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Abstract Sparse representation of a single measurement vector (SMV) has been explored in a variety of
compressive sensing applications. Recently, SMV models have been extended to solve multiple measure-
ment vectors (MMV) problems, where the underlying signal is assumed to have joint sparse structures.
To circumvent the NP-hardness of the `0 minimization problem, many deterministic MMV algorithms
solve the convex relaxed models with limited efficiency. In this paper, we develop stochastic greedy al-
gorithms for solving the joint sparse MMV reconstruction problem. In particular, we propose the MMV
Stochastic Iterative Hard Thresholding (MStoIHT) and MMV Stochastic Gradient Matching Pursuit
(MStoGradMP) algorithms, and we also utilize the mini-batching technique to further improve their per-
formance. Convergence analysis indicates that the proposed algorithms are able to converge faster than
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their SMV counterparts, i.e., concatenated StoIHT and StoGradMP, under certain conditions. Numer-
ical experiments have illustrated the superior effectiveness of the proposed algorithms over their SMV
counterparts.
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1 Introduction

Reconstruction of sparse signals from limited measurements has been studied extensively with a variety
of applications in various imaging sciences, machine learning, computer vision and so on. The major
problem is to reconstruct a signal which is sparse by itself or in some transformed domain from a few
measurements (or observations) acquired by a certain sensing machine. Let x ∈ Rn be the signal to be
reconstructed. Then the sparse signal reconstruction problem can be formulated as an `0 constrained
minimization problem

min
x∈Rn

F (x), s.t. ‖x‖0 ≤ k, (1)

where the sparsity ‖x‖0 counts nonzeros in x. Here F (x) is a loss function measuring the discrepancy
between the acquired measurements y ∈ Rm (m� n) and the measurements predicted by the estimated
solution. In particular, if the measurements are linearly related to the underlying signal, i.e., there exists
a sensing matrix A ∈ Rm×n such that y = Ax + n where n is the Gaussian noise, then the least squares
loss function is widely used:

F (x) =
1

2
‖y −Ax‖22 .

In this case, (1) is a single measurement vector (SMV) sparse signal reconstruction problem. The choice
of F depends on the generation mechanism of the measurements. Since the measurements are typically
generated continuously in most imaging techniques, it becomes significantly important in practice to
reconstruct a collection of sparse signals, expressed as a signal matrix, from multiple measurement vectors
(MMV). More precisely, the signal matrix X ∈ Rn×L with k (k ≤ n) nonzero rows can be obtained by
solving the following MMV model

min
X∈Rn×L

F (X), s.t. ‖X‖r,0 ≤ k, (2)

where ‖X‖r,0 stands for the row-sparsity ofX which counts nonzero rows inX. Note that it is possible that
certain columns of X have more zero components than zero rows of X. The MMV sparse reconstruction
problem was first introduced in magnetoencephalography (MEG) imaging [1,2], and has been extended
to other applications [3,4,5,6,7,8,9].

Many SMV algorithms can be applied to solve MMV problems. The most straightforward way is to use
SMV algorithms to reconstruct each signal vector sequentially or simultaneously via parallel computing,
and then concatenate all resultant signals to form the estimated signal matrix. We call these types of
SMV algorithms, concatenated SMV algorithms. On the other hand, the MMV problem can be converted
to an SMV one by columnwise stacking the unknown signal matrix X as a vector and introducing a block
diagonal matrix as the new sensing matrix A. However, both approaches do not fully take advantage of
the joint sparse structure of the underlying signal matrix, and lack computational efficiency as well. In
this paper, we develop MMV algorithms without concatenation of the SMV results or vectorization of
the unknown signal matrix.

