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Abstract

We review some of the recent advances in level-set methods and their applications. In particular,
we discuss how to impose boundary conditions at irregular domains and free boundaries, as well as
the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustra-
tive applications are taken from the physical and life sciences. Fast sweeping methods are briefly
discussed.
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1. Introduction

Representing and tracking the evolution of interfaces is a fundamental component of computer
simulations. An efficient way to do so is to use the level-set method introduced by Osher and Sethian
[1]. It consists in representing the interface as the level-set of a higher dimensional function. The
main advantage of this implicit representation of a moving front is its ability to naturally handle
changes in topology, as illustrated in figure 1. This is in contrast to explicit methods [2–6] for
which changes in topology require extra work for detecting and subsequently treating numerically
the merging or pinching of fronts. We note, however, that explicit methods have the advantage
of accuracy (e.g. front-tracking preserve volumes better than level-set methods for the same grid
resolution) and we refer the interested reader to the work of [7] for a front-tracking method that
handle changes in topology. Volume of fluid methods also adopt an implicit formulation using
the volume fraction of one phase in each computational cells (see e.g. [8–19] and the references
therein). These methods have the advantage of conserving the total volume by construction. They
are however more complicated than level-set methods in three spatial dimensions and it is difficult
to compute accurately smooth geometric properties such as curvatures from the volume fraction
alone, although we refer the reader to the interesting work of Popinet on this issue [20]. Also,
we note that phase-field models have been extensively used to tackle free boundary problems,
particularly in the case of solidification processes [21–23, 23–29]. However, these models do not
represent the interface in a sharp fashion, which in turn leads to a degradation of the accuracy
where it matters most and impose sometimes stringent time step restrictions. In what follows, we
review the level-set method, including the treatment of boundary conditions in that framework and
extensions to adaptive Cartesian grids and parallel architectures. The Fast Sweeping Method, which
is often associated with the level-set method for its ability to compute the signed distance function
and solutions to other Hamilton-Jacobi equations, is also briefly discussed. We then present some
recent applications of the level-set and the fast sweeping methods.
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2. Level-Set Representation and Equations

Figure 1: Level-set representation of a free boundary (blue solid line) in two spatial dimensions,
moving in its normal direction, and subsequent changes in topology that are handled automatically.
The level-set function is depicted in red. (Color online).

The level-set method of Osher and Sethian [1] represents an interface, Γ, (i.e. a curve in
two spatial dimensions or a surface in three spatial dimensions) as the zero-contour of a higher
dimensional function, φ, called the level-set function, which is defined as the signed distance function
to Γ:

φ(x) =

 − d for x ∈ Ω−,
+ d for x ∈ Ω+,

0 for x ∈ Γ,

where d is the Euclidian distance to Γ. The level-set function can also be used to compute the
normal to the interface n and the interface’s mean curvature κ:

n = ∇φ/|∇φ| and κ = ∇ · n.

Under a velocity field v = (u, v, w), the interface deforms according to the level-set equation:

∂φ

∂t
+ vn|∇φ| = 0, where vn = v · n. (1)

Although the level function can be chosen to be any Lipschitz continuous function, in practice
the signed distance function is chosen for its properties of improved mass conservation and accuracy,
especially in the computations of geometrical quantities. Since in general the level-set function does
not retain its signed-distance-function property as it evolves in time through equation (1), Sussman
et al. [30] introduced the reinitialization equation:

φτ + sgn(φ0) (|∇φ| − 1) = 0, (2)

to transform a level set function φ0 : Rn → R into the signed distance function φ. Here, sgn is
a smoothed-out signum function and τ represents a fictitious time that controls the width of the
band around the zero-level set where φ will be sign-distanced. Finally, if the level-set function is a
signed distance function, the projection onto Γ of any given point x is easily computed as:

xΓ = x− φ(x)∇φ(x).
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3. Approximation of Equations

On uniform grids, the level-set advection equation (1) and the reinitialization equation (2) are
discretized with a HJ-WENO scheme in space [31–33] and a TVD-RK3 in time [34]. We gives the
details of those schemes next.

3.1. WENO Schemes

The WENO schemes [31, 33] are based on the ENO schemes [35], both of which are used to
compute the one-sided backward D−x φ and forward D+

x φ first-order derivatives of a scalar function
φ. The philosophy behind ENO is to choose between three different stencils depending on the
upwind direction and on which one will avoid differentiating across discontinuities. In smooth
regions, however, a weighted convex combination of those stencils produces higher-order accuracy
(fourth-order accurate for conservation laws and fifth-order for Hamilton-Jacobi); this is the idea
behind the Weighted ENO (WENO) schemes.

Let’s consider the WENO approximation of D−x φ; the construction of D+
x φ is similar. The three

possible ENO approximations of D−x φ are:

φ1
x =

d1

3
− 7d2

6
+

11d3

6
, φ2

x = −d2

6
+

5d3

6
+
d4

3
, φ3

x =
d3

3
+

5d4

6
− d5

6
,

where the finite differences di are defined as:

d1 =
φi−2 − φi−3

∆x
, d2 =

φi−1 − φi−2

∆x
, d3 =

φi − φi−1

∆x
, d4 =

φi+1 − φi
∆x

, d5 =
φi+2 − φi+1

∆x
.

The WENO approximation of D−x φ is given by:

D−x φ = ω1φ
1
x + ω2φ

2
x + ω3φ

3
x, (3)

where the coefficients ωk are chosen in such a way that the approximation of (3) is fifth-order
accurate in smooth region, while retaining the ENO philosophy near discontinuities. This is achieved
by estimating the smoothness of the solution via the smoothness of the stencils as follows:

• Define the smoothness coefficient Si of each stencil φix:

S1 =
13

12
(d1 − 2d2 + d3)2 +

1

4
(d1 − 4d2 + 3d3)2,

S2 =
13

12
(d2 − 2d3 + d4)2 +

1

4
(d2 − d4)2,

S3 =
13

12
(d3 − 2d4 + d5)2 +

1

4
(3d3 − 4d4 + d5)2.

• Define coefficients αi as:

α1 =
.1

(S1 + ε)2
, α2 =

.6

(S2 + ε)2
, α3 =

.3

(S3 + ε)2
,with ε = 10−6 max(d2

1, d
2
2, d

2
3, d

2
4, d

2
5) + 10−99.

• Define the ωi as:

ω1 =
α1

α1 + α2 + α3
, ω2 =

α2

α1 + α2 + α3
, ω3 =

α3

α1 + α2 + α3
.

The construction of D+
x u is similar, except for the definition of the di’s:

d1 =
φi+3 − φi+2

∆x
, d2 =

φi+2 − φi+1

∆x
, d3 =

φi+1 − φi
∆x

, d4 =
φi − φi−1

∆x
, d5 =

φi−1 − φi−2

∆x
.
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3.2. Approximation of the Level-Set Equation

In the case of the level-set equation (1), a TVD Runge-Kutta scheme in time is used along with
a Godunov spatial discretization, HG, of the Hamiltonian H(∇φ) = vn |∇φ|:

HG(a, b, c, d) =

{
vn
√

max(|a+|2, |b−|2) + max(|c+|2, |d−|2) if vn ≤ 0

vn
√

max(|a−|2, |b+|2) + max(|c−|2, |d+|2) if vn > 0
,

with ·+ = max(·, 0) and ·− = min(·, 0). The one-sided derivatives, D±x φ and D±y φ are discretized
with the WENO scheme of section 3.1.

Time discretizations use the third-order accurate Total Variation Diminishing Runge-Kutta
schemes (TVD RK3), which is defined as a combination of Euler steps [35]. For example, in the
case of the level-set equation φt + vn|∇φ| = 0, where the Godunov Hamiltonian HG is used, one
first performs an Euler step from φn to find a temporary solution, φ̃n+1, at time tn+1:

φ̃n+1 − φn
∆t

+HG(φn) = 0,

and another Euler step from φ̃n+1 to find a temporary solution, φ̃n+2, at tn+2:

φ̃n+2 − φ̃n+1

∆t
+HG(φ̃n+1) = 0.

Averaging gives a temporary solution φ̃n+ 1
2 = 3

4φ
n + 1

4 φ̃
n+2 at time tn+ 1

2 . Finally, an Euler step is

performed to find a temporary solution, φ̃n+ 3
2 , at time tn+ 3

2 , from the solution φ̃n+ 1
2 :

φ̃n+ 3
2 − φ̃n+ 1

2

∆t
+HG(φ̃n+ 1

2 ) = 0,

which is used to update φn+1 by linear averaging:

φn+1 =
1

3
φn +

2

3
φ̃n+ 3

2 .

