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Variational Destriping in Remote Sensing

Imagery:

Total Variation with L1 Fidelity

Konstantin Dragomiretskiy and Igor Yanovsky

Abstract

This paper introduces a variational method for destriping data acquired by pushbroom-type satellite imaging

systems. The model leverages sparsity in signals and is based on current research in sparse optimization and

compressed sensing. It is based on the basic principles of regularization and data fidelity with certain constraints

using modern methods in variational optimization - namely total variation (TV), both L1 and L2 fidelity, and the

alternating direction method of multipliers (ADMM). The main algorithm in this paper, TV-L1, uses sparsity promoting

energy functionals to achieve two important imaging effects. The TV term maintains boundary sharpness of content

in the underlying clean image, while the L1 fidelity allows for the equitable removal of stripes without over- or under-

penalization, providing a more accurate model of presumably independent sensors with unspecified and unrestricted

bias distribution. A comparison is made between the TV-L1 and TV-L2 models to exemplify the qualitative efficacy

of an L1 striping penalty. The model makes use of novel minimization splittings and proximal mapping operators,

successfully yielding more realistic destriped images in very few iterations.
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Fig. 1: Pushbroom Satellite Diagram

I. INTRODUCTION

Image striping is a well-known phenomenon that arises in multi-detector imaging systems ranging from pushbroom-

type instruments, such as the Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI), to atomic force mir-

croscopy (AFM). Biases in lateral detection occur due to response variation in spatial detectors, such as in satellite

imaging systems, or temporal changes, such as in raster scans. Though these systems are optimally pre-calibrated,

post-processing, such as destriping, of data is prerequisite for accurate and valid analyses. Striping removal has

been traditionally performed using either statistically based methods, [1], [2], or low-pass filtering in the frequency

domain [3], [4], [5], [6], [7]. This method, however, does not remove stripes completely and has an effect of blurring

the image. More recently, wavelet-based filtering methods have been proposed [8], [9], [10]. However, such methods

also blur the images and produce ringing effects in reconstruction.

We follow the pedigree of variational and PDE-based methods applied to images [11], [12] in order to construct a

well-defined, optimizable model yielding fast and quality destriping. During our research, we have come across a

similar work achieved by a total variation and framelet regularization model [13]. The same authors proposed an

anisotropic spectral-spatial total variation regularization to enhance the smoothness of solution along both the spectral

and spatial dimension in [14]. Our model and results were found independently, but share a similar foundation.

The focus of our paper is not about creating a sparse wavelet representation of the destriped image, but rather on

how to remove the optimal striping mask while preserving high image fidelity. We include detailed derivations and

a motivated evolution of the optimization problem with pedagogy in mind so that these novel variational methods

can be accessible to all academic disciplines involved with image processing.

Our research is robust to both isotropic and anisotropic versions of total variation, whereas [13] argue that the

anisotropic case is the only appropriate one. While it is true that the anisotropic case uses a decoupled energy

for measure of smoothness and is therefore easier to minimize, isotropic total variation is not selective in which
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direction smoothness is penalized. Image content smoothness (or lack thereof) is not known a priori, thus no

preference should be immediately given to certain directions for evaluating smoothness.

In [13] and [14], the authors employed the L2 norm as the fidelity term. Our research considers both L2 and L1

penalties for striping size, and compares the two, ultimately favoring the L1 due to a wider yet tighter distribution of

the striping mask. Using the L1 penalty, and depending on the data, the isotropic total variation, which theoretically

uses more local information, allows for a qualitatively better, less invasive and more intelligent destriping.

We construct a variational model that is well-defined, qualitatively motivated, and easily minimized. The constructed

energy uses sparsity promoting energy functionals, based on total variation and L1 energy, to achieve minimally

invasive destriping. Both isotropic and anisotropic total variation, along with L1 and L2 energies, are considered

in our variational model. The alternating direction method of multipliers (ADMM) (split-Bregman) is used in

conjunction with non-linear proximal operators to efficiently optimize the energy, yielding quick and quality results.

