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ABSTRACT 

 
We have developed an optimization theoretic approach for using hyperspectral (HS) 
data with the vapor materials' absorption spectra to identify and locate chemical 
materials in the atmosphere against arbitrary clutter-backgrounds.  The method makes 
no prior modeling assumptions about the existence of pure pixels or the statistics of the 
clutter and sensor noise.  It also requires neither prior background measurements taken 
without the vapor absorption nor the use of libraries of background spectra. There are 
two main components to the method: (1) a hyperspectral unmixing algorithm based on 
the Alternating Direction Method of Multipliers that is used over local spatial subsets of 
the imaging to resolve the HS data into a set of linearly independent spectral and spatial 
components; and (2) the fitting of those unmixing spectra to a set of candidate 
absorption spectral templates for chemical detection, identification, and  location.  The 
algorithm is illustrated using HS data collected by a Telops Hyper-Cam passive sensor 
during the release of vapor materials at Dugway Proving Ground, UT. 
 

1  Introduction 
 
Hyperspectral (HS) imaging is a well-established technology having many commercial 
and military applications.  One of those uses the HS spectral information to detect and 
locate materials by their known spectral signatures.  In general, this is a highly nontrivial 
task due to the many radiance sources from the clutter background and atmosphere 
that can easily mask and distort the often weak radiance from the chemical materials of 
interest.  Traditional approaches for separating the radiance components in the data 
involve either (1) unmixing using the "pure-pixel" or "endmember" assumption that the 
target materials can be found in a few individual pixels without interference from other 
radiance sources; or (2) the use of likelihood ratio testing in a statistical approach.  

The pure pixel or endmember algorithms are more successful on data for which 
the pure pixel assumption is approximately valid.  If such pixels exist and can be 
identified, least-squares methods can be used to locate the image spatial regions 
associated with each endmember.  Standard simplex-based algorithms such as N-findr 
[1] and VCA [2] are useful if endmember pixels exist under high SNR conditions.  We 
note, however, that these algorithms may not work well because of the nonexistence of 
such pixels due to spatial resolution- or sensor-noise limitations.  This was already 
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recognized by the likely originator of the term "endmember," Schowengerdt [3]: "... 
endmembers only exist as a conceptual convenience and as idealizations in real 
images."  Also, the concept of spectrally pure pixels may not have meaning in the LWIR 
spectral region where our data reside. 

At the other extreme are unmixing approaches, notably those based on 
compressive sensing methods, which attempt to fit the data to a sparse set of spectra 
taken from large libraries.  These methods require additional prior information about the 
data that may not exist in general.  Other methods for sparse basis fitting are well 
known in HS processing.  We mention two sources: Dadon et al. [4] and Adler-Golden 
and Conforti [5] that use sparse fitting, but in the context of endmember bases.  In 
contrast, we will show in Section 3 that the ADMM unmixing algorithm constructs a 
sparse basis of spectra directly from the data at each local spatial region. 

Targets that are subpixel or mixed pixel are well known to be quite challenging 
compared to the traditional endmember processing.  These targets are either small in 
relation to the pixel size or partly concealed by vegetation or other coverings.  For this 
class of targets, statistical methods are used such as the Adaptive Matched Detector 
(AMD) [6], and the Adaptive Subspace Detector (ASD) that apply Generalized 
Likelihood Ratio Testing (GLRT) [7] using background sample covariance matrices to 
whiten the data followed by subspace projection onto the target spectral subspace. 

Both classes of methods make optimistic assumptions about the data--either the 
existence and detectability of pure pixels--or that the data statistics are well 
approximated by multivariate normal probability densities.  The latter method assumes 
that the clutter correlation structure can be estimated from the data, assuming spatial 
homogeneity and the ability to mask the target spectral presence.  These are often 
difficult assumptions to justify in practice. 

We have developed an optimization theoretic method for identifying and locating 
materials in unknown clutter backgrounds using their chemical spectra that makes no 
prior modeling assumptions about the presence of pure (endmember) pixels or the 
statistics of the clutter and sensor noise.  Also, in contrast to any other method we know 
of, separate estimates of the clutter-background are not required. The generality of the 
approach makes it potentially applicable to a wide variety of military and civilian 
scenarios that are significantly widened by the elimination of the requirement to obtain a 
clean background data scan.  An earlier paper [8] described the optimization approach 
in the context of chemical sensing on spectrally unknown surfaces.  Here we focus on 
finding vapor materials in the atmosphere within arbitrary thermal backgrounds.   