3.3. Approximation of the Reinitialization Equation

In the case of the reinitialization equation (2), a TVD Runge-Kutta scheme (see section 3.2) in
time is also used along with a Godunov spatial discretization, HG of the Hamiltonian H(∇φ) =
sgn(φ0) (|∇φ| − 1):

HG(a, b, c, d) =

{
sgn(φ0)

√
max(|a+|2, |b−|2) + max(|c+|2, |d−|2)− 1 if sgn(φ0) ≤ 0

sgn(φ0)
√

max(|a−|2, |b+|2) + max(|c−|2, |d+|2)− 1 if sgn(φ0) > 0
,

with ·+ = max(·, 0) and ·− = min(·, 0). However, in the reinitialization equation, the one-sided
derivatives, D±x φ and D±y φ are discretized using a modification of the WENO scheme of section
3.1: In [36], Russo and Smereka pointed out that the WENO scheme of [31] for the reinitialization
equation ignores the exact interface location, which produces a mass loss. They solved this problem
by using the exact interface location and the fact that φ = 0 at the interface in the construction
of the numerical stencils. They developed a second-order accurate reinitialization procedure that
significantly improved mass conservation properties (see figure 2(a)). Later, du Chene et al. [37]
further exploited the idea of Russo and Smereka in order to develop a fourth-order accurate scheme
for the reinitialization equation, which in turns produces second-order accurate computations of
the mean curvature (see figure 2(b)).

Finally, we mention that other techniques can be used to reinitialize φ as a distance function,
[38–44], each with their pros and cons. We refer the interested readers to the book by Osher and
Fedkiw [45] as well to the book by Sethian [46] for general methods associated with the level-set
method.
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(a) Interface location (b) Interface curvature

Figure 2: (a): Interface representing a square after being reinitialized on a 100× 100 grid using the
original HJ-WENO scheme of [31] (left) and the second-order accurate scheme of [36] (right). The
scheme of Russo and Smereka significantly improves mass conservation. (b): Comparison of the
isocontour of the mean curvature for a circular interface using the HJ-WENO scheme from Jiang
and Peng [31] and the modified HJ-WENO scheme of du Chene et al. [37]. The scheme of du Chene
et al. produces accurate curvature computations, free of numerical noise. (Color online).

3.4. Reinitialization using the Hopf-Lax Formula

In this section, we discuss a novel approach to compute a signed distance function, that makes
use of the Hopf-Lax formula. This method is particularly appealing for parallel processing for its
property that the computation at any grid point is independent of that at any other point, hence
producing an “embarrassingly parallel” approach.

Darbon et al. developed a numerical approach based on the Hopf formula to solve Hamilton-
Jacobi equations in high dimensions when the initial data is convex [47]. Based on this work, Lee
et al. [48] introduced a fast algorithm using the Hopf-Lax formula for solving the Eikonal equation,
|∇φ| = 1, in the case where the interface Γ is not necessarily convex. Their work considered
the reinitialization of a level-set function in the case where the interface Γ is known analytically.
Recently, Royston et al. extended the methodology to the practical case where the interface Γ is
defined on a grid [49], which we describe next.

Considering a level-set function φ0 defined at grid points i, a bilinear interpolation scheme is
used to define φ0(x) =

∑
i φ

0
iNi(x) at any space location x, where Ni refers to the interpolation

kernel at i. The distance function is then found through the computation of a function φ̃ that
satisfies:

∂

∂t
φ̃(x, t) + |∇φ̃(x, t)| = 0,

φ̃(x, 0) = φ0(x).

Since this equation evolves the zero-level set of φ̃ normal to itself at speed 1, the distance, di, to
the interface at a grid point i is given by the time, t̂, it takes for φ̃ to be zero at that grid point,
i.e. di = t̂ : φ̃(xi, t̂) = 0. This root finding problem is solved using the secant method:

tk+1 = tk − φ̃(xi, t
k)

tk − tk−1

φ̃(xi, tk)− φ̃(xi, tk−1)
,

with initial guesses t0 = 0 (or given by the updated values at neighboring grid points) and t1 =
t0 +O(∆x). In the case where the denominator vanishes and the secant method has not converged,
the next time iterate is found with:

tk+1 = tk +O(∆x) if φ̃(xi, t
k) > 0,

tk+1 = tk −O(∆x) Otherwise.

The evaluation of φ̃ is performed using the Hopf-Lax formula, which amounts to finding the
minimum of φ0 over a ball, B(xi, t

k), of radius tk and centered at xi:

φ̃(xi, t
k) = min

y∈B(xi,tk)
φ0(y). (4)
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In [48], Lee et al. used the split Bregman iterations to minimize (4), while Royston et al. used a
projected gradient descent [49]: 

˜
yj+1
k =

˜
yjk −∆x∇φ0(yjk),

˜
yj+1
k = PROJ(ỹj+1

k )
y∈B(xi,tk)

,

where

PROJ(y)
y∈B(xi,tk)

=

 y if |xi − y| ≤ tk,
xi − tk

xi − y

|xi − y| Otherwise.

Since this approach to reinitializing a level-set function is based on a minimization process, the
typical problem of converging to a local minimum is avoided by randomly seeding multiple initial
guesses y0 (one initial guess per grid cell in B(xi, t

k)) and selecting the minimum in magnitude over
all computed distances. A notable strength of this approach is that it is embarrassingly parallel.
Royston et al. demonstrate the effectiveness of this approach with an parallel implementation on a
Graphics Processing Unit (GPU) [49], for which a typical reinitialization takes about 70 ms on a
512× 512 grid. We also refer the interested reader to the recent work of Chow et al. [50, 51], that
further considers minimization approaches for solving Hamilton-Jacobi systems in high dimensions.

4. Level-Set on Adaptive Grids and Parallel Architectures

The democratization of high performance computing facilities and the need for resolving small
length scales while reducing the computational cost of simulations, has led researchers to develop
the level-set technology on adaptive grids and massively parallel architectures. We focus here on
adaptive Cartesian grids and refer the interested reader to [18, 52, 53] and the references therein
for description of algorithms on unstructured grids.

Adaptive mesh refinement technique for Cartesian grids date back to the work of Berger and
Oliger [54] who considered blocks of uniform grids that are recursively added to regions of a back-
ground uniform grid according to some refinement criteria. Originally devised for compressible
flows, this strategy has been successfully applied to a wide range of solvers, e.g. [55–57] and the
references therein. Later, numerical methods based on the Quadtree and Octree data structures
gained popularity for their versatility in mesh generation for classes of problems where shocks do
not occur. For example Strain [58] introduced a node-based semi-Lagrangian method for solving the
advection equation on Quadtree Cartesian grids, with application to the linear level-set equation.
Rather recently, Min and Gibou developed a second-order accurate level-set methodology, including
the case of the nonlinear level-set equation, as well as extrapolation and reinitialization schemes.
Their node-based approach was also used to develop adaptive solvers for a wide range of PDEs and
applications [59–76].

Quad-/Oc-tree grids are particularly well-suited for the level-set method because most of the
computational work is concentrated near the interface, where high resolution is needed both for the
level-set function itself and for typical physical quantities that usually need high resolution near
evolving fronts. The coarsening away from the interface leads to a computational method that is
very efficient. In fact, Brun et al. [77] pointed out that a tree structure is more efficient than a local
level-set method using a hashtable data structure, i.e. a method that only stores a band of uniform
grid near the interface. Quad-/Oc-tree Cartesian grids have also been used for solving equation in
fluid dynamics using a MAC grid sampling, as e.g. [78–82] and the references therein.

4.1. Quad-/Oc-tree Cartesian Grids

A Cartesian Quad-/Oc-tree grid refers to one that uses the Quad-/Oc-tree data structure for
its digital representation. These data structures have been originally introduced in the computer
graphics community and used in many contexts before being exploited in scientific computing. We
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Level = 0
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Level = 2

Level = 3

Level = 4

Figure 3: Quadtree Cartesian grid (left) and its representation (right). The entire domain corre-
sponds to the root of the tree (level 0). Each cell can then be recursively subdivided further into four
children. In this example, the tree is non-graded. (Color online).

refer the interested reader to the excellent books by Samet [83, 84] for a detailed presentation
of Quadtree (2D) and Octree (3D) data structures. An example of an adaptive Cartesian grid
and its Quadtree representation is given in figure 3. We call a (m,n) Quadtree Cartesian grid
one for which the coarsest level is m and finest one is n. A grid is said to be non-graded if
the difference of levels between adjacent cells is unconstrained. Graded grids add a constraint to
mesh generation procedures and, to some extent, degrade the computational efficiency of solvers
by adding potentially unnecessary degrees of freedom (extreme cases are discussed in [85, 86]). An
Octree Cartesian grid is the corresponding construct in three spatial dimensions. The Quadtree
and Octree data structures provides a O(ln(n)) access to the data stored at their leaves.

