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Abstract. We reformulate the original phase retrieval problem into two variational models
(with and without regularization), both containing a globally Lipschitz differentiable term. These
two models can be efficiently solved via the proposed Partially Preconditioned Proximal Alternating
Linearized Minimization (P3ALM) for masked Fourier measurements. Thanks to the Lipschitz dif-
ferentiable term, we prove the global convergence of P3ALM for solving the nonconvex phase retrieval
problems. Extensive experiments are conducted to show the effectiveness of the proposed methods.
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1. Introduction. Given the collected phaseless measurements f ∈ Rm+ , a gen-
eral phase retrieval problem can be expressed as

(1.1) To find u ∈ Cn, s.t. |Au|2 = f,

where A : Cn → Cm is a linear operator in complex Euclidean space and | · | denotes
pointwise absolute values. A classical phase retrieval problem refers to the case that
A is the discrete Fourier transform. It is well-known that classical phase retrieval has
trivial ambiguities, such as global phase shift, conjugate inversion, and spatial shift;
and non-trivial solutions also exist for one-dimensional signals [41]. Therefore, retriev-
ing the phase from its Fourier magnitude alone is not unique. Hayes [25] proved that
at least 2d × n magnitude measurements should be collected to guarantee the unique
recovery of d−dimensional (d ≥ 2) real-valued, non-reducible signals1. If the trans-
form A is generated by a generic frame2, then the injectivity of its quadratic operator
|A(·)|2 is guaranteed by collecting at least 2n−1 [2] and 4n−4 [19] measurements for
any real and complex signal, respectively. The uniqueness of the phase retrieval can
also be proved with additional information, such as collecting oversampled measure-
ments by a coded diffraction pattern [10], and a holographic pattern [9, 13]. Other
than exact recovery, researchers are also interested in stable phase retrieval [21, 3].
Please refer to a review paper [44] for more discussions about the uniqueness and
stability analysis of phase retrieval.

Appropriate regularizations are often introduced to increase the likelihood of hav-
ing the unique solution and to improve the robustness of phase retrieval algorithms.
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Two types of regularizations are popular in the literature. The first one is associated
with sparsity. Driven by compressive sensing, there is a burst of research on sparse
or compressive phase retrieval. To enforce the signal to be sparse, it is natural to
incorporate the L0 norm in the phase retrieval models such as SparseFienup [37],
GrEedy Sparse PhAse Retrieval (GESPAR) [43], and some recent works [50, 20, 27].
As the L0 norm is often relaxed by the convex L1 norm in the paradigm of compres-
sive sensing, the L1 approaches are considered in phase retrieval [35, 56, 38, 30, 8].
The second type of regularizations is inherent from image priors, e.g., Tikhonov [46],
shearlet [31], total variation [13], dictionary learning [47, 14] and general sparse prior
[15], etc.

One major difficulty in phase retrieval comes from the nonconvex constraint (1.1).
It is standard to construct a multivariable quadratic system, which is generally NP-
complete [4]. A classical phase retrieval approach is an alternating projection algo-
rithm [24, 23] and its variants; please refer to a review paper [33]. Although simple
and effective in practice, these alternating projection methods lack of convergence
analysis. Notably, this gap has been bridged by convex relaxation via semi-definite
programming such as PhaseLift [9] and PhaseCut [49]. Although having guaranteed
convergence, these convex methods are computationally expensive due to the lifted
dimension, especially for image phase retrieval problems. Alternatively, a gradient
descent approach with dynamic stepsizes, called Wirtinger flow [11], together with its
variants [18, 8], rigorously demonstrates the exact retrieval of phase information from
a set of random measurements. However, convergence analysis of such methods for
general phase retrieval measurements is still an open question. In addition, operator-
splitting based algorithms [52, 56, 13, 12, 20] exhibit effectiveness and flexibility in
phase retrieval. However, this type of approaches suffer from two main drawbacks:
(1) one can only prove the local convergence [28, 52, 16]; and (2) convergence analysis
often requires strong assumptions, e.g., the convergence of successive differences of the
multipliers [13], boundedness of iterative sequences [14], and some special conditions
of the linear mapping A [34]. Recently, global convergence of a Proximal Alternating
Linearized Minimization (PALM) algorithm for phase retrieval [26] was derived based
on the Kurdyka- Lojasiewicz property [1, 6], but their proposed model with equality
constraints was established based on noiseless measurements.

We aim to develop a phase retrieval algorithm that is effective, flexible (easy to
incorporate regularization terms), and with guaranteed convergence. In particular,
we reformulate the quadratic system of the phase retrieval by a splitting technique
and introduce an L2 fitting term, which is Lipschitz differentiable. Although the idea
is straightforward, the existence of such Lipschitz differentiable term in the objective
functional plays a critical role in the theoretical guarantee of global convergence,
which is not explicitly present in the existing variational models [52, 56, 13] for phase
retrieval. Algorithmically, PALM is a generic and popular algorithm for nonlinear
optimization problems, which can solve both the convex and nonconvex problems
with various setting and constraints very efficiently and flexibly. However, a direct call
may be not optimal for phase retrieval. We propose to speed up the plain PALM via
pre-conditioning. Especially, for the masked Fourier transform based phase retrieval
problems, the corresponding pre-conditioning matrix can be explicitly expressed such
that the proposed pre-conditioning algorithm can be fast implemented. In summary,
the main contributions of this paper are listed as follows:

1) We reformulate the original phase retrieval problem (1.1) by penalizing a
quadratic term ‖z − Au‖2 with an auxiliary variable z, referred to as least
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square phase retrieval (LSPR). We show that LSPR is exactly equivalent to
(1.1) in the noise-free case. More importantly, the reformulation has the flex-
ibility of accommodating any regularization to deal with noisy data, referred
to as Reg-LSPR.

2) We propose to incorporate an efficient pre-conditioning technique into the cel-
ebrated PALM algorithm, called Partially Pre-conditioned PALM (P3ALM),
to improve the convergence of the plain PALM and the robustness w.r.t.
noise and the number of measurements. Thanks to the presence of Lips-
chitz differentiable terms in the objective functionals, the global convergence
of P3ALM for both LSPR and Reg-LSPR is theoretically guaranteed with
proper stepsizes. To our best knowledge, it is the first time to show the
global convergence for the regularized phase retrieval model under very mild
conditions.

3) We conduct extensive experiments to demonstrate the effectiveness of pro-
posed methods. Particularly with two coded diffraction patterns, our pro-
posed algorithm is at least twice as fast as the state of the art first-order3

algorithms. For compressive phase retrieval, the proposed P3ALM for Reg-
LSPR with L0 regularization outperforms SparseFienup [37] and the proba-
bilistic approach (PRGAMP) [42] with higher successful recovery rates. For
the noisy cases, P3ALM produces comparable denoising results as TVPoiPR
in [12] with faster convergence.

The rest of this paper is organized in the following way. We describe both least
square phase retrieval model and a regularized version in Section 2. The numerical
algorithms for these two models are discussed in Section 3 with the global convergence
established in Section 4. Section 5 is devoted to extensive experiments for both
noiseless and noisy cases to demonstrate the efficiency of the proposed methods for
phase retrieval from classical Fourier transform, coded diffraction, and ptychographic
patterns. We give conclusions and future works in Section 6.

2. Proposed Models. We introduce a quadratic term for phase retrieval, which
plays an important role in analyzing global convergence of first-order operator-splitting
based algorithms. In particular, we propose two phase retrieval models: without reg-
ularization in Section 2.1 and with regularization in Section 2.2.

2.1. Proposed model without regularization. In addition to linear operator
A in (1.1), we assume that the measured intensity data are further corrupted by noise,
i.e.,

(2.1) f(t)
ind.∼ Noise(|Au|2(t)), ∀0 ≤ t ≤ m− 1,

where “Noise” represents the degradation of the intensity data |Au|2 due to noise. We
consider both Gaussian and Poisson distributions, which are typical in phase retrieval
measurements.

To determine the underlying image u from noisy measurements f , one standard
approach involves an optimization problem

(2.2) min
u
B(|Au|2, f),

3The first-order algorithm refers to the method that only involves the first-order gradient of the
objective functional.
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where B(·, ·) measures the distance between the unknown intensity |Au|2 and collected
phaseless data f . Various metrics have been proposed to deal with different noise
settings, such as amplitude based metric for Gaussian measurements (AGM) [52, 13],
intensity based metric for Poisson measurements (IPM) [46, 18, 12, 15], and intensity
based metric for Gaussian measurements (IGM) [39, 11, 8, 45, 15]. We consider all
the aforementioned data fitting terms, which can be mathematically expressed as

(2.3) B(g, f) :=



1

2

∥∥√g −√f∥∥2
; (AGM)

1

2
〈g − f ◦ log(g),1〉; (IPM)

1

2
‖g − f‖2; (IGM)

where ◦ denotes the pointwise multiplication4, 1 denotes a vector whose entries all
equals to ones, and ‖ · ‖ denotes the L2 norm in Euclidean space. Note that the
Alternating Direction Method of Multipliers (ADMM) was adopted in [52, 13, 12] to
solve the variational phase retrieval model in (2.2). However, due to the lack of the
globally Lipschitz differentiable terms in the objective functionals, it seems difficult
to guarantee its convergence.

