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Abstract

Reinforcement learning for embodied agents is a challenging problem. The accumu-
lated reward to be optimized is often a very rugged function, and gradient methods
are impaired by many local optimizers. We demonstrate, in an experimental setting,
that incorporating an intrinsic reward can smoothen the optimization landscape while
preserving the global optimizers of interest. We show that policy gradient optimization
for locomotion in a complex morphology is significantly improved when supplementing
the extrinsic reward by an intrinsic reward defined in terms of the mutual information
of time consecutive sensor readings.
Keywords: intrinsic motivation, reinforcement learning, predictive information, embod-
ied systems, policy gradient, POMDP, non-convex optimization

1 Introduction

Reinforcement learning is a powerful framework for learning to act when one does not have
explicit examples of good action sequences, or one has an idea of what a good behavior
could look like, but it is difficult to infer actions that could generate that behavior. In
reinforcement learning one still requires a reward signal. In some cases it is clear how to
choose an appropriate reward signal. For a gambler in a casino this may be the number of
chips earned or lost in one round. In some other cases it may be less clear how to choose
the reward signal, and naive choices may not be useful. For instance, if the reward is too
sparse, it may take too long for the agent to discover good actions. More importantly, a
perfectly good looking definition of the reward, maximizing which surely produces the desired
behavior, may involve a hopelessly complicated optimization landscape.

One possible resort lies in the idea that it may be easier to solve a difficult problem if
we first, or concurrently, learn to solve a different problem. Curriculum learning (Bengio
et al., 2009) and transfer learning (Pan and Yang, 2010) can be regarded as examples of
this general strategy. Intrinsic motivation has been proposed as a task independent reward,
which may serve to initialize or aid optimizing policies for a particular task (for an overview
see Baldassarre and Mirolli, 2013). In Section 3 we give a brief overview on approaches that
have been considered.

In this paper we study the predictive information of sensor readings as an intrinsic reward
signal supplementing an extrinsic task objective in reinforcement learning of embodied
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agents. As hinted above, our motivation for using a combined reward is that, for complex
morphologies, the extrinsic reward is often a very intricate function of the policy, with many
local optimizers. The idea is that combining the two objectives may help overcome the local
optimizers. A high predictive information requires that all degrees of freedom are active
and move in a coordinated manner. Therefore, we expect that many coordinated embodied
behaviors are accompanied by high values of the predictive information. Certainly this
also implies that many maximizers of the predictive information may not perform well at
a particular task. By using geometric mixtures we obtain a combined objective function
that retains only the concurrent optimizers of both functions. In this paper the predictive
information is used as a multiplicative supplement in gradient based reinforcement learning
of a complex embodied morphology. To the best of our knowledge this is the first paper
that pursues this. Our experiments show that incorporating a suitable amount of predictive
information in the objective function allows for significant improvements of the learning
performance. Furthermore, the implementation is very simple, generally applicable, and
scalable.

In Section 2 we discuss the predictive information of time consecutive sensor readings and
the combination of intrinsic and extrinsic rewards. In Section 3 we comment on related
work regarding intrinsic motivation and predictive information. In Section 4 we present our
experiments on a complex embodied system, and in Section 5 our conclusions.

2 Predictive information as an intrinsic reward

In reinforcement learning (Sutton and Barto, 1998) one considers a system with world states
W and an agent that makes observations from a set S and chooses actions from a set A.
One usually considers discrete time Markovian systems where the state wt+1 at time t+ 1 is
distributed according to a fixed but unknown conditional probability distribution α(·|wt, at)
given the state wt and action at at the previous time step. The observation, or sensor
reading, st at time t is distributed according to a fixed but unknown conditional probability
distribution β(·|wt). The sequence of world states w1, . . . , wT (or rather its probability)
depends on the actions taken by the agent. At each time step t the agent receives a reward
signal rt that typically is expressed as a function of wt and at. The goal of learning is that,
based on the observations and rewards, the agent discovers a policy such that the resulting
behavior maximizes an accumulated reward, for instance the average reward R = 1

T

∑T
t=1 rt

for some T ∈ N.