In the case of the level-set method, where the finest resolution is needed only near the zero-level
set of the level-set function φ, a simple refinement criteria is [87–89]:

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C), (5)

where Lip(φ) is the Lipschitz constant associated with φ, diag-size(C) refers to the length of the
diagonal of the current cell C and v refers to a vertex (or node) of the current cell.

4.2. Finite Difference Discretizations

�0

�1

�2

�3

�4

�5 �G

s4

s3

Figure 4: A T-junction configuration.

Nonuniform Cartesian grids require one to define
level-set values at T-junction nodes, as for example φG
in figure 4. In [89], this value in two spatial dimensions
is defined to third-order accuracy by:

φGg =
φ3 s4 + φ4 s3

s3 + s4
− s3 s4

s1 + s2

(
φ1 − φ0

s1
+
φ2 − φ0

s2

)
.

Similarly, third-order accurate ghost values are defined in
three spatial dimensions ([89]). Finite difference formu-
las can then be formulated in a dimension-by-dimension
framework and used in the Godunov approximations of
the Hamiltonians, as in section 3.2 and 3.3. In particu-
lar, the second-order accurate one-sided approximations
of the first-order derivatives are given by:

D+
x φ0 =

φG − φ0

sG
− sG

2
minmod

(
D0
xxφ0, D

0
xxφG

)
,

D−x φ0 =
φ0 − φ1

s1
+
s1

2
minmod

(
D0
xxφ0, D

0
xxφ1

)
,
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where the minmod slope limiter [33, 34] is defined as:

minmod(x, y) =

{
x if |x| > |y|,
y otherwise,

and the second-order derivative are approximated by central difference, e.g. D0
xxφ0 is approximated

as:

D0
xxφ0 =

φG − φ0

sG
· 2

s5 + sG
− φ0 − φ5

s5
· 2

s5 + sG
.

Min and Gibou also used the idea of Russo and Smereka with slight modifications in the context
of adaptive mesh refinement [89], and Min pointed out that it is advantageous in terms of speed
and memory to replace the traditional Runge-Kutta scheme in time with a Gauss-Seidel iteration
of the forward Euler scheme [90].

4.3. Semi-Lagrangian Schemes

The level-set method is often used to capture the evolution of an interface that moves according
to an externally generated velocity field. In this case, the level-set equation is linear and the standard
unconditionally stable semi-Lagrangian methods can be used. The semi-Lagrangian method is based
on tracing back along characteristic curves given a velocity field u. Specifically, for any grid node
x, the departure point xd along the characteristic curve at time tn is found by approximating the
equation (e.g. with the second order mid-point method):

dx

dt
= u.

The update is then simply φn+1(x) = φn(xd), where interpolation schemes can be used to define
the value of φ at an arbitrary location xd. In, [91] first-order accurate bilinear interpolations
where used; in [89] a second-order accurate non-oscillatory interpolation scheme was proposed: for
example in two spatial dimensions, scaling any computational cell to a unit cell C, one writes:

φ(x, y) = φ(0, 0)(1− x)(1− y) + φ(0, 1)(1− x)(y) + φ(1, 0)(x)(1− y) + φ(1, 1)(x)(y)

− φxx
x(1− x)

2
− φyy

y(1− y)

2
,

where the second-order derivatives φxx and φyy are defined as:

φxx = minmod
v∈vertices(C)

D0
xxφ(v) and φyy = minmod

v∈vertices(C)
D0
yyφ(v).

Semi-Lagrangian methods are not conservative, which when applied to the level-set evolution
equation leads to mass loss. In Lentine et al. [92], the authors modified the interpolation weights
to produce a conservative method as follows. A typical update formula for φ reads:

φn+1(xj) = φn(xd) =
∑
i

wi,jφ
n(xi),

where the wi,j ’s are the interpolation coefficients of cells Ci’s used to update φ at xj . After updating
φ at every grid point xj , one can define the total contribution, σi, of each cell Ci as σi =

∑
i wi,j .

Usually, that sum does not equal 1 because of truncation errors; however it needs to be if mass is
to be exactly conserved. Lentine et al. enforce this it in two steps:

1. Go through all donor cells for which σi ≥ 1 and scale the weights as ŵi,j = wi,j/σi.

2. Go through all other cells, i.e. those for which σi < 1, apply a forward semi-Lagrangian ray
casting giving forward weights fi,j and use them to distribute the remaining (1 − σi)φi,j to
the cells j that are used to perform the interpolation.

The final weights are defined as ŵi,j = wi,j + (1 − σi) fi,j and the final update is φn+1(xj) =∑
i ŵi,jφ

n(xi). This scheme is valuable beyond linear level-set equations; in particular [92] showed
that it produces the correct speed of propagation for solutions of conservation laws.
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4.4. Level-Set on a Forest of Octrees

(a) Local (Green) and global (black) grids. (b) Snapshot at t = 9

Figure 5: (a): global and local Octree grids. The processor with rank “green” stores its local Octree
grid, which is only as fine as the global Octree for the region it is responsible for and significantly
coarser elsewhere. (b): level-set at t = 9, color-coded by processors rank. Results using the parCASL

library [93].

In [94], Mirzadeh et al. introduced the level-set method on a forest of Quad-/Oc-trees. This work
makes use of the p4est library of Burstedde et al. [95] for the partitioning of the grid, combined
with a suite of algorithms that constructs local trees to each processor, which then enable the
discretizations discussed in sections 4.1-4.3.

When considering parallel computation, where the communication of data between processes is
orders of magnitude more time consuming than computation, the main focus of algorithm design is
to reduce communication or/and hide their cost by intertwining them with computation. Reducing
communication is achieved by grouping, or partitioning, the data in the local memory of each
process. The strategy of Burstedde et al. [95] is illustrated in figure 6: (1) a macromesh of uniform
cells is created and replicated on each process; (2) a forest of Quad-/Oc-trees is created recursively
using all processes and partitioned among them. The partitioning is using a Z-ordering of the trees’
leaves, which are recorded in a one-dimensional array before being split equally among the available
processes. Using the Z-ordering clusters the data contiguously, as depicted in figure 6, and thus
subsequently minimizes the amount to communication during the discretization phase.

Since the p4est library only stores the one-dimensional array of the forest’s leaves, an algorithm
for constructing the local trees on each processor is introduced in order to use the discretizations
described in sections 3, 4.2 and 4.3. The procedure introduced in Mirzadeh et al. [94] is to create a
local tree in such a way as the levels of its leaves correspond to that of the one-dimensional array
locally. For example figure 5(a) depicts the local and global Octrees on one out of 4096 cores in the
case of the standard vortex test [96] on an Octree with a maximum resolution level of 12. In this
case, the global grid (i.e. the forest) has 231,905,632 grid points, while the local tree depicted has
1,566,272 grid points. A global grid on a uniform grid would amount to 68,719,476,736 grid points,
corresponding to about 300 times many more grid points. Figure 5(b) depicts the solution at t = 9,
color-coded by the processors’ rank.
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T0 T1 T0 T1

Figure 6: Two trees, T0 and T1, constitute the ‘forest’. The Z-ordering (left) of the Quadtree’s
leaves (center) is used to partition the data among the available processes (right). In this figure, the
different colors correspond to different processes. S represents the starting cell and E the last cell
visited. In the p4est library, only the one-dimension array (right) is stored among the available
processes.

5. Applying Boundary Conditions

Since the level-set function gives an implicit representation of an irregular free boundary, special
care is needed to apply boundary conditions in a sharp manner. In that regard, the Ghost-Fluid
Method has been key to providing a simple and general procedure. Introduced in the context of
compressible inviscid flows, its philosophy is based on introducing two copies of the solution, one
corresponding to the real fluid and another one to conveniently impose the boundary condition.
The particular strength of the GFM is that it enables a sharp treatment of boundary conditions,
hence eliminating spurious oscillations of the solution or its unphysical smearing. The GFM was
first introduced to treat contact discontinuities in inviscid compressible flows [97, 98] and then
extended to the treatment of deflagration and detonation in compressible flows [99], including a
conservative treatment for stiff detonation waves [100]. It has also been applied to the coupling of
Eulerian/Lagrangian frameworks [101] and compressible/incompressible flows [102]. Finally, it has
been applied to flame fronts propagating in incompressible flows [103], to multiphase flows [104],
for which a GFM approach to solve the Poisson equation with jump in the solution and its gradient
[105] was introduced, and to multiphase flows with phase change [106].

