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Abstract In this paper, we present a method for identifying infeasible, unbounded, and pathological
conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization
program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge.
Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for
identification. In addition, for strongly infeasible problems the method produces a separating hyperplane
and informs the user on how to minimally modify the given problem to achieve strong feasibility. As
a first-order method, the proposed algorithm relies on simple subroutines, and therefore is simple to
implement and has low per-iteration cost.
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1 Introduction

Many convex optimization algorithms have strong theoretical guarantees and empirical performance, but
they are often limited to non-pathological, feasible problems; under pathologies often the theory breaks
down and the empirical performance degrades significantly. In fact, the behavior of convex optimization
algorithms under pathologies has been studied much less, and many existing solvers often simply report
“failure” without informing the users of what went wrong upon encountering infeasibility, unboundedness,
or pathology. Pathological problem are numerically challenging, but they are not impossible to deal with.
As infeasibility, unboundedness, and pathology do arise in practice (see, for example, [17,16]), designing
a robust algorithm that behaves well in all cases is important to the completion of a robust solver.

In this paper, we propose a method based on Douglas-Rachford splitting (DRS), or equivalently
ADMM, that identifies infeasible, unbounded, and pathological conic programs. First-order methods such
as DRS/ADMM are simple and can quickly provide a solution with moderate accuracy. It is well known,
for example, by combining Theorem 1 of [29] and Proposition 4.4 of [12], that the iterates of DRS/ADMM
converge to a fixed point if there is one (a fixed point z∗ of an operator T satisfies z∗ = Tz∗), and when
there is no fixed point, the iterates diverge unboundedly. However, the precise manner in which they
diverge has been studied much less. Somewhat surprisingly, when iterates of DRS/ADMM diverge, the
behavior of the iterates still provides useful information, which we use to classify the conic program. For
example, a separating hyperplane can be found when the conic program is strongly infeasible, and an
improving direction can be obtained when there is one. When the problem is infeasible or weakly feasible,
it is useful to know how to minimally modify the problem data to achieve strong feasibility. We also get
this information via the divergent iterates.
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Facial reduction is one approach to handle infeasible or pathological conic programs. Facial reduction
reduces an infeasible or pathological problem into a new problem that is strongly feasible, strongly
infeasible, or unbounded with an improving direction, which are the easier cases [10,9,23,31].

Many existing methods such as interior point methods or homogeneous self-dual embedding [21,33]
cannot directly handle certain pathologies, such as weakly feasible or weakly infeasible problems, and are
forced to use facial reduction [18,25]. However, facial reduction introduces a new set of computational
issues. After completing the facial reduction step, which has its own the computational challenge and cost,
the reduced problem must be solved. The reduced problem involves a cone expressed as an intersection
of the original cone with an linear subspace, and in general such cones neither are self-dual nor have
a simple formula for projection. This makes applying an interior point method or a first-order method
difficult, and existing work on facial reduction do not provide an efficient way to address this issue.

In contrast, our proposed method directly address infeasibility, unboundedness, and pathology. Some
cases are always identified, and some are identifiable under certain conditions. Being a first-order method,
the proposed algorithm relies on simple subroutines; each iteration performs projections onto the cone and
the affine space of the conic program and elementary operations such as vector addition. Consequently,
the method is simple to implement and has a lower per-iteration cost than interior point methods.

1.1 Basic definitions

Cones. A set K ⊆ Rn is a cone if K = λK for any λ > 0. We write and define the dual cone of K as

K∗ = {u ∈ Rn| uT v ≥ 0, for all v ∈ K}.

Throughout this paper, we will focus on nonempty closed convex cones that we can efficiently project
onto. In particular, we do not require that the cone be self-dual. Example of such cones include:

– The positive orthant:
Rk+ = {x ∈ Rk |xi ≥ 0, i = 1, . . . , n}

– Second order cone:

Qk+1 =

{
(x1, . . . , xk, xk+1) ∈ Rk × R+ |xk+1 ≥

√
x21 + · · ·+ x2k

}
– Rotated second order cone:

Qk+2
r =

{
(x1, . . . , xk, xk+1, xk+2) ∈ Rk × R2

+ | 2xk+1xk+2 ≥ x21 + · · ·+ x2k

}
.

– Positive semidefinite cone:

Sk+ = {M =MT ∈ Rk×k| xTMx ≥ 0 for any x ∈ Rk}

Conic programs. Consider the conic program

minimize cTx
subject to Ax = b

x ∈ K,
(P)

where x ∈ Rn is the optimization variable, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are problem data, and
K ⊆ Rn is a nonempty closed convex cone. We write p? = inf{cTx |Ax = b, x ∈ K} to denote the
optimal value of (P). For simplicity, we assume m ≤ n and A is full rank.

The dual problem of (P) is
maximize bT y

subject to AT y + s = c
s ∈ K∗,

(D)

where y ∈ Rm and s ∈ Rn are the optimization variables. We write d? = sup{bT y |AT y+ s = c, s ∈ K∗}
to denote the optimal value of (D).
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The optimization problem (P) is either feasible or infeasible; (P) is feasible if there is an x ∈ K ∩
{x |Ax = b} and infeasible if there is not. When (P) is feasible, it is strongly feasible if there is an
x ∈ relintK ∩ {x |Ax = b} and weakly feasible if there is not, where relint denotes the relative interior.
When (P) is infeasible, it is strongly infeasible if there is a non-zero distance between K and {x |Ax = b},
i.e., d(K, {x |Ax = b}) > 0, and weakly infeasible if d(K, {x |Ax = b}) = 0, where

d(C1, C2) = inf {‖x− y‖ |x ∈ C1, y ∈ C2} ,

and ‖ · ‖ denotes the Euclidean norm. Note that d(C1, C2) = 0 does not necessarily imply C1 and C2

intersect. When (P) is infeasible, we say p? =∞, and when feasible, p? ∈ R∪{−∞}. Likewise, when (D)
is infeasible, we say d? = −∞, and when feasible, d? ∈ R ∪ {∞}.

As special cases, (P) is called a linear program when K is the positive orthant, a second-order cone
program whenK is the second-order cone, and a semidefinite program whenK is the positive semidefinite
cone.

