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ABSTRACT

We propose a novel image inpainting model that can effec-
tively estimate missing pixels in an observed image. The
latent image is characterized by a group-based low-rank
prior, which assumes that a group of vectorized similar im-
age patches can be well approximated by a low-rank matrix.
We enforce the low-rankness of each group by penalizing a
truncated difference of the l1 and the l2 norms of its singular
values, which achieves a close approximation to the matrix
rank. We apply a difference of convex algorithm (DCA) to
solve the proposed model efficiently. Our method is validated
on filling missing blocks and randomly missing pixels, with
superior performance over the state-of-the-art.

Index Terms— Difference of convex functions algo-
rithm, image inpainting, l1−2 minimization, low-rank matrix
approximation, nonlocal self-similarity

1. INTRODUCTION

Image inpainting [1] aims to complete the missing pixels in
an observed image so that the resulting image is natural to
human eyes. It is a typical inverse problem with infinitely
many solutions. To obtain meaningful results, all methods
rely on some prior knowledge about the latent image.

Existing inpainting methods can be roughly categorized
into three classes: diffusion-based methods, sparsity-based
methods, and exemplar-based methods. Diffusion-based
methods [1, 2] introduce piecewise smoothness image priors
to diffuse local image structures from the known region to
the missing region. They preserve well smooth objects and
strong edges but smear out repetitive textures. Sparsity-based
methods [3, 4] assume the sparsity of natural images under
transform domains or over-complete dictionaries, and the
missing structures are estimated by promoting their sparse
representations. These methods perform well on filling small
regions, but tend to introduce blurry effects when dealing
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with large missing areas. Exemplar-based methods [5, 6]
exploit the redundancy of similar image features at distant
regions, also known as nonlocal self-similarity (NNS), and
the missing region is completed by copying similar patches
selected from the known part of the image. These methods
are particularly suitable for large region inpainting and ob-
ject removal. We refer the reader to [7] for a comprehensive
overview of image inpainting methods.

Recently, image priors combining sparsity and NNS have
achieved great success in image inpainting [8, 9]. The basic
idea is that a data array consisting of similar image patches,
referred to as a group, exhibits strong sparsity under a certain
transform [9]. Particularly, the group-based low-rank prior [8]
assumes that each group/matrix with vectorized similar image
patches as its columns has low rank, which can be considered
as being sparse after singular value decomposition (SVD). By
enforcing each group to be sparse/low-rank, these methods
benefit from a sparse and redundant image representation in
terms of group, characterizing both the sparsity and NNS of
natural images in a unified framework.

An appropriate sparsity measure plays a central role in
sparse representation. Recently, Esser et al. [10] proposed
a nonconvex l1−2 metric for sparse promotion, defined as
‖x‖1−2 := ‖x‖1 − ‖x‖2. The l1−2 metric has shown to re-
cover sparse vectors better than the convex l1 norm in various
applications [11, 12, 13, 14, 15]. However, we showed in [16]
that l1−2 may not approximate the vector sparsity well when
the number of large entries (in magnitude) increases; and we
proposed a truncated l1−2 metric, denoted as lt,1−2, to over-
come this drawback. The main idea is to discard large mag-
nitudes in penalization, thus achieving a close approximation
to the vector sparsity and the matrix rank (sparsity of singular
values). Particularly, the matrix version of lt,1−2 is defined as
a truncated difference of l1 and l2 norms of singular values,

‖X‖t,∗−F :=
∑

i>t
σi(X)−

√∑
i>t

σ2
i (X), (1)

where σi(X) is the ith largest singular value of X and t is the
number of truncated singular values. We demonstrated in [16]
that lt,1−2 is superior over many nonconvex metrics including
l1−2 in recovering sparse vectors and low rank matrices.
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Fig. 1. Illustration of constructing groups by block-matching
(BM) [19]. For each w × w reference patch from an n1 ×
n2 image, we use block-matching [19] to search its n − 1
best matched patches in terms of Euclidean distance, and then
vectorize and combine those patches to form a group of size
w2 × n. Mathematically, this process can be expressed as a
linear operator R : Rn1×n2 → Rw2×n.