There are two main components to our method: (1) a hyperspectral unmixing 
algorithm [9] based on the Alternating Direction Method of Multipliers (ADMM) [10] that 
is used over local subsets of the imaging to resolve the HS data into a set of linearly 
independent spectral and spatial components; and (2) the fitting of those unmixing 
spectra to a set of candidate template spectra for chemical detection, identification, and, 
when combined with the spatial information,  location.  The fitted spectra can be used 
for material identification by either a very simple threshold test on the fit quality for each 
template, or, better, as input to a state-of-the-art classifier such as the support vector 
machine.  We have followed the first choice here because of the limited data that were 



 3 

available; the earlier paper on chemical sensing on surfaces used an SVM trained of HS 
test data with chemical-agent simulants. 

In Section 2 we derive the ADMM unmixing algorithm for vapor sensing in the 
atmosphere.  It is a simplified version of the algorithm described in [8,9].  Although the 
unmixing is an essential component of our chemical sensing approach, the optical 
interaction between the chemical reflectance spectral structure and the other radiance 
components requires an additional material-dependent fitting step to convert the 
unmixing spectral vectors into estimates of the spectral reflectance of a given material.  
Section 3 describes the fitting method used for this step.  In Section 4 we illustrate the 
algorithm on HS data collected by a Telops Hyper-Cam sensor during the releases of 
the refrigerant R-134a and acetic acid at Dugway Proving Ground (DPG) in UT.  Section 
5 summarizes the algorithm and its application to vapor sensing. 
 
2   ADMM Hyperspectral Unmixing Algorithm for Vapor Sensing 
 
In this section we discuss the method we have developed for the unmixing task of 
resolving hyperspectral data cubes into independent components as functions of 
wavelength band (spectrum) and spatial structure (the analogue of abundances).  The 
algorithm derived here is quite straightforward to code using the suggested parameters 
in Section 4. 

We formulate the HS unmixing problem in terms of the spectral and spatial 
arrays ρ and C as the biconvex multiplicative model G C nρ= + , where G represents 
the HS data cube as M NG R ×∈ with M the number of spectral bands (wavelengths) and 

1 2N N N= is the total number of pixels after stacking the N1 rows and N2 columns into a 
single vector.  We model M LRρ ×

+∈ and L NC R ×
+∈ with L the number of assumed 

independent components in the cube.  n is an additive noise term taken to be zero-
mean, independent, and identically distributed with bounded variance.  We then have 
the constrained problem 
 

2

,

1min  such that 0, 1,1 , 0
2 lFC

G C l L C
ρ

ρ ρ ρ− ≥ = ≤ ≤ ≥ .                           (1) 

 
Because we have only a biconvex optimization problem (convex in either ρ or C 

given the other, but not jointly convex), we cannot expect to find a global minimizing 
solution but only approximately optimal solutions that are numerically well-behaved 
under different initializations of ρ .  Fortunately, the ADMM formalism can accommodate 
this biconvex problem, and produce good unmixing results with the addition of 
appropriate constraints.  ADMM implementation for the unmixing problem leads to an 
alternating algorithm that, for a given estimate of ρ , updates the estimate of C and vice 
versa until convergence. 

Constraints are needed to produce physically meaningful results.  They are 
chosen to be positivity on the spatial and spectral estimates, and a unit-vector constraint 
on the spectrum of each material.  The latter replaces the spatially convex constraints 
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used for abundances in the usual endmember approaches, and seem more natural 
physically.  The constraints are enforced on the parameter arrays through augmented 
Lagrangians with Bregman splitting.  For the splitting we have used the SOC (Splitting 
Orthogonal Constraint) method of Lai and Osher [11] that introduces auxiliary variables 
to split the positivity constraints from the estimation of concentration and the spectra.  
Improved results are often obtained by introducing an l1 regularization of the spectral 
estimates through total variation (TV) also implemented through Bregman splitting and 
soft thresholding following Goldstein and Osher [12].  The ADMM algorithm in [8,9] 
includes this TV regularization.  For simplicity and computational efficiency, we do not 
use TV regularization on the spectral estimates in the algorithm derived here.  The 
resulting algorithm is considerably simpler, easier to implement, and faster than the one 
described in [8,9].  