The GFM idea has also been applied to the case where one wants to treat Dirichlet boundary
conditions [107, 108] with application to the Stefan problem [109] and has been refined in order to
treat jump boundary conditions with higher accuracy [76]. Imposing Robin boundary conditions
in a GFM framework is not natural and one prefers a finite volume treatment instead [67, 69, 110].

The treatment of boundary conditions in a level-set framework is often associated with solving
a Poisson equation, e.g. as part of a projection method in fluids, for the simulation of materials
processing or for simulating biological phenomena. Therefore, we describe in this section the nu-
merical techniques that enable the treatment of jump, Dirichlet, and Robin boundary conditions
for the Poisson equation.

5.1. Jump Boundary Conditions

An essential component of solving multiphase flows or other scientific problems where the solu-
tion and its gradient jump over an interface can be written as: ∇ · (β∇u) = f in Ω− ∪ Ω+

[u] = gΓ on Γ
[β∇u · n] = hΓ on Γ

, (6)

where the computational domain Ω is composed of two subdomains, Ω− and Ω+, separated by a
co-dimension one interface Γ, with n its outward normal. Here, β = β(x), with x ∈ Rn (n ∈ N), is
continuous in each subdomains and bounded from below by a positive constant and [q] = q+

Γ − q−Γ

10



indicates a discontinuity in the quantity q across Γ, f is in L2(Ω), gΓ, hΓ and k are given. Note that
this general formulation includes possible discontinuities in the coefficient β and in the gradient of
the solution ∇u. Dirichlet or Neumann boundary conditions are applied on the boundary of Ω,
denoted by ∂Ω.

5.1.1. The Ghost-Fluid Method

i +
3

2
i +

1

2

i � 1 i + 2i + 1i

�
i � 1

2

⌦� ⌦+

Figure 7: Local grid near an interface Γ.

The GFM for the Poisson equation is best described first in one spatial dimension and in the
case of a constant β. Consider a domain Ω = Ω− ∪ Ω+, with the region Ω− defined by the set of
points x with φ(x) ≤ 0; the interface between the two subdomains is called Γ. The computational
domain is discretized into cells of size ∆x, with the grid nodes xi located at the cells’ center. The
cell edges are referred to as faces, and the two faces bounding the grid node xi are located at xi± 1

2
.

The numerical solution of the Poisson equation is computed at the grid nodes and is denoted by
ui = u(xi). Referring to figure 7, the discretization of uxx = f must be changed for grid points i
and i+ 1 that are adjacent to Γ in such a way that the jump conditions [u] = gΓ and [ux] = hΓ are
imposed. For the sake of presentation, we consider the case where xi+ 1

2
is in Ω+.

• Discretization at grid point i: We use the standard central differencing formula:

(ux)
+R
i+ 1

2
− (ux)

−R
i− 1

2

∆x
= fi.

Since there is a jump in ux, the expression above is O( 1
∆x ). In order to avoid differencing across

discontinuities, the GFM replaces (ux)
+R
i+ 1

2
by (ux)

−G
i+ 1

2
:

(ux)
−G
i+ 1

2
− (ux)

−R
i− 1

2

∆x
= fi.

Using the jump condition [ux] = (ux)
+−(ux)

−
= hΓ, we have (ux)

−G
i+ 1

2
= (ux)

+R
i+ 1

2
−hΓ, which gives:

(ux)
+R
i+ 1

2
− hΓ − (ux)

−R
i− 1

2

∆x
= fi ⇐⇒

(ux)
+R
i+ 1

2
− (ux)

−R
i− 1

2

∆x
= fi + ∆xhΓ.

The above expression requires the approximation of (ux)
−R
i− 1

2
and (ux)

+R
i+ 1

2
, given by central

differencing:

(ux)
−R
i− 1

2
=
u−Ri − u−Ri−1

∆x
and (ux)

+R
i+ 1

2
=
u+R
i+1 − u−Ri

∆x
.

Again, while the approximation of (ux)
−R
i− 1

2
involves quantities on the same side of the interface and

thus will produce accurate results, the approximation of (ux)
+R
i− 1

2
mixes quantities that experience

a jump across the interface and thus will produce O( 1
∆x ) errors. Again, the GFM replaces u+R

i+1 by

11



a ghost value u−Gi+1 defined from the jump condition [u] = (u)
+ − (u)

−
= gΓ, i.e. u−Gi+1 = u+R

i+1 − gΓ.

The expression for (ux)
+R
i− 1

2
thus become:

(ux)
+R
i+ 1

2
=
u−Gi+1 − u−Ri

∆x
=
u+R
i+1 − gΓ − u−Ri

∆x
.

Putting everything together, the GFM approximation of uxx = f is given by:

1

∆x

(
u+R
i+1 − u+R

i

∆x
− u+R

i − u+R
i−1

∆x

)
= fi + ∆xhΓ + ∆x2 gΓ. (7)

• The discretization at i+ 1 is similar. We first write:

(ux)
+R
i+ 3

2
− (ux)

−R
i+ 1

2

∆x
= fi.

In this case, both (ux)
+R
i+ 3

2
and (ux)

+R
i+ 1

2
are on the same side of the interface and thus no special

treatment is needed for approximating the fluxes. The approximation of (ux)
−R
i+ 3

2
and (ux)

+R
i+ 1

2
are

given by central differencing as:

(ux)
+R
i+ 3

2
=
u+R
i+2 − u+R

i+1

∆x
and (ux)

+R
i+ 1

2
=
u+R
i+1 − u−Ri

∆x
.

In this case, the approximation of (ux)
+R
i+ 1

2
depends on the solution u on both side of the interface,

hence producing O( 1
∆x ) errors. The GFM replaces u−Ri by a ghost value u+G

i defined from the

jump condition [u] = (u)
+ − (u)

−
= gΓ, i.e. u+G

i = u−Ri + gΓ. The expression for (ux)
+R
i+ 1

2
thus

become:

(ux)
+R
i+ 1

2
=
u+R
i+1 − u+G

i

∆x
=
u+R
i+1 − (u−Ri + gΓ)

∆x
.

Putting everything together, the GFM approximation of uxx = f is given by:

1

∆x

(
u+R
i+2 − u+R

i+1

∆x
− u+R

i+1 − u+R
i

∆x

)
= fi −∆x2 gΓ. (8)

Remarks: In practice the jump conditions are often given at grid nodes. For example, in a two-
phase flow simulation the jump in the solution is proportional to the interface’s curvature, which
is computed at grid point. In this case, one defines gΓ and hΓ by interpolation:

gΓ =
gi|φi+1|+ gi+1|φi|
|φi|+ |φi+1|

and hΓ =
hi|φi+1|+ hi+1|φi|
|φi|+ |φi+1|

.

We also refer the interested reader to [105] for details on subcell resolution and for the discretization
of the variable coefficient Poisson equation (βux)x = f .

Equations (7) and (8) show that the GFM produces a linear system with the standard symmetric
positive definite matrix for the Poisson equation on regular domains in the absence of jumps. Only
the right-hand side of the linear system is modified to include the jump conditions. In two spatial
dimensions, [105] proposed a simple dimension-by-dimension approach, where the system (6) is
modified as follows: 

(βux)x + (βuy)y = f in Ω− ∪ Ω+

[u] = gΓ on Γ
[βux] = hΓ n1 on Γ
[βuy] = hΓ n2 on Γ

,

12



where n1 and n2 are the x- and y- components of the normal vector n. This gives a straightforward
procedure to solve the Poisson equation in two and three spatial dimensions since the GFM can be
applied independently on the term (βux)x with the jump condition [βux] = hΓ n1 and on the term
(βuy)y with the jump condition [βux] = hΓ n2. As pointed out in [105], this treatment preserves the
jump in the normal derivative but smears out the jump in the tangential derivative. Nonetheless,
the method has been shown to be convergent with first-order accuracy [111]. Unfortunately, the
gradients do not converge in general and thus this approach is not appropriate in problems for
which the gradient of the solution drives the accuracy of the problem.