II. MODEL

A. Striping structure

Let U(x, y) be a stripe-free image of size R by C, and let G(y) be a multiplicative stripe noise of length R. Then

the observed image, F can be written as F (x, y) = G(x, y)U(x, y). Taking logarithms yields an additive structure,

more suitable for energy minimization methods. The model can now be written as f(x, y) = g(y) + u(x, y) where

f(x, y) = ln(F (x, y)), g(x, y) = ln(G(x, y)), and u(x, y) = ln(U(x, y)).

Striping in images can be viewed as a structured noise, of which variations are mainly concentrated along one axis.

This can be mathematically encoded as ‖∇xG‖ � ‖∇yG‖, or with the logarithmic terms, ‖∇xg‖ � ‖∇yg‖.

B. Tikhonov minimization

A classical Tikhonov minimization problem would consist of a smoothness regularizer and a data fidelity term,

both easily differentiable, with the striping constraint [15]:

min
u

{
‖∇u(x, y)‖22 +

λ

2
‖u(x, y)− f(x, y)‖22

}
s.t. ‖∇xg‖ � ‖∇yg‖

This constraint can be simplified by the approximation that ∇xG(x, y) = 0 ∀(x, y), which would make G(x, y) =

G(y), and g(x, y) = g(y), functions of only one variable. Using the additive identity between f , g, and u along

with the constraint approximation, the new unconstrained minimization problem is:
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min
g

{
‖∇y(f(x, y)− g(x, y))‖22 +

λ

2
‖g(x, y)‖22

}
By taking the first variation of the energy and setting it to zero, closed form solution to this minimization problem

is

g(x, y) = (∇y · ∇y + λI)−1(∇y · ∇yf(x, y))

= (
∂2

∂y2
+ λI)−1(fyy(x, y))

However, this solution would cause g to become bivariate, in contradiction to the constraint. Instead, using the

Cartesian regularity of our rectangular domain Ω = Ix × Iy and using g(x, y) = g(y), we can come to a solution

that is in agreement with the constraint by integrating with respect to x:

∫
Ω

g(x, y)dx =

∫
Ix

g(y)dx = g(y)

∫
Ix

dx = g(y)µ(Ix) =

∫
Ix

(
∂2

∂y2
+ λI)−1(fyy(x, y))dx ⇒

g(y) =
1

µ(Ix)

∫
Ix

(
∂2

∂y2
+ λI)−1(fyy(x, y))dx

C. Fourier interpretation

Utilizing the Plancherel Fourier isometry, the solution can be interpreted in spectral form as:

ĝ(ωy) =
1

µ(Ix)

( ω2
y

λ+ ω2
y

)
f̂ =

( ω2
y

λ+ ω2
y

)
¯̂
f

For a specific x, the stripping g(y) is constant of higher frequency, whereas the underlying clean image varies more

slowly (has more low-frequency content) and while for each x having a somewhat different frequencies. Therefore,

the average frequencies of the clean image are low in magnitude and of lower-frequency, while the average

frequencies of the stripping are high in magnitude and of higher-frequency. Therefore, the average frequencies

(averaged over ωx) of the cleaned image are simply the average frequencies of the original image multiplied by a

one dimensional Low-Pass filter λ
λ+z2 . Likewise, the striping mask on the spectral side, ĝ, is obtained analogously

with a one dimensional High-Pass filter z2

λ+z2 .

Though this minimization problem is readily solvable in closed form and has a motivated physical interpretation,

we must abandon the quadratic energy terms so that we may have less penalization for heavier striping and to allow

for less smooth solutions. Though the differentiability of terms is nice, enough optimization machinery has been
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developed that we may tread forward. We now investigate and outline some tools from signal processing in order

to refine our model. Stripe and ring artifact removal from this frequency perspective has been accomplished using

wavelet and Fourier filtering [16].

III. TOOLS FROM FUNCTIONAL ANALYSIS

A. Total Variation: Anisotropic vs. Isotropic

The idea of using total variation as a regularizer and denoiser that promotes sparsity and piecewise constant

smoothness dates back to Rudin, Osher, and Fatemi [17], [18]. We begin with defining the notion of total variation,

which will be used as a regularizer in the model.