In this paper, we consider to reformulate the model (2.2) as a least square phase
retrieval (LSPR) problem:

(2.4) LSPR: min
u,z
Fσ(u, z) :=

σ

2
‖z −Au‖2 + B(|z|2, f),

with the parameter σ > 0. It can be derived by penalizing the constraint z = Au to
(2.2) with the weight σ. We demonstrate in Theorem 1 that if the measured intensity
f is noise free, then finding a point in the solution set of phase retrieval problem (1.1),
defined as

(2.5) S(f) = {u ∈ Cn : |Au|2 = f},

is equivalent to solving the LSPR model (2.4).
Theorem 1. Assume that f ≥ 0, S(f) is nonempty and σ is an arbitrary

positive constant.
1). If (u?, z?) ∈ arg min

u,z
Fσ(u, z), then we have u? ∈ S(f) and z? = Au?.

2). If u? ∈ S(f), then we have (u?, z?) ∈ arg min
u,z
Fσ(u, z) and z? = Au?.

Please refer to Appendix A.1 for the proof. Theorem 1 establishes the equivalence
of the proposed LSPR model (2.4) to the original phase retrieval problem (1.1) in
the case of noiseless measurements. The proof also implies that (1.1) and (2.2) are
equivalent, and hence (2.4) is also equivalent to (2.2) under the same conditions as
Theorem 1.

We want to further analyze the LSPR model (2.4) in terms of optimality condition,
which only addresses critical points instead of global solutions. To make the paper
self-contained, we provide basic definitions for the generalized subdifferential [36] as
follows.

Definition 1. Let J : Rd → (−∞,+∞] be proper and lower semicontinuous
(l.s.c.).

4The operation such as
√
·, log(·), | · | are all defined pointwisely in this paper.
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1). Fréchet subdifferential:

∂̂J(u) =

{
v ∈ Rd : lim inf

w 6=u,w→u

J(w)− J(u)− 〈v, w − u〉
‖w − u‖

≥ 0

}
,∀u ∈ domJ.

2). Limiting subdifferential:

∂J(u) =
{
v ∈ Rd : ∃uk → u with J(uk)→ J(u),

and vk → v with vk ∈ ∂̂J(uk) as k →∞
}
.

We remark that if the standard derivative of a function exists, denoted by ∇, the
Fréchet subderivative and limiting subderivative are coincident with this derivative.
Immediately it holds

(2.6) ∂J = ∇J1 + ∂J2, if J = J1 + J2,

if J1 is continuously differentiable;

(2.7) ∂J(u1, u2) = (∇u1J(u1, u2), ∂u2J(u1, u2)),

if J(u1, u2) is continuously differentiable w.r.t. u1.
We separate the real and imaginary components and rewrite the objective func-

tional as

B(|z|2, f) = B(|z1|2 + |z2|2, f),

‖z −Au‖2 = ‖z1 −A1u1 +A2u2‖2 + ‖z2 −A1u2 −A2u1‖2,

with

A := A1 + iA2, u = u1 + iu2, and z = z1 + iz2,

and i =
√
−1. Then we are ready to generalize the above limiting subdifferential to

complex-valued variables (subdifferential w.r.t. real and imaginary parts) as

∂J(u) := ∂u1
J(u) + i∂u2

J(u).

Definition 2. For a proper and l.s.c. functional J , ǔ is a critical point of J if
0 ∈ ∂J(ǔ).

For any critical point of the proposed LSPR model (2.4), denoted as (ǔ, ž), the
first order optimality condition can be expressed as

(2.8)

{
0 = A∗(ž −Aǔ),

0 ∈ σ(ž −Aǔ) + 2∂gB(g, f)
∣∣
g=|ž|2 ◦ ž,

where the second equality is derived by (2.6). After multiplying the second equation
by A∗, and eliminating the first term, we have

(2.9)

{
0 = A∗(ž −Aǔ),

0 ∈ A∗
(
∂gB(|ž|2, f) ◦ ž

)
.

Theorem 2. Each element ǔ ∈ S(f) is a critical point of (2.4), i.e.

0 ∈ ∂Fσ(ǔ,Aǔ),
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with ∂Fσ(u, z) = (∇uFσ(u, z), ∂zFσ(u, z)).
See the proof in Appendix A.2. Note that there exists a gap between the global

minimizers and the critical points. It would be interesting to further classify critical
points as global minimizer, local minimizer, or saddle points, which will be our future
work; please refer to some discussions in the conclusion section. In summary, we have
the following relationship among (1.1), (2.2), (2.4): if f ≥ 0 and S(f) 6= ∅, then

S(f) =

{
u? : (u?,Au?) ∈ arg min

u,z
Fσ(u, z)

}
= arg min

u
B(|Au|2, f),

and

S(f) ⊆ {ǔ : 0 ∈ ∂B(|Aǔ|2, f)} ⊆ {ǔ : ∃ž, s.t. 0 ∈ ∂Fσ(ǔ, ž)}.

Note that the set of critical points of (2.2) is a subset of the one of the proposed model
(2.4), which can be readily obtained by (2.9) and following the proof of Theorem 2.
If (ǔ, ž) is a critical point of (2.4), the error ž − Aǔ ∈ Null(A∗). Therefore, if A is
a nonsingular square matrix, then the sets of critical points for (2.2) and (2.4) are
identical.

For noisy measurements f , it is possible that the solution set S(f) is empty.
Nevertheless, LSPR (2.4) always admits a solution uσ depending on σ if A∗A is
nonsingular, which is the case for most real applications. For example, masked Fourier
transform has full column rank. Indeed, in the noisy case, the parameter σ balances
the projections onto two constraint sets, i.e.

{z ∈ Cm : z = Au, ∀u ∈ Cn} and {z ∈ Cm : |z|2 ≈ f}.

If σ → +∞, the solution to (2.4) approaches to a minimizer to (2.2), which is indicated
by the following theorem. It is a direct extension of [53, Theorem 17.1] to the complex-
valued case; hence the proof is omitted.

Theorem 3. Let each (ul, zl) be the exact global minimizer of Fσl(u, z) defined
by (2.4), and σl → +∞ as l → +∞. Then every limit point of the sequence ul is a
global solution of the problem (2.2).

In practice, we do not need to select a very large σ or update its value gradually
to infinity. We study the impact by σ in Section 5.4, particularly Figure 14 (a), (d).

2.2. Proposed model with regularization. With further assumptions of the
underlying image, variational regularized methods are adopted to suppress the noise.
Inspired by compressive sensing, Moravec et al. [35], Ohlsson et al. [38], and Yang et
al. [56] proposed the standard L1 minimization,

min ‖u‖1, s.t. |Fu|2 = f,

or the unconstrained formulation,

minλ‖u‖1 +
1

2
‖|Fu| −

√
f‖2,

with F ∈ Cn×n denoting the normalized discrete Fourier transform. Duan et al. [20]
proposed the L0 regularization for phase retrieval,

minλ‖u‖0 +
1

s
‖|Au| −

√
f‖ss,
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with s = 1, 2. In coherent diffractive imaging, Thibault and Guizar-Sicairos [46]
proposed Tikhonov regularization of the transform domain for Poisson noise removal,

minλ‖∇u‖2 +
1

2
〈|Au|2 − f ◦ log(|Au|2),1〉,

with gradient operator ∇. In order to further preserve the edges of recovered images,
Chang et al. [12, 13] established total variation regularized model for general phase
retrieval

min
u
λTV(u) + B(|Au|2, f),

where TV stands for total variation regularization [40]. In summary, the regularized
model can be rewritten in a unified form as

(2.10) min
u
λR(u) + B(|Au|2, f),

with regularization R(·) and data fitting term B(·, ·).
Similarly to LSPR, we propose a modified version of (2.10), referred to as “Reg-

LSPR”,

(2.11) Reg-LSPR: min
u,z
G(u, z) := λR(u) + Fσ(u, z),

where Fσ is defined in (2.4) and λ > 0 is a parameter to balance the regularization and
data fitting terms. We show the existence of solutions to (2.11) under mild conditions
in the following theorem. The proof is standard, thus omitted.

Theorem 4. Assume that (i) R(·) is proper, lower semi-continuous and (ii)
A∗A is nonsingular, then there exists a minimizer (u?, z?) for (2.11), i.e.

(u?, z?) ∈ arg min
u,z
G(u, z).

We remark that A is usually nonsingular for different Fourier masked measure-
ments patterns, such as classical phase retrieval pattern involving with Fourier trans-
form, coded diffraction pattern, holographic pattern, and ptychographic pattern [12].
In general, it is difficult to show that a nonconvex minimization problem has a unique
solution. If no regularization, i.e. λ = 0, we establish in Theorem 1 that the min-
imizer of (2.11) is unique up to global phase factor if the dimension of S(f) is not
greater than one. Please refer to [13] for more discussions about the uniqueness of
phase retrieval solutions.

3. Numerical algorithms. We first review the plain PALM in Section 3.1.
We then describe the partially preconditioned version for LSPR in Section 3.2, and
present the relationship of the proposed algorithm to alternating projection algorithms
in Section 3.3. Finally, we describe the proposed partially preconditioned algorithm
for Reg-LSPR in Section 3.4.

3.1. Proximal alternating linearized minimization(PALM). We present
a general optimization problem in the form of

min
v
ε1(v) + ε2(v),
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with C1 functional ε1(·) and nonsmooth functional ε2(·). The PALM algorithm [6] is
based on a proximal operator defined as follows,

Definition 3. Given function f : CN → R
⋃
{+∞} and a positive definite matrix

M , the proximal operator Proxfµ : CN → CN of f is defined by

(3.1) Proxfµ(v;M) = arg min
x

(
f(x) +

µ

2
‖x− v‖2M

)
,

where ‖v‖2M := 〈v, v〉M with 〈v, u〉M = 〈Mv, u〉 and the standard L2 inner product
〈·, ·〉.