1.2 Classification of conic programs

Every conic program of the form (P) falls under exactly one of the following 7 cases (some of the following
examples are taken from [21,20,18,19]). Discussions on most of these cases exist in the literature. Some
of these cases have a corresponding dual characterization, but we skip this discussion as it is not directly
relevant to our method. We report the results of SDPT3, SeDuMi, and MOSEK using their default
settings. In Section 2, we discuss how to identify most of these 7 cases.

Case (a). p? is finite, both (P) and (D) have solutions, and d? = p?, which is the most common case.
For example, the problem

minimize x3
subject to x1 = 1

x3 ≥
√
x21 + x22

has the solution x? = (1, 0, 1) and p? = 1. (The inequality constraint corresponds to x ∈ Q3.) SDPT3,
SeDuMi and MOSEK can solve this example.

The dual problem, after some simplification, is

maximize y
subject to 1 ≥ y2,

which has the solution y? = 1 and d? = 1.

Case (b). p? is finite, (P) has a solution, but (D) has no solution, or d? < p?, or both. For example, the
problem

minimize x2
subject to x1 = x3 = 1

x3 ≥
√
x21 + x22

has the solution x? = (1, 0, 1) and optimal value p? = 0. (The inequality constraint corresponds to
x ∈ Q3.)

In this example, SDPT3 reports “Inaccurate/Solved” and −2.99305 × 10−5 as the optimal value;
SeDuMi reports “Solved” and −1.54566 × 10−4 as the optimal value; MOSEK reports “Solved” and
−2.71919× 10−8 as the optimal value.

The dual problem, after some simplification, is

maximize y1 −
√
1 + y21 .

By taking y1 →∞ we achieve the dual optimal value d? = 0, but no finite y1 achieves it.
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As another example, the problem

minimize 2x12

subject to X =

x11 x12 x13
x12 0 x23
x13 x23 x12 + 1

 ∈ S3
+,

has the solution

X? =

0 0 0
0 0 0
0 0 1


and optimal value p? = 0.

The dual problem, after some simplification, is

maximize 2y2

subject to

 0 y2 + 1 0
y2 + 1 −y1 0

0 0 −2y2

 ∈ S3
+,

which has the solution y? = (0,−1) and optimal value d? = −2.
In this SDP example, SDPT3 reports “Solved” and −2 as the optimal value; SeDuMi reports “Solved”

and −0.602351 as the optimal value; MOSEK reports “Failed” and does not report an optimal value.
Note that case (b) can happen only when (P) is weakly feasible, by standard convex duality [28].

Case (c). (P) is feasible, p? is finite, but there is no solution. For example, the problem

minimize x3
subject to x1 =

√
2

2x2x3 ≥ x21
x2, x3 ≥ 0

has an optimal value p? = 0 but has no solution since any feasible x satisfies x3 > 0. (The inequality
constraints correspond to x ∈ Q3

r.)
In this example, SDPT3 reports “Inaccurate/Solved” and 7.9509×10−5 as the optimal value; SeDuMi

reports “Solved” and 8.75436× 10−5 as the optimal value; MOSEK reports “Solved” and 4.07385× 10−8

as the optimal value.

Case (d). (P) is feasible, p? = −∞, and there is an improving direction, i.e., there is a u ∈ N (A) ∩K
satisfying cTu < 0. For example, the problem

minimize x1
subject to x2 = 0

x3 ≥
√
x21 + x22

has an improving direction u = (−1, 0, 1). If x is any feasible point, x + tu is feasible for t ≥ 0, and the
objective value goes to −∞ as t→∞. (The inequality constraint corresponds to x ∈ Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value; SeDuMi reports
“Unbounded” and −∞ as the optimal value; MOSEK reports “Unbounded” and −∞ as the optimal
value.
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Case (e). (P) is feasible, p? = −∞, but there is no improving direction, i.e., there is no u ∈ N (A) ∩K
satisfying cTu < 0. For example, consider the problem

minimize x1
subject to x2 = 1

2x2x3 ≥ x21
x2, x3 ≥ 0.

(The inequality constraints correspond to x ∈ Q3
r.) Any improving direction u = (u1, u2, u3) would satisfy

u2 = 0, and this in turn, with the cone constraint, implies u1 = 0 and cTu = 0. However, even though
there is no improving direction, we can eliminate the variables x1 and x2 to verify that

p? = inf{−
√
2x3 |x3 ≥ 0} = −∞.

In this example, SDPT3 reports “Failed” and does not report an optimal value; SeDuMi reports
“Inaccurate/Solved” and −175514 as the optimal value; MOSEK reports “Inaccurate/Unbounded” and
−∞ as the optimal value.

Case (f). Strongly infeasible, where p? =∞ and d(K, {x |Ax = b}) > 0. For example, the problem

minimize 0
subject to x3 = −1

x3 ≥
√
x21 + x22

satisfies d(K, {x |Ax = b}) = 1. (The inequality constraint corresponds to x ∈ Q3.)
In this example, SDPT3 reports “Failed” and does not report an optimal value; SeDuMi reports

“Infeasible” and ∞ as the optimal value; MOSEK reports “Infeasible” and ∞ as the optimal value.

Case (g). Weakly infeasible, where p? =∞ but d(K, {x |Ax = b}) = 0. For example, the problem

minimize 0

subject to
[
0, 1, 1
1, 0, 0

]
x =

[
0
1

]
x3 ≥

√
x21 + x22

satisfies d(K, {x |Ax = b}) = 0, since

d(K, {x |Ax = b}) ≤ ‖(1,−y, y)− (1,−y,
√
y2 + 1)‖ → 0

as y →∞. (The inequality constraint corresponds to x ∈ Q3.)
In this example, SDPT3 reports “Infeasible” and ∞ as the optimal value; SeDuMi reports “Solved”

and 0 as the optimal value; MOSEK reports “Failed” and does not report an optimal value.

Remark. In the case of linear programming, i.e., when K in (P) is the positive orthant, there are only
three possible cases: (a), (d), and (f).
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1.3 Classification method overview

At a high level, our proposed method for classifying the 7 cases is quite simple. Given an operator T and
a starting point z0, we call zk+1 = T (zk) the fixed point iteration of T . Our proposed method runs three
similar but distinct fixed-point iterations with the operators

T1(z) = T̃ (z) + x0 − γDc
T2(z) = T̃ (z) + x0 (Operators)

T3(z) = T̃ (z)− γDc,

where the common operator T̃ and the constants D, γ, x0 are defined and explained in Section 2 below.
We can view T1 as the DRS operator of (P), T2 as the DRS operator with c set to 0 in (P), and T3 as the
DRS operator with b set to 0 in (P). We use the information provided by the iterates of these fixed-point
iterations to solve (P) and classify the cases, based on the theory of Section 2 and the flowchart shown
in Figure 1 as outlined in Section 2.8 below.