5.1.2. The Voronoi Interface Method

In [76], the authors introduced an approach based on building a Voronoi tessellation local to
the interface, which then enables the direct discretization of the jump conditions in the normal
direction. This Voronoi Interface Method (VIM)1 produces second-order accurate solutions in the
L∞-norm, first-order accurate gradients and, similar to the GFM, produces a symmetric positive
definite linear system with the jump conditions only influencing its right-hand side. This enables
the linear system to be solved with fast iterative solvers, e.g. the Conjugate Gradient of the Petsc
libraries [113, 114] preconditioned with the Hypre multigrid [115, 116].

The procedure for creating the grid relies on first finding the projection onto Γ of the degrees
of freedoms adjacent to the interface. Then, those degrees of freedom are replaced by two new
degrees of freedom located in the normal direction on either side of the interface at a (arbitrary)
distance dΓ = diag/5 from Γ, where diag refers to the length of the local cell’s diagonal. A
Voronoi tessellation is then build from this new set of degrees of freedom as illustrated in figure
8. Since the original grid is only modified near the interface, building the Voronoi tessellation is
a computationally efficient procedure that can be easily applied to the adaptive Cartesian grids
of section 4. In addition this procedure is embarrassingly parallel and thus can be applied to the
parallel framework of section 4.4. In [76], the authors used the Voro++ library [117] to construct
the local Voronoi tessellation.

Figure 8: Left: projections onto Γ of all the nodes adjacent to the interface. Center: two additional
degrees of freedom are created on each side of Γ and the original node adjacent to the interface have
been deleted. The final grid is obtained from constructing a Voronoi tessellation of the new set of
degrees of freedom. Right: typical local control volume C used in the discretization of (6).

Referring to figure 8 (right), the system (6) is discretized at each degree of freedom i (with
control volume C) with a finite volume approach:∫

C
∇ · (β∇u) dV =

∫
∂C

(β∇u) · nC dl ≈
∑
j

sijβi
uij − ui
dij/2

,

1Not to be confused with the Voronoi Implicit Interface Method, which is an interface tracking methodology [112].
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where uij is the value of u at the middle of the segment [i, j], and thus can be considered as uΓ.
By definition, nC is the outer normal to the faces of C connecting the local grid node i and its
neighbors j and sij is the measure of that face; βi is the value of the variable coefficient β(x) at i;
dij is the distance between the degrees of freedom i and j.

The jump conditions affect the discretization in the case where the grid nodes i and j belong to
different subdomains. The jump in the normal flux can be used to define:

sijβi
u+
ij − ui
dij/2

= sijβj
uj − u−ij
dij/2

− sij [β∇u · n] ,

since n points towards i, and using the jump in u (i.e., u+
ij = u−ij + [u]), one gets:

sijβi
u+
ij − ui
dij/2

= sijβj
uj − u+

ij + [u]

dij/2
− sij [β∇u · n]

⇐⇒ u+
ij =

1

βi + βj

(
βjuj + βiui + βj [u]− dij

2
[β∇u · n]

)
.

For a degree of freedom i, the contribution of its neighboring degree of freedom j is given by:

β̃ijsij
uj − ui
dij

= β̃ij
sij
dij

(
−sign(φi)[u] +

dij
2βj

[β∇u · n]

)
+ Vol(C) · fi,

where Vol(C) is the volume of the Voronoi cell associated to the degree of freedom i and β̃ij =
2βiβj
βi + βj

is the harmonic mean between βi and βj . Specifically, for the degree of freedom i, each

neighboring degree of freedom j contributes the following expression to the matrix coefficient of the
linear system:

β̃ijsij
uj − ui
dij

,

and the following expression to its right-hand side:

β̃ij
sij
dij

(
−[u] +

dij
2βj

[β∇u · n]

)
.

Since the two domains are decoupled, one can readily consider cases where the jumps in β, u and
∇u · n are several orders of magnitude. For example [76] present an example where the jump in
the variable coefficient β is 105.

We include an illustrative example from [76], who considered a computational domain Ω =
[−1, 1]2 decomposed into four subdomains by the following three contours:

Γ0 =
{

(x, y), φ0(x, y) =
√
x2 + y2 − 0.2

}
,

Γ1 =
{

(x, y), φ1(x, y) =
√
x2 + y2 − 0.5 + 0.1 cos(5θ)

}
,

Γ2 =
{

(x, y), φ2(x, y) =
√
x2 + y2 − 0.8

}
,

where θ is the angle between (x, y) and the x-axis. The exact solution is defined as:

u(x, y) =


ex + 1.3 if (x, y) ∈ Ω0 =

{
(x, y), φ0(x, y) ≤ 0

}
,

cos(y) + 1.8 if (x, y) ∈ Ω1 =
{

(x, y), φ1(x, y) ≤ 0
}
,

sin(x) + 0.5 if (x, y) ∈ Ω2 =
{

(x, y), φ2(x, y) ≤ 0
}
,

−x+ ln(y + 2) if (x, y) ∈ Ω3 =
{

(x, y), φ3(x, y) ≤ 0
}
,

while the diffusion coefficient is defined as:

β(x, y) =


y2 + 1 if (x, y) ∈ Ω0,

ex if (x, y) ∈ Ω1,

y + 1 if (x, y) ∈ Ω2,

x2 + 1 if (x, y) ∈ Ω3.
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The solution is depicted in figure 9, while table 1 gives the order of accuracy of the method in the
L∞-norm.

Figure 9: Solution of section 5.1.2 using the VIM (from [76]).

resolution solution order gradient order
24 1.00 · 10−3 - 3.33 · 10−3 -
25 2.33 · 10−4 2.11 1.01 · 10−3 1.72
26 6.23 · 10−5 1.90 3.46 · 10−4 1.54
27 1.56 · 10−5 2.00 1.59 · 10−4 1.12
28 4.00 · 10−6 1.96 6.82 · 10−5 1.22
29 1.01 · 10−6 1.99 4.00 · 10−5 0.77
210 2.55 · 10−7 1.99 2.24 · 10−5 0.84

Table 1: Accuracy of the solution of section 5.1.2 and its gradient in the L∞-norm using the VIM
(from [76]).
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5.2. Dirichlet Boundary Conditions

⌦+

✓�x

xi xi+1

ui ui+1

uG
i+1

⌦� g�

�

Figure 10: Definition of the ghost value uGi+1 using a linear extrapolation. First, construct a linear
interpolant ũ(x) = ax + b of u such that ũ(0) = ui and ũ(θ∆x) = gΓ. Then define uGi+1 = ũ(∆x).
(Color online).

Consider again the Poisson equation, but this time with a Dirichlet boundary condition of gΓ at
Γ. In this case, it is natural to impose the boundary condition in a dimension by dimension approach
since the boundary condition on u can be fixed in each Cartesian directions. Therefore, without
loss of generality, we only describe the discretization for the one-dimensional Poisson equation:

∂

∂x

(
β
∂u

∂x

)
= f in Ω− ∪ Ω+

u = gΓ on Γ
, (9)

for which the following central differencing scheme is used:

1

∆x

(
βi+ 1

2

ui+1 − ui
∆x

− βi− 1
2

ui − ui−1

∆x

)
= fi. (10)

As it is the case of section 5.1, one avoids differentiating the fluxes across the interface where
the solution presents a kink, by using a ghost value uGi+1 at xi+1 across the interface and rewrite
equation (10) as:

1

∆x

(
βi+ 1

2

uGi+1 − ui
∆x

− βi− 1
2

ui − ui−1

∆x

)
= fi.

The ghost value is defined by first constructing an interpolant ũ(x) of u on the left of the interface
with origin at xi, and then defining uGi+1 = ũ(∆x). Figure 10 illustrates the definition of the ghost
cells in the case of a linear extrapolation. Linear, quadratic and cubic extrapolations are defined
by2:

Linear Extrapolation: Take ũ(x) = ax+ b with:

ũ(0) = ui and ũ(θ∆x) = gΓ.

Quadratic Extrapolation: Take ũ(x) = ax2 + bx+ c with:

ũ(−∆x) = ui−1, ũ(0) = ui and ũ(θ∆x) = gΓ.

Cubic Extrapolation: Take ũ(x) = ax3 + bx2 + cx+ d with:

ũ(−2∆x) = ui−2, ũ(−∆x) = ui−1, ũ(0) = ui and ũ(θ∆x) = gΓ.