Given an approximated solution vk, the forward and backward splitting algorithm
[22] with a preconditioning matrix M and stepsize αk can be formulated as follows,

vk+1 ∈ arg min
v

ε1(vk) +
〈
v − vk,∇ε1(vk)

〉︸ ︷︷ ︸
1st-order expansion of ε1(v) at vk

+ε2(v) +
αk

2
‖v − v̂k‖2M︸ ︷︷ ︸

Prox-Regularization

∈ arg min
v

Backward︷ ︸︸ ︷
ε2(v) +

αk

2
‖v − (vk − 1

αk
M−1∇ε1(vk))︸ ︷︷ ︸

Forward

‖2M

:= Proxε2
αk

(
vk − 1

αk
M−1∇ε1(vk);M

)
,

where ∇ denotes the gradient for the C1 smooth function. Hereafter if M is identity
operator I, we denote Proxε2

αk
(u) := Proxε2

αk
(ûk; I) for simplicity.

If ε2(·) has a separable structure as

ε2(v) := ψ1(v1) + ψ2(v2),

with v = (vT1 , v
T
2 )T , we can consider the following optimization problem

min
v1,v2

π(v1, v2) + ψ1(v1) + ψ2(v2),

where π(v1, v2) = ε1(v). Then PALM based on the forward and backward splitting
(without preconditioning) can be given with stepsizes αk1 , α

k
2 as

(3.2)


vk+1

1 ∈ Proxψ1

αk1

(
vk1 −

1

αk1
∇v1π(vk1 , v

k
2 )
)
,

vk+1
2 ∈ Proxψ2

αk2

(
vk2 −

1

αk2
∇v2π(vk+1

1 , vk2 )
)
,

with approximated solutions vk1 , v
k
2 .

3.2. Partially preconditioned PALM (P3ALM) for LSPR. We rewrite
(2.4) as

(3.3) min
u,z
Fσ(u, z) := H(u, z) + B(|z|2, f),

by denoting H(u, z) := σ
2 ‖z−Au‖

2. We can compute the derivative of the functional
with respect to complex-valued variables by taking the derivative with respect to the
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real and imaginary parts of a complex-valued variable separately. Following [13], one
can readily get the partial derivative of H with respect to variables u and z as

(3.4)

{
∇uH(u, z) = σA∗(Au− z),
∇zH(u, z) = σ(z −Au).

Since ‖∇H(u1, z1) − ∇H(u1, z2)‖ ≤ σmax{1, ‖A‖}(‖A∗‖ + 1)‖(uT1 , zT1 ) − (uT2 , z
T
2 )‖,

for all u1, u2 ∈ Cn, and z1, z2 ∈ Cm, we have ∇H(·, ·) is Lipschitz continuous.
Applying (3.2) to the LSPR model (2.4), we obtain an iterative scheme

uk+1 = ǔk, zk+1 = Prox
B(|·|2,f)

dk
(ẑk),(3.5)

with positive descent stepsizes ck, dk, where

(3.6)


ǔk := uk − 1

ck
∇uH(uk, zk) =

(
I− σ

ck
A∗A

)
uk +

σ

ck
A∗zk,

ẑk := zk − 1

dk
∇zH(uk+1, zk) =

(
1− σ

dk

)
zk +

σ

dk
Auk+1,

by (3.4). For each data fitting term B(| · |2, f) defined in (2.3), there is a closed-form
formula for the proximal operator. We list them all below,
(3.7)

Prox
B(|·|2,f)
β (z) =



√
f + β|z|
1 + β

◦ sign(z), for AGM [52, 13];

β|z|+
√

(β|z|)2 + 4(1 + β)f

2(1 + β)
◦ sign(z), for IPM [55, 12];

$β(|z|) ◦ sign(z), for IGM [15];

The expression of $β(·) is complicated, which is given in Appendix B.
Remark 3.1. We want to point out that the computational bottleneck for quadratic

inverse problems lies in the subproblem of z. Thanks to the proximal operators (3.7),
some operator-splitting based algorithms such as PALM and ADMM [52, 13, 20] can
be adopted, and therefore computational cost of the quadratic inverse problem per
iteration is in the same order to the one of linear inverse problems.

We observe empirically that PALM for LSPR converges very slowly; see numerical
examples in Figure 1. To speed up, we propose a Partially5 Preconditioned PALM
(P3ALM),

uk+1 = ûk, zk+1 = Prox
B(|·|2,f)

dk
(ẑk),(3.8)

with

ûk := uk − 1

ck
M−1∂uH(uk, zk) =

(
1− σ

ck

)
uk +

σ

ck
M−1A∗zk.

Heuristically, we choose M := A∗A, if the linear mapping A is masked Fourier trans-
form, leading to a diagonal matrix A∗A. Therefore, the inverse of M is simply taking
reciprocal of diagonal elements of A∗A. We show in experimental section that this
preconditioning significantly speeds up the convergence of the plain PALM and also

5Here “Partially” means only preconditioning w.r.t. variable u.
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gives reasonable phase retrieval results. If the mapping A does not have such struc-
ture, e.g., a random dense matrix A with each element following Gaussian distribution
[11], this preconditioning matrix may lead to higher computational cost.

We summarize the proposed P3ALM for LSPR (2.4) in Algorithm 1. Note that
we cannot choose u0 = z0 = 0 as initial conditions; otherwise, the iterative sequences
would converge to zero, i.e., (ǔ, ž) = (0, 0), which is a critical point of LSPR, but not
a solution to (1.1) if ‖f‖ 6= 0. In experiments, we choose u0 6= 0 randomly.

Algorithm 1 P3ALM for LSPR (2.4)

Initialization: u0 6= 0, z0 = Au0, k := 0, maximum iteration number MAXout and
parameters σ, and stepsizes {ck}, {dk}. Set precondition matrix M = A∗A for
masked Fourier measurements.

Output: u? = uMAXout−1.
1: for k = 0 to MAXout − 1 do
2: uk+1 =

(
1− σ

ck

)
uk + σ

ck
M−1A∗zk.

3: zk+1 = Prox
B(|·|2,f)

dk

((
1− σ

dk

)
zk + σ

dk
Auk+1

)
, where the closed-form solution

of the proximal mapping is derived by (3.7) with different metrics.
4: end for

3.3. Connections to alternating projection algorithms. In this subsection,
we want to draw connections of Algorithm 1 to other alternating projection algorithms
that are popular in optic community.

If M = A∗A is invertible, two projection operators [12] can be introduced, i.e.,

P1(z) =
√
f ◦ sign(z) and P2(z) = AM−1A∗z.

Therefore, the error reduction (ER) [24] algorithm can be rewritten as

zk+1 = P2P1(zk), for k = 0, 1, · · · ,

and uk+1 can be computed as

(3.9) uk+1 = M−1A∗zk+1.

Similarly, one can obtain algorithms for HIO, DF, and RAAR with relaxed parameters
δ, γ1 and γ2 as follows,
(3.10)

HIO: zk+1 = ((1 + δ)P2P1 + I− P2 − δP1) (zk),

DF: zk+1 =
(
I + δ

(
P2((1 + γ2)P1 − γ2I)− P1((1 + γ1)P2 − γ1I)

))
(zk),

RAAR: zk+1 = (2δP2P1 + δI− δP2 + (1− 2δ)P1) (zk).

Note that alternating projection algorithms can work well in practice, as the matrix
M is usually diagonal . Our proposed algorithm (Algorithm 1) can be expressed as{

z̃k+1 = (1− δ)z̃k + δP2(zk),

zk+1 = Prox
B(|·|2,f)

dk

(
(1− γ)zk + γ(1− δ)z̃k + γδP2(zk)

)
,

where z̃k := Auk, and δ := σ
c , γ := σ

d with fixed stepsizes c ≡ ck, d ≡ dk.
Remark 3.2. It is interesting to consider two special cases of δ = 1 and γ = 1,

since they are equivalent to solving u−subproblem and z−subproblem of the proposed
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LSPR directly without forward-backward procedure, which is essentially the alternating
minimization with respect to u or v. For δ = 1, one obtains

zk+1 = Prox
B(|·|2,f)

dk

((
(1− γ)I + γP2)

(
zk)
)
.(3.11)

For γ = 1, one has {
z̃k+1 = (1− δ)z̃k + δP2(zk),

zk+1 = Prox
B(|·|2,f)

dk

(
(1− δ)z̃k + δP2(zk)

)
.

We will provide numerical tests for these special cases; please refer to Figure 14(b),
(c), (e), and (f), which show that the algorithm converges much slower without
forward-backward procedure.

We show heuristically that the proximal operator plays a similar role to the pro-
jection operator P1. The analysis is based on a strong assumption that the proposed
algorithm produces the iterative sequence (uk, zk) converging to the global minimizer.
Taking the data fitting term of AGM for an example, we have

lim
k→+∞

|zk| =
√
f, lim

k→+∞
z̃k = lim

k→+∞
Auk = lim

k→+∞
zk, lim

k→+∞
P2(zk) = lim

k→+∞
zk,

which immediately gives

lim
k→+∞

|ẑk| = lim
k→+∞

|(1− γ)zk + γ(1− δ)z̃k + γδP2(zk)| = lim
k→+∞

|zk| =
√
f.

Hence one has

(3.12) lim
k→+∞

∣∣∣Prox
B(|·|2,f)

dk
(ẑk)

∣∣∣ = lim
k→+∞

√
f + dk|ẑk|
1 + dk

=
√
f,

which shows that the proximal mapping provides an approximation of the magnitude
constraint. For other data fitting terms, one can get the similar results to (3.12).
Replacing the projection operator P1 with the proximal operator could yield a new
algorithm, but convergence analysis of such scheme is not available.