Definition The total variation of a function f ∈ L1(Ω) is

V (f,Ω) := sup
{∫

Ω

f(x)divφ(x) dx : φ ∈ C1
c (Ω,Rn), ‖φ‖L∞(Ω) ≤ 1

}

For a differentiable function f ∈ Ω, with Ω ⊆ Rn, the total variation of f can be written as

V (f,Ω) =

∫
Ω

|∇f(x)|dx

The choice of vectorial norm inside the integral yields two different types of total variation.

Definition Isotropic total variation: | · | denotes the l2-norm, in which case

V (f,Ω) =

∫
Ω

(

n∑
i

f2
xi(x))

1
2 dx

Definition Anisotropic total variation: | · | denotes the l1-norm, in which case

V (f,Ω) =

∫
Ω

n∑
i

|fxi(x)|dx

The isotropic and anisotropic cases differ in terms of the geometries they each preserve. While the decoupled

anisotropic total variation preserves piecewise constant orthogonal structures such as rectangular roofs, the coupled

isotropic total variation preserves piecewise constant radial structures such as silos. Our model will be robust with

respect to either choice of total variation and dual derivations of variable updates will be shown, however the

experiments and results are based on the anisotropic definition.
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B. Shrinkage Proximal Operator

We will introduce a splitting variable and quadratic penalty into the model. The solution to the l1-regularized least

squares problem

arg min
~x

µ‖~x‖1 +
1

2
‖~x− ~y‖22

is given by the soft threshold proximal mapping operator, shrinkage [19], [20]:

Definition

Shrink(~x, µ) = Sµ(~x) =
~x

|~x|
max{|~x| − µ, 0}

If ‖~x‖1 = ‖x1‖+‖x2‖, as in the anisotropic case of total variation, the shrinkage is decoupled and done component

wise. On the other hand, if ‖~x‖1 =
√
‖x1‖2 + ‖x2‖2, as in the isotropic case, the terms are coupled and both

components are updated simultaneously. Both variants have their merits, while the former is computationally simpler,

the latter has the advantage of using more local information and may be more conformant to certain image processing

application.

IV. TV-L1 ADMM MODEL

We will now make some technical modifications to our model, while preserving the qualitative ideas and motivations.

The two energy components of the minimization problem are the smoothness regularizer and the data fidelity term.

The energy of the data fidelity term, λ2 ‖f(x, y)−u(x, y)‖22 = λ
2 ‖g(y)‖22, can be interpreted as the size of the striping

mask. The L2 fidelity overly penalizes stripes of large magnitude, and likewise under-exaggerates the significance

of stripes of small magnitude. In areas of no striping, we intend our (logarithm of the) striping mask to be very close

to zero, while in areas of heavy striping, we wish to remove said striping and thus will yield a larger magnitude

of our striping mask in that region. Using the L1 fidelity gives us a smaller striping mask in areas of no striping,

leaving enough energy to remove the heavier striping in localized areas of the image. Because there is no prior

knowledge of the distribution of the stripes, and qualitatively we may wish to remove deep striping effects while

preserving sharp geometry, we believe it is better to update the model with an L1 striping penalty, ‖g‖1.

An L2 gradient term would cause over-smoothing of the retrieved clean image u(x, y). This could cause a loss in

boundary sharpness of elements in the image (e.g. lakes, rooftops, etc.), which seems important in the pursuit and

usage of destriped images. Implementing a total variation based regularizer would act similarly to the L2 gradient

but maintains boundary sharpness more natural to the underlying image. Though these terms are not differentiable,

impeding a closed form solution, state-of-the-art nonlinear optimization algorithms are available for fast convergence

to qualitatively meaningful minimizers. The unconstrained total variation L1 model (TV-L1) is:
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min
u

{
V (u(x, y), Ix × Iy) + λ|u(x, y)− f(x, y)‖1

}
or equivalently, minimizing with respect to the striping mask g:

min
g

{
V (f(x, y)− g(y), Ix × Iy) + λ‖g(y)‖1

}

A. Discretization

For the purpose of application and computation, we shall now move the problem into a discrete setting. Let

Ω = {x1, ..., xC}×{y1, ..., yR} be an R×C matrix. First variations will be approximated via forward differences,

so that ∂f∂y (xi, yj) ≈ f(xi, yj+1)− f(xi, yj) := δyfi,j for j = 1, ..., R− 1 and analogously for ∂f
∂x ≈ f(xi+1, yj)−

f(xi, yj) := δxfi,j for i = 1, ..., C−1. We will take Neumann boundary conditions, so that on the forward boundary

(i = C or j = R), the derivative is set to zero.

