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Abstract

We consider a multi-player differential game, referred to as a reach-avoid game, in which one set of attacking players attempts
to reach a target while avoiding both obstacles and capture by a set of defending players. Unlike pursuit-evasion games, in this
reach-avoid game one set of players must not only consider the other set of players, but also the target. This complexity makes
finding solutions to such games computationally challenging, especially as the number of players grows. We propose an approach
to solving such games in an open-loop sense, where the players commit to their control actions prior to the beginning of the game.
This reduces the dimensionality of the required computations, thus enabling efficient computation of feasible solutions in real
time for domains with arbitrary obstacle topologies. We describe two such formulations, each of which is conservative towards
one side, and derive numerical algorithms based upon modified fast-marching methods (FMM) for computing their solutions. The
formulations and algorithms are discussed in detail, along with simulation results demonstrating their use in scenarios with complex
obstacle geometries and player speed profiles.
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1. Introduction

In a reach-avoid game, one set of players (attackers) attempts
to arrive at a target set in the state-space, while avoiding a set
of unsafe states, as well as interceptions by an opposing set of
players (defenders). Such games encompass a large number
of robotics and control applications. For example, many safe
motion-planning problems (see [16] and the references therein)
may be formulated as reach-avoid games, in which the objective
is to control one or more agents into a desired target region,
while avoiding a set of obstacles or possibly adversarial agents.

Reach-avoid games considered here belong to the general
class of games, known as multi-player differential games [13],
which encompass a wide variety of interesting problems (e.g.
pursuit-evasion games [9, 21], network consensus problems un-
der adversarial attacks [18, 19], reach-avoid games [12, 15])
and have been a subject of significant past research. For reach-
avoid related games, the approaches that have been proposed
often feature trade-offs between optimality of the solution (with
respect to the time to achieve a player’s objective), and the com-
plexity of the computation.

Our approach in this paper to reach-avoid games is to for-
mulate them as an open-loop game, and more specifically, as
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a framework of open-loop games that includes the open-loop
upper value game and open-loop lower values game. The open-
loop games for the reach-avoid problem formulated here are an
instantiation of a general Stackelberg game [1, 11], an impor-
tant class of games for modeling strategic behavior in dynamic
games. In an open-loop game, the granularity of a strategy at
which a player chooses is a control function that maps the en-
tire time horizon to a trajectory. Depending on which player(s)
choose(s) first, and which one(s) choose(s) in response, they are
leader(s) and follower(s) respectively.

The open-loop games are conservative towards one side of
players: the side of players that chooses first. Consequently,
this level of conservatism offers performance guarantees of the
solution. Namely, if a solution exists, the player is guaran-
teed to achieve the desired objective, irrespective of the ac-
tions of the opponent, without needing to incorporate any fu-
ture state information. This is particularly well-suited for cer-
tain safety-critical applications, where state update is hard or
costly to obtain, for example in GPS-denied environments. An-
other safety-critical application is robotic surgery, where the
robotic system needs to navigate inside human body to elim-
inate certain tissues while ensuring that no invasive damage is
induced. Those safety-critical applications tend to demand the
solution to satisfy strong performance guarantees (e.g. achiev-
ing the goal regardless of what the disturbance does, adversarial
or non-adversarial alike), a property guaranteed by the open-
loop framework.

In a static Stackelberg game (only one-round of interaction
between players), an exhaust tree search can be used to find the
optimal action [1, 11]. However, at least in the context of reach-
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avoid open-loop dynamic games, no efficient algorithms have
been devised to produce the optimal controls. Consequently,
this paper is particularly focused upon the study of efficient and
scalable computational algorithms for solving open-loop reach-
avoid games. We emphasize that the proposed approach does
not involve solving any Hamilton-Jacobi-Isaacs (HJI) equa-
tions 1 in the high dimensional space of all player states. In-
stead, as discussed in detail later, we reduce the problem to
solving Hamilton-Jacobi-Bellman (HJB) equations in the low
dimensional space of individual player states.

1.1. Related Work

We now provide a brief overview of related work. For cer-
tain games, it is possible to construct strategies (sometimes even
optimal) for the players analytically or geometrically. Defend-
ing a line segment on a plane without obstacles have been con-
sidered in [24] [17], where the motion has been restricted to
fixed maximum speed and moving along line segments, respec-
tively. In both cases, optimal strategies have been found for
defending the target set (a line segment). In [20], a geometric
approach based on Voronoi partition has been employed to es-
tablish optimal strategies for the two-player reach-avoid game
in a setting where maximum speeds for both players are again
fixed and no obstacles are present. A class of methods has been
proposed for safe motion-planning in the presence of moving
obstacles by computing the future set of states an obstacle may
occupy, given the dynamics of the controlled agent and the ob-
stacles. This set of states are then treated as obstacles in the
joint state-time space, and paths are planned which avoid these
states [8, 10, 32]. They are well suited for scenarios in which
the obstacle motion can be unpredictable or even adversarial,
so that in the presence of hard constraints on safety, one needs
to account for the worst-case possibility that the disturbances
may actively attempt to collide with the agent. However, these
approaches tend to be limited to simple game configurations
without complex static obstacle configurations or inhomoge-
neous speed constraints from varying terrain, issues that our
formulation (Section 2.1) captures and that our computational
framework (Section 4) addresses.

For general cases, the classical approach is to formulate the
game as a minimax problem, in which a value function is de-
fined representing the time-to-reach of the attackers at the tar-
get, subject to the constraint that it is not captured by the de-
fender. This value is then computed via a related Hamilton-
Jacobi-Isaacs (HJI) partial differential equation (PDE), with ap-
propriate boundary conditions [1, 5, 13, 22]. Solutions are typ-
ically found either using the method of characteristics [1, 13],
where optimal trajectories are computed by integrating back-
ward from a known terminal condition, or via numerical ap-
proximation of the HJI equation on grids [7, 22]. For the HJI
method, the number of grid points needed to approximate the
value function typically grow exponentially in the number of
continuous states. As such, finding solution strategies for such

1This corresponds to a closed-loop formulation. See Section 1.1 for a dis-
cussion and related work.

games can be computationally expensive, even for games in-
volving a single attacker and a single defender. For differ-
ential games with multiple players, the computational burden
also scale exponentially in the number of players. On a related
note, in particular differential game scenarios, approximate dy-
namic programming (ADP) techniques have been developed to
efficiently compute game solutions. For example, clever pol-
icy iterations have been designed to solve certain two-player
zero-sum games [14, 31]. However, the differential game sce-
nario considered in this paper has a non-smooth value function.
The application of ADP methods to such scenarios have been
found to be challenging from a numerical convergence stand-
point [23]. In closing, we mention that another related research
thread concerns reach-avoid games under imperfect or incom-
plete information [3, 25], where the players do not necessarily
know the locations of the other players at all times.

