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ABSTRACT
In the past few years, graph-based methods have proven
to be a useful tool in a wide variety of energy minimiza-
tion problems [1]. In this paper, we propose a graph-
based algorithm for feature extraction and segmentation
of multimodal images. By defining a notion of similar-
ity that integrates information from each modality, we
merge the different sources at the data level. The graph
Laplacian then allows us to perform feature extraction
and segmentation on the fused dataset. We apply this
method in a practical example, namely the segmentation
of optical and lidar images. The results obtained confirm
the potential of the proposed method.

Index Terms— Image segmentation, multimodal im-
age, data fusion, graph Laplacian, Nyström extension,
graph cut minimization

1. INTRODUCTION

With the increasing availability of data we often come
upon multiple datasets, derived from different sensors,
that describe the same object or phenomenon. We call the
sensors modalities, and because each modality represents
some new degrees of freedom, it is generally desirable
to use more modalities rather than fewer. For example,
in the area of speech recognition, researchers have found
that integrating the audio data with a video of the speaker
results in a much more accurate classification [2, 3]. Sim-
ilarly, in medicine, the authors of [4] and [5] fuse the re-
sults of two different types of brain imaging to create a
final image with better resolution than either of the origi-
nals. However, correctly processing a multimodal dataset
is not a simple task [6]. Even the naive method of analyz-
ing each modality separately still requires clever thinking
when combining the results, and this is rarely the opti-
mal way to handle the data. In this paper, we will instead
perform feature extraction on the full dataset, consider-
ing each modality simultaneously. After creating a fea-
ture space, we can then use any standard segmentation
method to create a classification result.

Here we consider the case where each dataset con-
tains the same number of elements, and these elements
are co-registered (so the i-th point in one set corresponds
to the i-th point in another). This often occurs in image
processing problems, where the sets may be images of
the same scene obtained from different sensors (as is the
case in our experimental data), or taken at different times.
This problem has also been addressed in [7, 8], although
with different methods.

For notation, we label the sets, X1, X2, . . . , Xk,
with dimensions d1, d2, . . . , dk,

∣∣Xj
∣∣ = n, and we let

X = (X1, X2, . . . , Xk) ⊂ Rn×(d1+···+dk) (1)

be the concatenated dataset. Our method extracts fea-
tures from the dataset by finding eigenvectors of the
graph Laplacian, then uses standard data-segmentation
algorithms on these features to obtain a final classifi-
cation. In section 2 we give the general theory behind
our method, and in 3 we show the results of the method
applied to an optical/LIDAR dataset.

2. THE METHOD

2.1. Graph Laplacian

We approach this problem via graph-based methods. A
more detailed survey of the theory can be found in [9].
Here we state only the results necessary to implement
our algorithm.

2.1.1. The Graph Min-Cut Problem

We represent our dataset X using an undirected graph
G = (V,E). The nodes vi ∈ V of the graph correspond
to elements of X , and we give each edge eij a weight
wij ≥ 0 representing the similarity between nodes vi, vj ,
where large weights correspond to similar nodes, and
small weights to dissimilar nodes. This gives rise to a
similarity matrix (also called the weight matrix)

W = (wij)
n
i,j=1 . (2)



Since G is undirected, we require that wij = wji, which
implies that W is a symmetric matrix. There are many
different notions of “similarity” in the literature, and each
has its own merits. In many applications, one defines

wij = −exp (‖vi − vj‖ /σ) , (3)

where σ is a scaling parameter. In this work we adapt
this definition to apply to our multimodal dataset, as is
explained in 2.3.

Once the weight matrix has been defined, the data
clustering problem can be rephrased as a graph-cut-
minimization problem of the similarity matrix W . Given
a partition of V into subsets A1, A2, . . . , Am, we define
the ratio graph-cut

RatioCut(A1, . . . , Am) =
1

2

m∑
i=1

W (Ai, A
c
i )

|Ai|
. (4)

Where
W (A,B) =

∑
i∈A,j∈B

wij ,

and the 1
2 is added to account for double-counting each

edge. Heuristically, minimizing the ratio cut serves to
minimize the connection between distinct Ai, Aj , while
still ensuring that each set is of a reasonable size. With-
out the |Ai| term, the optimal solution often contains one
large set and m− 1 small sets.

Solving the graph min-cut problem is equivalent to
finding m indicator vectors f1, . . . , fm ∈ Rn such that

fm,j =

{
1 if xj ∈ Am

0 else
.

It has been shown in [10] that explicitly solving this prob-
lem is an O(|V |m

2

) process. As this is infeasible in most
cases, we instead introduce the graph Laplacian along
with an approximation of the minimization problem.