D =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

0 0 0 · · · 0 0


∈MR×R(R)

so that Du(xi0 , y) = (δyui0,1, · · · , δyui0,R−1, 0)T

Isotropic total variation:

|∇If(xi, yj)| ≈
√

(δxfi,j)2 + (δyfi,j)2

Anisotropic total variation:

|∇AIf(xi, yj)| ≈ |δxfi,j |+ |δyfi,j |

With these discrete operators defined, the discrete unconstrained TV-L1 minimization problem is:

min
g

{∑
i,j

‖〈δxfi,j , δy(fi,j − gj)〉‖1 + λ‖g(y)‖1
}

The two flavors of the minimization problem are:
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Anisotropic

min
g

{∑
i,j

|δy(fi,j − gj)|+ λ‖g(y)‖1
}

Isotropic

min
g

{∑
i,j

√
(δxfi,j)2 + (δy(fi,j − gj))2 + λ‖g(y)‖1

}

B. Augmented Lagrangian

1) Anisotropic: With the discrete forward difference approximation matrix defined above, we can rewrite the

minimization problem as:

Point Form: min
~g

{∑
i,j

|δy(fi,j − gj)|+ λ‖g(y)‖1
}

Vector Form: min
~g

{∑
i

‖D(fi − ~g)‖1 + λ‖g(y)‖1
}

Matrix Form: min
~g

{
‖D(f − ~g ⊗ ~1C)‖1,1 + λ‖g(y)‖1

}

To render the constrained minimization problem unconstrained, we introduce auxiliary variables, Lagrangian mul-

tipliers (split Bregman), and quadratic penalty terms, so that the augmented Lagrangian is defined as:

Lα,λ(bi, h, g, qi, r) =
∑
i

(
‖bi‖1 +

α

2
‖bi −D(g − fi)‖22 + 〈qi, bi −D(g − fi)〉

)
+λ
(
‖h‖1 +

α

2
‖h− g‖22 + 〈r, h− g〉

)
=

∑
i

(
‖bi‖1 +

α

2
‖bi −D(g − fi) +

qi
α
‖22
)

+λ
(
‖h‖1 +

α

2
‖h− g +

r

α
‖22
)

+O(q2
i , r

2)

We now solve the unconstrained saddle point problem.

min
bi,h,g

max
qi,r
Lα,λ(bi, h, g, qi, r)
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The solution to the original constrained minimization problem is now found as the saddle point of the augmented

Lagrangian L in a sequence of iterative sub-optimizations called alternating direction method of multipliers (ADMM)

[21], [22], [23], [24], [25], [26].

The splitting variables bi, and h are updated by the proximal mapping operator:

bk+1
i = arg min

bi

Lα,λ(bi, h
k, gk, qki , r

k)

= arg min
bi

{
‖bi‖1 +

α

2
‖bi −D(g − fi) +

qi
α
‖22
}

= S 1
α

(
D(g − fi)−

qi
α

)
hk+1 = arg min

h
Lα,λ(bk+1

i , h, gk, qki , r
k)

= arg min
hi

{
‖h‖1 +

α

2
‖h− g‖22

}
= S 1

α

(
g − r

α

)

Due to the introduction of the splitting variables, g is only contained in quadratic terms, and thus easily solved for:

gk+1 = arg min
g
Lα,λ(bk+1

i , hk+1, g, qki , r
k)

= arg min
g

{
α

2

∑
i

‖bi −D(g − fi) +
qi
α
‖22

+
λα

2
‖h− g +

r

α
‖22
}

⇒

δL
δg

= α
∑
i

−DT (bi −D(g − fi) +
qi
α

)− λα(h− g +
r

α
) =

α(CDTD + λI)g − αDT (
∑
i

bi +Dfi +
qi
α

)− λαh+ λr = 0 ⇒

g = (CDTD + λI)−1

(
DT (

∑
i

bi +Dfi +
qi
α

) + λ(h− r

α
)