2One may prefer a Newton’s form for constructing the interpolant ũ(x).
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In these equations, θ ∈ [0, 1] refers to the cell fraction occupied by the subdomain Ω−. The interface
location (and therefore θ) is found by first constructing a linear or higher-order interpolant of the
level-set function φ and then finding the zero of the interpolant. Similar constructions define uGi
using values to the right of xi+1. This procedures produces a linear system of equations that is
symmetric in the case of a linear extrapolation only. The quadratic extrapolation is equivalent to
the Shortley-Weller method [118]. Recent theoretical work have proved the accuracy of the solution
in the L∞-norm and studied the condition number of the linear system [119]. We also refer the
interested reader to the work of Min et al. who have proved the accuracy of the gradients in the
L2-norm [120] and L∞-norm [121].
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(a) Solution profile.
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(b) Accuracy.

Figure 11: Solution of section 5.2 (left) and its accuracy in the L∞-norm for constant (black),
linear (green), quadratic (blue) and cubic (red) extrapolations. (Color online). From [108].

We include an illustrative example from [107], who considered the system (9) on a computational

domain Ω = [−1, 1]× [0, 3]. The exact solution is defined as u = exp(x2 +y2− π2

25 ) and the irregular
domain is parametrized by:{

x(α) = .6 cos(α)− .3 cos(3α)
y(α) = 1.5 + .7 sin(α)− .07 sin(3α) + .2 sin(7α)

,

where α ∈ [0, 2π]. The numerical solution is depicted in figure 11(a) and the slopes in figure 11(b)
give the order of accuracy obtained using different definition of the ghost values. As it was the
case for the solution of (6), the solutions of (9) inside and outside the interface satisfy the correct
boundary conditions and are decoupled, making the methods applicable in the most general case.

5.3. Robin Boundary Conditions

Consider the following system:{
∇ · (β∇u) = f in Ω− ∪ Ω+

∇u · n + αu = rΓ on Γ
, (11)

where α is a positive constant. Imposing Robin boundary condition in the Ghost-Fluid framework
is less amenable than following a finite volume approach, which is well-suited when the bound-
ary condition is expressed as a function of the solution’s flux. In that case, the two subdomains
are treated independently; we describe here the approach introduced in Papac et al. [110] who
considered the integration of (11) in the dual cell C centered at the local grid node c (see figure 12):

17



⌦+

⌦�

c
C

ub

ut

urul

�

LrLl

Lt

Lb

Figure 12: Nomenclature for
imposing a Robin boundary
condition.

∫
C∩Ω−

∇ · (β∇u) dΩ =

∫
C∩Ω−

f dΩ,

⇐⇒

∫
∂(C∩Ω−)

β∇u · n dΓ =

∫
C∩Ω−

f dΩ.

The boundary integral is split into two parts: the boundary of
the computational cell C that belongs to Ω− and the part of the
boundary Γ that is located in C:∫
∂(C∩Ω−)

β∇u · n dΓ =

∫
∂C∩Ω−

β∇u · n dΓ +

∫
C∩Γ

β (rΓ − αu) dΓ,

where we have invoked the Robin boundary condition in the last term. Referring to figure 12, we
approximate the first integral as:∫

∂C∩Ω−

∇un+1 · n dΓ =
ur − uc
sr

Lr −
uc − ul
sr

Ll +
ut − uc
sr

Lt −
uc − ub
sr

Lb,

where Lr (resp. Ll, Lt and Lb) is the length fraction of the right (resp. left, top and bottom) face
that is in Ω−. Finally, one writes:∫

C∩Γ

αβ udΓ ≈ αβc uc

∫
C∩Γ

dΓ,

where uc refers to the value of u at the center of the cell C. The integrations∫
C∩Γ

rΓ dΓ and

∫
C∩Γ

dΓ,

are performed with the geometric integration of Min and Gibou [62]. These approximations define
the coefficients in the linear system associated with grid node c. This linear system is symmetric
positive definite. We include an illustrative example from [110], who considered the system (11)
on Ω = [−1, 1]2. The exact solution is defined as u = exy and the irregular domain defined by

φ = r − 0.5− y5 + 5x4y − 10x2y3

3r5
. The Robin boundary condition in (11) has a coefficient α = 1.

Figure 13 depicts the solution (left) and its accuracy in the L∞-norm (right). As in the previous
sections, the solution of (11) in Ω− is decoupled from the solution in Ω+.
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Figure 13: Solution of section 5.3 (right) and its accuracy (left) in the L∞-norm. From [110].
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Notes:

• The case where α < 0 or where different boundary conditions are imposed on different parts
of the interface is more involved and we refer the interested reader to methodology introduced
in [122].

• The approximation
∫
C∩Γ

αβ udΓ ≈ αβc uc
∫
C∩Γ

dΓ can be replaced to further use the Robin

boundary condition [123] as:

βc αuγ

∫
C∩Γ

dΓ,

where uγ is the orthogonal projection of uc onto Γ. Taylor’s approximation gives:

uc = uγ + |φc|
∂u

∂n

∣∣∣∣
γ

+O(|φc|2),

so that one can write the following approximation:

uγ ≈
uc − |φc| rγ
1− α|φc|

,

In the case of (near) singularity in this expression, uc is used instead of uγ .

• We refer the interested reader to the review by Gibou, Min and Fedkiw [124] for a discussion
of common misconceptions when applying Dirichlet boundary conditions.

6. Fast Sweeping Methods

Within the level-set community, there exists two classes of fast numerical methods to solve
the Eikonal equation and more generally Hamilton-Jacobi equations: the Fast Marching Method
(FMM) [38, 39, 125] and the Fast Sweeping Method (FSM) [40]. We also note that a new approach
based on the Hopf-Lax formula is being developed (see section 3.4). We focus here on the FSM,
including its parallel version and refer the interested reader to [126] for a parallel implementation
of the FMM.

6.1. Sequential FSM

The Eikonal equation defined on a computational domain Ω reads:

|∇u(x)| = f(x) for x ∈ Ω ⊂ Rn, (12)

u(x) = gΓ(x) for x ∈ Γ ⊂ Ω,

where f(x) is a given function, and gΓ(x) is the boundary value prescribed on the co-dimension
one boundary Γ.

The idea behind the FSM, introduced by Zhao [40], is to initialize the procedure by assigning
exact (or interpolated [127]) values of gΓ at the grid points nearest the interface Γ, and large positive
values at all other grid nodes, and then to use a succession of sweeps to propagate the information
from Γ to the rest of the domain. At each grid point during these sweeps, a Godunov upwind
differencing approximation [128] of (12) is used:

[(unewi,j − uxmin)+]2 + [(unewi,j − uymin)+]2 = f2
i,j∆x

2, (13)

where ∆x is the grid spacing and one uses:

uxmin = min(ui−1,j , ui+1,j) and (x)+ =

{
x x > 0,

0 x ≤ 0.
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Figure 14 (left) illustrates a snapshot of a standard sweeping, at the end of which the data
on Γ (here a single point) will be propagated to the top right quadrant. Zhao showed that this
procedure will converge in a finite number of sweep (2n sweeps in Rn), producing a method that is
O(N), where N is the total number of grid points [40]. In the case where obstacles are present, for
example describing regions of space where propagation is prohibited, the sweeping process must be
further iterated to reach convergence.

6.2. Parallel FSM

In [129], Zhao introduced a parallel implementation of the FSM method on shared memory
machines by assigning each ordering to a separate thread and synchronizing the data at each grid
point by taking the minimum value of all threads at the end of each sweep. In addition, a domain
decomposition strategy is used to take advantage of an arbitrary number of threads.

Figure 14: Fast Sweeping in serial (left) and in parallel (right), where the data from Γ (the point
in the center) will propagate to the entire shaded region. The inset demonstrates that all the nodes
along the same level can be processed independently.

In [130], Detrixhe et al. proposed to consider sweeping directions that are not those used in the
serial version of FSM. Defining the level as the set of grid points (i,j) such that i+j=level,
the sweeps are performed along the ‘diagonals’ defined by level=constant (see figure 14). Since
the stencil of (13) at each grid point (i,j) does not involve any other grid point on that level,
all the grid points that belong to the same level can be processed independently; the source of
parallelism.

In [131], Detrixhe et al. combined the domain decomposition technique of [129] with the parallel
approach of [130] to propose a hybrid parallelization of the FSM. In addition, this approach was
extended to the more general class of static Hamilton-Jacobi equations:

H(∇u(x),x, u(x)) = 1 for x ∈ Ω ⊂ Rn,
u(x) = g(x) for x ∈ Γ ⊂ Ω.

20



7. Some Recent Applications

7.1. Epitaxial growth and the Ehrlich-Schwoebel Barrier

(a) Scanning Tunneling Microscope image from [132] (b) Simulation of [123]

Figure 15: Mound formation of epitaxially grown thin film.