For a temporal sequence of random variables, the predictive information (Bialek et al., 2001)
is defined as the mutual information of the past and the future. It can be interpreted as
the reduction on uncertainty about the future given the past. We will consider the mutual
information of two time consecutive sensor readings,

MI(S;S′) :=
∑
s,s′

p(s, s′) log
p(s, s′)

p(s)p(s′)
= H(S′)−H(S′|S). (1)

This is the entropy of S′ minus the conditional entropy of S′ given S. It is large when S′
takes many values with uniform probability and S′ can be predicted well from knowing the
value of S. One can imagine that diverse but coherent movement will have a high mutual
information of time consecutive sensor readings. Hence this quantity is a very natural form
of intrinsic reward for embodied systems. The mutual information MI(S;S′) is also the
Kullback-Leibler divergence from the joint distribution of S and S′ to its best approximation
by a factorizing distribution, and is sometimes regarded as a type of complexity measure.
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2.1 Mutual information intrinsic reward signal

We consider an intrinsic reward signal of the form

rMI,t =
∑
s′

pt(s
′|st−1) log

pt(s
′|st−1)

pt(s′)
, (2)

where pt is the empirical distribution of sensor readings computed from the last T ′ time
steps,

pt(s, s
′) =

1

T ′

T ′∑
u=1

δ(s,s′)(st−u, st+1−u), pt(s) =
1

T ′

T ′∑
u=1

δs(st+1−u). (3)

With this definition, the time average RMI = 1
T

∑T
t=1 rMI,t is an estimate of the mutual

information MI(S;S′). Here we can also compute rMIi,t for individual sensors i = 1, . . . , N ,
and use the average rMI,t = 1

N

∑N
i=1 rMIi,t as the intrinsic reward. This is high when all

degrees of freedom move to positions that contribute to a high empirical entropy and at the
same time are predictable from their previous values. The advantage is that the mutual
information of individual sensors can be estimated accurately with a smaller T ′. Furthermore,
in contrast to the joint mutual information, maximizing this does not require that all joint
sensor states are occupied with positive probability.

The mutual information will inevitably vary during the learning process, and we are not
compelled to estimating it more accurately than necessary nor optimizing for the highest
possible value. It is worthwhile mentioning that, in stationary settings, uniform estimation
error bounds (Shamir et al., 2010) show that estimating the mutual information is much
easier than estimating the joint distribution, with a complexity bound controlled by the
number of sensor states that occur with positive probability.

2.2 Combined reward signal

Our ultimate goal is to learn a policy that produces a high value of some extrinsic reward,
which in our running example is the average locomotion velocity of an embodied agent,
RLoc = 1

T

∑
t rLoc,t, where rLoc,t is the distance covered in the time between t − 1 and

t. Instead of optimizing RLoc by itself, we optimize a combined reward that includes the
predictive information as an intrinsic reward. As the total reward signal rt for the agent we
use a geometric mixture, which for a mixture weight ξ ∈ [0, 1] and non-negative components
rLoc,t and rMI,t is given by

rt = rξLoc,t · r
1−ξ
MI,t. (4)

For a better comparability, in practice we scale rMI,t and rLoc,t so that both have approxi-
mately the same maximum possible value, and rt so that it has a maximum possible value
of approximately 1. The signal can also be modulated with a monotonic function f as
rt = f(rξLoc,t · r

1−ξ
MI,t). For instance, taking f as the square function dampens low values and

amplifies high values. In order to account for negative locomotion rewards, we can simply
set rt = sign(rLoc,t) · f(|rLoc,t|ξ · r1−ξMI,t). Combining objective functions by building their
product is a standard method to avoid that during learning only one of them is optimized.
The parameter ξ allows us to place more or less importance on one or the other component.
Other types of combinations are possible, and in general the type of combination will have
an effect on the optimization problem.
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3 Related work

There is a large body of work related to intrinsic motivation and information theory in
the context of learning to act. Here we can only comment on a few papers and refer the
reader to the references provided therein. In its core, intrinsic motivation seeks to define a
reward signal when there is no specific task objective (Barto, 2013). Chentanez et al. (2005)
proposed intrinsically motivated reinforcement learning as a framework to allow agents learn
hierarchical collections of skills autonomously, and tested it in artificial playrooms. Steels
(2004) studied the balance of skill and challenge of behavioral components as the motivation
for open ended development of embodied agents.