Since the `0 term in (1) and (2) is non-convex and non-differentiable, many classical convex opti-
mization algorithms fail to produce a satisfactory solution. To handle the NP-hardness of the problem,
many convex relaxation methods and their MMV extensions have been developed, e.g., the `2-regularized
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M-FOCUSS [1], and the `1-regularized MMV extensions of the alternating direction method of multi-
pliers [10,11]. By exploiting the relationship between the measurements and the correct atoms, multiple
signal classification (MUSIC) [12] and its improved variants [13,14] have been developed. However, in
the rank defective cases when the rank of the measurement matrix Y is much smaller than the desired
row-sparsity level, the MUSIC type of methods will mostly fail to identify the correct atoms. The third
category of algorithms for solving the `0 constrained problem is the class of greedy algorithms that seek
the sparsest solution by updating the support iteratively, including Orthogonal Matching Pursuit (OMP)
[15], simultaneous OMP (S-OMP) [16,17], Compressive Sampling Matching Pursuit (CoSaMP) [18], Reg-
ularized OMP (ROMP) [19], Subspace-Pursuit (SP) [20], and Iterative Hard-Thresholding (IHT) [21].
It has been shown that CoSaMP and IHT are more efficient than the convex relaxation methods with
strong recovery guarantees. However, most of these algorithms work for compressive sensing applications
where F is a least squares loss function. Recently, the Gradient Matching Pursuit (GradMP) [22] has been
proposed to extend CoSaMP to handle more general loss functions. To further improve the computational
efficiency and consider the non-convex objective function case, Stochastic IHT (StoIHT) and Stochastic
GradMP (StoGradMP) have been proposed [23]. Nevertheless, the aforementioned greedy algorithms are
designed for solving the SMV problem and the concatenated extension to the MMV versions will result
in limited performance especially for large data sets. In this paper, we propose the MMV Stochastic IHT
(MStoIHT) and the MMV Stochastic GradMP (MStoGradMP) methods for solving the general MMV
joint sparse recovery problem (2). To accelerate convergence, the mini-batching technique is applied to
the proposed algorithms. We also show that the proposed algorithms converge faster than their SMV
concatenated counterparts under certain conditions. A large variety of numerical experiments on joint
sparse matrix recovery and video sequence recovery have demonstrated the superior performance of the
proposed algorithms over their SMV counterparts in terms of running time and accuracy.

Organization. The rest of the paper is organized as follows. Preliminary knowledge and notation
clarifications are provided in Section 2. Section 3 presents the concatenated SMV algorithms, and the
proposed stochastic greedy algorithms, i.e., MStoIHT and MStoGradMP, in detail. Section 4 discusses
how to apply the mini-batching technique to accelerate the proposed algorithms. Convergence analysis is
provided in Section 5. By choosing the widely used least squares loss function as F , joint sparse signal
recovery in distributed compressive sensing is discussed in Section 6. Extensive numerical results are
shown in Section 7. Finally, some concluding remarks are made in Section 8.

2 Preliminaries

To make the paper self-contained, we first introduce some useful notation and definitions, and then briefly
describe the related algorithms, i.e., StoIHT and StoGradMP. Let [m] = {1, 2, . . . ,m} and |Ω| be the
number of elements in the set Ω. Consider a finite atom set D = {d1, . . . ,dN} (a.k.a. the dictionary)
with each atom di ∈ Rn.

2.1 Vector Sparsity

Assume that a vector x ∈ Rn can be written as a linear combination of di’s, i.e., x =
∑N
i=1 αidi = Dα

with

D =
[
d1 · · · dN

]
, α = (α1, . . . , αN )T .

Then the support of x with respect to α and D is defined by

suppα,D(x) = {i ∈ [N ] : αi 6= 0} := supp(α).

The `0-norm of x with respect to D is defined as the minimal support size

‖x‖0,D = min
α
{|T | : x =

∑
i∈T

αidi, T ⊆ [N ]} = min
α
| suppα,D(x)|.
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Since absolute homogeneity does not hold in general, i.e., ‖γx‖0,D = |γ| ‖x‖0,D holds if and only if |γ| = 1,
this `0-norm is not a norm. Here the smallest support suppα,D(x) is called the support of x with respect
to D, denoted by suppD(x). Thus

| suppD(x)| = ‖x‖0,D .

Note that the support may not be unique if D is over-complete in that there could be multiple represen-
tations of x with respect to the atom set D due to the linear dependence of the atoms in D. The vector
x is called k-sparse with respect to D if

‖x‖0,D ≤ k.

2.2 Matrix Sparsity

By extending vector sparsity, we define the row sparsity for a matrix X ∈ Rn×L as follows

‖X‖r,0,D = min
Ω
{|Ω| : Ω =

L⋃
i=1

suppD(X·,i)},

where X·,i is the i-th column of X. Here the minimal common support Ω is called the (row-wise) joint
support of X with respect to D, denoted by supprD(X), which satisfies

| supprD(X)| = ‖X‖r,0,D .

The matrix X is called k-row sparse with respect to D if all columns of X share a joint support of size
at most k with respect to D, i.e.,

‖X‖r,0,D ≤ k.