In addition to the need for constraints, we have observed that much better results 
are obtained by applying the unmixing and spectral fitting to local subsets of the total 
data cube.  This is particularly true when the materials of interest are present in 
relatively small regions of the total imagery.  The subsets are conveniently chosen to be 
squares typically having about 30 pixels on a side.  This choice allows the processing to 
adapt to the local structure of the image while supplying enough spatial information to 
generate good unmixing results.  Besides providing better spectral estimates, the use of 
local processing can be computationally advantageous over a single global fit since the 
processing steps are identical for each local region, and can therefore be implemented 
by parallel processing methods. 

For the HS unmixing problem we introduce two new sets of parameters: one set r 
= ρ for the spectra, and a set e = C for the spatial concentration array.  These 
parameters are iteratively updated independently on each data block of the image cube, 
initialized either randomly (1st data block) or using the estimates at convergence from 
the prior block.  Letting , , ,k k k kr C eρ  denote the parameter estimates at iteration k, we 
have the problem 
 

( )
, , ,

min ,  such that , 0, 1, , 0,                      (2)lr C e
J C r r r C e e

ρ
ρ ρ = ≥ = = ≥  

with ( )ρ ρ= −
21,

2 F
J C G C , where the subscript F denotes the Frobenius (Hilbert-

Schmidt) matrix norm. 
The augmented Lagrangian for this problem is then 

 

( ) ( ) 2

2

, , , , , ,  , ( ) ( )
2

                          , ,                                                    (3)
2

C
F

F

L C e p r q J C tr p e C e C I e I r

tr q r rρ

λ
ρ ρ

λ
ρ ρ

+ += + − + − + + +

− + −
 

 
with dual Lagrange multiplier parameters p and q  that enforce the equality constraints.  
The Lagrange multipliers are updated within the iterative ADMM framework by the 
method of multipliers developed independently by Hestenes [13] and Powell [14] for 
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equality constraints, and later generalized to inequality constraints by Rockafellar [15].  
The third and seventh terms on the right represent the quadratic penalty terms that 
augment the classical Lagrangian.  Their addition promotes the constraint enforcements 
in (2), adds numerical stability to the solution, and provides a systematic method for 
locally optimizing both the multipliers and { ρ ,C} in parallel.  By virtue of the additional 
parameters e and r, we have an unconstrained optimization over C and ρ with the 
remaining constraints easily enforced on e and r analytically.  The parameters λC and λρ, 
are termed penalty parameters. The fourth and fifth  terms represent indicator functions 
defined as ( ) 0, for 0, , for 0.I e e e+ = ≥ = ∞ <      

 From the structure of (3) we see that the total problem at a given iteration k 
breaks into two saddle-point subproblems: finding ( ), ,k k kC e p  given ρ −1k , et al., and 

finding ( ), ,k k kr qρ  given kC , et al.   For the first subproblem we have 

 
( ) ( )1 1 1

, 0
, , arg max min , , , , , .                           (4)k k k k k k

C ep
C e p L C e p r qρ − − −

≥
=  

 
From 

( ) ( ) 1 1 1, ,
0,                        (5)k k k

T
C C p p e e
L G C p C e

ρ ρ
ρ ρ λ

− − −= = =
∇ = − − − + − =  

 
we find 
 

( ) ( )1( 1) 1 ( 1) 1 1 .                           (6)k k T k k T k k
C CC I G p eρ ρ λ ρ λ

−− − − − −= + + +  

 
Similarly, ( )1 0k k

e CL p C eλ−∇ = − − =  and the positivity constraint give the projection 
onto the positive halfspace 
 

( )1 1max ,0 .                             (7)k k k k k
C Ce C p C pλ λ

+− − = − ≡ −   

 
From the general theory of augmented Lagrangians [16] we get 
 

( )1 .                                              (8)k k k k
Cp p C eλ−= − −  

 
     The second subproblem assumes the form 
 

( ) ( )
, 0

1,1

, , arg max min , , , , , .                           (9)
i

k k k k k k

rq
r i L

r q L C e p r q
ρ

ρ ρ
≥
= ≤ ≤

=  

 
Differentiating L with respect to ρ  gives 
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( ) ( ) 1 1 1, , ,