As a final note, closely related to reach-avoid problems is the
class of pursuit-evasion problems [9, 21, 36]. A reach-avoid
game shares some similar aspects of a pursuit-evasion game:
the attacker (similar to an evader) needs to avoid the capture of
the defender (similar to a pursuer) because capture would re-
sult in the attackers losing the game instantly. However, there
is a key distinction between the two: the utility of an agent in
a reach-avoid game is fundamentally different from that of a
pursuit-evasion game. In the latter, an evader’s utility is solely
based on whether it will ever be captured, whereas in the for-
mer, the attacker’s utility depends on how long it takes to reach
the target. Consequently, a reach-avoid problem is much more
challenging because the attacker not only needs to avoid cap-
ture, but also needs to reach a per-determined target set. The
recent work [36] studies a multi-pursuer-single-evader pursuit-
evasion problem, where an analytical cooperative pursuit strat-
egy for the pursuers is derived using Voronoi partitions. This
geometric approach (and the analytical results therein) are fea-
sible because all agents in the pursuit-evasion problem are as-
sumed to have constant speed. Conversely, in our current reach-
avoid setting, in addition to the complexity just mentioned, we
also allow for arbitrary speed profiles for all agents. As a result,
these two levels of generality dictate that a completely different
and non-analytical approach be taken.

1.2. Our Contributions
In this paper, we provide a computationally tractable frame-

work for solving open-loop reach-avoid games with two or
more players. Our major contribution is the algorithmic frame-
work for computing open-loop values. Specifically, we develop
(Section 4) efficient and novel numerical algorithms (a set of
modified fast-marching methods) that allow us to quickly com-
pute solutions to these open-loop games, in the form of a set of
open-loop player trajectories with provable properties. To the
best of our knowledge, this is the first set of efficient algorithms
for computing open-loop values.

We note that the two open-loop values, in addition to being
interesting for study in their own right, also provide bounds on
the closed-loop value (in general the solution to an HJI equa-
tion, often intractable to compute for games with more than two
players) of the reach-avoid game. In this sense, our open-loop
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framework can be interpreted as a computationally efficient ap-
proximation of the closed-loop value for reach-avoid games,
through the trade-off of a certain degree of optimality for a re-
duction in computational complexity. In particular, there exist
non-trivial cases where solving for open-loop values also yield
closed-loop values.

Some of the theoretical results were presented in two previ-
ous publications [30, 35]. This work unifies the presentation
of the open-loop games and their relationship to each other.
Specifically, we establish a theoretical framework (Section 3)
that puts on rigorous footing the procedure for relating various
optimal time-to-reach functions. We also expand the discussion
on the novel aspects of the developed algorithmic framework,
all of which were previously omitted in the conference papers
due to space limitation.

2. The Reach-Avoid Problem

2.1. Payoff Function

Suppose there are two players PA and PD, whose states are
confined in a bounded, open domain Ω ⊂ Rn. The domain Ω

can be further partitioned as follows: Ω = Ω f ree ∪ Ωobs, where
Ω f ree is a compact set representing the free space in which the
two players can move, while Ωobs = Ω \ Ω f ree corresponds to
obstacles in the domain. Let xA, xD ∈ Rn denote the state of
players PA and PD, respectively. Then given initial conditions
x0

A, x
0
D ∈ Ω, we assume the dynamics of the players to be de-

fined by the following decoupled system for t ≥ 0:

ẋA(t) = fA(xA(t))a(t), xA(0) = x0
A,

ẋD(t) = fD(xD(t))d(t), xD(0) = x0
D,

(1)

where fA, fD represent the spatially-varying maximum speeds
for PA and PD (e.g. due to terrain variations), and a, d represent
the directions in which PA and PD are moving. It is assumed
that fA, fD : Ω→ [0,∞) are bounded and Lipschitz continuous,
and that a, d are drawn from the set Σ = {σ : [0,∞) → Bn |

σ is continuous}, where Bn denotes the closed unit ball in Rn.
Per the rules of the reach-avoid game, we constrain the con-
trols of both players to be those which allow the player states
to remain within the confines of the free space. In particular,
for initial conditions x0

A, x
0
D ∈ Ω f ree, we define the admissible

control set ΣA(x0
A, x

0
D) for PA to be those controls in Σ such that

xA(t) ∈ Ω f ree, ∀t ≥ 0. The admissible control set ΣD(x0
A, x

0
D)

for PD is defined in a similar fashion. For convenience, we will
drop the dependence of these sets on the initial condition when
the context is clear.

We now define the payoff for the reach-avoid game. We first
define two sets: T ⊂ Ω f ree, the target set, and A ⊂ Ω2, the
avoid set, both assumed to be compact. The avoid set describes
the capture condition in the reach-avoid game, namely the set
of joint player states (xA, xD) at which PA is captured by PD.
A typical example of an avoid set is given by A = {(xA, xD) ∈
Ω2 | ‖xA− xD‖ ≤ r}, for some r ≥ 0, corresponding to a scenario
in which PA is captured if it comes within a capture radius r of
PD. In a reach-avoid game, the goal for PA is to reach the target

set T as quickly as possible, while steering clear of the avoid
setA. On the other hand, the goal for PD is to either capture PA

before PA reaches the target set, or to delay PA from entering T
for as long as possible. Denoting the joint state by x = (xA, xD)
and the joint initial condition by x0 = (x0

A, x
0
D), we define the

payoff function J : Rn × Σ × Σ → R as that of a minimum
time differential game problem with state constraints (see for
example Appendix A of [2]):

J(x0, a, d) = inf{t ≥ 0 | xA(t) ∈ T , x(s) < A,∀s ∈ [0, t]}, (2)

where the infimum of the empty set is by convention +∞. Given
that this is a minimum time problem, the payoff function (2) is
in general discontinuous. In particular, it is finite on the set of
initial conditions x0 ∈ Rn for which PA can reach the target set
T without being captured by PD. It is equal to +∞ everywhere
else.

2.2. Closed-loop Game Formulation

Given the payoff function (2), the value function of the reach-
avoid game depends on the information pattern employed by
each player. In this section, we will introduce the value func-
tions for a closed-loop game, defined using a non-anticipative
information pattern, as commonly adopted in the differential
game literature (see for example [4, 33]). Under this informa-
tion pattern, a strategy for PA defines the responses of PA to
possible control selections by PD, and vice versa for player PD.
In order to preclude strategies which allow foreknowledge of
the control selections by the opposing player, we only consider
strategies which select controls in a causal fashion. In particu-
lar, the set FA of admissible strategies for PA is given by

FA :={γ : ΣD → ΣA | ∀t, σ1(τ) = σ2(τ), for a.e. τ ∈ [0, t]
⇒ γ[σ1](τ) = γ[σ2](τ), for a.e. τ ∈ [0, t]}.