2.3 Functions Defined on A Matrix Space

Given a function f : Rn×L → R, the matrix derivative is defined by concatenating gradients [24]

∂f

∂X
=

[
∂f

∂Xi,j

]
n×L

=
[
∇X·,1f · · · ∇X·,Lf

]
, (3)

where Xi,j is the (i, j)-th entry of X. Notice that

‖X‖2F =

n∑
i=1

‖Xi,·‖22 =

L∑
j=1

‖X·,j‖22 = Tr(XTX),

where Xi,· is the i-th row vector of X, and Tr(·) is the trace operator to add up all the diagonal entries
of a matrix. The inner product for any two matrices U, V ∈ Rn×L is defined as

〈U, V 〉 = Tr(UTV ).

Note that the equality

‖U + V ‖2F = ‖U‖2F + ‖V ‖2F + 2〈U, V 〉 (4)

and the Cauchy-Schwartz inequality

〈U, V 〉 ≤ ‖U‖F ‖V ‖F (5)

still hold. By generalizing the concepts in [23], we define the D-restricted strong convexity property and
the strong smoothness property (a.k.a. the Lipschitz condition on the gradient) for the functions defined
on a matrix space.
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Definition 1 The function f : Rn×L → R satisfies the D-restricted strong convexity (D-RSC) if there
exists ρ−k > 0 such that

f(X ′)− f(X)−
〈 ∂f
∂X

(X), X ′ −X
〉
≥
ρ−k
2
‖X ′ −X‖2F (6)

for all matrices X ′, X ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k.

Definition 2 The function f : Rn×L → R satisfies the D-restricted strong smoothness (D-RSS) if there
exists ρ+k > 0 such that ∥∥∥∥ ∂f∂X (X)− ∂f

∂X
(X ′)

∥∥∥∥
F

≤ ρ+k ‖X −X
′‖F (7)

for all matrices X ′, X ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k.

2.4 Related Work

StoIHT (see Algorithm 1) and StoGradMP (see Algorithm 2) have been proposed to solve the `0 con-
strained SMV problem [23]

min
x∈Rn

1

M

M∑
i=1

f̃i(x), subject to ‖x‖0,D ≤ k. (8)

At each iteration of StoIHT, one component function f̃i is first randomly selected with probability p(i).
Here the input discrete probability distribution p(i)’s satisfy

M∑
i=1

p(i) = 1, and p(i) ≥ 0, i = 1, . . . ,M.

Next in the “Proxy” step, gradient descent along the selected component is performed. Then the last two
steps, i.e., “Identify” and “Estimate”, essentially project the gradient descent result to its best k-sparse
approximation. Given w = (w1, . . . , wn)T and η ≥ 1, the best k-sparse approximation operator acted on
w and η, denoted by approxk(w, η), constructs an index set Γ with |Γ | = k such that

‖PΓw −w‖2 ≤ η
∥∥w −w(k)

∥∥
2

where w(k) = argmin
y∈R(DΓ )
|Γ |≤k

‖w − y‖2 .

Here PΓw is the orthogonal projection of w onto the subspace R(DΓ ) in Rn spanned by the atoms with
indices in Γ , and w(k) is the best k-sparse approximation of w in the subspace R(DΓ ). In particular, if
η ≥ 1 and D = {ei : i = 1, 2, . . . , n} with ei = [0, . . . , 1

(i)
, . . . , 0]T , then approxk(w, η) returns the index

set of the first k largest entries of w in absolute value, i.e.,

approxk(w, 1) = {i1, i2, . . . , ik : |wi1 | ≥ . . . ≥ |wik | ≥ . . . ≥ |win |} := Γ̂ .

Then the projection PΓw reads as in componentwise form

(
PΓ̂ (w)

)
j

=

{
wj if j ∈ Γ̂ ,

0 if j /∈ Γ̂ .

There are two widely used stopping criteria:∥∥xt+1 − xt
∥∥
2

‖xt‖2
< ε, and

1

M

M∑
i=1

f̃i(x
t) < ε,
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Algorithm 1 Stochastic Iterative Hard Thresholding (StoIHT)

Input: k, γ, η, p(i), ε.
Output: x̂ = xt.
Initialize: x = 0.
for t = 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Proxy: bt = xt − γ

Mp(it)
∇f̃it (xt)

Identify: Γ t = approxk(bt, η).
Estimate: xt+1 = PΓ t (bt).
If the stopping criteria are met, exit.

end for

where ε > 0 is a small tolerance. It is well known that the first stopping criteria is more robust in practice.
Different from StoIHT, StoGradMP involves the gradient matching process, i.e., to find the best k-sparse
approximation of the gradient rather than the estimated solution. At the solution estimation step, the
original problem is restricted to the components from the estimated support. It has been empirically shown
that StoGradMP converges faster than StoIHT due to the more accurate estimation of the support. But
StoGradMP requires that the sparsity level k is no more than n/2.