)

The Langrangian multipliers (split Bregman variables) are updated through gradient ascent.

qk+1
i = qki + τα(bk+1

i −D(gk+1 − fi))

rk+1 = rk + τλα(hk+1 − gk+1))
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(a) (b) (c) (d) (e)

Fig. 2: (a) The 355 nm channel image with stripes captured by AirMSPI instrument from Nadir angle at Mojave,

California. (b) Destriped image using TV-L2 model. (c) Difference between captured image from (a) and TV-L2

destriped image from (b). (d) Destriped image using TV-L1 model. (e) Difference between captured image from

(a) and TV-L1 destriped image from (d).

2) Isotropic: Due to the coupling of the terms in this version of the minimization problem, we cannot compactly

write the problem with matrices as above; however, the solution is just as readily available. Here the � denotes the

Hadamard matrix power operator, which acts pointwise on the matrix.

Point Form:

min
~g

{∑
i,j

√
(δxfi,j)2 + (δy(fi,j − gj))2 + λ‖g(y)‖1

}

Matrix Form:

min
~g

{
‖[(fDT )�2 + (D(f − ~g ⊗ ~1C))�2]�

1
2 ‖1,1 + λ‖g(y)‖1

}
Just as before, we introduce splitting variables and Lagrangian multipliers to form the augmented Lagrangian:

Lα,λ(ai,j , bi,j , h, g, pi,j , qi,j , r) =
∑
i,j

√
|ai,j |2 + |bi,j |2 +

α

2
‖ai,j − δxfi,j‖22 + 〈pi,j , ai,j − δxfi,j〉

+
α

2
‖bi,j − δy(fi,j − gj)‖22 + 〈qi,j , bi,j − δy(fi,j − gj)〉

+λ(‖h‖1 +
α

2
‖h− g‖22 + 〈r, h− g〉)

=
∑
i,j

√
|ai,j |2 + |bi,j |2 +

α

2
‖ai,j − δxfi,j +

pi,j
α
‖22

+
α

2
‖bi,j − δy(fi,j − gj) +

qi,j
α
‖22

+λ
(
‖h‖1 +

α

2
‖h− g +

r

α
‖22
)

+O(q2
i,j , p

2
i,j , r

2)
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Fig. 3: Comparisons of TV-L2 and TV-L1 destriping for the results shown in Fig. 2. (a) On the left, plots of

recovered function G for TV-L2 destriped image (blue) and TV-L1 destriped image (red) are shown. On the right,

plots of sums over all rows of original image with stripes (black), TV-L2 destriped image (blue), and TV-L1

destriped image (red) are shown. (b) Histogram of function G for TV-L2 reconstruction. (c) Histogram of function

G for TV-L1 reconstruction.

The splitting variables ai,j , bi,j are updated by the vectorial proximal mapping operator:

〈ai,j , bi,j〉 = arg min
〈ai,j ,bi,j〉

Lα,λ(ai,j , bi,j , h
k, gk, pki , q

k)

= arg min
〈ai,j ,bi,j〉

{√
|ai,j |2 + |bi,j |2 +

α

2
‖ai,j − δxfi,j +

pi,j
α
‖22

+
α

2
‖bi,j − δy(fi,j − gj) +

qi,j
α
‖22
}

= arg min
〈ai,j ,bi,j〉

{
‖〈ai,j , bi,j〉‖+

α

2
‖〈ai,j , bi,j〉 − 〈δxfi,j +

pi,j
α
, δy(fi,j − gj) +

qi,j
α
〉‖2
}

= S 1
α

(〈δxfi,j +
pi,j
α
, δy(fi,j − gj) +

qi,j
α
〉)

Each component of the vector is updated via shrinkage as follows:
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(a) (b) (c) (d) (e)