The set FD of admissible strategies for PD is defined similarly.
For x0 ∈ Ω2

f ree, the upper value and lower value of the closed-
loop reach-avoid game are respectively given by:

V(x0) = V(x0
A, x

0
D) = sup

γD∈FD

inf
a∈ΣA
J(x0, a, γD[a]); (3)

V(x0) = V(x0
A, x

0
D) = inf

γA∈FA

sup
d∈ΣD

J(x0, γA[d], d). (4)

2.3. Open-loop Game Formulation

In principle, one can compute V(x0) (or V(x0)) by solving a
corresponding Hamilton-Jacobi-Isaacs (HJI) partial differential
equation [13]: they are shown to be viscosity solutions to HJI
equations [5, 22]. See [35] for more details. Although numer-
ical methods for solving an HJI equation on a Cartesian grid
exist, they suffer from the curse of dimensionality. Specifically,
with a uniform grid, the number of grid nodes grows exponen-
tially with the dimension of the joint state space, while the di-
mension scales linearly with the number of players. This re-
sults in an exponential growth in complexity with the number of
players, thus making the problem computationally intractable
even for a modest number of players. Moreover, for cases in
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which computational solutions are possible (e.g. with two play-
ers and two-dimensional domains), the closed-loop value func-
tion often cannot be computed in real time [12].

Motivated by the difficulty of computing the closed-loop
value function, we now consider the open-loop formulations of
the reach-avoid game, where each player selects controls from
the control spaces ΣA or ΣD, rather than strategies from the non-
anticipative strategy space F . This then results in the following
modified definitions of the upper and lower values of the reach-
avoid game.

Definition 1. The open-loop upper value and the open-loop
lower value of the reach-avoid game are defined respectively
as follows:

v(x0) = inf
a∈ΣA

sup
d∈ΣD

J(x0, a, d),

v(x0) = sup
d∈ΣD

inf
a∈ΣA
J(x0, a, d).

(5)

These two open-loop values can be viewed as conservative
calculations of the payoff, under the assumption that the oppos-
ing player has complete knowledge of one’s choice of control,
whether in an anticipative or non-anticipative fashion. Specif-
ically, for the upper value, PA first chooses its control over the
whole time horizon [0,∞) and makes this control known to PD,
which then chooses its control in response. Thus the upper
value is conservative toward PA, who must consider all pos-
sible responses by PD when choosing its control a. Similarly,
the lower value is conservative towards PD, who chooses first
in this case. It is known that:

v(x0) ≤ V(x0) ≤ V(x0) ≤ v(x0), ∀x0 ∈ Ω2
f ree. (6)

Consequently, for initial states at which the open-loop upper
and lower values coincide, the closed-loop value is simply given
by V(x0) = v(x0) = v(x0). In such cases, the value of the
closed-loop game can be obtained for the initial state x0 with-
out explicitly solving the HJI equation. As a very important
note, the open-loop values v(x0) and v(x0) are not solutions to
HJI equations. Instead, they can be computed by solving a cer-
tain constrained Hamilton-Jacobi-Bellman equations discussed
in Section 4, as opposed to HJI equations.

The optimal controls ā ∈ ΣA, d̄ ∈ ΣD, a ∈ ΣA and d ∈ ΣD for
the open-loop upper and lower value games, are respectively:

ā ∈ arg min
a∈ΣA

sup
d∈ΣD

J(x0, a, d), d̄ ∈ arg max
d∈ΣD

J(x0, ā, d),

d ∈ arg max
d∈ΣD

inf
a∈ΣA
J(x0, a, d), a ∈ arg min

a∈ΣA
J(x0, a, d).

(7)

Note that (ā, d̄) can be interpreted as the Stackelberg equilib-
rium of a zero-sum game [1]; similarly for (a, d).

In the next section, we present the theoretical aspects related
to finding the two open-loop values. This will motivate numer-
ical methods for computing solutions to the open-loop games.

3. The Open-Loop Upper Value and Lower Value

This section provides the theoretical foundations for solving
the open-loop reach-avoid games. The two solutions have a

number of similarities which we highlight. However, they are
not exactly symmetric. In particular, while the upper value can
be found exactly, the lower value is not amenable to direct com-
putation. We present methods to find the exact value of the
open-loop upper value game, and an approximation that finds a
lower bound for the lower value. We also briefly discuss the re-
lationship between the open-loop solutions and the HJI closed-
loop solution.

3.1. Upper Value

We first examine the upper value game, which is conservative
toward PA. The value function for this game is defined in (5).
The open-loop value v can be found by characterizing the set of
points in the state space that PA can reach no matter what PD

does and selecting a path within this set. Given a joint initial
condition x0, we say that a point y ∈ Ω f ree is safe-reachable if
there exists a player PA control such that for every player PD

control, PA can reach y in finite time, while avoiding capture by
player PD. More precisely, we define a safe-reachable set for
PA as follows:

S :={y ∈ Ω f ree | ∃a ∈ ΣA,∀d ∈ ΣD,∃t ≥ 0, xA(t) = y,

x(s) < A,∀s ∈ [0, t]},
(8)

where x(·) = (xA(·), xD(·)) is the solution to (1). Note that the
set S implicitly depends on the initial condition x0 of the reach-
avoid game.

The safe reachable set provides us with a necessary and suf-
ficient condition for v to be finite. Clearly, v < ∞ if and only if
S ∩ T , ∅. Figure 1 illustrates S for an example where PA is
twice as fast as PD. In this case,A = {(xA, xD) ∈ Ω2 | xA = xD}.
As shown here, the safe-reachable set is in general not the set
of equal time-to-reach points for the two agents, as there may
be points that are reachable by PA, but the choice of controls to
achieve this condition could result in capture by PD. For com-
parison, the Apollonius circle showing the equal time-to-reach
points of PA and PD is overlaid. In the following, we will pro-
vide a characterization of the set S in terms of two minimum-
time functions, defined respectively from the perspectives of PA

and PD.

Definition 2. Given x0
D ∈ Ω f ree and y ∈ Ω f ree, the minimum

time-to-capture for PD is

t(y; x0
D) := inf

d∈ΣD
inf{t ≥ 0 | (y, xD(t)) ∈ A, xD(0) = x0

D}. (9)

That is, for a stationary PA at y, t(y; x0
D) is the shortest time

for PD, starting at x0
D, to capture PA. For compactness of nota-

tion, we shall also write t(y) when the context is clear.

Definition 3. Given an initial state x0
A ∈ Ω f ree, a set R ⊆ Ω f ree,

and a location y ∈ Ω f ree, the minimum time-to-reach for PA

with constraint R is

wR(y; x0
A) := inf

a∈ΣA
inf{t ≥ 0 | xA(t) = y, xA(0) = x0

A,

xA(s) ∈ R,∀s ∈ [0, t]}.
(10)
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Intuitively, wR(y; x0
A) quantifies how quickly PA can reach a

point y from an initial condition x0
A, while remaining within the

set R. We can now relate the two minimum-time functions to
the safe-reachable set S.