1.4 Previous work

Previously, Bauschke, Combettes, Hare, Luke, and Moursi have analyzed Douglas-Rachford splitting in
other pathological problems such as: feasibility problems between 2 convex sets [4,8] feasibility problems
between 2 convex sets [7], and general setups [2,5,6,22]. Our work builds on these past results.

2 Obtaining certificates from Douglas-Rachford Splitting/ADMM

The primal problem (P) is equivalent to

minimize f(x) + g(x), (1)

where

f(x) = cTx+ δ{x |Ax=b}(x)

g(x) = δK(x), (2)

and δC(x) is the indicator function of a set C defined as

δC(x) =

{
0 if x ∈ C
∞ if x /∈ C.

Douglas-Rachford splitting (DRS) [14] applied to (1) is

xk+1/2 = Proxγg(z
k)

xk+1 = Proxγf (2x
k+1/2 − zk) (3)

zk+1 = zk + xk+1 − xk+1/2,

which updates zk to zk+1 for k = 0, 1, .... Given γ > 0 and function h,

Proxγh(x) = argmin
z∈Rn

{
h(z) + (1/2γ)‖z − x‖2

}
denotes the proximal operator with respect to γh.
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Start

Infeasible

Feasible

(f) Strongly
infeasible

(g) Weakly infeasible

(a) There is a
primal-dual solution
pair with d? = p?

(b) There is a
primal solution
but no dual solu-
tion or d? < p?

(c) p? is finite but
there is no solution

(d) Unbounded
(p? = −∞) with an
improving direction

(e) Unbounded
(p? = −∞)

without an im-
proving direction

Thm 6
Alg 2

Thm 7
Alg 2

Thm 2
Alg 1

Thm 11,12
Alg 3

Thm 13
Alg 1

Thm 10
Alg 3

Fig. 1 The flowchart for identifying cases (a)–(g). A solid arrow means the cases are always identifiable, a dashed arrow
means the cases sometimes identifiable.

Proposition 1 The DRS iteration (3) can be simplified to

zk+1 = T̃ (zk) + x0 − γDc, (4)

which is also zk+1 = T1(z
k) with T1 definied in (Operators).

Proof Given a nonempty closed convex set C ⊆ Rn, define the projection with respect to C as

PC(x) = argmin
y∈C

‖y − x‖2

and the reflection with respect to C as

RC(x) = 2PC(x)− x.
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Write I to denote both the n×n identity matrix and the identity map from Rn → Rn. Write 0 to denote
the origin point in Rn. Define

D = I −AT (AAT )−1A

x0 = AT (AAT )−1b = P{x |Ax=b}(0). (5)

Write N (A) for the null space of A and R(AT ) for the range of AT . Then

P{x |Ax=b}(x) = Dx+ x0,

PN (A)(x) = Dx.

Finally, define

T̃ (z) =
1

2
(I +RN (A)RK)(z).

Now we can rewrite the DRS iteration (3) as

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0 − γDc (6)

zk+1 = zk + xk+1 − xk+1/2,

which is equivalent to (4). ut

Relationship to ADMM. When we define νk = (1/γ)(zk − xk) and α = 1/γ, reorganize, and reorder the
iteration, the DRS iteration (3) becomes

xk = argmin
x

{
f(x) + xT νk +

α

2
‖x− xk−1/2‖2

}
xk+1/2 = argmin

x

{
g(x)− xT νk + α

2
‖x− xk‖2

}
νk+1 = νk + α(xk − xk+1/2),

which is the alternating direction method of multipliers (ADMM). In a certain sense, DRS and ADMM
are equivalent [12,13,32], and we can equivalently say that the method of this paper is based on ADMM.

Remark. Instead of (2), we could have considered the more general form

f(x) = (1− α)cTx+ δ{x |Ax=b}(x),

g(x) = αcTx+ δK(x)

with α ∈ R. By simplifying the resulting DRS iteration, one can verify that the iterates are equivalent
to the α = 0 case. Since the choice of α does not affect the DRS iteration at all, we will only work with
the case α = 0.

2.1 Convergence of DRS

The subdifferential of a function h : Rn → R ∪ {∞} at x is defined as

∂h(x) = {u ∈ Rn| h(z) ≥ h(x) + uT (z − x),∀z ∈ Rn}.

A point x? ∈ Rn is a solution of (1) if and only if

0 ∈ ∂(f + g)(x?).

DRS, however, converges if and only if there is a point x? such that

0 ∈ ∂f(x?) + ∂g(x?)
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(since f and g are closed convex proper functions). In general,

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x)

for all x ∈ Rn, but the two are not necessarily equal.
For example, consider the functions on R2

f(x, y) =

{
y if x2 + y2 ≤ 1
∞ otherwise g(x, y) =

{
0 if x = 1
∞ otherwise.

Then f(x, y) + g(x, y) <∞ only at (x, y) = (1, 0), and therefore (1, 0) minimizes f + g. However,

∂f(x, y) + ∂g(x, y) =

{
{(a, 1) | a ∈ R} if (x, y) = (1, 0)
∅ otherwise

whereas

∂(f + g)(x, y) =

{
{(a, b) | a, b ∈ R} if (x, y) = (1, 0)
∅ otherwise.

We summarize the convergence of DRS in the theorem below. Its main part is a direct result of
Theorem 1 of [29] and Propositions 4.4 and 4.8 of [12]. The convergence of xk+1/2 and xk+1 is due to
[30]. Therefore, we do not prove it.

Theorem 1 Consider the iteration (4) with any starting point z0. If there is an x such that

0 ∈ ∂f(x) + ∂g(x),

then zk converges to a limit z?, xk+1/2 → x? = Proxγg(z
?), xk+1 → x? = Proxγg(z

?), and

0 ∈ ∂f(x?) + ∂g(x?).

If there is no x such that
0 ∈ ∂f(x) + ∂g(x),

then zk diverges in that ‖zk‖ → ∞.