Fig. 4: (a) The 355 nm channel image with stripes depicting clouds over the Pacific Ocean captured by AirMSPI

instrument from 66.0◦F angle. (b) Destriped image using TV-L2 model. (c) Difference between captured image

from (a) and TV-L2 destriped image from (b). (d) Destriped image using TV-L1 model. (e) Difference between

captured image from (a) and TV-L1 destriped image from (d).

ai,j =
δxfi,j +

pi,j
α

s
·max(s− 1

α
, 0)

bi,j =
δy(fi,j − gj) +

qi,j
α

s
·max(s− 1

α
, 0)

s =

√
(δxfi,j +

pi,j
α

)2 + (δy(fi,j − gj) +
qi,j
α

)2

The splitting variable h, the striping mask g, and the Lagrangian multipliers are updated as before due to the

common structure between the two models.

pk+1
i,j = pki,j + τα(δxfi,j +

pi,j
α

))

C. TV-L2 ADMM

We introduce a slight variant to the TV-L1 model where the norm on the striping mask is replaced by an L2 norm,

this is called the TV-L2 model.

min
g

{∑
i,j

‖〈δxfi,j , δy(fi,j − gj)〉‖1 +
λ

2
‖g(y)‖22

}

In both the isotropic and anisotropic cases, the energy terms with g in the augmented Lagrangians are the same:
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∑
i,j

α

2
|bi,j − δy(fi,j − gj) +

qi,j
α
|22 +

λ

2
‖g‖22 =

∑
i

α

2
‖bi −D(g − fi) +

qi
α
‖22 +

λ

2
‖g‖22

gk+1 = arg min
g
Lα,λ(bk+1

i , hk+1, g, pki , q
k
i , r

k)

= arg min
g

{
α

2

∑
i

‖bi −D(g − fi) +
qi
α
‖22 +

λ

2
‖g‖22

}
⇒

δL
δg

= α
∑
i

−DT (bi −D(g − fi) +
qi
α

) + λg

= (αCDTD +
λ

α
I)g − αDT (

∑
i

bi +Dfi +
qi
α

) = 0⇒

g = (CDTD +
λ

α
I)−1

(
DT (

∑
i

bi +Dfi +
qi
α

)

)

The quadratic penalty on the size of the striping mask is included for comparison with the L1 penalty term. Given

the same parameters α, and λ, the TV-L1 should be able to remove deeper stripes (of higher magnitude) while

preserving small fluctuations (of lesser magnitude) by not classifying them as stripes. We compare both the TV-L1

and TV-L2 models in our experiments.

The first algorithm (anisotropic) is presented in vector fashion. The second algorithm (isotropic) is presented in

matrix fashion.

V. ALGORITHM

Algorithm 1: Complete ADMM optimization of TV-L1

1: Initialize: A0 = (~ai), B0 = (~bi), Q0 = (~qi)← 0 ∈ RR×C , ~g0, ~h0, ~r0 ← 0 ∈ RR×1, n← 0 ∈ R

2: f = (~fi)← ln(F ), D ← 0 ∈ RR×R, (D)i,i = −1, (D)i,i+1 = 1 for i = 1, ..., R− 1

3: repeat

4: n← n+ 1

5: case Anisotropic:

6: for i = 1 : C do

7: Update splitting variable for smoothness regularizer term via shrinkage:

8:

~bi
n+1
← S 1

α

(
D(~gn − ~fi)−

~qni
α

)
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Fig. 5: Comparisons of TV-L2 and TV-L1 destriping for the results shown in Fig. 4. (a) On the left, plots of

recovered function G for TV-L2 destriped image (blue) and TV-L1 destriped image (red) are shown. On the right,

plots of sums over all rows of original image with stripes (black), TV-L2 destriped image (blue), and TV-L1

destriped image (red) are shown. (b) Histogram of function G for TV-L2 reconstruction. (c) Histogram of function

G for TV-L1 reconstruction.