3.4. P3ALM for Reg-LSPR. In this section, we give a similar P3ALM for the
Reg-LSPR model (2.11) as follows:

(3.13)

{
uk+1 = Prox

λR(u)

ck
(ûk;M);

zk+1 = Prox
B(|·|2,f)

dk
(ẑk),

with ûk, ẑk defined in (3.6). The iteration (3.13) can be regarded as a general frame-
work for phase retrieval by a two-step scheme [15], in which the u-update is referred
to as denoising and z-update is the generalized least squares problem. Particularly
for the denoising step, we consider two types of regularization terms and discuss how
to solve the corresponding regularized linear reconstruction problem in detail.

3.4.1. Ls regularization for s = 0, 1 for compressive phase retrieval.
Motivated from compressive sensing, we apply the Ls regularization, i.e., R(u) = ‖u‖s
for s = 0, 1, to recover sparse or compressive signals. The subproblem w.r.t u reads

(3.14) min
u∈Cn

λ‖u‖s +
ck

2
‖u− û‖2M .
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For diagonal preconditioned matrix M , the closed-form solutions of (3.14) are ex-
pressed as

(3.15) uk+1 =

{
Threshhard

(
ûk; λ

ck
diag(M−1)

)
, if s = 0,

Threshsoft
(
ûk; λ

ck
diag(M−1)

)
, if s = 1,

where

Threshsoft(u;β) = max {0, |u| − β} ◦ sign(u),

(3.16) Threshhard(u;β)(t) =

{
u(t), if |u(t)| ≥

√
2β,

0, otherwise,
∀0 ≤ t ≤ n− 1.

If M is not diagonal, one needs inner iterations such as the forward and backward
splitting to solve (3.14). For real-valued images, additional constraint can be incorpo-
rated, such as u ≥ 0, and one can readily obtain the closed-form solution by directly
projection onto the nonnegative set.

3.4.2. Total variation regularization. The TV regularization was applied in
phase retrieval by Chang et al. [12, 13]. For R(u) = TV(u), the u-subproblem reads

min
u∈Cn

λTV(u) +
dk

2
‖u− û‖2M .

In order to tackle the nondifferential term, an auxiliary variable p = ∇u is introduced,
which yields an equivalent minimization problem

(3.17) min
u,p

λ‖p‖+
ck

2
‖u− ûk‖2M , s.t. p−∇u = 0.

An equivalent augmented Lagrangian is established as follows

(3.18) Lr(u,p; Λ) := λ‖p‖+
ck

2
‖u− ûk‖2M + <(〈p−∇u,Λ〉) +

r

2
‖p−∇u‖2.

Consequently, one needs to solve

max
Λ

min
u,p
Lr(u,p; Λ).

The ADMM [54, 7] is adopted to solve the above saddle point problem. In particular,
the iterations go as follows,

(3.19)


uj+1 = (ckM + r∆)−1

(
ckMûk − r(pj +

Λj
r

)

)
,

pj+1 = Threshsoft

(
∇uj+1 −

Λj
r

;
λ

r

)
,

Λj+1 = Λj + r(pj+1 − uj+1).

Please refer to Appendix C for more details. Note that since ckM + r∆ is a sparse
positive definite matrix, we can employ the conjugate gradient method to solve the
u-subproblem. The pseudo-code of P3ALM for Reg-LSPR is listed in Algorithm 2.
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Algorithm 2 P3ALM for Reg-LSPR (2.11)

Initialization: u0, z0 = Au0, k := 0,M := A∗A, maximum iteration number
MAXout, Maxin, and parameters σ, {ck}, {dk}, λ, r.

Output: u? = uMAXout−1.

1: for k = 0 to MAXout − 1 do
2: ûk :=

(
1− σ

ck

)
uk + σ

ck
M−1A∗zk.

3: if Using Ls as regularization term with s = 0, 1 then
4: Solve uk+1 by (3.15).
5: else
6: if Using TV as regularization term then
7: Set p0 = 0,Λ0 = 0.
8: for j = 0 to Maxin − 1 do
9: uj+1 = (ckM − r∆)−1

(
ckMûk − r∇ · (pj +

Λj
r )
)
,

10: pj+1 = Threshsoft
(
∇uj+1 − Λj

r ; λr
)
,

11: Λj+1 = Λj + r(pj+1 −∇uj+1),
12: end for
13: uk+1 := uMaxin−1.
14: end if
15: end if
16: zk+1 = Prox

B(|·|2,f)

dk

((
1− σ

dk

)
zk + σ

dk
Auk+1

)
, where the closed-form solution

of the proximal mapping is derived by (3.7) with different metrics.
17: end for

4. Convergence analysis. The existing variational methods [35, 56, 46, 20, 12,
13] have focused on efficient computational tools for phase retrieval. However, it is
challenging to describe the global convergence for the first-order operator-splitting
based algorithms such as PALM and ADMM, due to the lack of Lipschitz differen-
tiable terms. Both LSPR and Reg-LSPR models contain a quadratic term, which
is obviously Lipschitz differentiable. Therefore, the global convergence of the pro-
posed algorithm (P3ALM) can be achieved. We remark that our analysis applies to
the preconditioned version of the algorithms with a positive definite matrix M as in
Definition 3.

4.1. Convergence analysis of P3ALM for LSPR. The convergence analysis
follows the work of Bolte et al. [6]. The proof consists three steps. First, we prove the
sufficient decrease of the iterative sequences. Second, we show that the subgradient
is bounded by successive errors of iterative sequences. Finally, we obtain the global
convergence due to the Kurdyka- Lojasiewicz property of the data fitting term B(| ·
|2, f).

We need the following lemma to show that the iterative sequence {(uk, zk)} gen-
erated by (3.8) has monotonically decreasing objective values.

Lemma 4.1 (Sufficient decreasing).

Fσ(uk, zk)−Fσ(uk+1, zk+1) ≥ (ck − σ
2 )‖uk+1 − uk‖2M + 1

2 (dk − σ)‖zk+1 − zk‖2.
(4.1)

Remark 4.1. In order to guarantee the monotonic decrease of the objective
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functional, the stepsizes should satisfy

ck >
σ

2
, and dk > σ.(4.2)

Through experiments, we find choosing dk < σ can further improve the convergence
of P3ALM. We will investigate how to sharpen the lower bounds of the stepsizes in
the future. An interesting feature of the proposed algorithm is that the convergence
conditions with respect to stepsizes do not rely on the linear mapping A, which seems
different to the original PALM algorithm. Although we cannot characterize exactly the
relationship between the convergence rate and the stepsizes, we observe from numerical
experiments that the convergence behavior of P3ALM is very robust to the type of A
and the number of measurements.

The proof of Lemma 4.1 is given in Appendix A.3. The lemma gives the following
two corollaries.

Corollary 4.1. If the descent stepsizes {ck, dk} satisfy (4.2), we have
1). The sequence {Fσ(uk, zk)} is monotonically decreasing, and there exists a

positive constant F ?, s.t.

lim
k→∞

Fσ(uk, zk) = F ?.

Moreover, the iterative sequence {(uk, zk)} is bounded.

2). The successive error for the iterative sequence {(uk, zk)} satisfies

(4.3)

∞∑
k=0

(
‖uk+1 − uk‖2M + ‖zk+1 − zk‖2

)
≤ C,

with a positive constant C independent with {(uk, zk)}.
Corollary 4.2. Any accumulated point (ū, z̄) of the iterative sequence {(uk, zk)}

of P3ALM is a critical point of (2.4).
See the proof in Appendix A.4.
Lemma 4.2 (Subgradient bounded by successive error). Assume that the iterative

sequence {(uk, zk)} are generated by P3ALM, and two variables are introduced as

Eku := (ck−1 + σ)M(uk−1 − uk) + σA∗(zk−1 − zk),

Ekz := (dk−1 + σ)(zk−1 − zk).
(4.4)

Then we have

(4.5) (Eku, E
k
z ) ∈ ∂Fσ(uk, zk),

and it is bounded by the successive error, i.e.

(4.6) ‖Eku‖+‖Ekz ‖ ≤ (ck−1+σ)‖M 1
2 ‖‖uk−uk−1‖M+(σ‖M 1

2 ‖+dk−1+σ)‖zk−zk−1‖.

See the proof in Appendix A.5.

Finally, the convergence analysis is based on the Kurdyka- Lojasiewicz property
(Definition 4) [6] for general nonconvex optimization problems.
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Definition 4. Assume that the function J : Rd → (−∞,+∞] is proper and l.s.c.
For u? ∈ dom(∂J), if there exists a constant η̄ ∈ (0,+∞], a neighborhood U of u?, and
a continuous concave function φ : [0, η̄)→ R+ satisfying (i) φ(0) = 0, φ ∈ C1((0, η̄)),
and (ii) φ′(s) > 0, ∀s ∈ (0, η̄), such that

φ′(J(u)− J(u?))dist(0, ∂J(u)) ≥ 1 ∀u ∈ U ∪ {u : J(u?) < J(u) < J(u?) + η̄},

then we call this function J has the Kurdyka- Lojasiewicz property at u? with desin-
gularizing function φ. Further the function J is a Kurdyka- Lojasiewicz function if it
has Kurdyka- Lojasiewicz property at each point of dom(∂J).

Following [12], by lifting the dimension after separating the real and imaginary
parts of a complex-valued variable, one readily obtains that Fσ(u, z) is a semi-algebraic
function [1] in the cases of IGM and AGM, and it is real-analytic in the case of IPM.
Since the quadratic term ‖z − Au‖2 is a semi-algebraic and real-analytic functional,
Fσ is a Kurdyka- Lojasiewicz function for all three cases. The boundeness of {(uk, zk)}
can be easily obtained, since {Fσ(uk, zk)} is bounded due to Lemma 4.1, the function
B(| · |2, f) is coercive, and M is a positive definite matrix. Further By Lemmas 4.1-4.2,
can can readily obtain the convergence theorem following Theorem 1 in [6].