DRS can fail to find a solution to (P) even when one exists. Slater’s constraint qualification is a
sufficient condition that prevents such pathologies: if (P) is strongly feasible, then

0 ∈ ∂f(x?) + ∂g(x?)

for all solutions x? [27, Theorem 23.8]. This fact and Theorem 1 tell us that under Slater’s constraint
qualifications DRS finds a solution of (P) if one exists.

The following theorem, however, provides a stronger, necessary and sufficient characterization of when
the DRS iteration converges.

Theorem 2 There is an x? such that

0 ∈ ∂f(x?) + ∂g(x?)

if and only if x? is a solution to (P), (D) has a solution, and d? = p?.

Based on Theorem 1 and 2 we can determine whether we have case (a) with the iteration (4)
with any starting point z0 and γ > 0.

– If limk→∞ ‖zk‖ <∞, we have case (a), and vice versa.
– If limk→∞ ‖zk‖ =∞, we do not have case (a), and vice versa.

With a finite number of iterations, we test ‖zk‖ ≥M for some large M > 0. However, distinguishing the
two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can be very slow.
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Proof (Proof of Theorem 2)
This result follows from the exposition of [28]. but we provide a proof that matches our notation.
The Lagrangian of (P) is

L(x, y, s) = cTx+ yT (b−Ax)− sTx− δK∗(s).

We say (x?, y?, s?) ∈ Rn × Rm × Rn is a saddle point of L if

x? ∈ argmin
x∈Rn

L(x, y?, s?)

(y?, s?) ∈ argmax
y∈Rm,s∈Rn

L(x?, y, s).

It is well known that (x?, y?, s?) is a saddle point of L if and only if x? is a solution to (P), (y?, s?) is a
solution to (D), and p? = d? [28].

Now assume there is a saddle point (x?, y?, s?). Since x? minimizes L(x, y?, s?), we have AT y?+ s?−
c = 0. If AT y? + s? − c 6= 0, then the terms of L(x, y?, s?) that depend on x would be νTx for some
ν 6= 0. This allows us to drive the value of L(x, y?, s?) to −∞, and there would be no minimizing x?. By
this same argument, that y? maximizes L(x?, y, s?) tells us Ax? = b.

Since s? maximizes L(x?, y?, s), we have x? ∈ K∗∗ = K and (x?)T s? = 0. To see why, note that the
only terms in L(x?, y?, s) that depend on s are

−(sTx? + δK∗(s))

If x? /∈ K∗∗ = K, then, by definition of dual cones, there is a s ∈ K∗ such that sTx? < 0. By positively
scaling this s, we can drive the value of L(x?, y?, s) to ∞, and there would be no maximizing s?. If
x? ∈ K, then

−(sTx? + δK∗(s)) ≤ 0,

and the maximum is attained by s = 0. So any s? must satisfy (x?)T s? = 0 to maximize L(x?, y?, s).
The other direction follows from taking the argument in the other way.

2.2 Fixed-point iterations without fixed points

We say an operator T : Rn → Rn is nonexpansive if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn. We say T is firmly nonexpansive (FNE) if

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − ‖(I − T )(x)− (I − T )(y)‖2

for all x, y ∈ Rn. (FNE operators are nonexpansive.) In particular, all three operators defined in
(Operators) are FNE. It is well known [11] that if a FNE operator T has a fixed point, its fixed-point
iteration zk+1 = T (zk) converges to one with rate

‖zk − zk+1‖ = o(1/
√
k + 1).

Now consider the case where a FNE operator T has no fixed point, which has been studied to a lesser
extent. In this case, the fixed-point iteration zk+1 = T (zk) diverges in that ‖zk‖ → ∞ [29, Theorem 1].
Precisely in what manner zk diverges is characterized by the infimal displacement vector [24]. Given a
FNE operator T , we call

v = Pran(I−T )
(0)

the infimal displacement vector of T . To clarify, ran(I − T ) denotes the closure of the set

ran(I − T ) = {x− T (x) |x ∈ Rn}.

Because T is FNE, the closed set ran(I − T ) is convex [24], so v is uniquely defined. We can interpret
the infimal displacement vector v as the asymptotic output of I − T corresponding to the best effort to
find a fixed point.



A New Use of DRS and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs 11

Lemma 1 (Corollary 2.3 of [1]) Let T be FNE, and consider its fixed-point iteration zk+1 = T (zk)
with any starting point z0. Then

zk − zk+1 → v = Pran(I−T )
(0).

In [1], Lemma 1 is proved in generality for nonexpansive operators, but we provide a simpler proof in our
setting in Theorem 3.

When T has a fixed point then v = 0, but v = 0 is possible even when T has no fixed point. In
the following sections, we use Lemma 1 to determine the status of a conic program, but, in general,
zk − zk+1 → v has no rate. However, we only need to determine whether limk→∞(zk+1 − zk) = 0 or
limk→∞(zk+1 − zk) 6= 0, and we do so by checking whether ‖zk+1 − zk‖ ≥ ε for some tolerance ε > 0.
For this purpose, the following rate of approximate convergence is good enough.

Theorem 3 Let T be FNE, and consider its fixed point iteration

zk+1 = T (zk),

with any starting point z0, then
zk − zk+1 → v.

And for any ε > 0, there is an Mε > 0 (which depends on T , z0, and ε) such that

‖v‖ ≤ min
0≤j≤k

‖zj − zj+1‖ ≤ ‖v‖+ Mε√
k + 1

+
ε

2
.

Proof (Proof of Theorem 3) For simplicity, we prove the result for 0 < ε ≤ 1, although the Theorem 3 is
true for ε > 1 as well.

Given any xε, we use the triangle inequality to get

‖zk − zk+1 − v‖ = ‖T k(z0)− T k+1(z0)− v‖ (7)

≤ ‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖+ ‖T k(xε)− T k+1(xε)− v‖. (8)

To bound the second term, pick an xε such that

‖xε − T (xε)− v‖ ≤
ε2

4(2‖v‖+ 1)
,

which we can do since v = Pran(I−T )
(0) ∈ ran(I − T ). Since T is nonexpansive, we get

0 ≤ ‖T k(xε)− T k+1(xε)‖ − ‖v‖ ≤
ε2

4(2‖v‖+ 1)
.