Lemma 1. Given a joint initial state x0 = (x0
A, x

0
D) ∈ Ω2

f ree \

A, let M ⊆ Ω f ree be the maximal set such that wM(y; x0
A) <

t(y; x0
D), ∀y ∈ M. ThenM = S.

Proof. Let E be the collection of all sets E ⊆ Ω f ree satis-
fying the inequality in the proposition, namely wE(y; x0

A) <
t(y; x0

D), ∀y ∈ E. Note that E is non-empty, as E = {x0
A} is

an element of E. Now consider the set E∗ :=
⋃

E∈E E. We claim
that E∗ ∈ E, and hence E∗ is the maximal element of E. Indeed,
for any sets R,R′ ⊆ Ω f ree such that R ⊆ R′, we have by the
definition for the minimum time-to-reach function in (10) that
wR′ (y; x0

A) ≤ wR(y; x0
A), for all y ∈ Ω f ree. In particular, for any

set E ∈ E, we have wE∗ (y; x0
A) ≤ wE(y; x0

A), for all y ∈ Ω f ree. Let
y ∈ E∗, then given the definition of the set E∗, y ∈ E for some
E ∈ E. Thus, wE∗ (y; x0

A) ≤ wE(y; x0
A) < t(y; x0

D). This proves the
claim, which in turn impliesM = E∗.

To see that E∗ = S, first we note that both E∗ and S are non-
empty. In particular, given an initial condition x0 = (x0

A, x
0
D) ∈

Ω2
f ree \ A, x0

A is an element of both E∗ and S. Now take any
point y ∈ S. By definition, there exists a∗ ∈ ΣA, such that for
every d ∈ ΣD, there exists t ≥ 0 so that xA(t) = y and x(s) < A,
∀s ∈ [0, t]. Let t∗ := min{t ≥ 0 | xA(t) = y}, where xA(·) is the
trajectory of PA under (1), with the choice of control a∗. Then
it can be seen that xA(·) satisfies xA(s) ∈ S, ∀s ∈ [0, t∗].

This implies that wS(y; x0
A) ≤ t∗. Furthermore, by the proper-

ties of a∗, we have that for any d ∈ ΣD, the joint path satisfies
x(t∗) < A, or equivalently (y, xD(t∗)) < A. By the compactness
of A and the definition of the minimum time-to-capture func-
tion in (9), this in turn implies that t∗ < t(y; x0

D). Thus, we have
wS(y; x0

A) < t(y; x0
D), ∀y ∈ S. It then follows that S ∈ E, and so

S ⊆ E∗.
We will now proceed to show that S is a superset of every

element in E. Let E ∈ E and z ∈ E. For simplicity of ar-
gument, we assume that there exists a minimum-time control
with respect to wE(z; x0

A). Namely, there exists a∗ ∈ ΣA such
that the corresponding trajectory x∗A satisfies t∗ := min{t ≥ 0 |
x∗A(t) = z} = wE(z; x0

A) and x∗A(s) ∈ E,∀s ∈ [0, t∗]. Since
E ∈ E, we have wE(x∗A(s); x0

A) < t(x∗A(s); x0
D), ∀s ∈ [0, t∗].

Moreover, by the fact that x∗A is a time-optimal path, we have
wE(x∗A(s); x0

A) = s, ∀s ∈ [0, t∗]. By Definition 2, one can then
infer that for every d ∈ ΣD, the joint path under a∗ and d satisfies
(x∗A(s), xD(s)) < A, ∀s ∈ [0, t∗]. This implies that z ∈ S. In the
case that the infimum with respect to wE(z; x0

A) is not achieved,
one can apply a similar line of reasoning to ε-optimal controls.
From this result, it then follows that E∗ =

⋃
E∈E E ⊆ S. Com-

bining the two set inclusions, we have S = E∗ =M.

Intuitively, the above result states that S is the largest set in
the free space Ω f ree such that player PA can reach all points in
S safely by traveling along a path contained in S, regardless of
the controls of player PD. Such a path will be referred to as a
safe-reachable path. The upper value v can now be found using
the minimum time-to-reach function wS.

PA PD

S

stage 1

Figure 1: S is the subset partitioned by the solid red curve containing x0
A.

Level sets of wS on S and tc on Ω\S are plotted. The dotted blue circle
is the set of equal time-to-reach points of PA and PD when capture is not
considered.

Theorem 1. Given compact sets T ,A ⊂ Ω f ree, and initial con-
dition x0 = (x0

A, x
0
D) ∈ Ω2

f ree, let S be as defined in (8), and
wS(y; x0

A) be as defined in (10). Let the upper value v be as
defined in (5). Then

v(x0) = inf{wS(y; x0
A) | y ∈ T }.

Proof. Let x0 ∈ Ω2. First, consider the case in which v(x0) =

∞. By definition of the upper value, this implies that for every
PA control a ∈ Σ, we have supd∈ΣJ(x0, a, d) = ∞. Using the
definition of the payoff in (2), one can then infer that for every
a ∈ Σ, there exists d ∈ Σ such that for every t ≥ 0, the joint path
satisfies either xA(t) < T or x(s) ∈ A for some s ∈ [0, t]. Thus,
for every y ∈ T , we have y < S, and hence wS(y; x0

A) = ∞,
∀y ∈ T , as desired.

Next we consider the case where v(x0) < ∞. This im-
plies that there exists a ∈ Σ such that supd∈ΣJ(x0, a, d) <
∞. Let Σ1 be the set of all such controls, and J1(x0, a) :=
supd∈ΣJ(x0, a, d). Fix any a∗ ∈ Σ1, then it can be verified that
for every d ∈ Σ, there exists t ≥ 0 such that xA(t) ∈ T and
x(s) < A, ∀s ∈ [0, t]. For a given a∗, define t∗ := inf{t ≥ 0 |
xA(t) ∈ T , x(s) < A,∀s ∈ [0, t]}, then it follows that for every
d ∈ Σ, J(x0, a∗, d) = t∗. Thus, J1(x0, a∗) = t∗. Moreover,
by a similar argument as in the proof of Proposition 1, one can
show that xA(s) ∈ S, ∀s ∈ [0, t∗]. Let z∗ = xA(t∗), then we
have wS(z∗; x0

A) ≤ t∗ = J1(x0, a∗). Thus, infy∈T wS(y; x0
A) ≤

J1(x0, a∗), ∀a∗ ∈ Σ1, and so infy∈T wS(y; x0
A) ≤ v(x0).