Theorem 5. If {ck, dk} satisfy (4.2), the iterative sequence {(uk, zk)} gener-
ated by P3ALM for LSPR (2.4) with any positive definite preconditioning matrix M
converge to a critical point of (2.4).

The convergence rate relies on desingularizing functions of Kurdyka- Lojasiewicz
property: φ(s) = s1−τ [6] in the cases of IGM and AGM (semi-algebraic functions).
Following Remark 6 in [6], we directly have the following corollary.

Corollary 4.3. Let {(uk, zk)} be generated by P3ALM for LSPR (2.4) with B(·, ·)
being IGM and AGM defined in (2.3), and φ(s) = s1−τ be the desingularizing function
of Fσ. There exists a critical point (ǔ, ž), i.e. 0 ∈ ∂Fσ(ǔ, ž), and two constants
ρ ∈ [0, 1) and Ĉ > 0, such that

(i) If τ = 0, the sequence {(uk, zk)} converges to (ǔ, ž) in a finite number of
steps.

(ii) If τ ∈ (0, 1
2 ], then ‖uk − ǔ‖+ ‖zk − ž‖ ≤ Ĉρk.

(iii) If τ ∈ ( 1
2 , 1), then ‖uk − ǔ‖+ ‖zk − ž‖ ≤ Ĉk−

1−τ
2τ−1 .

In the noiseless case, we observe empirically that the iterative sequences generated
by P3ALM linearly converges to the critical point of (2.4) (see numerical experiments
for details), which is consistent with the case (ii) of the above corollary. Generally
speaking, it is difficult to compute the exponent τ for a general nonconvex optimization
problem. Only for some special semi-algebraic functions [29], the exponent can be
estimated. Unfortunately the analysis cannot be applied to the proposed LSPR and
Reg-LSPR.

4.2. Convergence analysis of P3ALM for Reg-LSPR. The convergence
analysis for Reg-LSPR is similar to that of P3ALM for LSPR. The only difference is
that the constant in front of ‖uk+1− uk‖2M is ck − σ for nonconvex L0 regularization,
while it is ck − σ

2 for convex models including LSPR, L1, and TV. Therefore, we
present the following lemmas without proof.

Lemma 4.3 (Sufficient decreasing). Let {(uk, zk)} be generated by P3ALM of
Algorithm 2 for Reg-LSPR, and R(u) be proper and l.s.c. We have

G(uk, zk)− G(uk+1, zk+1) ≥ (ck − σ)‖uk+1 − uk‖2M +
1

2
(dk − σ)‖zk+1 − zk‖2.
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Furthermore, if R(u) is convex,

G(uk, zk)− G(uk+1, zk+1) ≥ (ck − σ

2
)‖uk+1 − uk‖2M +

1

2
(dk − σ)‖zk+1 − zk‖2.

Lemma 4.4 (Subgradient bounded by successive error). Letting the iterative se-
quences {(uk, zk)} be generated by P3ALM of Algorithm 2 for Reg-LSPR, for (Eku, E

k
z )

denoted in (4.4),

(Eku, E
k
z ) ∈ ∂G(uk, zk),

which is bounded by the successive error of iterative sequences, i.e.

‖Eku‖+ ‖Ekz ‖ ≤ (ck−1 + σ)‖M 1
2 ‖‖uk − uk−1‖M + (σ‖M 1

2 ‖+ dk−1 + σ)‖zk − zk−1‖.

Readily we know that λR(u) + B(|z|2, f) with Ls or TV regularizations is a
Kurdyka- Lojasiewicz function. Based on Lemmas 4.3-4.4, we conclude the conver-
gence theorem.

Theorem 6. If {ck, dk} satisfy (4.2) or 0 < ck, dk < σ, then the iterative
sequence {(uk, zk)} generated by P3ALM for Reg-LSPR with any positive definite
preconditioning matrix M converge to a critical point of (2.11).

5. Numerical experiments. We conduct experiments to demonstrate the per-
formance of the proposed methods. The codes are implemented in MATLAB and
performed on a laptop with Intel I7-5600U2.6G/16GB RAM. We focus on phase re-
trieval from Fourier measurements with three kinds of diffraction patterns:

(i) A classical pattern with A being F ∈ Cn×n. Since it is impossible to faith-
fully recovery the phase without oversampling, we only consider this pattern
for compressive phase retrieval by using Ls regularized model (s = 0, 1) to
enforce sparsity in image domain with additional positivity constraint. The
preconditioned matrix M = F∗F = I6.

(ii) Coded diffraction pattern (CDP) [10] with A defined as,

(5.1) Au =
[
F(I0 ◦ u)T ,F(I1 ◦ u)T , · · · ,F(IK−1 ◦ u)T

]T
,

where {Ij} are random masks with Ij ∈ Cn. We particularly consider the
octanary CDP [11] meaning that each element of Ij in (5.1) randomly takes a
value among the eight candidates of {±

√
2/2,±

√
2i/2,±

√
3,±
√

3i}. Readily
one obtains the preconditioned matrix M = A∗A = diag

(∑
j |Ij |2

)
.

(iii) Ptychographic phase retrieval (PtychoPR) pattern [52] with A defined as

(5.2) Au =
[
F̂(ω ◦ u0)T , F̂(ω ◦ u1)T , · · · , F̂(ω ◦ uK−1)T

]T
with uj := Rju,

where F̂ ∈ Cn̂×n̂ denotes the normalized discrete Fourier transform over a
smaller patch with size

√
n̂ ×
√
n̂, ω ∈ Cn̂ denotes the illumination function

and Rj ∈ Rn×n̂ is a binary matrix selecting smaller patches with size n̂ =√
n̂ ×
√
n̂, by which the subimage uj are generated. In our experiments, we

set n = 256 × 256, n̂ = 64 × 64,K = 16 × 16, by setting a sliding distance
to 16 pixels, and therefore m = K × n̂ = 16n. The preconditioned matrix
M = A∗A = diag

(∑
j |RTj ω|2

)
.

6In this case, P3ALM is exactly the PALM algorithm.
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We collect in total m measurements; and we further clarify that m = n for discrete
Fourier transform, m = Kn (K = 2, 3, 4) for CDP, and m = 16n for PtychoPR. Note
that in all three cases, preconditioned matrix M = A∗A is diagonal.

Two types of noise distributions are considered. One is additive white Gaus-
sian noise, i.e., f(t) = |(Aug)(t)|2 + n(t),∀ t ∈ Ω, where ug is the ground truth
image and n(t) are i.i.d. random variables. The other is Poisson noise, f(t) =
Poisson(|(Auζ)(t)|2), with the ground truth uζ = ζu7.

For the proposed P3ALM (Algorithm 1 and Algorithm 2), the initial value u0

is randomly generated and we then set z0 := Au0. The parameters σ and λ in the
model (2.4) and (2.11) are selected manually, and the parameters ck, dk are set to ck =
σ/1.5, dk = σ/1.7 as default values. All the other parameters are problem-dependent
and specified in the following subsections. We stop Algorithm 1 and Algorithm 2 if
the maximum iteration number reaches MAXout, which will be specified for different
problems. In addition to maximum iteration, we stop Algorithm 1 for noiseless cases
when the errors between the iteration solution and ground truth8 reach the given
tolerance TOL = 2× 10−14. We remark that we employ real-valued constraint when
recovering the real-valued images. Specifically for Algorithms 1-2, the update of
u−subproblem becomes uk+1 = <(ûk), which is derived based on

uk+1 = arg min
=(u)=0

‖u− ûk‖2M .

The real-valued constraint is also used for other competing algorithms.
We use the absolute error (AE) and signal-to-noise ratio (SNR) to measure the

quality of iterative solution uk w.r.t. the ground truth image ug, defined as

AE := min
|%|=1

‖uk − %ug‖, and SNR := −20 log10 min
|%|=1

‖uk − %ug‖
‖uk‖

,

where the global phase shift % is taken into account as a trivial ambiguity. The relative

error between the successive iteration, defined as SE := ‖uk−uk−1‖
‖uk‖ , is also used to

observe the convergence. All the plots regarding above two errors are in a logarithmic
scale.

5.1. P3ALM versus PALM. We first demonstrate the efficiency of the pre-
conditioning by comparing P3ALM and PALM using noiseless CDP measurements
with K = 2, 3, 4. The test image is “Cameraman” of resolution 256 × 256, as shown
in Figure 7 (d). We set σ = 0.01 and MAXout = 500 for both methods. The
parameters for PALM in (3.5) are chosen manually to gain best performances, and
we set ck = σ‖A∗A‖/2.5, σ‖A∗A‖/2.3, σ‖A∗A‖/2.2, and dk = σ/1.8, σ/1.8, σ/1.7
for K = 2, 3, 4, respectively. Other parameters in P3ALM are set as default values.
We plot the absolute error in Figure 1, which demonstrates a significant speed-up of
P3ALM over the PALM. Therefore, we use P3ALM for the rest of the experimental
section.

5.2. P3ALM for LSPR. We test the performance of the proposed model with-
out regularization (2.4) via P3ALM (Algorithm 1) on two diffraction patterns: CDP
and PtychoPR. In particular, we examine the noiseless cases in Section 5.2.1, noisy
measurements in Section 5.2.2, and different data fitting terms in Section 5.2.3.

7Noise level is higher if ζ is smaller.
8It is only for the purpose of convergence analysis that we use the error between the recovered

image and ground-truth as a stopping condition. We could adopt relative error, but it does not yield
a fair comparison, since an algorithm with slower convergence rate may give smaller relative errors.
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Fig. 1. Comparison of P3ALM and PALM for noiseless CDP measurements. All the plots are
AE v.s. iteration number in a logarithmic scale.