We propose in this paper to incorporate lt,1−2 into a
group-based low-rank model for image inpainting. In partic-
ular, we aim at minimizing

minX F (X) :=
∑s

k=1 ‖Rk(X)‖tk,∗−F ,
s.t. xi,j = ui,j , (i, j) ∈ Ω,

xi,j ∈ [0, 1], (i, j) ∈ Ωc,

(2)

where U with pixels {ui,j} is the observed image, Ω is the
known region, Rk is the extraction operator for the kth group
(see Fig. 1 for an illustration), tk is the number of truncated
singular values for the kth group, and s is the total number of
groups. The proposed model is able to achieve a close approx-
imation of the rank of each group, combining the advantages
of the group-based low-rank prior in image characterization
and the lt,1−2 metric in low-rankness promoting. We apply
the difference of convex functions algorithm (DCA) [17] to
decompose the proposed nonconvex problem into a series of
convex subproblems, which can be efficiently solved by alter-
nating direction method of multipliers (ADMM) [18]. Exper-
imental results show the superior performance of our method
over several state-of-the-art competitors.

The rest of the paper is organized as follows. Section 2
elaborates on our numerical scheme. Section 3 is devoted to
experimental results. Finally, Section 4 concludes the paper.

2. NUMERICAL ALGORITHM

We use the DCA [17] to solve the proposed model, which is a
descent algorithm for minimizing an objective with structure
G(X) − H(X), where G and H are proper, lower semicon-
tinuous, and strongly convex functions. The DCA starts from
an initial point X(1) and iterates as follows:{

Y(l) ∈ ∂H(X(l)),

X(l+1) = arg minXG(X)− 〈Y(l),X〉,
(3)

where Y(l) ∈ ∂H(X(l)) means that Y(l) is a subgradient of
H(X) at X(l). Theoretical analyses of the DCA as well as

the convergence to a critical point can be found in [17].
To make the DCA applicable, we rewrite ‖X‖t,∗−F =

‖X‖∗ − ‖X‖t,∗+F , where

‖X‖t,∗+F :=
∑t

i=1
σi(X) +

√∑
i>t

σ2
i (X).

It has been established in [16] that ‖X‖t,∗+F is a unitarily
invariant norm. Then we rewrite (2) asG(X)−H(X), where

G(X) :=
∑s

k=1(‖Rk(X)‖∗ + c‖Rk(X)‖2F )

+
∑

(i,j)∈Ω δ{ui,j}(xi,j) +
∑

(i,j)∈Ωc δ[0,1](xi,j),

H(X) :=
∑s

k=1(‖Rk(X)‖tk,∗+F + c‖Rk(X)‖2F ),

(4)

where c is a positive constant to ensure strong convexity
of G and H , and δΛ(·) denotes the indicator function of a
nonempty set Λ, i.e., δΛ(x) = 0 if x ∈ Λ and δΛ(x) = ∞ if
x /∈ Λ. It is straightforward that (4) fits the DCA’s framework.

A closed-form solution of Y(l) in (3) is given by

Y(l) =
∑s

k=1
RT

k (Dk + 2cRk(X(l))), (5)

where RT
k : Rw2×n → Rn1×n2 denotes the adjoint operator

of Rk and Dk ∈ ∂‖Rk(X(l))‖tk,∗+F . To compute Dk, we
consider an economy SVD of Rk(X(l)) as Wdiag(σ)VT ,
where σ is a vector containing the positive singular values of
Rk(X(l)). Define d by

di :=

{
1 if i ≤ tk,
σi/
√∑

j>tk
σ2
j if i > tk,

and Dk := Wdiag(d)VT . The fact that Dk ∈ ∂‖Rk(X(l))‖tk,∗+F

is proved in [16].
We use ADMM [18] to solve the convex X-subproblem in

(3). In particular, we introduce auxiliary variables {Pk}sk=1

and rewrite the X-subproblem as

min
X,{Pk}sk=1

∑s
k=1(‖Pk‖∗ + c‖Rk(X)‖2F )− 〈Y,X〉,

+
∑

(i,j)∈Ω δ{ui,j}(xi,j) +
∑

(i,j)∈Ωc δ[0,1](xi,j),

s.t. Pk = Rk(X), for k = 1, . . . , s,

(6)

where the superscript (l) on Y is omitted without confusion.
Denoting the objective of (6) as E(X, {Pk}sk=1), we express
the augmented Lagrangian function of (6) as