Since v = Pran(I−T )
(0),

‖v‖2 ≤ yT v

for any y ∈ ran(I − T ). Putting these together we get

‖T k(xε)− T k+1(xε)− v‖2 = ‖T k(xε)− T k+1(xε)‖2 + ‖v‖2 − 2(T k(xε)− T̃ k+1(xε))
T v

≤ ‖T k(xε)− T k+1(xε)‖2 + ‖v‖2 − 2‖v‖2

= (‖T k(xε)− T k+1(xε)‖+ ‖v‖)(‖T k(xε)− T k+1(xε)‖ − ‖v‖)

≤ (2‖v‖+ ε2

4(2‖v‖+ 1)
)

ε2

4(2‖v‖+ 1)

≤ (2‖v‖+ 1)
ε2

4(2‖v‖+ 1)
=
ε2

4

(9)

for 0 < ε ≤ 1.
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Now let us bound the first term ‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖ on the righthand side
of (8). Since T is FNE, we have

‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖2 = ‖T k(z0)− T k(xε)‖2 − ‖T k+1(z0)− T k+1(xε)‖2.

Summing this inequality we have

k∑
j=0

‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖2 ≤ ‖z0 − xε‖2. (10)

(8), (9), and (10) imply that
zk − zk+1 → v.

Furthermore,

min
0≤j≤k

‖zj − zj+1 − v‖ ≤ Mε√
k + 1

+
ε

2
,

where Mε = ‖z0 − xε‖. As a result,

‖v‖ ≤ min
0≤j≤k

‖zj − zj+1‖ ≤ ‖v‖+ Mε√
k + 1

+
ε

2
.

2.3 Feasibility and infeasibility

We now return to the specific conic programs. Consider the operator T2 defined by T2(z) = T̃ (z) + x0.
As mentioned, we can view T2 as the DRS operator with c set to 0 in (P).

The infimal displacement vector of T2 has a nice geometric interpretation: it is the best approximation
displacement between the sets K and {x |Ax = b}, and ‖v‖ = d(K, {x |Ax = b}).

Theorem 4 (Theorem 3.4 of [4], Proposition 11.22 of [22]) The operator T2 defined by T2(z) =
T̃ (z) + x0, where x0 is given in (5), has the infimal displacement vector v = P

K−{x |Ax=b}(0).

We can further understand v in terms of the projection P
PR(AT )(K)

. Note that PR(AT )(K) is a cone

because K is. PR(AT )(K) is not always closed, but its closure PR(AT )(K) is.

Lemma 2 (Interpretation of v) The infimal displacement vector v of T2 satisfies

v = P
K−{x |Ax=b}(0) = P

PR(AT )(K)−x0
(0) = P

PR(AT )(K)
(x0)− x0,

where x0 is given in (5) and K is any nonempty set.

Combining the discussion of Section 2.2 with Theorem 4 gives us Theorems 5 and 6.

Theorem 5 (Certificate of feasibility) Consider the iteration zk+1 = T2(z
k) with any starting point

z0 ∈ Rn, then

1. (P) is feasible if and only if zk converges, in this case xk+1/2 converges to a feasible point of (P).
2. (P) is infeasible if and only if zk diverges in that ‖zk‖ → ∞.

Theorem 6 (Certificate of strong infeasibility) Consider the iteration zk+1 = T2(z
k) with any

starting point z0, we have zk − zk+1 → v and

1. (P) is strongly infeasible if and only if v 6= 0.
2. (P) is weakly infeasible or feasible if and only if v = 0.

When (P) is strongly infeasible, we can obtain a separating hyperplane from v.
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Theorem 7 (Separating hyperplane) Consider the iteration zk+1 = T2(z
k) with any starting point

z0, we have zk − zk+1 → v, (P) is strongly infeasible if and only if v 6= 0, and the hyperplane

{x |hTx = β},

where h = −v ∈ K∗ ∩ R(AT ) and β = −(vTx0)/2 > 0, strictly separates K and {x |Ax = b}. More
precisely, for any y1 ∈ K and y2 ∈ {x |Ax = b} we have

hT y1 < β < hT y2.

Based on Theorems 5, 6, and 7, we can determine feasibility, weak infeasiblity, and strong infeasibility
and obtain a strictly separating hyperplane if one exists with the iteration zk+1 = T2(z

k) with any starting
point z0.
– limk→∞ ‖zk‖ <∞ if and only if (P) is feasible.
– limk→∞ ‖zk − zk+1‖ > 0 if and only if (P) is strongly infeasible, and Theorem 7 provides a strictly

separating hyperplane.
– limk→∞ ‖zk‖ =∞ and limk→∞ ‖zk − zk+1‖ = 0 if and only if (P) is weakly infeasible.
With a finite number of iterations, we distinguish the three cases by testing ‖zk+1−zk‖ ≤ ε and ‖zk‖ ≥M
for some small ε > 0 and large M > 0. By Theorem 3, we can distinguish strong infeasibility from weak
infeasibility or feasibility at a rate of O(1/

√
k). However, distinguishing feasibility from weak infeasibility

can be numerically difficult as the rate of ‖zk‖ → ∞ can be very slow when (P) is weakly infeasible.

Proof (Proof of Lemma 2) Remember that by definition (5), we have x0 ∈ R(AT ) and

{x |Ax = b} = x0 +N (A) = x0 −N (A).

Also note that for any y ∈ Rn, we have

y +N (A) = PR(AT )(y) +N (A).

So
K − {x |Ax = b} = K +N (A)− x0 = PR(AT )(K)− x0 +N (A),

and
K − {x |Ax = b} = PR(AT )(K) +N (A)− x0 = PR(AT )(K)− x0 +N (A). (11)

Since x0 ∈ R(AT ), we have PR(AT )(K)−x0 ⊆ R(AT ), and, in particular, PR(AT )(K)−x0 is orthogonal
to the subspace N (A). Recall

v = P
PR(AT )(K)−x0+N (A)

(0).

So v ∈ PR(AT )(K)− x0 ⊆ R(AT ) and

v = P
PR(AT )(K)−x0

(0).

Finally,

v = argmin
x∈PR(AT )(K)−x0

{
‖x‖22

}
= argmin
y∈PR(AT )(K)

{
‖y − x0‖22

}
− x0 = P

PR(AT )(K)
(x0)− x0

Proof (Proof of Theorem 7) Note that

v = P
K−{x |Ax=b}(0) = P

K+N (A)−x0
(0) = P

K+N (A)
(x0)− x0

Using I = PK∗∩R(AT ) + P−(K∗∩R(AT ))∗ and (K∗ ∩R(AT ))∗ = K +N (A) [3], we have

v = P
K+N (A)

(x0)− x0 = −P−(K∗∩R(AT ))(x0) = PK∗∩R(AT )(−x0).