5.2.1. Noiseless measurements. We analyze the convergence of the proposed
method (Algorithm 1) to retrieve the phase from CDP noiseless measurements with
K = 2, 3, 4 in (5.1). We include the comparison to ER [24], RAAR [32], and PoiPR
[12] with the same random initial guess and the same stopping condition, that is, the
error is smaller than 2.0×10−14. For P3ALM, we set σ = 0.01. Hereafter, parameters
in other competing algorithms are tuned to achieve the optimal results. In Figure
2, we plot the absolute error v.s. iteration number in the first row and the absolute
error v.s. elapsed time in the second row. We observe that all the methods converge
in the noiseless case and the proposed P3ALM is the fastest, ER the slowest, and
PoiPR/RAAR have almost identical convergence speed. Specifically in Figure 2 (a),
(d) with a limited number of measurements (K = 2), we show that P3ALM only re-
quires nearly half of iterations and one-third of computational time to reach the same
accuracy compared to RAAR/PoiPR. In addition, ER/RAAR/PoiPR require more
iterations to reach the accuracy as the number of measurements decreases, while the
iteration number of P3ALM is almost unaffected (one or two additional iterations) by
different K values, that implies the robustness of P3ALM w.r.t. number of measure-
ments.

We compared with more algorithms, e.g. Wirtinger Flow (WF) [11] and Trun-
cated Wirtinger Flow (TWF) [18]. It was reported in [12] that WF/TWF do not work
for very few CDP measurements. Therefore, we increase the number of CDP measure-
ments to K = 12, sufficiently enough for WF/TWF to work. Please see the compared
results in Figure 3. Obviously, Figure 3 (a) shows that P3ALM/RAAR/PoiPR have
similar convergent behaviors, while ER/WF/TWF converge relatively slower. Ac-
cording to Figure 3 (b), ER is the fastest in terms of elapsed time, since it only
involves two simple projections. P3ALM is slightly slower than ER and is compara-
ble to RAAR/PoiPR; these methods are much faster than WF/TWF. In summary,
P3ALM is the most efficient for a limited number of CDP measurements, and as good
as PoiPR/RAAR when more measurements are available.

We also conduct the experiment on complex-valued image “Goldballs” with res-
olution 256× 256 for noiseless PtychoPR measurements. We set σ = 0.2,MAXout =
1000, ck = 0.1, dk = 0.115 for P3ALM. The convergence curves are given in Figure 4,
which illustrates that P3ALM converges the fastest; specifically it reduces nearly 40%
computational time than RAAR/PoiPR. Furthermore, we observe linear convergence
of P3ALM, and non-monotonic decreasing behavior of RAAR/PoiPR.

Note that in the noise-free cases, P3ALM converges linearly for solving the LSPR
model (2.4) by observing the convergence curves in Figures 2-4, which is consistent
with our analysis in Corollary 4.3.
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Fig. 2. Convergence analysis of P3ALM compared with ER, RAAR and PoiPR using noiseless
CDP measurements: AE v.s. iteration number (top) and AE v.s. elapsed time (bottom).
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Fig. 3. Convergence analysis of P3ALM compared with ER, WF, TWF,RAAR and PoiPR
using noiseless CDP measurements with K = 12 (WF and TWF do not work for smaller K as in
Figure 2). (a) AE v.s. iteration number and (b) AE v.s. elapsed time.

5.2.2. Noisy measurements. Here we conduct the experiment on phase re-
trieval from noisy CDP measurements with K = 2, in which the noise is assumed to
follow Poisson distribution and the noisy level is controlled by the parameter ζ in (5).
We examine three noise levels at ζ = 0.1, 0.2 and 0.5. Due to the nature of the Pois-
son distribution, we use the IPM as the data fitting term and compare the proposed
method with ER, RAAR and PoiPR. In Figure 5, we plot the convergence curves
within 20 iterations. We observe that all the algorithms except ER reach almost the
same accuracy. Moreover, P3ALM requires the smallest number of iterations to con-
verge. As for the computational time, ER is the slowest, and P3ALM/PoiPR/RAAR
have similar speed at relatively higher noise level ζ = 0.1. When ζ = 0.2, 0.5, RAAR
converges the fastest in the first few iterations and coincides with P3ALM eventually.
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Fig. 4. Convergence analysis of P3ALM compared with ER, RAAR and PoiPR using noiseless
PtychoPR measurements. (a): AE v.s. iteration number and (b): AE v.s. elapsed time.
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Fig. 5. Convergence analysis for P3ALM compared with ER, RAAR and PoiPR using Poisson
noisy CDP measurements with K = 2: AE v.s. iteration number (top) and AE v.s. elapsed time
(bottom).

5.2.3. Performances with different data fitting terms. We compare three
data fitting terms: AGM, IPM, and IGM in the model (2.4), and show their effects
on the convergence of P3ALM . We start by the noiseless CDP measurements with
K = 2, 3, 4 and set σ = 0.01 for all the cases. As shown in Figure 6, the proposed
algorithm (P3ALM) exhibits almost the same convergent behavior in terms of iteration
numbers, while Qian et al. [39] claimed that disparate data fitting terms lead to
different recovery performances. As for computational time, AGM and IPM reach the
desired accuracy faster than IGM, due to the lower cost of computing their proximal
operator in (3.7).

We also conduct the experiments for Poisson noisy case; the results are given in
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Fig. 6. Convergence analysis of P3ALM with different data fitting terms (IPM, AGM, and
IGM) using noiseless CDP measurements: AE v.s. iteration number (top) and AE v.s. elapsed
time (bottom).

Figure 7. Since it is Poisson noise, IPM gives the best recovery results both visually
and in terms of SNR. In Figure 7(e), the error for P3ALM with IGM is larger than the
one with IPM/AGM (although AGM surprisingly works here), which demonstrates
that one shall compute the minimization problem by utilizing the corresponding MLEs
of noise. We will show in Section 5.3 that the noise can be further removed by
incorporating regularization terms (2.11).

5.3. P3ALM for Reg-LSPR. We demonstrate the performance of phase re-
trieval with regularization, i.e., Reg-LSPR (2.11), which can be solved via P3ALM (Al-
gorithm 2). In particular, we consider two types of regularization terms: Ls for sparse
signals in Section 5.3.1 and TV for natural images in Section 5.3.2.

5.3.1. Ls regularized (compressive) phase retrieval. It is more interesting
and challenging to consider the classical phase retrieval problem, i.e., A is the dis-
crete Fourier transform. We consider a ground-truth image that can be generated by
thresholding a 2D projection of caffeine’s electron density map [5] by 0.2 and 0.6 to
produce a sparse positive image with only approximately 5% or 0.8% nonzero pix-
els. Two examples with different sparsity levels are given in Figure 8. In this case,
there exist trivial ambiguities such as translation and time reverse, which are com-
pensated to compute the errors. In addition, we incorporate the positivity constraint,
u ≥ 0, in Algorithm 2. We adopt warm-start from [42] to robustify our algorithm,
i.e, restarting the iteration with random initializations at most 10 times if the relative

residual ‖
√
f−|Auk|‖
‖
√
f‖ of recovery image uk is greater than 0.05. In Figure 8, we present

results of L1 and L0 regularization terms, both of which give visually satisfactory
images; specifically the L0 regularization can yield exact recovery. We also plot the
convergence curves in Figure 9, which shows that P3ALM for L1 regularized model
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Fig. 7. Recovery results from Poisson noisy measurements with ζ = 0.01,K = 4 using P3ALM
with three different data fitting terms: (a) IPM, (b) AGM, and (c) IGM respectively. (d) Ground
Truth; (e) AE v.s. iteration number.

converges faster in the first few iterations and then traps into local minima and L0

model is more likely to find the global minima.

We also compare both L0 and L1 approaches with other compressive phase re-
trieval algorithms, such as SparseFienup [37] and PRGAMP [42]9. For a fair com-
parison, we test these algorithms based on 100 random initializations without warm-
restart. PRGAMP assumes that noise exists in a linear transform of the underlying
images, not directly in the phaseless measurements, which is different from our set-
ting in (2.1). Therefore we only conduct experiments using the noiseless discrete
Fourier transform based measurements. We use the default parameters in PRGAMP
and set the total number of iterations of SparseFienup to 1000. For Reg-LSPR with
L1 regularization, we set σ = 0.1, 0.06, and λ = 1.5 × 10−3, 5.0 × 10−4 at sparsity
levels 5%, 0.8% respectively; For Reg-LSPR with L0 regularization, set σ = 1, and
λ = 1.5× 10−3, 1.0× 10−3 at sparsity levels 5%, 0.8% respectively. Figure 10 (a)-(b)
shows that the L0 model is the most likely to find the global minima. Specifically, the
probability of exact recovery (SNR> 200) using the L0 model is about 50%, which
is much higher than 20% by SparseFienup; and PRGAMP cannot produce results
with such a high accuracy. We also look at the probability of recovered SNR larger
than 20db, which heuristically gives visually satisfactory results. We observe 90%
and 60% for L0 and L1 model, respectively; and it is less than 25% for the other two
algorithms. We present the results of sparser signals in Figure 10 (c)-(d), which show

9https://sourceforge.net/projects/gampmatlab/

https://sourceforge.net/projects/gampmatlab/
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(a) Ground Truth (b) L1(SNR=26.97) (c) L0(SNR=294.17)

(d) Ground Truth (e) L1(SNR=38.25) (f) L0(SNR=287.32)

Fig. 8. Performances of P3ALM for both L0 and L1 regularized models for noiseless measure-
ments. Two sparsity levels of the grount-truth images are considered: 5% nonzero pixels (top) and
0.8% nonzero pixels (bottom).
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Fig. 9. Convergence curves (AE w.r.t. iteration number) for Ls regularized phase retrieval via
P3ALM from noiseless measurements: (a) 5% nonzero pixels and (b) 0.8% nonzero pixels.

that the L0 model gives almost 100% exact recovery and the L1 approach produces
visual acceptable results (SNR≥ 20) at about 70%. Notice that PRGAMP is more
sensitive to the sparsity level than the other competing algorithms.