Algorithm 2 Stochastic Gradient Matching Pursuit (StoGradMP)

Input: k, η1, η2, p(i), ε.
Output: x̂ = xt.
Initialize: x0 = 0, Λ = 0.
for t = 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Calculate the gradient rt = ∇f̃it (xt)
Γ = approx2k(rt, η1)

Γ̂ = Γ ∪ Λ
bt = argminx

1
M

∑M
i=1 f̃i(x), x ∈ R(DΓ̂ )

Λ = approxk(bt, η2)
xt+1 = PΛ(bt)
If the stopping criteria are met, exit.

end for

3 Proposed Stochastic Greedy Algorithms

In this section, we present concatenated SMV algorithms, and develop stochastic greedy algorithms for
MMV problems based on StoIHT and StoGradMP. Suppose that there are M differentiable and convex
functions fi : Rn×L → R that satisfy the D-restricted strong smoothness property (see Definition 2), and
their mean

F (X) =
1

M

M∑
i=1

fi(X) (9)

satisfies the D-restricted strong convexity property (see Definition 1). These assumptions will be used
extensively throughout the entire paper. Consider the following row-sparsity constrained MMV problem

min
X∈Rn×L

1

M

M∑
i=1

fi(X), subject to ‖X‖r,0,D ≤ k. (10)

By vectorizing X, i.e., rewriting X as a vector x ∈ RnL by columnwise stacking, we can relax (10) to
a sparsity constrained SMV problem of the form (8) where the sparsity level k is replaced by kL. Since
‖x‖0,D ≤ kL does not necessarily guarantee ‖X‖r,0,D ≤ k, the solution to the relaxed problem may
not be the same as the vectorization of the solution to (10). On the other hand, the iterative stochastic
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algorithms such as StoIHT and StoGradMP, can be developed to the concatenated versions for solving
(10) under the following assumption on the objective function fi’s.

Assumption 1. The objective function in (10) is separable, in the sense that a collection of functions
gi,j : Rn → R exist with

fi(X) =

L∑
j=1

gi,j(X·,j), i = 1, . . . ,M. (11)

Under this assumption, the concatenated algorithms, i.e., CStoIHT in Algorithm 3 and CStoGradMP
in Algorithm 4, can be applied to solve (10), which essentially reconstruct each column of X by solving
the SMV problem (8). Notice that the outer loops of CStoIHT and CStoGradMP can be executed in
a parallel manner on a multi-core computer, when the order of the inner loop and the outer loop in
Algorithm 3 can be swapped. However, if the sparsity level k is very large, then the support sets of
X·,j ’s are prone to overlap less initially which results in the less accurate estimation of the joint support
and larger errors in the initial iterates. In addition, for some nonlinear function fi(X) which can not be
separated as a sum of functions for columns of X, it will be challenging to find an appropriate objective
function for the corresponding SMV problem.

Algorithm 3 Concatenated Stochastic Iterative Hard Thresholding (CStoIHT)

Input: k, γ, η, p(i), ε.

Output: X̂ = Xt.
Initialize: X = 0 ∈ Rn×L.
for j = 1, . . . , L do

for t = 1, 2, . . . , T do
Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Proxy: bt = Xt

·,j −
γ

Mp(it)
∇git,j(Xt

·,j)

Identify: Γ t = approxk(bt, η).

Estimate: Xt+1
·,j = PΓ t (bt).

If the stopping criteria are met, exit.
end for

end for

Algorithm 4 Concatenated Stochastic Gradient Matching Pursuit (CStoGradMP)

Input: k, η1, η2, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0 ∈ Rn×L, Λ = 0.
for j = 1, . . . , L do

for t = 1, 2, . . . , T do
Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)
Calculate the gradient rt = ∇git,j(Xt

·,j)

Γ = approx2k(rt, η1)

Γ̂ = Γ ∪ Λ
bt = argminx

1
M

∑M
i=1 gi,j(x), x ∈ R(DΓ̂ )

Λ = approxk(bt, η2)

Xt+1
·,j = PΛ(bt)

If the stopping criteria are met, exit.
end for

end for

To circumvent the aforementioned issues, we first propose the MMV Stochastic Iterative Hard Thresh-
olding algorithm (MStoIHT) detailed in Algorithm 5. Compared to StoIHT, MStoIHT replaces the gra-
dient by the matrix derivative (3). The second significant difference lies in the “Identify” and “Estimate”
steps, especially the operator approxk(·, ·). Now we extend the operator approxk(·, ·) from sparse vectors
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to row-sparse matrices. Given X ∈ Rn×L and η ≥ 1, the best k-row sparse approximation operator acted
on X and η, denoted by approxrk(X, η), constructs a row index set Γ such that