Epitaxial growth is a process where a material is deposited on top of another. It is crucial in the
fabrication of most modern opto-electronic devices such as lasers and in the fabrication of devices
used for memory storage and optical coherence tomography. Other important applications include
catalysts used in the energy sector, food processing, biology and environmental science. Deposited
atom diffuse on the substrate they are deposited on and eventually nucleate stochastically, forming
dimmers that are mostly stable. Other diffusing atoms further aggregate to form islands, producing
a layer by layer growth.

A level-set approach to the simulation of epitaxial growth, called the Island Dynamics Model
(IDM), was introduced in [133] and then further refined in [134–139]. This model treats the evo-
lution of islands as a free boundary problem where each boundary moves with a normal velocity
proportional to the mass flux towards that boundary, reminiscent to the Burton Cabrera Frank
model [140]:

v =

(
D−

∂ρ−

∂n
−D+ ∂ρ

+

∂n

)
n , (14)

where the + and − signs refer to the the upper and lower terraces, respectively.
The IDM considers the density of adatoms (diffusing atoms), ρ(x, t), as a continuous variable

and describes its dynamics by conservation law:

∂ρ

∂t
= F +∇ · (D∇ρ)− 2

dN

dt
, (15)

which accounts for the deposition flux F , the adatom diffusion with diffusion coefficient D, and the
nucleation of islands with rate dN/dt where N(t) is the island density. This rate is given by:

dN

dt
= σ1D〈ρ2(x)〉 , (16)

where σ1 is a capture number [141, 142] and 〈·〉 denotes the average taken over the entire domain.
The growth of island is thus discrete in the vertical direction but continuous in the lateral direction.
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Figure 16: Schematic of an asymmetric (ES) step-edge barrier. The lower panel shows the atomistic
configuration of a step edge, to which an adatom attaches with rate D′ (D′′) from the upper (lower)
terrace. The upper panel depicts the corresponding energy landscape in one spatial dimension.

The boundary conditions for the adatom density expresses the effects of the Ehrlich-Schwoebel
barrier through a Robin boundary condition [143–145] (see Figure 16):

∇ρ · n +
D′

D −D′ ρ =
D′

D −D′ ρeq , (17)

where D′ describes the energy barrier for adatom diffusion over the island boundary, ρeq is an
equilibrium adatom density, and n is the outward normal to the islands’ boundary. When D′ = D,
the boundary condition is replaced by the Dirichlet boundary condition ρ = ρeq [140, 146, 147].
Otherwise, the smaller D′, the stronger the Ehrlich-Schwoebel barrier, which translate into the
formation of mounds (see figure 15(a)). The need to impose Robin boundary conditions is clear in
this case. In addition, adaptive grids and parallel computing are desired to address the need for
resolving the adatom density on small terraces while simulating meaningful physical domain. Figure
15 depicts the results from [123] of a multilayer growth using the adaptive parallel framework of
section 4.4, with the treatment of the Ehrlich-Schwoebel barrier with the method outlined in section
5.3. The simulation uses a small ratio D′/D = 0.1, which promotes the formation of mounds. The
results shown in figure 15(b) are similar to what is experimentally observed (see figure15(a)). Figure
17 further depicts the effect of increasing the ratio D′/D that results in less and less pronounced
mounding.

(a) D′/D = 0.95 (b) D′/D = 0.3 (c) D′/D = 0.1

Figure 17: From left to right: effects of increasing the Ehrlich-Schwoebel barrier (i.e. decreasing
D′/D). This simulation (from [123]) uses a (5, 8)-Quadtree and 256 processors.

7.2. Solidification of Binary Alloys

Solidification is an indispensable manufacturing process that enables the production of materials
with arbitrary shapes and unique properties. The solidification of multicomponent alloys used to
fabricate turbine blades in the aerospace and energy sectors is particularly important. This process
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can be modeled by the diffusion of different material components in their liquid phase (region Ωl)
that solidify at the interface of a solid-liquid interface Γ; the solid region is denoted by Ωs.

In the case of a binary system, conservation laws express the dynamics of the solute’s con-
centration Cl and Cs in the liquid and solid phases, respectively, as well as the temperature, T : ∂T/∂t = k/ρc∆T , x ∈ Ωs ∪ Ωl,

∂Cl/∂t = Dl∆Cl , x ∈ Ωl,
∂Cs/∂t = Ds∆Cs , x ∈ Ωs,

(18)

where ρ is the density, c is the heat capacities, Dl and Ds the solutal diffusion coefficients in the
liquid and solid phase, respectively, and where k is the thermal conductivity. The temperature is
continuous at Γ and satisfies the Gibbs-Thompson condition:

T∣∣Γ = Tm +mLC
l
∣∣
Γ

+ εcκ, (19)

where Tm is the melting temperature, mL is the liquidus slope, κ the interface curvature and εc
a coefficient that captures the crystallography of the system [148]. The solidification front evolves
with a normal velocity given by the heat flux balance and the solute-rejection equation:

V
Γ

=
k

L

[
∂T

∂n

]
, (20)

V
Γ

=

[
D
∂C

∂n

]/
(Cs − Cl), (21)

where L is the latent heat. One of the main questions relevant to solidification is the prediction of
the growth regimes as a function of the applied temperature gradient GS and the interface velocity
VΓ [149]. In [71], the adaptive Quadtree framework of section 4 and the boundary treatments of
section 5 were used to simulate the solidification of binary alloys and to generate the map of growth
regimes as a function of the parameters GS and VΓ, as illustrated in figure 18.
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Figure 18: Resulting crystalline configuration as a function of GS and VΓ, illustrating the planar,
cellular and dendritic regimes. From [71].

7.3. Electroporation of Cell Membranes

(�, S, C)

(⌦c, �c)

(⌦e, �e)

n

Figure 19: Electroporation
computational domain.

The efficacy of the treatments of some cancers depends on the
proper delivery of therapeutic molecules directly into malignant
cells. Electroporation, which is achieved by applying a large elec-
tric pulse, is an increase in the permeability of a cell’s membrane.
In turn, it promotes the diffusion of drugs directly into cancer cells
through their permeabilized membrane [150–152]. Electroporation,
is a technique that is currently used in the treatment of some skin
or pancreatic cancers [153]. Proper treatment relies on the accurate
knowledge of the distribution of the electroporated region. Numer-
ical simulations can play a crucial role in that quest and can inform
scientist about the effects of cell screening, the macroscopic behav-
ior of the electrical potential in cell aggregates or the validity of
transmission models [154–162]. However, one of the main goals of
developing a computational approach is to be able to consider con-
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figurations that are close to experimental ones, i.e. one needs to consider clusters of at least a few
thousands to a few tens of thousands cells [163, 164].

As a first step in that direction, Guittet et al. [75] used the VIM of [76] described in section
5.1.2 to solve the model of Schwan, Stuchly et al. [165, 166]: Consider a domain Ω composed of
two subdomains, Ωc describing the cell cytoplasm and Ωe describing the extracellular medium (see
figure 19). The electrical potential obeys the following boundary value problem:

∆u = 0, in (0, T )× (Ωe ∪ Ωc) , (22a)

u(t, ·) = g(t, ·) on (0,+∞)× ∂Ω, (22b)

with the jump conditions:

[σ∂nu] = 0, on (0, T )× Γ, (22c)

C∂t[u](t, ·) + S(t, [u])[u] = σ∂nu(t, ·)|Γ , on (0, T )× Γ. (22d)

where the conductivity σ has a jump across the cells’ membrane Γ. The jump condition (22c)
enforces the continuity of the flux while (22d) describes the combined effect of the capacitance, C,
and of the surface conductance, S, of the membrane. Dirichlet boundary conditions are given on
∂Ω. In addition to those equations, a model must be provided for the membrane conductance (see
e.g. [156, 157, 161]). In [75], the authors focused in particular on the model of Poignard et al. [161]:

S(t, λ) = SL + S0X0(t, λ) + S1X1(t,X0(t, λ)), (23)

which considers three different states for the surface conductance: resting (SL), porated (S0) and
permeabilized (S1) states. This model also gives an evolution equation for the degree of poration
X0: 

∂X0(t, λ)

∂t
=
β0(λ(t))−X0

τep
,

X0(0, λ) = 0,

and another evolution equation for the degree of permeabilization X1:
∂X1(t,X0)

∂t
= max

(
β1(X0)−X1

τperm
,
β1(X0)−X1

τres

)
,

X1(0, λ) = 0,

where β0 and β1 are given step functions. Figures 20 depicts the results of two simulations from
[75]. In particular, this framework is capable of considering many cells and study the effects of
shadowing on the permeabilization of cells. This work could potentially be extended to the case
of parallel computations, as described in section 4.4, and thus could pave the way to considering
experimental condition with clusters of a few tens of thousands cells.
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(a) 3 × 3 × 3 array of cells (b) Cluster of 100 cells

Figure 20: Visualization of the permeabilization X1 for two different cells’ distributions. From [75].

