Ψ(y(j)u(j); γ)
)

is convex. Thus, since y(j) ∈ {±1} for all j, it suffices to show that log
(

Ψ(x; γ)
)

is

concave with respect to x. Since

Ψ(x; γ) =
1√
2πγ

∫ x

−∞
exp(

−t2

2γ2
)dt,

we have Ψ(γx; γ) = Ψ(x; 1). Since scaling x by a constant doesn’t change convexity,
it suffices to consider the case γ = 1. Taking the second derivative with γ = 1, we see
that it suffices to prove that, for all x ∈ R and all γ > 0,

(18) Ψ
′′
(x; 1)Ψ(x; 1)−Ψ

′
(x; 1)Ψ

′
(x; 1) < 0.

Plugging in the definition of Ψ, we have
(19)

Ψ
′′
(x; 1)Ψ(x; 1)−Ψ

′
(x; 1)Ψ

′
(x; 1) =

−1

2π
exp(

−x2

2
)
(
x

∫ x

−∞
exp(

−t2

2
)dt+ exp(

−x2

2
)
)
.
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Clearly the expression in equation (19) is less than 0 for x ≥ 0. For the case x < 0,

divide equation (19) by 1
2π exp(−x

2

2 ) and note that this gives

−x
∫ x

−∞
exp(

−t2

2
)dt− exp(

−x2

2
) = −x

∫ x

−∞
exp(

−t2

2
)dt+

∫ x

−∞
t exp(

−t2

2
)dt

=

∫ x

−∞
(t− x) exp(

−t2

2
)dt < 0

(20)

and the proof is complete.

The probit MAP estimator thus has a considerable computational advantage over
the Ginzburg-Landau MAP estimator, because the latter is not convex and, indeed,
can have large numbers of minimizers. We now discuss numerical results designed
to probe the consequences of convexity, or lack of it, for classification accuracy. The
purpose of these experiments is not to match state-of-art results for classification, but
rather to study properties of the MAP estimator when varying the feature noise and
the percentage of labelled data.

We employ the two moons and the MNIST (4, 9) data sets. The methods are
evaluated on a range of values for the percentage of labelled data points, and also for
a range of values of the feature variance σ in the two moons dataset. The experiments
are conducted for 100 trials with different initializations (both two moons and MNIST
(4, 9)) and different data realizations (for two moons only). In Figure 13, we plot
the median classification accuracy with error bars from the 100 trials against the
feature variance σ for the two moons dataset. As well as Ginzburg-Landau and probit
classification, we also display results from spectral clustering based on thresholding
the Feidler eigenvector. The percentage of fidelity points used is 0.5%, 1%, and 3%
for each column. We do the same in Figure 14 for the 4 -9 MNIST data set against
the same percentages of labelled points.

(a) Fidelity = 0.5% (b) Fidelity = 1% (c) Fidelity = 3%

Fig. 13. Classification accuracy of different algorithms for Two Moons Dataset compared with σ
and percentage of labelled nodes, with N = 2, 000. The algorithms used are: Ginzburg-Landau MAP
estimator with random initialization, Ginzburg-Landau with initialization given by probit model,
probit MAP estimation, and spectral clustering (thresholding the Fiedler vector). For each trial, we
generate a realization of the two moons dataset with given σ and select randomly a certain percentage
of nodes as fidelity, and a total of 50 trials are run for each combination of parameters. We use
spectral projection with number of eigenvectors Neig = 150. We plot the median accuracy along
with error bars indicating the 25 and 75-th quantile of the classification accuracy of each method.
We set γ = 0.1 for the probit model, and γ = 1.0, ε = 1.0 for Ginzburg-Landau.

The non-convexity of the Ginzburg-Landau model can result in large variance
in classification accuracy; the extent of this depends on the percentage of observed
labels. The existence of sub-optimal local extrema causes the large variance. If
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Fig. 14. Classification accuracy of different algorithms for the 4-9 MNIST dataset versus
percentage of labelled nodes. The algorithms used are: Ginzburg-Landau with random initialization,
Ginzburg-Landau with initialization given by probit model, probit MAP estimation. For each trial,
we select randomly a certain percentage of nodes as fidelity, and a total of 50 trials are run. We
use spectral projection with number of eigenvectors Neig = 300. We plot the median accuracy along
with error bars indicating the 25 and 75-th quantile of the classification accuracy of each method.
We set γ = 0.1 for the probit model, and γ = 1.0, ε = 1.0 for Ginzburg-Landau.

initialized without information about the classification, Ginzburg-Landau can perform
very badly in comparison with probit. On the other hand we find that the best
performance of the Ginzburg-Landau model, when initialized at the probit minimizer,
is typically slightly better than the probit model.

We note that the probit model is convex and theoretically should have results
independent of the initialization. However, we see there are still small variations in
the classification result from different initializations. This is due to slow convergence
of gradient methods caused by the flat-bottomed well of the probit log-likelihood. As
mentioned above this can be understood by noting that, for small gamma, probit and
level-set are closely related and that the level-set MAP estimator does not exist –
minimizing sequences converge to zero, but the infimum is not attained at zero.
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