0,                    (10)k k k k
T

C C q q r r
L G C C q rρ ρ ρ

ρ λ ρ − − −= = =
∇ = − − − + − =  

 
and, after collecting terms, the equation for kρ  
 

( )( ) 11 1 .                             (11)k kT k k k kT
LGC q r C C Iρ ρρ λ λ

−− −= + + +  

 

From ( )1 0k k
rL q rρλ ρ−∇ = − − =  and the positive orthant sphere constraint we 

get 
 

[ ] [ ]1 ,                                   (12)k k k

F
u q r u uρρ λ + +−≡ − =  

 
The Lagrange multiplier updates for q are then 
 

( )1 .                                           (13)k k k kq q rρλ ρ−= − −  

                      

Both subproblem recursions for C by (6)-(8) and ρ  by (11)-(13) are iterated to 
convergence (with r, e, s, p, and q initialized at either 0 or the results from the previous 
sub-block) within an outer loop that iterates between the subproblems.  The spectral 
estimates ρ 0 are initialized by either positive, unit-norm random vectors, computed from 
the VCA algorithm1 or using the estimates from the previous sub-block. A summary of 
the overall algorithm is given in Box 1. 

We make the following remarks about the algorithm in Box 1.  The HS data cube 
is denoted by the three-dimensional array ( )1 2, ,R j k k  where 1 j M≤ ≤ , 1 11 k N≤ ≤ , and 

2 21 k N≤ ≤ .  For the unmixing, R is partitioned into disjoint square blocks of length Ns.  
G  for each local block is formed by stacking the spatial columns into a single row 
vector.  This operation is denoted by g .  In the version in Box 1  the spectral array ρ is 
constrained to a positive unit-norm set over spectral band using the SOC method of [11] 
applied to the splitting variables r.  The function [ ] max( ,0)x x+

≡ .  Finally, the subscript 
F used in conjunction with the vector space norms of the spectral and spatial arrays 
denotes the Frobenius norm.  The norm of the splitting variables r  on the other hand is 
to be interpreted as the norm over the spectral components for each material 
independently.

 

                                            
1 An alternative to VCA initialization would be random positive unit-norm vectors.  VCA estimates tend to 
give faster convergence. 
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Box 1.  Locally partitioned ADMM unmixing algorithm computational flow. 

 
 
3  Fitting Unmixing Spectra to Chemical Reflectances 
 
In our early experience with the unmixing algorithm we had hoped that the spectral 
estimates would prove adequate to identify the radiance components of chemical 
materials without additional processing.  We now know that this is not possible in 
general.  As an example, Figure 1 plots the spectral template of the refrigerant R-134a 
at the Telops LWIR wavelengths.  This spectrum was supplied as part of a data set [17] 
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collected at DPG UT in 2009 using the Telops Hyper-Cam sensor during the 
atmospheric release of various chemical materials.   

 

 
Figure 1.  Spectral template of the refrigerant R-134a. 

 
Figure 2 shows the unmixing spectra from the ADMM algorithm assuming L = 6 

materials for each of a set of non-overlapping 32-by-32 pixel blocks of the Hyper-Cam 
cube.  The spectra in Figure 2 were computed for the spatial block location having the 
highest correlation between the fitted spectra and the template (to be discussed below).  
Comparison of these figures indicates that some of the unmixing spectra show structure 
near 8.4 µm that looks something like the R-134a template in Figure 1, but certainly not 
similar enough for detecting the material.  The unmixing spectra are evidently a mixture 
of the thermal clutter background and the chemical spectrum. 
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Figure 2.  Spectral estimates from the ADMM algorithm on R-134a release data. 

 
The question is then how the unmixing spectra can be used to detect the 

chemicals.  The key is that the unmixing spectra do not represent the pure chemicals, 
but contain the reflectances of the chemicals as observed in the background clutter from 
the surface, illumination source, and possibly the atmosphere.  They are therefore best 
regarded as independent basis vectors that can be used to fit the templates of whatever 
materials may be present.  With this interpretation of the unmixing spectra, we are led to 
the spectral fitting algorithm below. 

The basic idea is to model a given chemical reflectance spectrum as a linear 
combination of the spectral estimates from the unmixing algorithm (after mean 
subtraction and unit-vector normalization) on each data block.  The assumptions we 
make about the spectral fitting in terms of its ability to identify and locate chemical 
releases are: (1) the template spectrum can be well represented as a linear combination 
of 6-8 unmixing spectra when the target material is present in the local subset of the 
data; and (2) the best linear fit to a given template will not fit that template well when the 
material is not present in the local block.  The examples below support the validity of 
these assumptions.  