Furthermore, v(x0) < ∞ also implies S ∩ T , ∅ and x0 < A.
Let y ∈ S ∩ T and x∗A(·) be the optimal path from x0

A to y in S.
By the assumptions on the system dynamics (1) and the control
set Σ, there exists a choice of control a∗ ∈ Σ which realizes such
a path. Define t∗ := wS(y; x0

A), then by Proposition 1, it follows
that wS(x∗A(s); x0

A) < t(x∗A(s); x0
D), ∀s ∈ [0, t∗]. Hence, for every
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d ∈ Σ, the joint path satisfies (x∗A(s), xD(s)) < A, ∀s ∈ [0, t∗].
From this, we have J(x0, a∗, d) ≤ t∗, ∀d ∈ Σ, which in turn
implies that v(x0) ≤ t∗ = wS(y; x0

A). Since y ∈ S∩T is arbitrary,
v(x0) ≤ infy∈T wS(y; x0

A). The conclusion of the theorem then
follows.

Given this result, the problem of evaluating the upper value
v(x0) becomes a problem of computing the minimum time-to-
reach function wS. However, the function wS also depends on
the safe reachable set S, thus wS and S must be computed si-
multaneously. We will demonstrate how to compute wS and S
simultaneously, along with the minimum time-to-capture func-
tion t, in Section 4. For now, it is important to observe that, as
a consequence of Theorem 1, the problem of computing v(x0)
in the high dimensional joint state space of the two agents re-
duces to computing wS in the lower dimensional state space of
each individual player. This result not only speeds up the com-
putation for the game with two agents, but also has important
consequences for finding solutions when additional defending
agents are introduced into the game.

Remark 1. Several remarks are in order here. First, from
the perspective of playing a reach-avoid game in practice, this
open-loop assumption is merely a manifestation of the attacking
side’s own mindset. That is, the attacker, in computing its at-
tacking strategy, proceeds under the worst-case but imaginary
constraint that its final chosen strategy will be made available
to the defending side before the defending side selects its strat-
egy. The implication of this mindset is that the attacking strat-
egy (if one exists) thus obtained, will enjoy the worst-case guar-
antees as described in the paper. Of course, the attacking side,
in playing the game, will not reveal his strategy information to
the defending side, thereby potentially achieving better results
than the worst-case guarantees.

Second, the resulting optimal open-loop trajectory for the at-
tacker can be quite conservative, as it disallows the attacker
from incorporating any new information when the game pro-
ceeds. One way for relaxing this conservatism is via an itera-
tive open-loop update, where the attacher, instead of commit-
ting entirely to the open-loop trajectory, follows the trajectory
for δt, collects the current state of the defender and recomputes
the optimal open-loop trajectory, with the joint initial condition
now being the current state of both players. This process is then
repeated until the attacker reaches the target set.

Such an iterative update scheme can improve the solution
quality (i.e. the time it takes the attacker to reach the target),
particularly when the defender is taking a suboptimal trajec-
tory, which creates new opportunities for the attacker; in the
original open-loop formulation, such opportunities cannot be
taken advantage of. We note that such improvements for the at-
tacker always hold, independent of what the defender does (e.g.
whether or not the defender itself is also executing a similar
iterative open-loop scheme). This idea, while similar in spirit
to Model Predicitve Control (MPC), has a crucial difference: it
does not impose any specific model on the defender’s actions;
it merely equips itself with a worse-case mind-set at every iter-
ation.

3.2. Lower Value
This section studies the second value function defined in

Equations (5). In general, computing v is not a trivial task. This
is due to an asymmetry inherent in the games: unlike PA, PD

does not have a target set which solely depends on the state of
PD. Instead, the goal of PD is to prevent PA from entering T
through the possibility of capture via the setA, which depends
on the joint states of PA and PD. This interdependence makes
the exact computation of the open-loop lower value difficult,
since PD must consider PA’s actions with respect to PD’s en-
tire trajectory. Therefore, we seek to find a computable lower
bound to v using a particular choice of strategy. To simplify
the task for PD, we consider a strategy in which PD moves to a
particular location and then remains stationary at that location
for the remainder of the game. Thus, instead of evaluating op-
tions over entire trajectories, PD essentially considers locations
where it may place itself as an obstacle. The resulting value
of this strategy will provide a lower bound on the value of the
game. Furthermore, we show that, in some cases, the lower
bound is equal to v.

For this strategy, we must evaluate possible positions for PD

to place itself and the resulting payoff of the game for each po-
sition. For any candidate position, we must compute the arrival
time of PA to the target if PD were to place itself at that loca-
tion, serving as a static obstacle. Computing this for all points
in the state space is computationally expensive, but the set of
candidate points can be substantially reduced via the follow-
ing observations. First, a candidate location is only viable if
PD can reach that position before PA has a chance to end the
game by arriving at the target. Second, a location for PD can
only affect PA if PD can arrive there before PA, otherwise PA

can effectively treat that location as being empty. Once this set
of candidate locations is found, the defender can choose as its
target location the position which results in the longest arrival
time for the attacker.

Definition 4. Given an initial state x0
A ∈ Ω f ree for PA and a

location y ∈ Ω f ree for PD, the minimum time-to-reach for PA

with respect to a stationary PD is

t(y; x0
A) := inf

a∈ΣA
inf{t ≥ 0 | xA(t) ∈ T , xA(0) = x0

A,

(xA(s), y) < A,∀s ∈ [0, t]}.
(11)

That is, suppose PD remains at the point x throughout, then
t(x; x0

A) is the minimum time for PA, starting at x0
A, to reach the

target without being captured.
The function t(y; x0

A) as defined above provides us with a
naı̈ve bound on the open-loop lower value. However, we can
do better by expanding the set of possible points to consider
for placement of PD. Note that x0

D obviously fills the require-
ments of a candidate point that PD can reach first, before PA

could end the game by entering the target set T . For any other
candidate point y, we must ensure that the game does not ter-
minate for any point along the path between x0

D and y. That
is, we must ensure that there is no way for the attacker to end
the game while the defender is enroute to its destination. We
will call such paths non-terminating, since the game cannot be
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terminated while the defender is on such a path. In a similar
manner to the safe-reachable set of the upper value game, we
will find such paths by putting appropriate state constraints on
the motion of PD.

Definition 5. Given an initial state x0
D ∈ Ω f ree, a set R ⊂ Ω f ree,

and a location y ∈ Ω f ree, the minimum time-to-reach for PD

with constraint R is

wR(y; x0
D) := inf

d∈ΣD
inf{t ≥ 0 | xD(t) = y, xD(0) = x0

D,

xD(t) ∈ R,∀s ∈ [0, t]}.
(12)

Intuitively, wR(y; x0
D) is the minimum time for PD to reach y

from x0
D by traveling along a path that is contained in R. Given

that our objective is to find controls for PD such that PD can
reach its desired destination without PA first terminating the
game, we will proceed to define, using the minimum time func-
tions t and wR, what can be viewed as the largest set of states in
Ω f ree for which this is possible.