5.3.2. TV regularized phase retrieval. We consider noisy CDP measure-
ments, which are corrupted by either Gaussian or Poisson noises. We start with Gaus-
sian noisy measurements, where the SNRs of the noisy data are set to 5, 10, and 20.
We consider TV regularized model with IPM data fitting term solved by Algorithm 2.
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Fig. 10. Performances with different random initializations (100 trials). (a)-(b): 5% nonzero
pixels; (c)-(d): 0.8% nonzero pixels. (a),(c): SNR w.r.t. trial number; (b),(d): the probability
(y−axis) of the resulting SNR larger than the given SNR (x−axis) based on 100 trials.

We set MAXout = 50,MAXin = 2, and σ = 6, 8, 10, λ = 5.0×104, 5.0×104, 2.0×104

for different noise levels. In Figure 11, we include the comparison to P3ALM without
regularization (Algorithm 1) by setting set σ = 5. P3ALM without regularization
fails to remove noises, while P3ALM with TV regularization yields clean background
and sharp edges, with about 10dB increase in SNR.

Numerical experiments are performed for Poisson noisy measurements as well. For
TV regularized model, we set σ = 30, 20, 20 and λ = 200, 180, 170 for noisy data with
different levels ζ = 0.005, 0.1, 0.2, respectively, and σ = 500, 100, 5 for P3ALM without
regularization (Algorithm 1). In Figure 12, we include the comparison of TVPoiPR
[12]. Both P3ALM with regularization and TVPoiPR greatly improve the recovery
quality compared to P3ALM without regularization, and at least 10dB increase is
gained by regularization. Since both P3ALM and TVPoiPR involve total variation
regularization, there is no obvious difference between their recovery results. We also
plot the convergence curves in Figure 13 for ζ = 0.005. In particular, Figure 13
(a) shows that P3ALM produces results with a bit higher SNR than TVPoiPR as
iteration goes, and Figure 13 (b) illustrates that P3ALM converges much faster than
TVPoiPR, since its successive errors decreases more rapidly than TVPoiPR due to
global convergence guarantee.

5.4. Impact by Parameters. In order to show the impact by different parame-
ters, we conduct the experiments of P3ALM by changing one parameter and fixing the
others. We first consider the LSPR (2.4) via P3ALM (Algorithm 1) using CDP mea-
surements. The parameters are chosen as σ ∈ {1.0×10−5, 1.0×10−4, 1.0×10−3, 1.0×
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(a) SNR=2.65 (b) SNR=6.14 (c) SNR=14.97

(d) SNR=12.26 (e) SNR=16.83 (f) SNR=23.11

Fig. 11. Comparison of P3ALM without any regularization (top) and with the TV regularization
(bottom) for Gaussian noisy measurements with SNR=5, 10, 20 from left to right.

10−2, 1.0× 10−1, 1.0, 1.0× 10−1} and ck, dk ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 1} × σ. All
algorithms stop if the error is smaller than 2.0 × 10−14 or maximum iteration num-
bers reach 500 in the noiseless case, and stop after 50 iterations for Poisson noisy
measurements. It is shown in Figure 14 (a) and (d) for both the noiseless and noisy
cases that Algorithm 1 is insensitive to σ, except that a relatively large value (σ = 10)
slows down the convergence speed. The other plots in Figure 14 suggest that a mod-
erate value of stepsize ck and dk is better to gain fast convergence. Note that if we
choose ck = σ or dk = σ then P3ALM is equivalent to the alternating minimization
method, which converges slowly, as discussed in subsection 3.3 and Remark 3.2. How
to choose the optimal stepsizes will be our future work. In addition, although we
prove in Theorem 5 that the stepsize dk should less than σ, we observe empirically
that the algorithm with dk > σ/2 also converges. It will be our future work to analyze
how to choose stepsizes and get a sharper bound in convergence analysis.

Further tests are performed to analyze the parameters in P3ALM (Algorithm 2)
to solve TV-regularized model (2.11). Since the impact by descent stepsizes is similar
to Figure 14, we illustrate the impact by parameters λ and σ in Figure 15, where
σ ∈ {10, 20, 40, 80, 160} and λ ∈ {50, 100, 200, 400, 800}. Figure 15 (a) shows that a
large σ tends to slow down the algorithm, while Figure 15 (b) shows that a moderate
value of λ ∼ 200 should be chosen to achieve high recovery accuracy.

5.5. Comparison to block-Kaczmarz method. One reviewer brings our at-
tention to a “block-Kaczmarz method” for phase retrieval proposed by Wei [51].
Here is a brief review of the method. If objective functional in (3.3) has a block-
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(a) SNR=2.99 (b) SNR=14.89 (c) SNR=14.92

(d) SNR=4.43 (e) SNR=18.00 (f) SNR=18.08

(g) SNR=10.26 (h) SNR=21.09 (i) SNR=21.12

Fig. 12. Comparison of LSPR without regularization (left), TVPoiPR (middle), and TV regu-
larized model (right) for phase retrieval from noisy Poisson measurements with ζ = 0.005, 0.01, 0.02,
from top to bottom.

wise structure with A := (AT0 ,AT1 , · · · ,ATK−1)T , z = (zT0 , z
T
1 , · · · , zTK−1) and f =

(fT0 , f
T
1 , · · · , fTK−1)T , which satisfy

(5.3) |Aju|2 = fj .

By assuming that Aj has full column rank10, the block-Kaczmarz method for (1.1) is
given below:

uk+1 = uk + (A∗nkAnk)−1A∗nk(
√
fnk ◦ sign(Ankuk)−Ankuk)

= (A∗nkAnk)−1A∗nk
(√

fnk ◦ sign(Ankuk)
)
,

(5.4)

10If Aj does not have full column rank, its Moore-Penrose pseudo-inverse matrix can be considered
[51].
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Fig. 13. Comparison between the TV-regularized model via P3ALM compared and TVPoiPR:
(a) SNRs v.s. iteration number, and (b) The relative error between the successive iteration (SE)
v.s. iteration number.
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Fig. 14. Impact by parameters σ (left), ck (middle), dk (right) of P3ALM (Algorithm 1) for
noiseless CDP measurements (top) and Poisson noisy measurements with ζ = 0.02 (bottom).

with the random index nk ∈ {0, 1, · · · ,K − 1}, which can also be interpreted as ER
algorithm for solving the subproblem (5.3). Recently, Chen et al. [17] proposed a
serial alternating projection algorithm in the case of isometric matrices as A∗jAj = I,
which is a special case of block-Kaczmarz method (5.4).

We compare the proposed P3ALM (Algorithm 1) with the block-Kaczmarz method
for both noiseless and noisy CDP measurements in terms of convergent behaviors in
Figure 16. In order to use fast Fourier transform for the subproblem of each block
for the block-Kaczmarz method, we denote Aj as Aju := F(Ij ◦ u). In the noiseless
case, one can readily see that with very few measurements as K = 2, P3ALM is much
faster than block-Kaczmarz method, while it is the other way around if the number of
measurements increases as K = 4. For noisy measurements, both two algorithms con-
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Fig. 15. Impact by parameters σ (left), λ (right) of P3ALM (Algorithm 2) for Poisson noisy
CDP measurements with ζ = 0.01.

Table 1
Absolution errors (AEs) and signal-to-noise ratio (SNRs) of recovered images by block-

Kaczmarz method (BKM [51]) and the proposed P3ALM from noisy CDP measurements with
K = 2, 3, 4.

K 2 3 4

AEs
BKM 1.19 0.85 0.74

P3ALM 0.82 0.58 0.48

SNRs (dB)
BKM 7.17 9.93 11.04

P3ALM 10.30 13.06 14.74

verge in almost the same speed within the first few iterations while block-Karczmarz
method is stuck with less accurate solutions; this phenomenon was also reported in
[17]. We report the SNRs of recovered images by two compared algorithms in Table
1, which shows that recovery results by P3ALM are at least 3dB higher than by the
block-Kaczmarz method.

During the course of this experiment, we observe that the block type algorithms
[51, 17] increase the convergence speed when more noiseless measurements are used.
However, block based acceleration is not trivial. In the future, we should explore how
to further accelerate the proposed P3ALM by employing the block structures for both
noiseless and noisy measurements while maintaining recovery accuracy.

6. Conclusions and future works. In this paper, we established two new
models “LSPR” and “Reg-LSPR” for phase retrieval. Especially, for noiseless case,
the equivalence between LSPR and original phase retrieval problem (1.1) was de-
rived. Computationally, we designed P3ALM algorithms to solve these two models,
which significantly speed up the plain PALM method thanks to the precondition-
ing technique and the diagonal structure of A∗A for the masked Fourier transform.
The existence of a quadratic term in the proposed models helped to establish the
global convergence to the critical point, based on the Kurdyka- Lojasiewicz property.
Numerous experiments demonstrated the convergence and efficiency of the proposed
algorithms.