Intrinsic motivation has drawn much attention as a tool for improving exploration and the
ability to make predictions. Rubin et al. (2012) studied curiosity driven intrinsic motivation
as an exploration incentive. Oudeyer et al. (2007) used a form of prediction error as a
reinforcement signal. Little and Sommer (2013) studied the predicted information gain in
model based reinforcement learning as a way to encourage actions that yield most information
about the structure of the world. Schmidhuber (2009) considered a compression quantity as
a reinforcement signal, arguing that data is temporarily interesting by itself once the agent
learns to predict or compress it. Frank et al. (2014) proposed curiosity as an intrinsic reward
to encourage actions taking the agent to regions where it can learn something about the
world, and studied this approach in complex systems with reactive policies.

Two information theoretic quantities that have been studied intensively in the context of
learning are empowerment and predictive information. Empowerment (Klyubin et al., 2005)
is the maximal information of an action sequence about a future state, and assigns a value to
each possible initial state. Maximizing it will encourage the agent to occupy positions from
which it can reach most states within its planning horizon. Mohamed and Jimenez Rezende
(2015) studied the efficient computation and maximization of empowerment as a learning
principle in maze environments. The empowerment has been investigated as an incentive
to have an agent actively structure his environment in relation to his embodiment (Salge
et al., 2014). Still and Precup (2012) stressed the importance of choosing policies that
not only maximize a task objective, but also allow for high predictive power, which should
make the world both interesting and exploitable. Zahedi et al. (2010) studied the predictive
information maximization as a learning principle, and demonstrated that it can generate
coordinated behavior in embodied agents.

Probably closest to our investigations are the following three works. Prokopenko et al.
(2006) used the predictive information, estimated on the spatio-temporal phase-space of an
embodied system, as part of the fitness function in an artificial evolution setting. It was
shown that the resulting locomotion behavior of a snake-bot was more robust, compared
to the setting, in which only the traveled distance determined the fitness. Zahedi et al.
(2013) studied the predictive information as a supplement to an extrinsic task related reward.
Like us they studied embodied systems, but they considered episodic tasks, used linear
combinations of the intrinsic and extrinsic rewards, deterministic controllers, and stochastic
policy search. Although initially beneficial, asymptotically the predictive information led to
weaker results. Consequently they suggested that different ways of combining the rewards and
gradient based optimization should be investigated, which is the approach that we take here.
Schossau et al. (2016) studied a broad range of information theoretic quantities, including
the predictive information, for aiding the optimization of task objectives. In the same
spirit as us, they suggested that intrinsic rewards could help surmount optimization barriers.
Like us, they used multiplicative combinations, but for the predictive information they
obtained sobering results, showing no substantial benefit over direct optimization and other
information theoretic quantities. In contrast to us, however, they considered deterministic
policies optimized by evolutionary algorithms. Furthermore, they focused on a particular
task within a 2-D world that is relatively simple in comparison to our physically realistic
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Figure 1: Svenja virtual hexapod. Each leg has four controllable continuous degrees of
freedom with corresponding sensors and a binary foot contact sensor. Joints at the main
body attachment are endowed with damped springs.

embodied system. While these previous works used episodic or evolutionary methods, here
we use a model-free online policy gradient optimization method.

4 Experiments

4.1 Svenja virtual robot

Svenja is a complex embodied agent, shown in Figure 1, inspired by the morphology of an
ant. It is a hexapod with 3 actuated joints in each leg: a spring spherical joint with two
degrees of freedom and two knees with one revolute joint each. This makes a total of 24
controllable degrees of freedom. It has 24 continuous sensors, measuring the joint positions,
and 6 binary foot contact sensors. The body is bilaterally symmetric, but the three legs on
each side are different from each other in length, weight, orientation, and maximum torques
of the joints. Svenja is simulated in YARS (Zahedi et al., 2008), which uses the physics
engine bullet.

4.2 The learning task

As the extrinsic locomotion reward we consider the average forward velocity, RLoc =
1
T

∑T
t=1 rLoc,t, where rLoc,t is the distance covered in the forward direction in the last time

step,
rLoc,t = (xt − xt−1)>dt, (5)

xt is the position of the center of gravity in the XY-plane and dt is the XY-part of the axial
direction of the robot. Training was set up to optimize the time average of the combined
signal rt = sign(rLoc,t)(|rLoc,t|ξ · r(1−ξ)MI,t )2, with an intrinsic reward rMI,t = 1

N

∑
i rMIi,t

corresponding to the mean mutual information per sensor.