As a first step, for any initial state x0 = (x0
A, x

0
D) ∈ Ω2

f ree such
that x0

A < T , let E be the collection of all sets E ⊆ Ω f ree which
satisfy wE(y; x0

D) < t(y; x0
A), ∀y ∈ E. Note that E is non-empty,

as {x0
D} is an element of E. We define a set Z ⊆ Ω f ree as the

union of all sets in E, namely Z :=
⋃

E∈E E. Then by a similar
argument as in the proof of Proposition 1, one can show thatZ
belongs to E and hence is the maximal set in Ω f ree for which
the following inequality holds: wZ(y; x0

D) < t(y; x0
A), ∀y ∈ Z.

Now to find our desired candidate set, we must find the points
inZ that the defender can reach first, since the avoid setAy :=
{x ∈ Ω | (x, y) ∈ A} for a fixed location y of PD can only serve
as a meaningful obstruction to PA if PD can arrive at y before
the attacker. In order to do this, we will need to introduce the
notion of a t-reachable set R1(t) for PA, defined as follows.

R1(t) :={x ∈ Ω f ree | ∃a ∈ ΣA,∃s ∈ [0, t], xA(s) = x,

xA(0) = x0
A}

(13)

In other words, this is the set of all states in Ω f ree that PA can
reach within t time units. We can now use this definition, along
with that ofZ, to find our set of candidate points as well as the
target point for the defender, giving us the desired lower bound
in the process.

Definition 6. Given a joint initial state x0 ∈ Ω2
f ree, we define

v(x0) as follows:

v(x0) :=


supy∈Z∗ t(y; x0

A), x0
A < T ∧ x0 < A

0, x0
A ∈ T ∧ x0 < A

∞, x0 ∈ A

(14)

where

Z∗ := {y ∈ Z | Ay ∩ R1(T (y)) = ∅}, T (y) := wZ(y; x0
D). (15)

Z∗ contains all points y from Z at which PD can reach be-
fore PA, and along a path that ensures PA cannot end the game
before PD reaches y. Thus, if PD reaches a point in Z∗ via a

shortest path contained inZ∗, then by the time PD reaches that
point, it is guaranteed that PD still has not entered the target
yet. v(x0) encodes the time it takes for the game to end if the
defender picks the best point in Z∗ (points in the pink region
in this picture), reaches that point via a time-optimal path and
thereafter stays at that point. This leads to the following result.

Theorem 2. Given initial condition x0 = (x0
A, x

0
D) ∈ Ω2

f ree, let
function v be as defined in (14), and lower value v be as defined
in (5). Then

v(x0) ≤ v(x0).

Proof. For any x0 = (x0
A, x

0
D) ∈ Ω2

f ree such that either x0
A ∈ T or

x0 ∈ A, we have by the definition of J in (2) and v in (14) that
the result holds with equality.

Now consider an initial state x0 ∈ Ω2
f ree such that x0

A < T

and x0 < A. Note that in such a case, Z∗ is non-empty. In
particular, x0

D is an element ofZ∗. Let y ∈ Z∗ ⊆ Z, then by the
preceding definition, wZ(y; x0

D) < t(y; x0
A). Again for simplicity

of argument, we assume that there exists d∗ ∈ ΣD such that the
path of PD reaches the point y in time T (y) = wZ(y; x0

D). Let
d̃ ∈ ΣD be a choice of control for PD such that that d̃(t) = d∗(t),
∀t ∈ [0,T (y)], and d̃(t) = 0, ∀t > T (y). Under this control,
PD reaches y at time T (y) and remains stationary thereafter.
Now suppose that there exists a control a ∈ ΣA for PA such
that J(x0, a, d̃) < ∞ (otherwise the statement of the theorem
holds trivially). Then there exists t ≥ 0 such that xA(t) ∈ T and
x(s) < A, ∀s ∈ [0, t]. Let t∗ := inf{t ≥ 0 | xA(t) ∈ T }. We
claim that xA(s) < Ay, ∀s ∈ [0, t∗]. Indeed, if not, then there
exists s ∈ [0, t∗] such that xA(s) ∈ Ay. Now consider two cases.
If s ≥ T (y), then xD(s) = y. This implies that x(s) ∈ A. Thus,
by definition of t∗, for every t ≥ 0 such that xA(t) ∈ T , we
have x(s) ∈ A for some s ∈ [0, t], and hence J(x0, a, d̃) = ∞,
which is a contradiction. On the other hand, if s < T (y), then
xA(s) ∈ Ay ∩ R1(T (y)), which implies that y < Z∗. This is
again a contradiction. Note that one can also arrive at the same
conclusion using ε-optimal controls for PD. The claim then fol-
lows, with the result that a ∈ ΣA is a choice of control such that
xA(t∗) ∈ T and xA(s) < Ay, ∀s ∈ [0, t∗]. By the definition of t
in (11), this implies t(y; x0

A) ≤ t∗ = J(x0, a, d̃). Since this in-
equality holds for every a ∈ ΣA such that the payoff is finite, we
have t(y; x0

A) ≤ infa∈ΣA J(x0, a, d̃), and hence t(y; x0
A) ≤ v(x0).

Given that y ∈ Z∗ is arbitrary, the result of the theorem then
follows.

With this understanding ofZ∗, we may select the control for
PD as moving to a point x∗D ∈ arg maxx∈Z∗ t(x; x0

A), whenever
the supremum in (14) is achieved, and remaining stationary at
x∗D thereafter. Since PD is guaranteed to arrive at x∗D before PA,
Ax∗D appears to PA as though a permanent obstacle, forcing PA

to take at least t(x∗D, x
0
A) time units to reach the target.

4. The Modified Fast Marching Method for Computing
open-loop Values

Computing solutions to the open-loop upper and lower value
games as described in the previous section requires finding wS
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and S for the upper value game and wZ and Z for the lower
value game. In each case, the desired value is a minimum
time-to-reach function constrained within some set. If the set
is known a priori, the computation of the function values can
be straightforwardly performed by obtaining the solution to a
constrained optimal control problem. However, in both cases
the set is also unknown and actually depends upon the time-
to-reach function, so both must be computed together. To do
this in an efficient manner, we utilize modified versions of the
fast marching method (FMM) to compute both the desired func-
tion values and the corresponding sets simultaneously on a grid.
This section briefly summarizes the FMM algorithm, and then
presents the computations of v and v via modified FMM. Due
to space limitation, we the readers to [6, 26, 27, 30] for a dis-
cussion on FMM.

4.1. Upper Value
We present the modified FMM in detail to compute the safe-

reachable set S and the corresponding minimum time-to-reach
function wS. Our algorithm computes the solution to the fol-
lowing HJB equation in S:

− inf
a∈Bn

{∇wS(y; x0
A) · fA(xA)a} = 1 (16)

along with the set S itself, using the boundary conditions

wS(x0
A; x0

A) = 0; wS(y; x0
A) = ∞, y ∈ Ω \ S. (17)

We note that if the speed function fA is identified with v(·) in the
Eikonal equation, then the previous HJB equation is equivalent
to the Eikonal equation, provided fA is isotropic, which is true
for the assumptions in this paper.