‖PΓX·,j −X·,j‖2 ≤ η ‖X·,j − (X·,j)k‖2 , j = 1, . . . , L,

where (X·,j)k is the best k-sparse approximation of the column vector X·,j with respect to D. In particular,
if D = {ei : i = 1, . . . , n} and η = 1, approxrk(X, 1) returns the row index set of the first k largest `2 row
norms in X, i.e.,

approxrk(X, 1) = {i1, i2, . . . , ik : ‖Xi1,·‖2 ≥ ‖Xi2,·‖2 ≥ . . . ≥ ‖Xin,·‖2} := Γ̃ .

By abusing the notation, we define PΓ̃ (X) to be the projection of X onto the subspace of all row-sparse

matrices with row indices restricted to Γ̃ . Therefore, we have

PΓ̃X =
[
PΓ̃X·,1 PΓ̃X·,2 . . . PΓ̃X·,L

]
.

Due to the common support Γ̃ , the projection PΓ̃ (X) can be written as in row-wise form

(
PΓ̃ (X)

)
j,· =

{
Xj,· if j ∈ Γ̃ ,

0 if j /∈ Γ̃ .

Here PΓ̃ (X) returns a k-row sparse matrix, whose nonzero rows correspond to the k rows of X with
largest `2 row norms.

Algorithm 5 MMV Stochastic Iterative Hard Thresholding (MStoIHT)

Input: k, γ, η, p(i), ε.

Output: X̂ = Xt.
Initialize: X = 0.
for t = 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Proxy: Bt = Xt − γ
Mp(it)

∂fit (X
t)

∂X

Identify: Γ t = approxrk(Bt, η).
Estimate: Xt+1 = PΓ t (Bt).
If the stopping criteria are met, exit.

end for

Next, we propose the MMV Stochastic Gradient Matching Pursuit (MStoGradMP) detailed in Algo-
rithm 6, where the two gradient matching steps involve the operator approxrk(·, ·). The stopping criteria
in all proposed algorithms can be set as the same as those in Algorithm 1 and Algorithm 2.

Algorithm 6 MMV Stochastic Gradient Matching Pursuit (MStoGradMP)

Input: k, η1, η2, p(i), ε.

Output: X̂ = Xt.
Initialize: X0 = 0, Λ = 0.
for t = 1, 2, . . . , T do

Randomly select an index it ∈ {1, 2, . . . ,M} with probability p(it)

Calculate the generalized gradient Rt =
∂fit (X

t)

∂X

Γ = approxr2k(Rt, η1)

Γ̂ = Γ ∪ Λ
Bt = argminX F (X), X ∈ R(DΓ̂ )
Λ = approxrk(Bt, η2)
Xt+1 = PΛ(Bt)
If the stopping criteria are met, exit.

end for
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4 Batched Acceleration

To accelerate computations and improve performance, we apply the mini-batching technique to obtain
batched variants of Algorithms 5 and 6. We first partition the index set {1, 2, . . . ,M} into a collection of
equal-sized batches τ1, . . . , τd where the batch size |τi| = b for all i = 1, 2, . . . , dM/be := d. For simplicity,
we assume that d is an integer. Similar to the approach in [25], we reformulate (9) as

F (X) =
1

d

d∑
i=1

1

b

∑
j∈τi

fj(X)

 . (12)

Based on this new formulation, we get the batched version of Algorithm 5, which is termed as BMStoIHT,
described in Algorithm 7. Here the input probability p(i) satisfies

1

d

d∑
i=1

p(i) = 1 and p(i) ≥ 0, i = 1, . . . , d.

Likewise, we get a batched version of MStoGradMP, termed as BMStoGradMP, which is detailed in
Algorithm 8. It is empirically shown in Section 7 that the increase of the batch size greatly speeds up the
convergence of both algorithms, which is more obvious in BMStoIHT. As a by-product, mini-batching
can also improve the recovery accuracy. However, there is a trade-off between the batch size and the
performance improvement [25].

Algorithm 7 Batched MMV Stochastic Iterative Hard Thresholding (BMStoIHT)

Input: k, γ, η, b and p(i).