9: Update Lagrangian multiplier for regularizer term via dual ascent:

~qi
n+1 ← ~qi

n + τα(~bi
n+1
−D(~gn − ~fi))

10: end for

11: case Isotropic:

12: for i = 1 : C, j = 1 : R do

13: Update splitting variables for smoothness regularizer term via vectorial shrinkage:

〈an+1
i,j , bn+1

i,j 〉 ← S 1
α

(〈δxfi,j +
pni,j
α
, δy(fi,j − gnj ) +

qni,j
α
〉)

14: Update Lagrangian multipliers for regularizer term via dual ascent:
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15:

pn+1
i,j ← pni,j + τα(δxfi,j +

pi,j
α

))

qn+1
i,j ← qni,j + τα(bn+1

i,j − δy(gnj − fi,j))

16: end for

17: case TV-L1:

18: Update splitting variable for data fidelity term via shrinkage:

19:

~hn+1 ← S 1
α

(
~gn − ~rn

α

)
20: Update striping mask:

21:

~gn+1 ← (CDTD + λI)−1

(
DT (

∑
i

~bi
n+1

+D~fi +
~qi
n+1

α
) + λ~hn+1 − λ

α
~rn

)

22: Update Lagrangian multiplier for data fidelity term via dual ascent:

23:

~rn+1 ← ~rn + τλα(~hn+1 − ~gn+1))

24: case TV-L2:

25: Update striping mask:

~gn+1 ← (CDTD + 2
λ

α
I)−1

(
DT (

∑
i

~bi
n+1

+D~fi +
~qi
n+1

α
)

)

Update energy terms:

En+1
1 ←

∑
i

‖D(~fi − ~gn+1)‖1, En+1
2 ← λ‖~gn+1‖1

En+1 ← En+1
1 + En+1

2

26: until convergence:

27: ‖~gn+1 − ~gn‖22/‖~gn‖22 < εg and |En+1 − En|2/|En|2 < εE .

28: Retrieve clean image:

u← f − gn+1 ⊗ [11, 12, ..., 1C ]

U ← exp(u)
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Fig. 6: Images with stripes captured by AirMSPI instrument at Mojave, California (left), destriped images using

TV-L1 model (center), and differences between captured and destriped images (right) are shown. The bands and

viewing angles are: (a) 380 nm band at Nadir angle; (b) 355 nm band at 66.1◦F angle; (c) 355 nm band at 66.1◦A

angle. 355 nm band at Nadir angle is shown in Fig. 2.

VI. EXPERIMENTS

In our experiments, we used data acquired by the Airborne Multi-angle Spectro Polarimetric Imager (AirMSPI).

AirMSPI is an airborne prototype instrument similar to that of the future satellite-borne MSPI instrument for

obtaining multi-angle polarization imagery [27]. The instrument was built for NASA by the Jet Propulsion

Laboratory in Pasadena, California and has been flying aboard the NASA ER-2 high altitude aircraft since October

2010.

AirMSPI is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization
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(a)
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Fig. 7: Images with stripes depicting clouds over the Pacific Ocean captured by AirMSPI instrument (left), destriped

images using TV-L1 model (center), and differences between captured and destriped images (right) are shown. The

bands are: (a) 380 nm, and (b) 660 nm all at 66.0◦F. 355 nm band at 66.0◦F angle is shown in Fig. 4.

in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67◦

along-track range. Two principal observing modes are employed: step-and-stare, in which 11 km x 11 km targets

are observed at a discrete set of view angles with a spatial resolution of ∼ 10 m; and continuous sweep, in which

the camera slews back and forth along the flight track between ±67◦ to acquire wide area coverage (11 km swath

at nadir, target length 108 km) with ∼ 25 m spatial resolution. Step-and-stare provides more angles, but continuous

sweep gives greater coverage. Multiple observing modes can be programmed into the instrument and activated

under cockpit control. Multiangle radiance and polarization imagery from AirMSPI will provide 3-D scene context

where clouds and aerosol plumes are present. It will also enable retrieval of aerosol and cloud macrophysical

properties (distribution, height), microphysical properties (size distribution, single scattering albedo, shape), and

optical depth.