7.4. Inverse Problem for Directed Self-Assembly

(a) Lamellar phase

Polymeric Phases

Figure : Lamellar (fA, �AB) = (0.5, 20), BCC (fA, �AB) = (0.15, 40) and
gyroid (fA, �AB) = (0.36, 20) phases obtained on an Octree data
structure.

Gaddiel Ouaknin AMR and Level Set Strategies for SCFT

(b) BCC phase (c) Gyroid phase

Figure 21: Simulation from [72] using a self-consistent field theoretic solver on adaptive grids.

Diblock copolymers are melts of molecular chains A and B that self-assemble into ordered
structures. They are therefore extremely useful in generating geometries with a length scale (∼ 5
to 100 nm) that is not accessible with other processes. Applications can be found in the electronics
sector as well as in the energy and in the health industries [167]. One application of particular
interest is in the context of Directed Self-Assembly (DSA), which is a patterning technique for next
generation lithography [168, 169]. In this context, the challenge is to find a template shape that
will direct the self-assembly into cylindrical structures with a targeted topology.

The level-set method is a powerful approach to solve inverse problems where the optimum
geometry is the targeted outcome. It has been used for example for shape optimization in the
context of acoustic, fluids and structural systems among others [46, 170–175]. Recently, Ouaknin et
al. introduced a level-set approach to solve the inverse problem associated with DSA [176]: given a
target for the position and radius of cylindrical structures, what is the optimum mask that will drive
the self-assembly to that target. In this work, the adaptive framework of section 4 is used to solve
the equation of the self-consistent field theory, an accurate model that describes how inhomogeneous
phases self-assemble [177–179].
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Within the SCFT framework, the densities of the A and B components are found through the
solution of chain propagators q and q†, which represent the statistical weight of a polymer chain at
a given location, r, and contour length, s, and which satisfy the Fokker-Planck equations: ∂sq(s, r) = 52q(s, r)− q(s, r)× w(r) forward,

∂sq
†(s, r) = 52q†(s, r)− q†(s, r)× w†(r) backward.

In these equations, w and w† are respectively related to the pressure potential that enforces the
incompressibility constraint and to the exchange potential describing the interaction between A and
B. In the case of an infinite domain, the boundary conditions for q and q† are periodic whereas
for a confined domain, homogeneous Neumann conditions are used [180]. Examples of structures
obtained for a periodic domain within this framework are illustrated in figure 21 while figure 22
depicts the results of self-assembly in an irregular confined domain.

(a) 3D confined domain. (b) Cross-section.

Figure 22: Simulation from [72] of self-assembly of block-copolymer in a confined domain using a
self-consistent field theoretic solver on adaptive grids.

The inverse problem associated with DSA can be solved by considering a level-set function φ
that evolves in such a way as to minimize the following functional:

J [φ(r), w+(r), w−(r)] =

∫
Ω−

1

2

(
ρA(r)− ρtarget

A (r)
)2
dΩ−,

where ρtarget
A represents the targeted density of species A and ρA represents the density of species

A responding to the confined domain enclosed in Ω− = {x : φ(x) ≤ 0}. In addition to depending
on the level-set function, the functional J depends on the exchange potential w− and the pressure

potential w+. In [181], Ouaknin et al. derived the functional derivative
δJ

δφ(r)
, which can then be

used to define the velocity at which φ must evolve in order to minimize the functional J . In [176],
the authors used instead the normal velocity defined as v(r) = w+(r)n, emulating a shape that
responds to the pressure field w+.

In this context, it is thus particularly important to solve the SCFT equations in confined domains
in a way that w+ is properly defined near the evolving boundary. Confined domains can be emulated
on a periodic domain (and thus by using a periodic boundary condition) by using a compressible
assumption. In this case, the walls of the confined domain are given a width δw, across which the
solution varies rapidly. As a consequence, the value for w+ near the wall follows a steep profile
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that sharpens as the value of δw decreases. This solution process thus imposes an arbitrary density
profile in a region of length δw, which in turn make the computation of the shape optimization
velocity v = w+ n difficult. On the other hand, using a sharp representation of the confined
domain and imposing sharp boundary condition as described in section 5.3, provides the correct
profile (as demonstrated in [72]) that one can exploits to define accurately the shape optimization
velocity.

Figure 23(b) gives an example of the evolution of φ until it converges to the optimum mask
given the target densities of figure 23(a) (only the two cylinders’ center are depicted - the radius
of the cylinders are also given as input). This optimum mask used as a confined domain drives the
self-assembly of a random melt to the target design, as illustrated in figure 24. In particular, figure
24(c) demonstrates that the centers of the self-assembly process are consistent with the centers of
the targeted cylinders.

(a) Target design. (b) φ at different iteration of shape optimization.

Figure 23: A result of the shape optimization algorithm (From [176]).

(a) Initial random melt. (b) Resulting self-assembly. (c) Centers of target (circles) .vs.
self-assembly (pluses).

Figure 24: Example showing a SCFT simulation from a random melt using the mask of figure 23.
From [176].

7.5. Parkinson’s Disease and Isochrons

A recent application of the parallel fast sweeping method of section 6.2 is in the context of
Deep Brain Stimulation (DBS), a remarkably effective treatment to relieve the tremor, rigidity,
and bradykinesia of Parkinson’s disease (PD) in many individuals. The exact mechanism of action
of DBS is unknown, though it is likely that it disrupts ongoing pathological neuronal activity,
and results as well in neurotransmitter release. However, there is no consensus on a systematic
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or theoretical basis by which to optimize the many adjustable DBS parameters such as energy
levels, stimulus rate, waveform shape and duration [182, 183] and it is almost certainly the case
that improving the stimulus protocol will result in better symptom control and in reduced side
effects. Skeletal motor activity is controlled by a series of pathways in the basal ganglia and cortex
that include the globus pallidus, subthalamic nucleus, and striatum, and it is well-accepted that
abnormal firing in this circuit is at the core of many of the symptoms of PD. Tremors associated
with Parkinson’s disease stem from abnormal electrical activity in this circuit, and it is believe that
desynchronizing the neuronal firing results in treatment of this symptom.

The concept of isochrons, which are sets of points with trajectories that converge with the same
phase on a periodic orbit, is powerful in this context [184]. Models based on isochrons can be
used to design an energy-optimal stimulus that drives the states of the neurons within the brain
to a region of phase space where the isochrons are clustered tightly (the phaseless set), thereby
desynchronizing neurons activity.

In [185], Detrixhe et al. considered the four dimensional Hodgkin-Huxley neuron’s model of the
form:

dx

dt
= F (x), x ∈ R4, (24)

where the states variable x stores the transmembrane voltage potential and the three gating vari-
ables describing the physiology of the neuron, and F describes their dynamics [186]. Considering the
asymptotic phase function θ(x) that takes values in [0, 2π), the associated isochrons were computed
by solving the corresponding Eikonal equations:

∇θ · F(x) =
2π

T
,

with the parallel FSM of [130] (see section 6.2) and by considering its isocontours.
Figure 25 depicts a 3D cross-section of the four-dimensional isochrons computed on a grid with

160 points in each spatial dimensions. In particular, one can easily compute the almost phaseless
set by finding the region in space where |∇θ| > τ , where τ is a chosen threshold. This knowledge
can be used to design control strategies in the context of DBS.

Figure 25: 3D cross-sections of the almost phaseless set (gray) of the four dimensional Hodgkin-
Huxley model. The phaseless set is defined by |∇θ| > 30. The diagonal 2D slices depicts 100 equally
spaced isochrons. From [185].

8. Conclusion

Level-set and fast sweeping methods are powerful numerical methods that have been applied to
a wide range of applications. In that review, we have discussed some recent progress related to the
numerical treatments of boundary conditions, adaptive grids and parallel strategies in the level-set

29



framework. We have illustrated some of the numerical treatments with some recent applications in
materials science and neuroscience. It goes without saying that recent progress and applications
are too numerous to be included in this review, and we have chosen to discuss mainly those closest
to us.
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