Output: X̂ = Xt.
Initialize: X = 0.
for t = 1, 2, . . . , T do

Randomly select a batch index τt ⊆ {1, 2, . . . , d} of size b with probability p(τt)

Proxy: Bt = Xt − γ
dp(τt)

∂fτt (X
t)

∂X

Identify Γ t = approxrk(Bt, η).
Estimate Xt+1 = PΓ t (Bt).
If the stopping criteria are met, exit.

end for

Algorithm 8 Batched MMV Stochastic Gradient Matching Pursuit (BMStoGradMP)

Input: k, η1, η2, b and p(i).

Output: X̂ = Xt.
Initialize: X0 = 0, Λ = 0.
for t = 1, 2, . . . , T do

Randomly select a batch index τt ⊆ {1, 2, . . . , d} of size b with probability p(τt)

Calculate the generalized gradient Rt =
∂fτt (X

t)

∂X

Γ = approxr2k(Rt, η1)

Γ̂ = Γ ∪ Λ
Bt = argminX F (X), X ∈ span(DΓ̂ )
Λ = approxrk(Bt, η2)
Xt+1 = PΛ(Bt)
If the stopping criteria are met, exit.

end for
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5 Convergence Analysis

In this section, we provide the convergence guarantees for the proposed MStoIHT and MStoGradMP,
together with their SMV counterparts, i.e., CStoIHT and CStoGradMP. To simplify the discussion, the
result at the t-th iteration of CStoIHT/CStoGradMP refers to the result obtained after t inner itera-
tions and L outer iterations of Algorithm 3/Algorithm 4, or equivalently the maximum number of inner
iterations is set as t. Furthermore, all convergence results can be extended to their batched versions,
i.e., BStoIHT and BMStoGradMP. Comparison of contraction coefficients shows that the proposed algo-
rithms have faster convergence under the D-RSC, D-RSS and separability of the objective function (see
Assumption 1).

By replacing the `2-norm and vector inner product with the Frobenius norm and the matrix in-
ner product respectively and using (4) and (5), we get similar convergence results for MStoIHT and
MStoGradMP as in [23]:

Theorem 1 Let X∗ be a feasible solution of (10) and X0 be the initial solution. At the (t+1)-th iteration
of Algorithm 5, the expectation of the recovery error is bounded by

E
∥∥Xt+1 −X∗

∥∥
F
≤ κt+1

∥∥X0 −X∗
∥∥
F

+
σX∗

1− κ
, (13)

where

κ = 2
√

1− γ(2− γα3k)ρ−3k +
√

(η2 − 1)(1 + γ2α3kρ̄
+
3k − 2γρ−3k),

αk = max
1≤i≤M

ρ+k (i)

Mp(i)
, ρ+k = max

1≤i≤M
ρ+k (i), ρ̄+k =

1

M

M∑
i=1

ρ+k (i).
(14)

Thus Algorithm 7 converges linearly. In particular, if η = γ = 1, then

κ = 2
√

1− 2ρ−3k + α3kρ
−
3k. (15)

To solve the problem (10), CStoIHT uses StoIHT to restore each column of X separately and then
concatenate all column vectors to form a matrix. To analyze the convergence of CStoIHT, we first derive

an upper bound for E
∥∥X·,j −X∗·,j∥∥22 following the proof in [23, Section 8.2]. Note that we look for the

contraction coefficient of E
∥∥X·,j −X∗·,j∥∥22 rather than E

∥∥X·,j −X∗·,j∥∥2.

Lemma 1 Let X∗ be a feasible solution of (10) and X0 be the initial solution. Under Assumption 1, there
exist κj , σj > 0 such that the expectation of the recovery error squared at the t-th iteration of Algorithm 3
for estimating the j-th column of X∗ is bounded by

EIt
∥∥Xt+1
·,j −X

∗
·,j
∥∥2
2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2
2

+
σj

1− κj
, (16)

where Xt
·,j is the approximation of X∗·,j at the t-th iteration of StoIHT with the initial guess X0

·,j, i.e., the

result at the t-th inner iteration and j-th outer iteration of Algorithm 3 with the initial guess X0. Here
It is the set of all indices i1, . . . , it randomly selected at or before the t-th step of the algorithm.

Proof Due to the separable form of fi in Assumption 1, we consider L problems of the form

min
w

1

M

M∑
i=1

gi,j(w), ‖w‖0,D ≤ k, j = 1, . . . , L, (17)

where gi,j are given in (11). This relaxation is also valid since X∗·,j is also a feasible solution of (17) if X∗

is a feasible solution of (10). Let wt = Xt
·,j , w∗ = X∗·,j , x =

∥∥wt+1 −w∗
∥∥
2
,

u =

∥∥∥∥wt −w∗ − γ

Mp(it)
PΩ(∇git,j(wt)−∇git,j(w∗))

∥∥∥∥
2

+

∥∥∥∥ γ

Mp(it)
PΩ∇git,j(w∗)

∥∥∥∥
2

:= u1 + u2,
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and

v = (η2 − 1)

∥∥∥∥wt −w∗ − γ

Mp(it)
∇git,j(wt)

∥∥∥∥2
2

.