Since the projection operator is FNE, we have

−vTx0 = (v − 0)T (−x0 − 0) ≥ ‖PK∗∩R(AT )(−x0)‖2 = ‖v‖2 > 0

and therefore vTx0 < 0, β = −vTx0/2 > 0.
So for any y1 ∈ K and y2 ∈ {x |Ax = b}, we have

hT y1 = −vT y1 ≤ 0 < −(vTx0)/2 = β < −vTx0 = hT y2,

where we have used h = −v = −PK∗∩R(AT )(−x0) ∈ −K∗ in the first inequality.
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2.4 Modifying affine constraints to achieve strong feasibility

Strongly feasible problems are, loosely speaking, the good cases that are easier to solve, compared to
weakly feasible or infeasible problems. Given a problem that is not strongly feasible, how to minimally
modify the problem to achieve strong feasibility is often useful to know.

The limit zk − zk+1 → v informs us of how to do this. When d(K, {x |Ax = b}) = ‖v‖ > 0, the
constraint K ∩ {x |A(x − y) = b} is infeasible for any y such that ‖y‖ < ‖v‖. In general, the constraint
K ∩ {x |A(x − v) = b} can be feasible or weakly infeasible, but is not strongly feasible. The constraint
K ∩ {x |A(x − v − d) = b} is strongly feasible for an arbitrarily small d ∈ relintK. In other words,
K ∩ {x |A(x − v − d) = b} achieves strong feasibility with the minimal modification (measured by the
Euclidean norm ‖ · ‖) to the original constraint K ∩ {x |Ax = b}.

Theorem 8 (Achieving strong feasibility) Let v = P
K−{x |Ax=b}(0), and let d be any vector satis-

fying d ∈ relintK. Then the constraint K ∩ {x |A(x− v − d) = b} is strongly feasible, i.e., there is an x
such that x ∈ relintK ∩ {x |A(x− v − d) = b}.

Proof (Proof of Theorem 8)
By Lemma 2 we have

v + x0 ∈ PR(AT )(K). (12)

Because PR(AT ) is a linear transformation, by Lemma 3 below

PR(AT )(relintK) = relintPR(AT )(K).

Since d ∈ relintK,

PR(AT )(d) ∈ PR(AT )(relintK) = relintPR(AT )(K). (13)

Applying Lemma 4 to (12) and (13), we have

v + x0 + PR(AT )(d) ∈ relintPR(AT )(K) = PR(AT )(relintK).

Finally we have

0 ∈ PR(AT )(relintK)− x0 − v − d+N (A) = relintK − {x |A(x− v − d) = b}.

Lemma 3 (Theorem 6.6 of [27]) If A(·) is a linear transformation and C is a convex set, then
A(relintC) = relintA(C).

Lemma 4 Let K be a convex cone. If x ∈ K and y ∈ relintK, then x+ y ∈ relintK.

Proof Since K is a convex set and y ∈ relintK, we have (1/2)x+ (1/2)y ∈ relintK. Since K is a cone,
(1/2)(x+ y) ∈ relintK implies x+ y ∈ relintK.

2.5 Improving direction

(P) has an improving direction if and only if the dual problem (D) is strongly infeasible:

0 < d(0,K? +R(AT )− c) = d({(y, s) |AT y + s = c}, {(y, s) | s ∈ K∗ = c}).

Theorem 9 (Certificate of improving direction) Exactly one of the following is true:

1. (P) has an improving direction, (D) is strongly infeasible, and PN (A)∩K(−c) 6= 0 is an improving
direction.

2. (P) has no improving direction, (D) is feasible or weakly infeasible, and PN (A)∩K(−c) = 0.

Furthermore,
PN (A)∩K(−c) = P

K∗+R(AT )−c(0).
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Theorem 10 Consider the iteration zk+1 = T3(z
k) = T̃ (zk)−γDc with any starting point z0 and γ > 0.

If (P) has an improving direction, then

d = lim
k→∞

zk+1 − zk = P
K∗+R(AT )−c(0) 6= 0

gives one. If (P) has no improving direction, then

lim
k→∞

zk+1 − zk = 0.

Based on Theorem 9 and 10 we can determine whether there is an improving direction and find one
if one exists with the iteration zk+1 = T̃ (zk)− γDc with any starting point z0 and γ > 0.

– limk→∞ zk+1 − zk = 0 if and only if there is no improving direction.
– limk→∞ zk+1 − zk = d 6= 0 if and only if d is an improving direction.

With a finite number of iterations, we test ‖zk+1 − zk‖ ≤ ε for some small ε > 0. By Theorem 3, we can
distinguish whether there is an improving direction or not at a rate of O(1/

√
k).

We need the following theorem for Section 2.7, it is proved similarly to 5 below.

Theorem 11 Consider the iteration
zk+1 = T̃ (zk)− γDc

with any starting point z0 and γ > 0. If (D) is feasible, then zk converges. If (D) is infeasible, then zk

diverges in that ‖zk‖ → ∞.

Proof (Proof of Theorem 9) This result is known [20], but we provide a proof that matches our notation.
(P) has no improving direction if and only if

{x ∈ Rn|x ∈ N (A) ∩K, cTx < 0} = ∅,

which is equivalent to cTx ≥ 0 for all ∈ N (A) ∩K. This is in turn equivalent to c ∈ (N (A) ∩K)∗. So

−c = P−(N (A)∩K)∗(−c).

if and only if there is no improving direction, which holds if and only if

0 = PN (A)∩K(−c).

Assume there is an improving direction. Since the projection operator is firmly nonexpansive, we have

0 < ‖PN (A)∩K(−c)‖2 ≤ (PN (A)∩K(−c))T (−c).

This simplifies to
(PN (A)∩K(−c))T c < 0,

and we conclude PN (A)∩K(−c) is an improving direction.
Using the fact that (N (A) ∩K)∗ = K∗ +R(AT ), we have

PN (A)∩K(−c) = −PN (A)∩K(c) = (P
K∗+R(AT )

− I)(c) = P
K∗+R(AT )−c(0),

where we have used the identity I = PN (A)∩K + P
K∗+R(AT )

in the second equality.