L(X, {Pk}sk=1, {Ak}sk=1) = E(X, {Pk}sk=1)

+β/2
∑s

k=1 ‖Pk −Rk(X) + Ak‖2F ,
(7)

where {Ak}sk=1 denotes Lagrangian multipliers and β > 0
is a penalty parameter. Starting from initial points X(1) and
{A(1)

k }sk=1, ADMM proceeds as
{P(m+1)

k }sk=1 = arg min
{Pk}sk=1

L(X(m), {Pk}sk=1, {A
(m)
k }sk=1),

X(m+1) = arg min
X

L(X, {P(m+1)
k }sk=1, {A

(m)
k }sk=1),

{A(m+1)
k }sk=1 ={A(m)

k + P
(m+1)
k −Rk(X(m+1))}sk=1.

(8)



Note that the minimizations with respect to Pk and X have
closed-form solutions:

P
(m+1)
k = SVT(Rk(X(m))−A

(m)
k , 1/β), (9)

x
(m+1)
i,j =

{
ι[0,1]((R̄(X̄))i,j), (i, j) ∈ Ωc,
ui,j , (i, j) ∈ Ω,

(10)

where SVT(·, ·) denotes the singular value thresholding
(SVT) formula [20], ιΛ(·) denotes the projection onto a
nonempty set Λ, R̄ := (

∑s
k=1R

T
kRk)−1, and

X̄ :=
(
β
∑s

k=1
RT

k (P
(m+1)
k + A

(m)
k ) + Y

)
/(β + 2c).

We remark that the operator R̄ is an entry-wise division such
that (R̄(·))i,j = ·i,j/qi,j , where qi,j counts the number of
times that xi,j occurs in all the groups {Rk(X)}sk=1. The
convergence of ADMM for a convex problem is guaranteed;
see [21] for more details.

We propose an adaptive strategy to select tk for each
Rk(X). Let σ be a vector of all the singular values of Rk(X)
in a descending order. Given parameters 0 ≤ θ, η ≤ 1, tk is
selected as the maximal t satisfying∑t

i=2
σi ≤ θ

∑
i≥2

σi and σt ≥ ηmean(σ), (11)

where mean(·) denotes the vector mean. The first constraint
in (11) ensures that a large portion of the group energy is trun-
cated so that our prior achieves a close approximation to the
matrix rank. Here the leading singular value σ1 is always
truncated since it is much larger than the rest ones (σ1 > 10σ2

in practice). The second requirement in (11) avoids truncating
too many small singular values, which makes our algorithm
unstable.

The pseudo-code of the overall algorithm is summarized
in Algorithm 1. Here are some implementation details. We re-
fine the grouping results at certain iterations, indicated in the
finite set LBM. After each update of grouping, we reinitialize
each tk with a small value and increase it gradually according
to a set of increasing thresholdings, given in the vector θ. We
remark that both {Rk}sk=1 and {tk}sk=1 are fixed after finite
number of iterations and hence convergence analysis of the
DCA is applicable for our algorithm. The main computation
of our algorithm lies in computing the SVDs in (9), whose
complexity isO(smin(w4n,w2n2). Since the growth rate of
s is O(n1n2), one can deduce that the total complexity de-
pends linearly on the image size, as all parameters are fixed.