4.3 The policy model

As a controller architecture we use the conditional restricted Boltzmann machine (CRBM),
which is a parametric model of Markov kernels of the form

pθ(y|x) =
1

Zθ(x)

∑
h

exp(h>V x+ h>Wy + c>h+ b>y), (6)
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where x ∈ {0, 1}k are input binary vectors, y ∈ {0, 1}n are output binary vectors, h ∈ {0, 1}m
are hidden binary vectors, θ = {V, c,W, b} are real valued matrices of parameters, and Zθ is
a normalizing partition function. We consider reactive policies, where x corresponds to the
current sensor state st and y to the action at. If desired, one can also implement policies
with memory by taking temporal sensor sequences (st−k, . . . , st) for x.

Computing the partition function Zθ(x) is intractable. The typical sampling procedure is
to run a short sequence of Gibbs updates, with fixed x, and then return y. Since there are
only connections between visible and hidden units, all entries of h and all entries of y can
be updated in parallel. The gradient ∇θ log pθ(y|x) is also intractable. It is approximated
using Monte Carlo averages, with the sampling procedure described above. This method is
widely used for generative training of restricted Boltzmann machines and is familiar from
the Contrastive Divergence algorithm (Hinton, 2012).

4.4 The learning algorithm

We estimate the gradient of the average reward R with respect to the policy parameters θ in
a simulation-based manner using the GPOMDP algorithm (Baxter and Bartlett, 2001). At
simulation times t with mod(t, T ) = 0, for some fixed T ∈ N, we start a gradient estimation
loop by initializing auxiliary variables zt = 0, ∆t = 0, r̄t = 0. These variables are then
updated by

zt+1 =βGPOMDP · zt +∇θ log pθ(at|st) (7)
∆t+1 =∆t + (rt+1 · zt+1 −∆t)/mod(t+ 1, T ) (8)
r̄t+1 =r̄t + rt. (9)

Here βGPOMDP is a discount parameter between zero and one, which, in combination with
T , allows to control a bias variance tradeoff. The estimation loop ends after T controller
iterations, when we read out the estimate ∆ = ∆t of the average reward gradient and
the average reward R = r̄t/T . With the gradient estimate at hand, we update the policy
parameter θ by

∆θ ←αlearn · (∆− αdecay · θ) + αmom ·∆θ (10)
θ ←θ + ∆θ. (11)

Here αlearn is a positive learning rate, αdecay is a weight decay parameter between zero and
one, and αmom is a non-negative momentum parameter. For the very first update ∆θ is
initialized with zeros.

4.5 Experimental setup

For this experiment we fixed the physics simulator frequency to 100 Hz, with 200 solver
iterations per physics update, and fixed the controller frequency to 10 Hz. As inputs to the
CRBM controller we used binarized versions of all sensor measurements at the current time
step. The 24 continuous sensor values were each reduced to one bit and the 6 foot contact
sensors were left untouched, making a total of 30 input units. The CRBM binary output
vectors were mapped to the bin centroids as actuator states and passed back to the simulator.
Here again we used one bit per actuator, making a total of 24 output units. We used a fully
connected CRBM with 50 hidden units.

For each training instance, each parameter of the CRBM was initialized as 0.01 of a normally
distributed random sample. We fixed learning rate αlearn = 1, momentum αmom = 0.5,
and weight decay αdecay = 10−5. We used 10 full Gibbs updates initialized at random for
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Figure 2: Experimental results on Svenja. Shown are the values of the combined reward R,
the intrinsic reward RMI, and the extrinsic reward RLoc, over the policy parameter updates
(with 1 parameter update every 10 Svenja time seconds). The columns correspond to mixture
weights ξ = 0, 0.25, 0.5, 0.75, 1. The dark thin lines show the first quartile, median, and third
quartile for the 30 training instances. The area enclosed by these lines contains 50% of the
data. The thick lines show the mean across training instances.

generating each output vector and 60 samples for each Monte Carlo average. We fixed the
GPOMDP discount parameter βGPOMDP = 0.75 and used T = 100 controller iterations for
each gradient and average reward estimate. The intrinsic reward was computed using the
previous T ′ = 100 sensor measurements.

Every 1000 controller iterations, the next 10 controller outputs were corrupted with a small
amount of noise. This corresponds to an external force acting on the body of the agent from
time to time, like a strong wind, and forces the agent to learn more robust behaviors. We
also included a small negative reward (penalty) for touching the floor with the head or with
the rear.