We note that the ADMM unmixing algorithm is essential for producing a sparse 
set of basis vectors that spans the spectral structure of the image sub-block.  Although 
there exists an uncountable infinity of possible basis vectors, the unmixing method used 
here selects a sparse set that is directly tailored to the image data.  Other basis-
generating methods such as principal components analysis, use empirical estimates of 
the spectral covariance, and the resulting eigenvectors have little relation to the actual 
spectral structure of the sub-block.  This means that many more such vectors would be 
needed to produce good fits, with a decrease in the discrimination power of the method. 
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The fits to the linear model are computed by a standard least-squares method, 
and the results are compared to the input reflectance template using an inner product 
over wavelength-band number.  For increased numerical stability, we orthonormalize 
the unmixing spectral estimates using the Matlab function "orth" for each data block.  
The algorithm pseudo-code is given in Box 2.  In Box 2 p is the mean-subtracted M-by-L 
spectral array ρ from the unmixing algorithm, q is the orthogonalized array of spectral 
estimates (such that T

Lq q I= ), and ρM is the 1-by-M row vector representing the 
unpolarized reflectance of a candidate material after mean-subtraction and unit-vector 
normalization.  For multiple-candidate-material detection, ρM could be replaced by a K-
by-M array where K is the number of materials.  The regression estimate of the 
reflectance is denoted by ρ̂ , and S is the inner product of ρM and ρ̂ .  Because of the 
unit-vector normalizations, we always have 1S ≤ . 

The resulting inner products are used below as a figure-of-merit to locate the 
simulant chemical materials in HS imagery for atmospheric vapor absorption observed 
against the natural thermal background clutter.  In Reference [8] the regression fit 
estimates from the various simulant chemicals on different backgrounds were used as 
feature vectors to construct SVM classifiers for identifying the materials. 
 

           

( )
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Box 2.  Spectral reflectance regression algorithm. 
 

4  Application to Vapor Sensing Data 
 
We illustrate the chemical detection method with block-processing on two vapor-release 
data cubes.  The first [17] is the release of the refrigerant R-134a at DPG using the 
Telops Hyper-Cam sensor.  The file name is 'dugway_released_r134a.mat.'  This data 
set was used to motivate the need for spectral fitting in Section 3.  To reduce the effect 
of outlier pixels, a spatial median filter of width ±1 pixels about each pixel was applied to 
the input data cube.  Running the block-processing combination of ADMM unmixing 
followed by spectral fitting for L = 8 materials on 32-by-32 pixel blocks gave the best 
template fit compared to the template itself in Figure 3.  The penalty parameters used to 
implement the augmented Lagrangian in the unmixing were set at λρ = 0.1 and λC = 
0.01.  The spectral array at sub-block (1,1) was initialized by pseudo-random unit-norm 
vectors. The average unmixing time per block was 0.048 s. The peak S at block (3,6) 
was 0.9810.  The spatial structure from the total set of block fits is shown in Figure 4.  
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The spatial structure was computed as ˆ T
MC qq Rρ=  over HS data R within each block. 

There is no evident indication of the boundaries of the individual data blocks in the 
figure.  The R-134a appears as the strong absorption feature in the plot.   

Figure 5 plots the array of inner product values S.  We note that aside from 
blocks (3,6) and (4,6), the S values are less than 0.8.  The inner products could 
therefore be used as a crude detection method, but better results are typically achieved 
from a good classifier such as an SVM trained on a large set of spectral fits. 

 
Figure 3.  Template and peak-fit spectra for R134a release data. 

 
 Figure 4.  Spatial estimates of the R134a release data. 
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Figure 5.  Inner product array S for the R134a release data. 

Our second example is the open-air release of acetic acid also at DPG [18].  The 
file name is 'gdss_27_released_aa_blind.'  Applying the unmixing for 8 materials over 
30-by-30 pixel blocks using the median filter and unmixing parameters above gave the 
best spectral fit to the acetic acid template at block (3,18) with S = 0.9864.  Figure 6 
compares these spectra.  The corresponding spatial plot is shown in Figure 7.  The 
average unmixing time per block was 0.0619 s.  We note what appear to be 
components close to the ground as well as in the atmosphere.  The inner product array 
in Figure 8 shows relatively good fits for both of these apparent components. 