2.1.2. Graph Laplacian

After forming the weight matrix W , we define the graph
Laplacian. For each node vi ∈ V , define the degree of
the node

di =
∑
j

wij . (5)

Intuitively, the degree represents the strength of a node.
Let D be the diagonal matrix with di as the i-th diagonal
entry. We then define the graph Laplacian

L = D −W. (6)

For a thorough explanation of the properties of the graph
Laplacian, see [11]. In our work we will use that L is
symmetric and positive definite, as well as the following
fact (proven in [9]).

Fact 2.1. For a given graph-cut A1, . . . , Am, define the
f1, . . . , fm as above, and have hj = fj/ ‖fj‖. Let H be
the n×m matrix whose columns are hj . Then HTH =
I , and

RatioCut(A1, . . . , Am) = Tr
(
HTLH

)
. (7)

As explained in 2.1.1, we cannot solve this problem
explicitly, so instead we relax the problem to allow en-
tries of H to take on arbitrary real values. That is, we
find

argminH∈Rn×mTr
(
HTLH

)
where HTH = I. (8)

As L is symmetric and H is orthogonal, this problem is
solved by choosing H to be the matrix containing the
m eigenvectors of L corresponding to the m smallest
eigenvalues. Using the eigenvectors H we define a map
X → Rm. For each graph node xi ∈ X we get a vector
yi ∈ Rm given by the ith row of H . These yi give the
solution to the relaxed min-cut problem, as such can be
thought of as features extracted from the original dataset
X .

To obtain a solution to the original min-cut problem,
we must then perform some kind of classification on the
yi to create the indicator vectors f1, . . . , fm as described
above. There is a large variety of such methods in the
literature ([12, 13] are some examples). In section 3 we
use k-means to segment the yi, resulting in a well-known
algorithm called spectral clustering. Although k-means
is unlikely to give an optimal classification, it is quite
easy to implement, and the final results are strong enough
to give a proof-of-concept.

2.2. Nyström Extension

Calculating the full graph Laplacian is computationally
intensive, as the matrix contains n2 entries. Instead we
use Nyström’s extension to find approximate eigenval-
ues and eigenvectors with a heavily reduced computation
time. See [14, 13, 15] for a more complete discussion of
this method.

Let X denote the set of nodes of the complete
weighted graph. We choose a subset A ⊂ X of “land-
mark nodes”, and have B its complement. Up to a
permutation of nodes, we can write the weight matrix as

W =

(
WAA WAB

WBA WBB

)
, (9)

where the matrix WAB = WT
BA consists of weights

between nodes in A and nodes in B, WAA consists of
weights between pairs of nodes in A, and WBB con-
sists of weights between pairs of nodes in B. Nyström’s
extension approximates W as

W ≈
(
WAA

WBA

)
W−1AA

(
WAA WAB

)
. (10)



where the error of approximation is determined by how
well the rows of ofWAB span the rows ofWBB . This ap-
proximation is extremely useful, as we can use it to avoid
calculating WBB entirely. It is in fact possible to find
|A| approximate eigenvectors ofW using only the matri-
ces WAA,WAB . This results in a significant reduction in
computation time, as we compute and store matrices of
size at most |A| × |X|, rather than |X| × |X|.

In practice, the details of choosing A will not sig-
nificantly affect the final performance of the algorithm.
Although it is possible to choose specific “landmark
nodes”, in most applications (including ours) the ele-
ments of A are selected at random from the full set X .
Furthermore, the amount of landmark nodes m can be
chosen to be quite small without noticeably affecting per-
formance. This makes Nyström’s extension especially
useful in application, as very little work is required to
tune the parameters. In Section 3 we use m = n

1
4 , and

choosing a larger setA does not give a significant change
in the error of approximation.

2.3. Multimodal Edge Weights

To calculate the weight matrix W , we first scale our sets
X1, . . . , Xk to make distances in each set comparable.
Let X = (X1, . . . , Xk) ⊂ Rn×(d1+···+dk) be the con-
catenated dataset, and let A ⊂ X be the collection of
landmark nodes as in 2.2. For simplicity of notation, re-
arrange the entries of X so that A = {x1, . . . , xm}. So
|A| = m, and m � n. Then for ` = 1, . . . , k define the
scaling factor

λ` = std
(∥∥x`i − x`j∥∥ ; 1 ≤ i ≤ n, 1 ≤ j ≤ m) (11)

For a graph node x ∈ X , we define

‖x‖ = max

(∥∥x1∥∥
λ1

, · · · ,
∥∥xk∥∥
λk

)
. (12)

Then define the weight matrixW (using the Nyström Ex-
tension), by

W =

(
WAA

WAB

)
= (wij)1≤i≤n,1≤j≤m (13)

with wij = exp (−‖xi − xj‖) .
Note that the ‖·‖ defined above is a norm on the con-

catenated dataset X . We specifically choose to use the
maximum of the individual measurements to emphasize
the unique information that each dataset brings. With this
norm, two data points xi, xj are considered similar only
when they are similar in each dataset.