We first compare destriping results generated using TV-L2 and TV-L1 models. Fig. 2 shows the 355 nm UV

channel image with stripes captured by the AirMSPI instrument from Nadir angle at Mojave, California. The

image is destriped using TV-L2 and TV-L1 models. As we see from the destriped images and corresponding

differences between captured images and destriped images, TV-L2 model does not preserve radiometric intensities

in regions where no stripes are present. Fig. 3(a,left) shows plots of recovered function g for TV-L2 and TV-L1

destriped images. TV-L1 recovered function g is closer to identity especially at the rows where with no stripes,
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Fig. 8: Images with stripes of dry lake Ivanpah, California captured by AirMSPI instrument (left), destriped images

using TV-L1 model (center), and differences between captured and destriped images (right) are shown. The bands

are: (a) 355 nm, (b) 380 nm, and (c) 865 nm bands, all at Nadir angle.

suggesting TV-L1 reconstruction is more accurate than TV-L2 reconstruction. Fig. 3(a,right) shows plots of sums

over all rows of the original image with stripes (from Fig. 2), as well as sums of rows for TV-L2 and TV-L1

destriped images. These plots indicate that TV-L1 model preserves radiometric intensities of the original images

better, which TV-L2 model produces more artificial smoothing throughout the image. Figures 3 (b) and (c) show

histograms of function g for TV-L2 and TV-L1 reconstructions, respectively. TV-L1 reconstruction is pointier than

TV-L2 reconstruction. It is also centered at 1, as opposed to TV-L2 reconstruction, which further indicates better

accuracy of TV-L1 model. Note that the actual stripes, at around g ≈ 0.95 are represented in the histograms by

small bumps.

Fig. 4 and Fig. 5 display similar results as in Fig. 2 and 3 for the 355 nm channel image with stripes depicting
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Fig. 9: Images captured by AirMSPI instrument at Avalon, California (left), destriped images using TV-L1 model

(center), and differences between captured and destriped images (right) are shown. The bands are: (a) 355 nm and

(b) 380 nm, both captured using the continuous sweep observing mode.

clouds over the Pacific Ocean captured by AirMSPI instrument from 66.0◦F angle.

Figures 6, 7, and 8 show more examples of TV-L1 reconstruction of images captured using continuous sweep

observing mode. Figures 9 and 10 display images captured using the step-and-stare observing mode as well as

destriped results using TV-L1 model.

VII. CONCLUSION

In this paper, we have presented a novel variational method for image destriping through fast minimization

techniques of appropriately modelled energy functionals - namely total variation and L1 data fidelity term. In

contrast to existing destriping models, such as statistical estimation models, we simplify the calculations while

achieving excellent qualitative results quickly and with few explicit parameters.

Our destriping model solves the inverse problem as follows: minimally remove a univariate multiplicative striping

mask from the data, such that the clean image is somewhat smooth and the removed stripe has low energy. We

assess the smoothness of the clean image using total variation, which maintains sharp image features and preserves
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Fig. 10: Images with stripes captured by AirMSPI instrument at Fallbrook, California (left), destriped images using

TV-L1 model (center), and differences between captured and destriped (right) are shown. The bands are: (a) 355

nm and (b) 380 nm, both captured using the continuous sweep observing mode.

definition and contrast. We address both isotropic and anisotropic total variation in this paper, each having their

respective strengths and weaknesses. We use L1, and for comparison, L2 energy to measure the removed striping,

ensuring minimal data removal and thus a clean image of high fidelity.

The variational problem is solved very efficiently in an ADMM approach: introduce splitting variables and quadratic

penalties for deviations from said splitting variables to allow efficient optimization via proximal shrinkage operators,

explicit quadratic solutions, and simple gradient ascent for the Lagrangian multipliers. In our experiments, we have

shown that the proposed method yields qualitatively good results, removes very minimal masking, and does so

quickly in both iterations and time. From the histogram distributions of G, we observe a narrower spread around

1, yet a wider, more equidistributed support, suggesting that most of the time, there is minimal masking removal

(multiplier close to 1), yet in areas of heavy striping, the destriping effect is more prevalent and of greater magnitude.

Applications of this algorithm are not limited to satellite imagery, and may be analogized to other fields such as

raster scans in microscopy. Any scientific measurements (of images) made mostly along a curve – parameterizable

by a single dimension – may be susceptible to such striping biases, and may be a candidate for similar destriping.

Future work will expand this model to multi-modal images, color images, and may incorporate other specific

priors on the data.
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