Let

v1 = (η2 − 1)

∥∥∥∥wt −w∗ − γ

Mp(it)
(∇git,j(wt)−∇git,j(w∗))

∥∥∥∥2
2

,

v2 = (η2 − 1)

∥∥∥∥ γ

Mp(it)
∇git,j(w∗)

∥∥∥∥2
2

.

The inequality (a+ b)2 ≤ 2a2 + 2b2 yields that

v ≤ 2v1 + 2v2.

By the direct computation, we can show that

x2 − 2ux− v ≤ 0,

which implies that

x ≤ u+
√
u2 + v.

Thus the inequality a+ b ≤
√

2a2 + 2b2 yields

x2 ≤ 2u2 + 2(u2 + v) = 4u2 + 2v ≤ 8(u21 + u22) + 4v1 + 4v2.

By taking the conditional expectation Eit|It−1
on both sides, we obtain

Eit|It−1
x2 ≤ 8Eit|It−1

u21 + 8Eit|It−1
u22 + 4Eit|It−1

v1 + 4Eit|It−1
v2

≤ 8(1− (2γ − γ2α3k,j)ρ
−
3k,j)

∥∥wt −w∗
∥∥2
2

+
8γ2

minitM
2(p(it))2

Eit|It−1
‖PΩ∇git,j(w∗)‖

2
2

+ 4(η2 − 1)(1 + γ2α3k,j ρ̄
+
3k,j − 2γρ−3k,j)

∥∥wt −w∗
∥∥2
2

+
4γ2(η2 − 1)

minitM
2(p(it))2

Eit ‖∇git,j(w∗)‖
2
2

=
(

8(1− (2γ − γ2α3k,j)ρ
−
3k,j) + 4(η2 − 1)(1 + γ2α3k,j ρ̄

+
3k,j − 2γρ−3k,j)

)∥∥wt −w∗
∥∥2
2

+
4γ2

minitM
2(p(it))2

(
2Eit ‖PΩ∇git,j(w∗)‖

2
2 + (η2 − 1)Eit ‖∇git,j(w∗)‖

2
2

)
:= κj

∥∥wt −w∗
∥∥2
2

+ σj .

Note that all coefficients α3k,j , ρ
−
3k,j and ρ̄+3k,j depend on the function gij in (11). Therefore

EIt
∥∥wt+1 −w∗

∥∥2
2
≤ κjEIt−1

∥∥wt −w∗
∥∥2
2

+ σj .

which implies that

E
∥∥Xt+1
·,j −X

∗
·,j
∥∥2
2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2
2

+
σj

1− κj
, j = 1, . . . , L.

Here the contraction coefficient is

κj = 8(1− (2γ − γ2α3k,j)ρ
−
3k,j) + 4(η2 − 1)(1 + γ2α3k,j ρ̄

+
3k,j − 2γρ−3k,j), (18)

and the tolerance parameter is

σj =
4γ2

min
1≤i≤M

M2(p(it))2

(
2Eit ‖PΩ∇git,j(w∗)‖

2
2 + (η2 − 1)Eit ‖∇git,j(w∗)‖

2
2

)
. (19)

In particular, if γ = η = 1 and p(i) = 1/M , then

κj = 8(1− 2ρ−3k,j + α3k,jρ
−
3k,j), σj =

8

M

M∑
i=1

∥∥PΩ∇gi,j(X∗·,j)∥∥22 .
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Theorem 2 Let X∗ be a feasible solution of (10) and X0 be the initial solution. Under Assumption 1,
at the (t+ 1)-th iteration of Algorithm 3, the expectation of the recovery error is bounded by

E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̂t+1

∥∥X0 −X∗
∥∥
F

+ δ, (20)

where Xt is the approximation of X∗ at the t-th iteration of Algorithm 3 with the initial guess X0
·,j. Here

the contraction coefficient κ̂ and the tolerance parameter δ are defined as

κ̂ =
√

max
1≤j≤L

κj , δ =

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj
,

where κj is the contraction coefficient for each StoIHT defined in (18).