To compute t(i, j), we define Ax := {y ∈ Ω | (x, y) ∈ A}
as a slice of the avoid set at a fixed PA location x ∈ Ω. Intu-
itively, this corresponds to the set of points which allows PD

to capture PA at x. Then t(i, j) for any node yi, j can be found
as infy∈Ax φD(y), where φD(y) is the unconstrained minimum
time-to-reach function representing the shortest time to reach
y starting from x0

D.
In the following, we provide a schematic description of the

modified FMM, with the numerical approximation of wS(y; x0
A)

at a grid node (i, j) denoted as wS
(i, j).

1. Initialize wS
(i, j)

= ∞, ∀ node (i, j) ∈ G.

2. Compute t(i, j) for every (i, j) ∈ G from infyi, j∈A
x φD(yi, j)

by using standard FMM to compute the defender time-to-
reach φD for every node (i, j).

3. Set wS
(i, j)

=0, if node (i, j) is the initial position of PA, set
it to be in Accepted.

4. For all nodes (i, j) adjacent to a node in Accepted, set
wS

(i, j)
= wS

∗(i, j) via the Eikonal update and label them to
be in NarrowBand.

5. Choose a node (i, j) in Narrow-Band with the smallest
wS

(i, j) value. If there is no node remaining or wS
(i, j)

= ∞,
continue to Step 6. Otherwise, if wS

(i, j)
≥ t(i, j), then set

wS
(i, j)

= ∞. Place node (i, j) in Accepted, return to Step 4.

6. Return the two arrays containing the values of wS
(i, j) and

t(i, j). Compute S by taking all nodes (i, j) with finite wS
(i, j)

values. Compute v by first intersecting S with T and pick
the smallest wS

(i, j) in the intersection and designate the
corresponding node (i, j) to be the final point in T .

The algorithm terminates in a finite number of iterations, since
the total number of nodes is finite. On a grid with M nodes, the
complexity is O(M log M) and the algorithm naturally extends
to three or higher dimensions [27].

Remark 2. Here we highlight the novel aspects of the modified
FMM as given above. First, at a high level, we note that FMM
is a numerical method for computing shortest paths (i.e. as
solutions to certain minimum-to-reach type PDE as in HJB).
However, note that here it is far from sufficient to just compute
the shortest path from the attacker to the target: such a path
must be computed subject to a crucial constraint that at each
point along this path, the attacker must be safe (i.e. arriving
there before the defender can intercept it).

Next, we give a detailed description of the modified aspects
employed here. The algorithm presented above differs from the
standard FMM in the addition of Step 5, which rejects points
that are reachable by PD in less time than PA. To see why this
modification is sufficient, suppose that, at the start of Step 4 of
the current iteration, all Accepted nodes have the correct wS

(i, j)

values. Suppose also that node (i, j) is the smallest element
in NarrowBand ordered by wS value and wS

(i, j)
≥ t(i, j). Since

wS
(i, j) is computed using neighboring Accepted nodes (which

are assumed to have the correct values), this implies that an
optimal path in S would take longer than t(i, j) to reach (i, j).
This in turn implies that PD will capture PA should PA attempt
to reach (i, j). Therefore, wS

(i, j)
= ∞, since (i, j) cannot be safe-

reachable. On the other hand, if wS
(i, j) < t(i, j), there is a safe-

reachable path in S that takes less than t(i, j) time to reach (i, j).
Thus, right before Step 6, wS

(i, j) < ∞ if and only if (i, j) ∈ S.
Since all Accepted nodes are initially correct (Step 3), the above
argument holds inductively until all Accepted nodes are com-
puted correctly. The result of the computation above is a grid G
with nodes where wS

(i, j) approximates the value of wS for each
node (i, j). The safe-reachable set S can then be approximated
as S ≈ {(i, j) | wS(i, j) < ∞}.

4.2. Lower Value

We use a different modified FMM algorithm to compute v,
the bound on the open-loop lower value. Computing v has some
conceptual similarity to the computation of v, but requires some
extra steps. Here, instead of computing wS, t, and S, we are in-
terested in computing t(x; x0

A), wZ(x; x0
D),Z andZ∗. The com-

putation of t requires more computation than that of wS and t,
as for each point in Z∗ a separate FMM computation must be
performed to find PA’s arrival time at the target. However, by
using a modified FMM method, we are able to compute the t,
wZ, and Z simultaneously and avoid computing t unnecessar-
ily, reducing computation time.
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In the following, we denote the numerical approximation of
the functions t(y; x0

A) and wZ(y; x0
D) as t(i, j) and wZ(i, j), respec-

tively. The notationA(i, j) is used to denote the sliceAyi, j = {x ∈
Ω | (x, yi, j) ∈ A} of the avoid set at a fixed PD location yi, j. The
sets Accepted and NarrowBand have the same meaning as be-
fore: Accepted represents the set of nodes whose corresponding
wZ(i, j) values have been computed. NarrowBand represents the
set of nodes that are about to be added to Accepted. W(i, j) and
T(i, j) are two arrays which are used to store values for wZ(i, j)

and t(i, j), respectively. The algorithm then proceeds as follows:

1. Initialize W(i, j) = ∞, ∀ node (i, j) ∈ G.

2. W(i, j) = 0, if (i, j) is the initial position of PD, and set (i, j)
to be in Accepted.

3. For each node (i, j) adjacent to a node in Accepted, run
the Eikonal update to obtain the wZ(i, j) value for (i, j). Set
W(i, j) = wZ(i, j) for all (i, j) adjacent to a node in Accepted
and place these nodes in NarrowBand.

4. Choose a node (i, j) in NarrowBand with the smallest W(i, j)
value. If there is no node remaining or if it is equal to ∞
return W and T and continue to Step 5. Otherwise com-
pute t(i, j) by doing the following: treatA(i, j) as an obstacle,
compute t(i, j) using standard FMM. Set T(i, j) to be t(i, j) and
put (i, j) into Accepted. If W(i, j) < t(i, j), set W(i, j) to t(i, j);
otherwise set W(i, j) to be∞. Now return to Step 3.

5. Find a node (i, j) with the largest T(i, j) value, record this
value in a variable M and set T(i, j) to be −∞. Compute
the reachable set R1(M) using FMM and test if it has
nonempty intersection with A(i, j). If so, return to Step 5.
Otherwise, set v = M and return v.

Note that instead of computing t at all points, we compute
it “on the fly” in the sense that we stop immediately when the
smallest W(i, j) in Narrowband is equal to ∞. This results in a
significant amount of computational savings, and is justified by
the fact that if W(i, j) ≥ t(i, j), then (i, j) is not inZ, which means
W(i, j) should be ∞ by definition of the function wZ. Later, if
we want to extractZ, we need only look at the nodes that have
finite values.