In order to ensure that our results were representative, we run 30 training instances for each
choice ξ = 0, 0.25, 0.5, 0.75, 1 of the reward mixture weight. Each instance was interrupted
after the same fixed computation time, corresponding to about 30,000 gradient updates and
3,000,000 controller iterations.

4.6 Results

Figure 5 shows the evolution of R, RMI, and RLoc over the number of gradient updates, for
the different mixture weights tested. Training with ξ = 0.75 produced the highest values
of RLoc, in terms of the maximum, mean, and median across training instances. Training
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Domain (policies)

F
·G

Figure 3: Optimization landscapes with and without mutual information. The two plots to
the left are a close up of Figure 5, showing RLoc over the number of gradient iterations for
ξ = 0.75 and ξ = 1. A few representative training instances are highlighted. The right panel
sketches of our interpretation: for an appropriate pair of functions F and G, local optimizers
of F are smoothed out after multiplication with G, while concurrent global optimizers of
both functions are preserved.

with ξ = 0.5 also produced good results, but strong improvements set on later and were
still progressing at the moment that training was interrupted. Training with ξ = 0 and
ξ = 0.25 did not yield high locomotion values, which is not surprising, since the reward
signal emphasized mainly the mutual information. Training with ξ = 1, which corresponds to
optimizing RLoc by itself, often led to high values of RLoc, but more than half the instances
did not make any significant progress, and on average the performance was relatively poor.

Figure 3 shows that RLoc improves much more smoothly when including a certain amount of
mutual information in the optimization objective (ξ = 0.75, meaning 25% mutual information).
With pure locomotion reward (ξ = 1), some training instances show quick improvements and
arrive at quite good solutions. Nevertheless, very often they get trapped in local optimizers,
and sometimes the performance drops sharply, indicating that the learned policies are
not robust. Our interpretation for this behavior is that the combination with the mutual
information smoothens out local optimizers of the locomotion reward while preserving its
global optimizers, as illustrated in the right panel of the figure. This explanation is well in
agreement with the intuition, also observed here, that behaviors with high values of RLoc
tend to first traverse or be accompanied by high values of RMI. This is also in agreement
with the idea that maximizing the mutual information allows for a better exploration of
sensor values, which naturally increases the robustness of the policies. Figure 4 shows a
few sequences of foot contact sensor for the different mixture weights at the moment that
training was interrupted. We include videos in the Supplementary Material.

4.7 Other configurations

We tested various alternative training configurations, taking more bits per continuous sensor
and actuator, different numbers of hidden units, and various types of restricted connectivity
structures (e.g., one individual block of CRBM hidden units per actuator). We also run
experiments using the mean mutual information over the joint sensor states of each leg, a
version of Svenja with constrained joint mobility, and different types of combinations of
intrinsic and extrinsic rewards. In all cases the results were similar to the ones that we report
here, showing that a moderate amount of mutual information intrinsic reward significantly
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Figure 4: Here we show sequences of foot contact readings for the instances with the
highest and median value of RLoc a few moments before training was interrupted, for
ξ = 0, 0.25, 0.5, 0.75, 1. Light color indicates foot contact. The foot enumeration is 1 front
left, 2 front right, 3 middle left, 4 middle right, 5 rear left, 6 rear right.

improves the learning performance. We include some of these results in the Supplementary
Material.

5 Conclusion

Our experiments show that for complex embodied systems, combining the extrinsic reward
for a locomotion task with a judicious amount of intrinsic reward, defined as the predictive
information of time consecutive sensor readings, can significantly improve the policy gradient
optimization process. Our observation is that combining extrinsic and intrinsic reward signals
can considerably smoothen the optimization landscape while preserving global optimizers of
the extrinsic reward.

We think that for a broad range of learning tasks, especially involving coordinated movement
of embodied systems, the predictive information is a useful form of intrinsic reward that
can aid learning. This paper demonstrates that substantial benefits can be gained from
this approach. A deeper analysis of intrinsic rewards as smootheners of the optimization
landscape is certainly a promising avenue of research, searching for optimal ways of combining
functions and the best types of landscape regularizers for particular collections of tasks.