 

 
Figure 6.  Template and best fit to the acetic acid release data. 
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Figure 7.  Spatial estimates of the acetic acid release data. 

 
Figure 8.  Inner product array S for the acetic acid release data. 

 
 
5  Summary and Conclusions 
 
We have derived and illustrated a new optimization theoretic method for using 
hyperspectral imaging data to identify and locate vapor materials in the atmosphere by 
fitting the set of spectral estimates from an unmixing algorithm to a set of candidate 
chemical spectra.  The unmixing and spectral fitting are done locally over non-
overlapping blocks of pixels.  The ADMM HS unmixing algorithm, derived here, is a 
simplified and faster version of the method used in [9].  Neither algorithm assumes the 
presence of endmember pixels, and neither requires background data subtraction, or 
modeling assumptions such as the validity of multivariate normal statistics. 

With reference to the latter class of processing techniques, the optimal (likelihood 
ratio) processor would attempt to estimate the spatial covariance of the scene, and 
spatially whiten the target-and-background combination prior to matched filtering with 
the chemical spectral templates.  We short-circuit most of these steps by the local 
unmixing followed by spectral fitting and (perhaps) classification.  The average unmixing 
time per block for the R-134a example was 0.048 s, and the average time for the acetic 
acid data was 0.062 s.  These calculations were done with Matlab R2015b on a PC 
using Windows 7 with an Intel XPS8500 processor running at 3.4 GHz.  In other words, 
we used a commercial computer, operating system, and high level software.  Significant 
reduction in processing times could be achieved with a dedicated machine and DSP 
boards. 

We would not claim that our HS detection algorithm will perform better than 
likelihood processing on data for which it is best suited, i.e., spatially homogeneous 
multivariate normal data with good covariance and clean background estimates.  The 
question is, how often will such data be available?  We believe that the main advantage 
of our optimization theoretic approach is that it can produce good results without 
requiring these statistical assumptions about the data.   
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Most of the processing time in our approach is taken up by the unmixing and 
fitting/classification steps (in the case of a large library of candidate materials).  Both of 
those steps perform the same operations on all pixel blocks and library materials, and 
are therefore parallelizable and could be done potentially in real time.  Also, the 
chemical templates could be provided with absolute scales, making the detection results 
interpretable in concentration units. 

The regression algorithm that fits the candidate spectral templates to the 
unmixing spectra is the reverse of most hyperspectral algorithms, which fit the data to 
selected spectral samples from large libraries.  In our approach the roles of the target 
function and independent fitting functions are reversed.  Our basis functions are 
produced locally from the data via the unmixing algorithm, and the target functions are 
the set of candidate materials.  The latter set can be quite large, but the simple 
regression fitting proposed here is very fast, and likely to be more efficient than the 
compressive sensing algorithms with their large spectral libraries, currently in vogue. 

The processing requirements needed to apply the proposed chemical sensing 
algorithm to the vapor and other hyperspectral data applications are: (1) a good 
unmixing algorithm, and (2) a set of hypothesized target spectral templates.  The latter 
could be the spectra of different materials or the same material under different 
atmospheric absorption conditions.  The assumptions in terms of the spectral fitting are 
that (1) the template spectrum can be represented well as a linear combination of a 
small number of the locally estimated unmixing spectra when that material is present in 
the data, and (2) conversely, the best linear fit to a given template will not match the 
template well when that material is not present.  We have empirically verified those 
assumptions on a wide variety of processing cases. 

Data from training sets from a specific type of hyperspectral sensor, and 
collected on a representative population of target material releases (in the case of vapor 
sensing), can be used to train a classifier such as the SVM.  We have successfully 
implemented and demonstrated on field data such a processor for chemical 
contamination sensing on spectrally unknown real-world surfaces [8] actively irradiated 
by a heated blackbody.  In that case, proximal detection in real time from a moving 
vehicle could be achieved by use of an imaging spectrometer.  Other applications 
include airborne HS data collection for natural resource and military sensing.  Improved 
performance by increasing signal-to-noise-ratio could be achieved by use of compact, 
high irradiance laser sources, including the quantum cascade laser (QCL) and the 
broadband mixed isotope CO2 laser. 
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