Remark 3. Here we outline the novel aspects of the modified
FMM in the open-loop lower value computation. Again, it is
insufficient for the defender to just compute the shortest path
because it must arrive there before the attacker can in order
to serve effectively as a obstacle. Furthermore, here, as op-
posed to both the traditional FMM and the modified FMM for
the open-loop upper value, the defender is interested in select-
ing the largest t(i, j), value that encodes how long it can delay
the attacker from reaching the target. The addition of Steps 4)
and 5) serve precisely those two purposes.

Finally we note that, for both the open-loop upper and
lower computation, with more general dynamics that are not
isotropic, the FMM is not directly applicable. However a sim-
ilar causality-ordering procedure is possible via the Ordered

Upwind Method (OUM) [28], allowing the method to be even-
tually extended to anisotropic [28] and non-holonomic [29] dy-
namics.

4.3. Extracting Control Inputs
Given the value function approximations described above,

we can also extract the optimal controls and paths correspond-
ing to these value functions.

For the upper value game, if v < ∞, the next step is to identify
PA’s optimal control ā ∈ arg mina∈ΣA supd∈ΣD

J(x0, a, d). Note
that ā is not necessarily unique, but all such inputs yield the
same value v. Given the result of Theorem 1, one can interpret ā
as a control input for PA realizing a time-optimal safe-reachable
path from x0

A to a final point x f
A ∈ arg infy∈T∩S wS(y; x0

A). In fact,
this final point is returned in Step 5 of our algorithm. Thus, wS
can be used to extract the optimal control where it is smooth. In
particular, given the dynamics in (1) and the assumption on the
control set ΣA, one can verify that the optimal control for PA at a
location y ∈ Ω f ree where the value function wS is differentiable

is given by µ(y) = −
∇wS(y;x0

A)
‖∇wS(y;x0

A)‖ . In general, the value function
wS may not be differentiable at every point y ∈ Ω f ree. Non-
differentiable points typically correspond to locations at which
the optimal input is not unique.

The optimal path x∗A(·) of PA can be then computed using µ(y)
by solving the ordinary differential equation

ẋ∗A(t) = fA(x∗A(t))µ(x∗A(t)) (18)

from t = wS(x f
A; x0

A) to t = 0 backward in time, with the termi-
nal condition x∗A(wS(x f

A; x0
A)) = x f

A. Due to the construction of
wS, this results in x∗A(0) = x0

A. The realization of the optimal
control is then given by ā(t) = µ(x∗A(t)).

For the open-loop lower value case, we can find the final
point x f

D for PD by selecting the point withinZ∗ with the lowest
t value. Then the optimal input map µ(·) for PD can be found
using wZ(y; x0

D) in a similar fashion wS(y; x0
A), resulting in an

optimal control d and an optimal path x∗D(·). We also mention
that extracting the inputs and synthesizing the resulting controls
can also be useful and instrumental even when the precise tra-
jectory is not needed: they can still provide intuitive verification
tools on the algorithm implementation.

4.4. Multilayer Reach-Avoid Games and Simulations
The modified fast marching methods extend straightfor-

wardly to a multi-player reach-avoid game setting, where the at-
tacking and/or defending side can contain any number of play-
ers. Here we demonstrate the open-loop game formulation ap-
plied to more complex games and games with multiple players
on each side. The game scenarios are computed on a 2-D map
of size 4002 pixels, representing the UC Berkeley campus (see
Figure 2). To represent the varying terrain in the area, the map
data fi, j, i, j ∈ 1, . . . , 400 represent the fraction of the players’
maximum speeds that are allowed at each point on the map,
with 1 being maximum speed and 0 representing impenetrable
obstacles. They have values 0 in the buildings and 1 in the walk-
ways; other regions have intermediate values in (0, 1) selected
in proportion to the estimated density of vegetation.

9



Figure 2: A segment of the UC Berkeley campus used for the simulations
(map image courtesy of maps.google.com).

Two sets of simulations are presented here. The first set of
simulations shows an upper value game with two attackers and
two defenders, as illustrated in Figure 3. In Figure 3 players
Pi

A and P j
D are denoted by their positions xA,i, xD, j respectively.

In this scenario, P1
D and P2

D have the same maximum speed of
fi, j at each map node, while P1

A has maximum speed of 3 fi, j
and P2

A has maximum speed of 2 fi, j. The computed optimal
paths for each player are shown in Figures 3(a) and (b). Fig-
ure 3(a) shows the optimal trajectory for P1

A, highlighted in
solid black, with solid red lines delineating the boundary be-
tween points where P1

A can reach before any defender. In this
scenario, the defenders are forbidden from moving beyond the
magenta boundary line to the left. P2

A’s trajectory is denoted
here by a lighter, dashed line. Similarly, Figure 3(b) shows
the game from P2

A’s perspective. In each case, the upper value
game computation is able to quickly compute an optimal path
for each player, considering the possible actions of both de-
fenders. The second set of simulations are shown in Figure 5
for the lower value game, with two attackers and one defender.
The maximum speeds for P1

A, P2
A and PD are 0.9 fi, j, 0.8 fi, j and

0.25 fi, j respectively. Due to the nature of the modified FMM
algorithm, the obstacles and complexity of the varying speed
profiles is naturally accounted for.

All computations were performed on a desktop computer
with 3.33 GHz Intel Core-II duo processors. The code was im-
plemented in C using the Matlab MEX compiler to allow func-
tion calls within Matlab. Both tests were completed (including
the computation of optimal paths) in less than 0.5 seconds each.
Note that the implementation and the computational efficiency
are independent of variations in the speed function, and the ad-
dition of an extra defender did not increase the computation
time substantially.

5. Conclusion and Future Work

Future work will focus on mitigating the conservatism inher-
ent in the open-loop formulations. In the upper value game,
this conservatism means that for certain initial conditions, the
open-loop solution value will be greater the HJI value, requiring
more time to arrive at a target. Similarly the lower value game
may predict a smaller arrival time. More research will need to
be conducted on the best that can be done in such situations, as
well as in situations where a player cannot win if the opponents
play optimally, but may exploit some sub-optimal opponent ac-
tions to eventually achieve victory.
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Figure 3: Simulations of a game between two attackers (blue circles) and two defenders (red triangles) for the upper value game, showing: (a) The initial
positions of the players and the target region. (b) The path taken by attacker 1(solid blue line) and the boundary of its safe-reachable set with respect to
the two defenders (solid red regions), indicating that this attacker can safely arrive at the target by successfully avoid both defenders. (c) The path taken
by attacker 2 (solid blue line) and the boundary of its safe-reachable set with respect to the defenders (solid red regions), similarly indicating that this
attacker can safely arrive at the target by successfully avoid both defenders..
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Figure 4: Simulation of a game between two attackers and one defender for the lower value game, showing (a) the initial positions of the players and the
target region, (b)Z∗ with respect to the first attacker (solid blue line), (c)Z∗ with respect to the second attacker (solid blue line), and (d) the paths taken by
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