Proof (Proof of Theorem 10 and 11) Using the identities I = PN (A) + PR(AT ), I = PK + P−K∗ , and
RR(AT )−γc(z) = RR(AT )(z)− 2γDc, we have

T3(z) = T̃ (z)− γDc = 1

2
(I +RR(AT )−γcR−K∗)(z).

In other words, we can interpret the fixed point iteration

zk+1 = T̃ (zk)− γDc
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as the DRS iteration on
minimize 0

subject to x ∈ R(AT )− γc
x ∈ −K∗.

This proves Theorem 11.
Using Lemma 1, applying Theorem 3.4 of [4] as we did for Theorem 4, and applying Theorem 9, we

get

zk − zk+1 → Pran(I−T3)
(0)

= P−K∗−R(AT )+γc
(0)

= −γP
K∗+R(AT )−c(0)

= −γPN (A)∩K(−c).

2.6 Modifying the objective to achieve finite optimal value

Similar to 8, we can achieve strong feasibility of (D) by modifying c, and (P) will have a finite optimal
value.

Theorem 12 (Achieving finite p?) Let w = P
K∗+R(AT )−c(0), and let s be any vector satisfying

s ∈ relintK∗. If (P) is feasible and has an unbounded direction, then by replacing c with c′ = c+w+ s,
(P) will have a finite optimal value.

Proof (Proof of Theorem 12) Similar to Lemma 2, we have

w = P
PN(A)(K∗)−PN(A)(c)

(0).

And similar to Theorem 8, the new constraint of (D)

K∗ ∩ {c+ w + s−AT y}

is strongly feasible. The constraint of (P) is still K ∩ {x |Ax = b}, which is feasible. By weak duality of
we conclude that the optimal value of (P) becomes finite.

2.7 Other cases

So far, we have discussed how to identify and certify cases (a), (d), (f), and (g). We now discuss sufficient
conditions to certify the remaining cases.

The following theorem follows from weak duality.

Theorem 13 ([28] Certificate of finite p?) If (P) and (D) are feasible, then p? is finite.

Based on Theorem 11, we can determine whether (D) is feasible with the iteration zk+1 = T3(z
k) =

T̃ (zk)− γDc,
with any starting point z0 and γ > 0.

– limk→∞ ‖zk‖ <∞ if and only if (D) is feasible.
– limk→∞ ‖zk‖ =∞ if and only if (D) is infeasible.

With a finite number of iterations, we test ‖zk‖ ≥M for some large M > 0. However, distinguishing the
two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can be very slow.

Theorem 14 (Primal iterate convergence) Consider the DRS iteration as defined in (6) with any
starting point z0. Assume (P) is feasible, if xk+1/2 → x∞ and xk+1 → x∞, then x∞ is primal optimal,
even if zk doesn’t converge.

When running the fixed-point iteration with T1(z) = T̃ (z)+x0−γDc, if ‖zk‖ → ∞ but xk+1/2 → x∞

and xk+1 → x∞, then we have case (b), but the converse is not necessarily true.
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Examples for Theorem 13. Consider the following problem in case (c):

minimize x3
subject to x1 =

√
2

2x2x3 ≥ x21.

Its dual problem is
maximize

√
2y

subject to y2 ≤ 1,

which is feasible. Based on diagnostics discussed in the previous sections and the fact that the dual
problem is feasible, one can conclude that we have either case (b) or (c) but not case (e).

Consider the following problem in case (e):

minimize x1
subject to x2 = 1

2x2x3 ≥ x21

Its dual problem is
maximize y
subject to 1 ≤ 0,

which is infeasible. The diagnostics discussed in the previous sections allows us to conclude that we have
case (b), (c), or (e). The fact that the dual problem is infeasible may suggest that we have case (e), there
is no such guarantee. Indeed, the dual must be infeasible if we have case (e), but the converse is not
necessarily true.

Example for Theorem 14 Consider the following problem in case (b):

minimize x2
subject to x1 = x3 = 1

x3 ≥
√
x21 + x22.

When we run the iteration (6), we can empirically observe that xk+1/2 → x? and xk+1 → x?, and
conclude that we have case (b).

Again, consider the following problem in case (e):

minimize x1
subject to x2 = 1

2x2x3 ≥ x21

When we run the iteration (6), we can empirically observe that xk+1/2 and xk+1 do not converge. The
diagnostics discussed in the previous sections allows us to conclude that we have case (b), (c), or (e). The
fact that xk+1/2 and xk+1 do not converge may suggest that we have case (c) or (e), but there is no such
guarantee. Indeed, xk+1/2 and xk+1 must not converge when we have case (c) or (e), but the converse is
not necessarily true.

Counterexample for Theorem 13 and 14 The following example shows that the converses of Theorem 13
and 14 are not true. Consider the following problem in case (b):

minimize x1
subject to x2 − x3 = 0

x3 ≥
√
x21 + x22,

which has the solution set {(0, t, t) | t ∈ R} and optimal value p? = 0. Its dual problem is

maximize 0

subject to y ≥
√
y2 + 1,
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which is infeasible. This immediately tells us that p? > −∞ is possible even when d? = −∞.
Furthermore, the xk+1/2 and xk+1 iterates do not converge even though there is a solution. Given

z0 = (z01 , z
0
2 , 0), the iterates zk+1 = (zk+1

1 , zk+2
2 , zk+1

3 ) are:

zk+1
1 =

1

2
zk1 − γ

zk+1
2 =

1

2
zk2 +

1

2

√
(zk1 )

2 + (zk2 )
2

zk+1
3 = 0.

So xk+1/2 = PK(zk) satisfies xk1 → −2γ, xk2 → ∞ and xk3 → ∞, and we can see that xk+1/2 does not
converge to the solution set.

Proof (Proof of Theorem 14) Define

xk+1/2 = Proxγg(z
k)

xk+1 = Proxγf (2x
k+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2

as in (6) Define

∇̃g(xk+1/2) = (1/γ)(zk − xk+1/2)

∇̃f(xk+1) = (1/γ)(2xk+1/2 − zk − xk+1).

It’s simple to verify that

∇̃g(xk+1/2) ∈ ∂g(xk+1/2)

∇̃f(xk+1) ∈ ∂f(xk+1).