3. EXPERIMENT

We test our algorithm on an optical/LIDAR dataset from
the 2015 IEEE Data Fusion Contest [17], shown in figure

(a) Optical data (b) Lidar data

(c) Optical segmentation (d) Lidar segmentation

(e) Example eigenvector (f) Our segmentation

Fig. 1. DFC Data Experimental Results.

1a,b. The data consists of an RGB image and an eleva-
tion map of a residential neighborhood in Belgium. We
choose this particular scene because of the large amount
of non-redundancy between the two images. The lidar
data is effective at differentiating the roofs of the build-
ings from the adjacent streets, and the optical data is use-
ful for segmenting the many different objects at ground-
level. In figures 1c,d we show the results of spectral clus-
tering performed using each modality separately. The is-
sues with single-modality segmentation can be seen im-
mediately, as both segmentations miss out on key fea-
tures of the data.

In figure 1e,f we show the results of our method. 1e is
one example eigenvector of the graph Laplacian. As ex-
plained in 2.1.2, this vector can be considered one feature
of our dataset, and approximates a segmentation of the
image into 2 groups. Notice how in this eigenvector the
dark-grey street is highlighted, while both the light-grey



sidewalk (which is at the same elevation) and the nearby
roof (which is the same color) are dark. This shows at
the feature level that our algorithm is successfully using
both the optical and the lidar data when determining what
pixels can be considered similar. The difference shown
in this example vector then causes the classification algo-
rithm to separate those regions in the final result 1f. This
last figure was obtained using a total of 12 eigenvectors
(not pictured here), grouped into 5 classes.

(a) Optical data (b) Lidar data

(c) Example eigenvector (d) Our segmentation

Fig. 2. Umbrella Data Experimental Results

In fig 2 we show the results of our method applied
to another optical/lidar set (found in [18]). Similar to
the DFC set, the umbrella data serves as a good example
because it cannot be easily analyzed using one modal-
ity alone. The umbrellas and the background walls are
nearly the same shade of white, and can only be distin-
guised in the lidar data. Meanwhile, the different pieces
of the background all lie at nearly the same depth, and
can only be separated by color. As was the case with the
DFC data, the final classification 2d can be understood
by looking at the individual feature vectors. In 2c we
show the vector responsible for separating the umbrellas
from the background wall (using the lidar data), as well
as from the black umbrella stands (using the RGB data).

For a given segmentation of an image, computing the
graph-cut error as described in 2.1.1 is anO(n2) calcula-
tion, and requires the full weight matrix W . To avoid
this, we instead measure the error of segmentation by
how the data X = (X1, . . . , Xk) ⊂ Rn×(d1+···+dk)

varies within each class. Explicitly, we use the metric:

Error =
1

n

∑
classes C

∑
x∈C
‖x−mean (y ∈ C)‖ . (14)

Where the norm ‖·‖ is the same as defined in 2.3.

Method DFC error Umbrella error
Our method 0.40 0.31
Our method with 2-norm 0.41 0.33
Intersection method 0.43 0.51
Graph cut on optical only 0.83 0.86
Graph cut on lidar only 0.75 0.50
K-means on original data 0.75 0.49

Table 1. Quantitative comparisons with other methods

To test our method, we compare against a few other
common methods. The results are given in Table 1. Un-
fortunately, due to space limitations, we cannot display
the visual comparisons between the different algorithms.
Instead we will briefly describe the methods used. The 2-
norm on the concatenated set X still minimizes a graph-
cut, but uses a slightly different norm to define the weight
matrix

‖x‖ =

√
‖x1‖2

λ1
+ · · ·+ ‖x

k‖2

λk
, (15)

where the scaling factors λj are the same as in 2.3. The
intersection method computes the classification via spec-
tral clustering on X1, . . . , Xk separately, then segments
the data by intersecting the individual classifications.

4. CONCLUSIONS

In conclusion, graph-based methods provide a straight-
forward and flexible method of combining informa-
tion from multiple datasets. By defining a weight map
Rn×(d1+···+dk) → R≥0 with some reasonable norm-like
properties, we can create the graph Laplacian of the data
and extract features in the form of eigenvectors. These
features can then be used as part of many different data-
segmentation algorithms. For this paper, we use k-means
on the eigenvectors as a simple proof-of-concept. How-
ever this portion of our method could easily be replaced
with a more in-depth approach, such as a Mumford-Shah
model [12], or even a semi-supervised method such as
[13]. Our next area of interest is the removal of the co-
registration assumption. In section 3 our two images are
of the same underlying scene, where pixels correspond
exactly between images. We could not, for example, pro-
cess two images taken from different angles. Our goal
for the future is to remove this restriction and develop an
algorithm that can be applied more varied datasets.
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