Of course, we are also interested and are currently working on experiments with other
types of morphologies and tasks. Also, we are interested in the behaviors that can emerge
from optimizing the mutual information of longer temporal sequences of joint sensor values
(considering more than two consecutive time steps), and scheduled combinations of intrinsic
and extrinsic rewards, where the intrinsic reward is turned down after an initial stage in
order to fine tune for the extrinsic reward. In the past, investigations of this type have
been limited to much simpler morphologies. We think that the main reason was that the
optimization approaches either involved random search, did not have scalable policy models,
or required explicit inference of the world state transition probabilities, all difficulties that
are sorted out in our approach.

Another interesting practical aspect is model selection. We did not divert much in this
direction here, but it is clear that an appropriate choice of the policy model can have a
significant effect on the optimization problem. In particular, the morphology can be better
accounted for by using suitable modular controller architectures.
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Supplementary Material

Here we show the learning curves for various experiments that we conducted on the robot
Svenja. We varied the joint mobility of Svenja, the form of the mutual information reward,
the number of bits in the discretization of continuous degrees of freedom, and the scaling of
the combined reward. All experiments produced similar outcomes to those presented in the
main part. Including a certain amount of mutual information intrinsic reward consistently
led to significant improvements in the locomotion performance.

Figure 5: Experimental results on Svenja. Here we set rMI,t equal to the average of the mutual
information per degree of freedom, scaled to have a maximum possible value of 0.1, one bit
per degree of freedom, and optimized the time average of rt = sign(rLoc,t) · (|rLoc,t|ξ · r1−ξMI,t)

2.
Shown are the policy gradient learning curves over the number of gradient iterations. The
columns correspond to ξ = 0, 0.25, 0.5, 0.75, 1 from left to right, for the indicated number
of instances of the experiment. The first row shows the reward per time step. The second
row shows the average mutual information per sensor. The third row shows the average
forward velocity. The dark thin lines show the first quartile, median, and third quartile for
all experiment instances. The area enclosed by these lines contains 50% of the data. The
thick lines show the mean values across instances of the experiments. This figure is also
contained in the main part of the paper and included here for completeness.

11



Figure 6: This figure plots the mutual information as a function of the locomotion reward
for the data from Figure 5. The curves show a sliding window average for individual training
instances. Higher locomotion values are often accompanied by higher mutual information
values. The sample Pearson correlation coefficient computed over all data is 0.7888.
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Figure 7: This figure illustrates the gaits that Svenja learned in the experiments from
Figure 5. Shown are foot contact sequences for the two instances with the highest value of
RLoc, for ξ = 0, 0.25, 0.5, 0.75, 1, a few moments before training was interrupted. Light color
indicates foot contact. The feet are enumerated 1 front left, 2 front right, 3 middle left, 4
middle right, 5 rear left, 6 rear right.
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Figure 8: Experimental results on a modified version of Svenja. This modification had
constrained joint movement and was lighter and weaker than the original Svenja. Here we
set rMI,t equal to the average of the mutual information per degree of freedom, scaled to
have a maximum possible value of 0.1, one bit per degree of freedom, and optimized the time
average of rt = sign(rLoc,t) · (|rLoc,t|ξ · r1−ξMI,t)

2. The other details are as in Figure 5.
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Figure 9: This figure illustrates the gaits that the modified version of Svenja learned in the
experiments from Figure 8. The modified version of the robot had constrained joint mobility
and was lighter and weaker than the original. The other details are as in Figure 7.
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Figure 10: Experimental results on Svenja. Here we set rMI,t equal to the average of the
mutual information per entire leg, scaled to have a maximum possible value of 0.1, one bit
per degree of freedom, and optimized the time average of rt = sign(rLoc,t) · |rLoc,t|ξ · r1−ξMI,t.
The other details are as in Figure 5.
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Figure 11: Experimental results on Svenja. Here we set rMI,t equal to the average of the
mutual information per entire leg, scaled to have a maximum possible value of 0.1, two
bits per continuous degree of freedom, and optimized the time average of rt = sign(rLoc,t) ·
|rLoc,t|ξ · r1−ξMI,t. The other details are as in Figure 5.
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Figure 12: Experimental results on Svenja. Here we set rMI,t equal to the average of the
mutual information per sensor, scaled to have a maximum possible value of 0.1, one bit per
continuous degree of freedom, and optimized the time average of rt = ξ · rLoc,t + (1− ξ) · rMI,t.
The other details are as in Figure 5.
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