Clearly,
∇̃g(xk+1/2) + ∇̃f(xk+1) = (1/γ)(xk+1/2 − xk+1).

We also have
zk+1 = zk − γ∇̃g(xk+1/2)− γ∇̃f(xk+1) = xk+1/2 − γ∇̃f(xk+1)

Consider any x ∈ K ∩ {x |Ax = b}. Then, by convexity of f and g,

g(xk+1/2)− g(x) + f(xk+1)− f(x) ≤ ∇̃g(xk+1/2)T (xk+1/2 − x) + ∇̃f(xk+1)T (xk+1 − x)

= (∇̃g(xk+1/2) + ∇̃f(xk+1))T (xk+1/2 − x) + ∇̃f(xk+1)T (xk+1 − xk+1/2)

= (xk+1 − xk+1/2)T (∇̃f(xk+1)− (1/γ)(xk+1/2 − x))

= (1/γ)(xk+1 − xk+1/2)T (x− zk+1)

We take the liminf on both sides and use Lemma 5 below to get

g(x∞) + f(x∞) ≤ g(x) + f(x).

Since this holds for any x ∈ K ∩ {x |Ax = b}, x∞ is optimal.

Lemma 5 Let ∆1,∆2, . . . be a sequence in Rn. Then

lim inf
k→∞

(∆k)T
k∑
i=1

(−∆i) ≤ 0.
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Proof Assume for contradiction that

lim inf
k→∞

(∆k)T
k∑
i=1

(−∆i) > 2ε

for some ε > 0. Since the initial part of the sequence is irrelevant, assume without loss of generality that

(∆j)T
j∑
i=1

∆i < −ε

for j = 1, 2, . . . , summing both sides gives us, for all k = 1, 2, ...

k∑
j=1

(∆j)T
j∑
i=1

∆i < −εk.

Define

1{i ≤ j} =

{
1, if i ≤ j,
0, otherwise.

We have

k∑
j=1

k∑
i=1

(∆j)T∆i1{i ≤ j} < −εk,

0 ≤ 1

2

∥∥∥∥∥
k∑
i=1

∆i

∥∥∥∥∥
2

+
1

2

k∑
i=1

∥∥∥∆i∥∥∥2 < −εk,
which is a contradiction.

2.8 The algorithms

In this section, we collect the discussed classification results as thee algorithms. The full algorithm is
simply running Algorithms 1, 2, and 3, and applying flowchart of Figure 1.

Algorithm 1 Finding a solution
Parameters: γ, M , ε, z0
for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0 − γDc
zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ < M then

Case (a)
xk+1/2 and xk+1 solution

else if xk+1/2 → x∞ and xk+1 → x∞ then
Case (b)
xk+1/2 and xk+1 solution

else
Case (b), (c), (d), (e), (f), or (g).

end if



20 Yanli Liu et al.

Algorithm 2 Feasibility test
Parameters: M , ε, z0
for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk) + x0
zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ ≥M and ‖zk+1 − zk‖ > ε then

Case (f)
Strictly separating hyperplane defined by (zk+1 − zk, (−vT x0)/2)

else if ‖zk‖ ≥M and ‖zk+1 − zk‖ ≤ ε then
Case (g)

else ‖zk‖ < M
Case (a), (b), (c), (d), or (e)

end if

Algorithm 3 Boundedness test
Prerequisite: (P) is feasible.
Parameters: γ, M , ε, z0
for k = 1, . . . do

xk+1/2 = PK(zk)

xk+1 = D(2xk+1/2 − zk)− γDc
zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ ≥M and ‖zk+1 − zk‖ ≥ ε then

Case (d)
Improving direction zk+1 − zk

else if ‖zk‖ < M then
Case (a), (b), or (c)

else
Case (a), (b), (c), or (e)

end if

3 Numerical Experiments

We test our algorithm on a library of weakly infeasible SDPs generated by [15]. These semidefinite
programs are in the form:

minimize C •X
subject to Ai •X = bi, i = 1, ...,m

X ∈ Sn+,

where n = 10, m = 10 or 20, and A • B =
∑n
i=1

∑n
j=1AijBij denotes the inner product between two

n× n matrices A and B.
The library provides “clean” and “messy” instances. Given a clean instance, a messy instance is created

with

Ai ← UT (
m∑
j=1

TijAj)U for i = 1, ...,m

bi ←
m∑
j=1

Tijbj for i = 1, ...,m,

where T ∈ Zm×m and U ∈ Zn×n are random invertible matrices with entries in [−2, 2].
In [15], four solvers are tested, specifically, SeDuMi, SDPT3 and MOSEK from the YALMIP environ-

ment, and the preprocessing algorithm of Permenter and Parrilo [26] interfaced with SeDuMi. Table 1
reports the numbers of instances determined infeasible out of 100 weakly infeasible instances. The four
solvers have varying success in detecting infeasibility of the clean instances, but none of them succeed in
the messy instances.
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Table 1 Percentage of infeasibility detection in [15]

m = 10 m = 20

Clean Messy Clean Messy

SeDuMi 0 0 1 0
SDPT3 0 0 0 0
MOSEK 0 0 11 0
PP+SeDuMi 100 0 100 0

Table 2 Percentage of infeasibility detection success

m = 10 m = 20

Clean Messy Clean Messy

Proposed method 100 21 100 99

Table 3 Percentage of success determination that prob-
lems are not strongly infeasible

m = 10 m = 20

Clean Messy Clean Messy

Proposed method 100 100 100 100

Our proposed method performs better. However, it does require many iterations and does fail with
some of the messy instances. We run the algorithm withN = 107 iterations and label an instance infeasible
if 1/‖zN‖ ≤ 8×10−2 (cf. Theorem 5 and 6). Table 2 reports the numbers of instances determined infeasible
out of 100 weakly infeasible instances.

We would like to note that detecting whether or not a problem is strongly infeasible is easier than
detecting whether a problem is infeasible. With N = 5× 104 and a tolerance of ‖zN − zN+1‖ < 10−3 (c.f
Theorem 6) our proposed method correctly determined that all test instances are not strongly infeasible.
Table 3 reports the numbers of instances determined not strongly infeasible out of 100 weakly infeasible
instances.

Acknowledgements W. Yin would like to thank Professor Yinyu Ye for his question regarding ADMM applied to
infeasible linear programs during the 2014 Workshop on Optimization for Modern Computation held at Peking University.
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