We are interested in the geometric structures of critical points for the proposed
models to further classify critical points into global minimizers or saddle points. Along
this line of research, Sun, Qu, and Wright [45] analyzed the geometric properties of
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 2 (e) K = 3 (f) K = 4

Fig. 16. Convergence histories of P3ALM and block-Kaczmarz method (BKM [51]) with block
size 256× 256: AE v.s. iteration/cycle number for noiseless measurements (top) and Poisson noisy
measurements with ζ = 0.02 (bottom). For noiseless case (top), the two algorithms stop if the
maximum iteration number reaches 1000 or the errors between the iteration solution and ground
truth reach the given tolerance TOL = 2× 10−14; For noisy case (bottom), the two algorithms stop
if the maximum iteration number reaches 20.

critical points for a general phase retrieval problem11. They revealed that with high
probability, there are no spurious local minimizers, and the global minimizer is unique
up to global phase factor. In this paper, we focused on masked Fourier transform,
which is quite different from the setting in [45]. Our future work involves geometric
analysis of critical points for phase retrieval from masked Fourier measurements with
or without noise.

Since our proposed Algorithm 2 for Reg-LSPR model with TV regularization
requires inner iterations, we want to improve the algorithm by removing the nested
optimization. One approach is to adopt the primal-dual scheme [48]. We expect it
is possible to explore the global convergence of such primal-dual scheme under the
condition that the iterates stay bounded.
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Appendix A. Proofs.

A.1. Proof of Theorem 1. Proof. Since f ≥ 0, it is straightforward that

(A.1) f = arg min
g
B(g, f), 12

with B(·, ·) defined in (2.3), which also implies that the set arg min
g
B(g, f) has a unique

element based on simple calculation. We first prove that if S(f) is not empty, then
min
u,z
Fσ(u, z) = B(f, f). Suppose ǔ ∈ S(f) and let ž = Aǔ, then we have |ž|2 = f and

Fσ(ǔ, ž) = B(f, f). On the other hand, simple calculations give that

min
u,z
Fσ(u, z) = min

u,z

(
σ
2 ‖z −Au‖

2 + min
z
B(|z|2, f)

)
≥ σ

2 min
u,z
‖z −Au‖2 + min

z
B(|z|2, f) = B(f, f).

(A.2)

Therefore, we have min
u,z
Fσ(u, z) = B(f, f). Now we are ready to prove these two cases

in this theorem.
1) Since (u?, z?) ∈ arg min

u,z
Fσ(u, z), and S(f) is nonempty, we have Fσ(u?, z?) =

B(f, f). Further we have

0 = σ
2 ‖z

? −Au?‖2 + B(|z?|2, f)− B(f, f)
(A.1)

≥ σ
2 ‖z

? −Au?‖2.

Hence z? = Au?, and B(|z?|2, f) = B(f, f). Immediately we have u? ∈ S(f) based on
(A.1).

2) ∀ u? ∈ S(f), we have Fσ(u?,Au?) = B(f, f), which implies that (u?,Au?) is
a minimizer of Fσ based on (A.2). It also demonstrates that arg minu,z Fσ(u, z) ∩
{(u?, z) : z ∈ Cm} is nonempty. Hence, for any variable z? satisfying (u?, z?) ∈
arg minFσ(u, z), we have Fσ(u?, z?) = Fσ(u?,Au?) = B(f, f). It immediately gives

σ
2 ‖z

? −Au?‖2 = B(f, f)− B(|z?|2, f)
(A.1)

≤ 0,

such that z? = Au?.
12Recall that arg min

w
G(w) :=

{
w? : G(w) ≥ G(w?), ∀ w}.
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A.2. Proof of Theorem 2. Proof. For any ǔ ∈ S(f), let ž := Aǔ, which
immediately implies that A∗(Aǔ − ž) = 0, i.e., 0 ∈ ∇uFσ(ũ, z̃). On the other hand,
we have |ž|2 = f . It follows from the proof of Theorem 1 that f = arg ming B(g, f),
thus leading to 0 ∈ ∂gB(f, f). Therefore, we have

∂zF(ǔ, ž)
(2.6)
= σ(ž −Aǔ) + ∂gB(g, f)

∣∣
g=|ž|2 ◦ ž = ∂gB(f, f) ◦ ž 3 0.

Based on (2.7), we conclude this theorem.

A.3. Proof of Lemma 4.1. Proof. Simple calculations show that

Fσ(uk+1, zk)−Fσ(uk, zk)

=σ
2

(
‖Auk+1 − zk‖2 − ‖Auk − zk‖2

)
=σ

2

(
‖A(uk+1 − uk)‖2 + 2<(〈uk+1 − uk,A∗(Auk − zk)〉)

)
,

=σ
2

(
‖uk+1 − uk‖2M + 2<(〈uk+1 − uk,MM−1A∗(Auk − zk)〉)

)
=σ

2 ‖u
k+1 − uk‖2M + <(〈uk+1 − uk,M−1∇uFσ(uk, zk)〉M ).

(A.3)

Plugging uk+1 = uk − 1
ck
M−1∇uFσ(uk, zk), into above equation, we obtain

Fσ(uk, zk)−Fσ(uk+1, zk) = (ck − σ
2 )‖uk+1 − uk‖2M .(A.4)

It follows from [6, Lemma 2] that one readily derives

Fσ(uk+1, zk)−Fσ(uk+1, zk+1) ≥ 1
2 (dk − σ)‖zk+1 − zk‖2.(A.5)

Combining (A.4) and (A.5) yields the inequality (4.1).

A.4. Proof of Corollary 4.2. Proof. Corollary 4.1 guarantees the boundedness
of the iterative sequences generated by P3ALM. As a result, for any accumulated

point (ū, z̄), there exist two subsequences {unk} ⊆ {uk}, {znk} ⊆ {zk} such that
(unk , znk)→ (ū, z̄), as k → +∞. Again by Corollary 4.1, we have lim

k→∞
uk+1−uk = 0,

lim
k→∞

zk+1− zk = 0, and therefore (unk+1, znk+1)→ (ū, z̄), as k → +∞. Additionally,

it is straightforward that the proximal mapping for any data fitting terms defined in
(2.3) is continuous, due to their closed-form solution expressed in (3.7). Therefore,
by taking limit of both sides of equations in Step 2 and Step 3 of Algorithm 1 for the
subsequences, one hasū−M

−1A∗z̄ = 0,

z̄ = Prox
B(|·|2,f)
d?

(
(1− σ

d? )z̄ + σ
d?Aū;M

)
,

by letting ck ≡ c?, and dk ≡ d?. We conclude that z̄ is a fixed point. Therefore, any
accumulated point (ū, z̄) of the iterative sequences is a critical point of (2.4).

A.5. Proof of Lemma 4.2. Proof. First one readily get an equivalent form
of Eku, E

k
z as Eku = ck−1M(uk−1 − uk) + ∂uH(uk, zk) − ∂uH(uk−1, zk−1), and Ekz :=

dk−1(zk−1−zk)+∂zH(uk, zk)−∂zH(uk, zk−1). By the first order optimality condition
for the first updating scheme in (3.8), one has∇uH(uk−1, zk−1)+ck−1M(uk−uk−1) =
0. The definition of Fσ yields ∂uFσ(uk, zk) = ∇uH(uk, zk). Combining the above
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two equations one obtains Eku ∈ ∂uFσ(uk, zk). In a similar manner, one can obtain
Ekz ∈ ∂zFσ(uk, zk), and therefore (4.5) is proved.

We then show how to estimate the upper bound. Based on (4.4), one readily
obtains

‖Eku‖ ≤ (ck−1 + σ)‖M(uk − uk−1)‖+ σ‖A∗(zk − zk−1)‖

≤ (ck−1 + σ)‖M 1
2 ‖‖uk − uk−1‖M + σ‖A∗‖‖zk − zk−1‖.

Similarly, one obtains ‖Ekz ‖ ≤ (dk−1 +σ)‖zk − zk−1‖. Summing up the two estimates
concludes to this lemma.

Appendix B. Closed-form Solution for Proximal Mapping for IGM. By
the definition of proximal mapping, we have

(B.1) $β(|z|) = arg min
ς∈Rm+

B(|ς|2, f) + β
2 ‖ς − |z|‖

2
.

As derived in [15], the minimizer to (B.1) is

$β(|z|)(t) =


3

√
β|z(t)|

4 +
√
D(t) +

3

√
β|z(t)|

4 −
√
D(t), if D(t) ≥ 0;

2

√
f(t)−β2

3 cos
(

arccos θ(t)3

)
, otherwise,

(B.2)

for 0 ≤ t ≤ m− 1, with D(t) =
(
β
2−f(t))3

27 +
β2|z(t)|2

16
, and θ(t) =

β|z(t)|

4

√
(f(t)− β2 )3

27

.

Appendix C. ADMM for (3.17) . Given the augmented Lagrange Lr(u,p; Λ)
in (3.18), the standard ADMM algorithm goes as follows,

(C.1)


uj+1 = arg min

u
Lr(u,pj ; Λj),

pj+1 = arg min
p
Lr(uj+1,p; Λj),

Λj+1 = Λj + r(pj+1 −∇uj+1).

For the u-subproblem, we need to compute the first order optimal condition to

min
u

ck

2 ‖u− û
k‖2M + r

2‖pj +
Λj
r
−∇u‖2.

Taking the gradient of the objective functional w.r.t. u [12] gives

(ckM − r∆)u = ckMûk − r∇ · (pj +
Λj
r

),

with ∆u = ∇ · (∇u) and divergence operator ∇· under some boundary conditions.
The p-subproblem is expressed as

pj+1 = arg min
p
λ‖p‖1 + 1

2‖p− (∇u− Λj/r)‖.

It has closed-form solutions via the soft thresholding i.e.

pj+1 = Threshsoft((∇u− Λj/r);λ),

where Threshsoft is defined in (3.16).