3. EXPERIMENTS

We conduct two types of experiments, i.e., filling missing
blocks and randomly missing pixels. We compare the pro-
posed method with two state-of-the-art solvers with simi-
lar principles: IDI-BM3D [9] (group-based sparsity under

Algorithm 1. The DCA for solving (2).
Input: U, Ω, c, β, θ, η, LBM, lmax, mmax, εin, and εout.
Initialization: Estimate an initial image X(1) using cubic in-
terpolation. Set A(1)

k := 0 for k = 1, . . . , s, and i := 1.
Outer loop: For l = 1, . . . , lmax do
1. If l ∈ LBM, perform grouping on X(l) to get {Rk}sk=1 and

set i := 1.
2. If i ≤ length(θ), compute {tk}sk=1 from (11) using (θi, η)

and set i := i+ 1.
3. Compute Y(l) from (5) using {tk}sk=1.
4. Set X(l+1,1) := X(l) and {A(l+1,1)

k }sk=1 := {A(l)
k }sk=1.

Inner loop: For m = 1, . . . ,mmax do
a. Compute {P(l+1,m+1)

k }sk=1 by (9).
b. Compute X(l+1,m+1) by (10).
c. Update {A(l+1,m+1)

k }sk=1 by (8).

d. If ‖X
(l+1,m+1)−X(l+1,m)‖F
‖X(l+1,m)‖F

≤ εin, set m := m + 1 and
Break inner loop.

End Inner loop and output X(l+1) := X(l+1,m) and
{A(l+1)

k }sk=1 := {A(l+1,m)
k }sk=1.

5. If max
(
‖X(l+1)−X(l)‖F
‖X(l)‖F

, |F (X(l+1))−F (X(l))|
F (X(l))

)
≤ εout and

l ≥ max(LBM) + length(θ), set l := l + 1 and Break
outer loop.

End Outer loop and output X := X(l).

fixed transformed domain) and SAIST [8] (group-based low-
rankness via spatially adaptive iterative SVT). We use peak
signal-to-noise ratio (PSNR) and structured similarity in-
dex (SSIM) [22] to evaluate the results quantitatively. Both
of them are higher for better results. All experiments are
conducted under Windows 7 and Matlab R2015b (Version
8.6.0.267246) running on a desktop with an Intel(R) Core
(TM) i7-6700 CPU at 3.40GHz and 16GB memory.

Missing blocks. We consider six 64 × 64 natural image
patches each with a missing 16 × 16 central block, as in [8].
The parameter settings of our algorithm are as follows: patch
sizew = 16, number of patches in one group n = 100, search
window of BM nw = 50, spatial step between two adjoining
reference patches ns = 4, c = 0 in (4)1, β = 10 in (7),
θ = (0, 0.3, 0.5, 0.7, 0.8) and η = 0.25 in (11), iteration set
of updating grouping LBM = {1, 9, 17}, maximal iteration
number of the DCA lmax = 100 and ADMM mmax = 100,
tolerance of ADMM εin = 1e−5 and the DCA εout = 5e−5.
For SAIST, we report the results from the paper. For IDI-
BM3D, we test the authors’ codes using a patch size 16× 16
and default settings of other parameters.

The results by different methods are given in Fig. 2. We
observe that IDI-BM3D fails to complete the texture in #3
and the edge in #4, whereas SAIST and our method yield rea-
sonable inpainting results in all six cases. We also present the

1Although c should be positive to theoretically guarantee the convergence
of the DCA, we find empirically that our algorithm still converges at c = 0.
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PSNR=32.32

SAIST
PSNR=34.00

Proposed
PSNR=35.50

IDI−BM3D
Residual

SAIST
Residual

Proposed
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#2 PSNR=32.44 PSNR=36.12 PSNR=36.84

#3 PSNR=14.61 PSNR=30.67 PSNR=32.18

#4 PSNR=16.68 PSNR=39.93 PSNR=38.96

#5 PSNR=29.64 PSNR=30.17 PSNR=29.95

#6 PSNR=27.42 PSNR=25.51 PSNR=29.66

Fig. 2. Results of filling missing blocks. The missing regions
are denoted by the small yellow squares and PSNR is calcu-
lated for those pixels only. For each method, we show both
solutions and residuals (difference between the solution and
the ground-truth). We zoom into the big red squares and scale
the residuals by X→ 3X + 0.5 for better visualization.

residuals of each method (difference between the solution and
the ground-truth), which highlight the image details removed
by the algorithm. The results reveal that our residuals con-
tain fewer noticeable structures than the other two methods.
Quantitative evaluation suggests that our method achieves the
highest PSNR values in four of six cases, while SAIST is the
best in the other two cases. The average execution time of
IDI-BM3D, SAIST, and our method is 1.28 min, 0.39 min,
and 4.46 min, respectively.

Randomly missing pixels. We test two 256 × 256 nat-
ural images House and Barbara with 85% pixels randomly
missing, shown in Fig. 3. The parameter settings of our al-
gorithm are as follows: w = 8, n = 60, nw = 20, ns = 4,
c = 0, β = 10, θ = (0, 0.2, 0.4, 0.6, 0.7), η = 0.25, LBM =
{1, 9, 17, 25, 33}, lmax = 100, mmax = 100, εin = 1e − 4,
and εout = 5e − 4. For SAIST, we test the authors’ codes
using a maximal iteration number 600 and a noise variance
7.5. For IDI-BM3D, we test the authors’ codes using a patch
size 8 × 8. The other settings of the competing methods are
left to their default ones.

The results by different methods are given in Fig. 3. We
observe that IDI-BM3D is good at smooth regions, but not at
textures. SAIST gives consistent results at various image fea-
tures, but it is not as good as the proposed method in terms
of fine detail preservation and overall visual quality. Regard-

Original
House

Observed
85% missing Barbara 85% missing

IDI−BM3D
PSNR=32.06,SSIM=0.8796

SAIST
PSNR=32.53,SSIM=0.9047

Proposed
PSNR=33.32,SSIM=0.9123

PSNR=26.71,SSIM=0.8419 PSNR=29.53,SSIM=0.9147 PSNR=30.65,SSIM=0.9264

Fig. 3. Results of filling randomly missing pixels. All the
zoomed-in regions of House undergo a same linear enhance-
ment for better visualization.

ing quantitative evaluation, our method achieves the highest
PSNR and SSIM values for both testing images. The average
execution time of IDI-BM3D, SAIST, and our method is 5.02
min, 6.91 min, and 27.57 min, respectively. Our method is
time consuming because it requires inner ADMM iterations.
A possible acceleration of our algorithm is to incorporate the
recent proximal operator of l1−2 [23], which will be left to
future research.

4. CONCLUSIONS

We have proposed a group-based low-rank model for im-
age inpainting, in which an lt,1−2 metric is incorporated to
promote the low-rankness of each group. We have devel-
oped an efficient numerical scheme combined the DCA and
ADMM for solving the proposed model, as well as an adap-
tive selection of the number of truncated singular values for
each group. Numerical experiments have demonstrated that
our method outperforms the state-of-the-art solvers in filling
missing blocks and randomly missing pixels. Future works
include accelerations of the proposed algorithm and exten-
sions of lt,1−2 to other image processing applications, such
as [24, 25, 26].



5. REFERENCES

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester,
“Image inpainting,” in Proc. 27th Annu. Conf. Comput.
Graph. Interact. Techn., 2000, pp. 417–424.

[2] M. Bertalmı́o, A. L. Bertozzi, and G. Sapiro, “Navier-
Stokes, fluid dynamics, and image and video inpaint-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2001, pp. 355–362.

[3] J.-F. Cai, R. H. Chan, and Z. Shen, “A framelet-based
image inpainting algorithm,” Appl. Comput. Harmon.
Anal., vol. 24, no. 2, pp. 131–149, 2008.

[4] J. Mairal, M. Elad, and G. Sapiro, “Sparse represen-
tation for color image restoration,” IEEE Trans. Image
Process., vol. 17, no. 1, pp. 53–69, Jan. 2008.

[5] A. A. Efros and T. K. Leung, “Texture synthesis by non-
parametric sampling,” in Proc. IEEE Int. Conf. Comput.
Vis., 1999, pp. 1033–1038.

[6] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez, “Geo-
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