Proof For each j = 1, 2, . . . , L, StoIHT with the initial guess X0
·,j generates Xt+1

·,j after t iterations, i.e.,
the result at the (t+ 1)-th inner iteration and j-th outer iteration of Algorithm 3. Then the expectation
of the recovery error squared is bounded by

E
∥∥Xt+1
·,j −X

∗
·,j
∥∥2
2
≤ κt+1

j

∥∥X0
·,j −X∗·,j

∥∥2
2

+
σj

1− κj
,

where κj and σj are defined in Lemma 1. Note that κj depends only on the constants in the D-RSC
and D-RSS properties of the objective function or its component function gi,j while σj depends on the
feasible solution X∗·,j . By combining all L components of Xt+1, we get

E
∥∥Xt+1 −X∗

∥∥
F
≤
√
E ‖Xt+1 −X∗‖2F

=

√√√√ L∑
j=1

E
∥∥Xt+1
·,j −X∗·,j

∥∥2
2

≤

√√√√ L∑
j=1

(
κt+1
j

∥∥X0
·,j −X∗·,j

∥∥2
2

+
σj

1− κj

)

≤

√
( max
1≤j≤L

κj)t+1 ‖X0 −X∗‖2F +

∑L
j=1 σj

1−max1≤j≤L κj

≤
(√

max
1≤j≤L

κj

)t+1 ∥∥X0 −X∗
∥∥
F

+

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj

:= κ̂t+1
∥∥X0 −X∗

∥∥
F

+ δ.

In particular, if γ = η = 1, then

κ̂ =
√

max
1≤j≤L

κj =
√

max
1≤j≤L

8(1− 2ρ−3k,j + α3k,jρ
−
3k,j) = 2

√
2
√

max
1≤j≤L

(1− 2ρ−3k,j + α3k,jρ
−
3k,j).

In the case that ρ−3k,j = ρ3k, α3k,j = α3k and ρ+3k,j = ρ3k, we have

κ̂ =
√

2κ,

where κ is defined Theorem 1. This shows that the CStoIHT converges slower than the proposed MStoIHT
provided the same coefficients in the strong smoothness and convexity of the objective function, which
we show holds for the distributed compressive sensing setting in Section 6.

By using the same proof techniques as in Theorem 1, we can get the following convergence result for
MStoGradMP.
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Theorem 3 Let X∗ be a feasible solution of (10) and X0 be the initial solution. At the (t+1)-th iteration
of Algorithm 6, the expectation of the recovery error is bounded by

E
∥∥Xt+1 −X∗

∥∥
F
≤ κt+1

∥∥X0 −X∗
∥∥
F

+
σX∗

1− κ
, (21)

where

κ = (1 + η2)

√
α4k

ρ−4k

(
max

1≤i≤M

√
Mp(i)

√
ρ+4k(2η21 − 1)

ρ−4kη
2
2

− 1 +

√
η21 − 1

η1

)
,

σX∗ =
(1 + η2)

ρ−4k min
1≤i≤M

Mp(i)

(
2 max
1≤i≤M

Mp(i)

√
α4k

ρ−4k
+ 3

)
max
|Ω|≤4k
1≤i≤M

∥∥∥∥PΩ ∂fi∂X
(X∗)

∥∥∥∥
F

.

Thus Algorithm 6 converges linearly. In particular, if η1 = η2 = 1 and p(i) = 1/M , then

κ =
2
√
α4k(ρ+4k − ρ

−
4k)

ρ−4k
. (22)

Similar to CStoIHT, we start the convergence analysis for CStoGradMP by finding the contraction
coefficient for the expectation of recovery error squared at each iteration of CStoGradMP.

Lemma 2 Let X∗ be a feasible solution of (12) and X0 be the initial solution. Under Assumption 1,
the expectation of the recovery error squared at the t-th iteration of Algorithm 4 for estimating the j-th
column of X∗ is bounded by

EIt
∥∥bt −X∗·,j∥∥22 ≤ β1EIt ∥∥PΓ̂ (bt −X∗·,j)

∥∥2
2

+ δ1, (23)

where

β1 =
α4k

2ρ−4k − α4k

, δ1 =
2

α4k(2ρ−4k − α4k) min
1≤i≤M

M2(p(i))2
EItEi

∥∥PΓ̂∇gi,j(X·,j)∥∥22 . (24)

Here It is the set of all indices i1, . . . , it randomly selected at or before the t-th step of the algorithm.

Proof Consider the problem (17). By the proof in [23, Lemma 2], we get∥∥PΓ̂ (bt −X∗·,j)
∥∥2
2
≤ 2(1− (2γ − γ2α4k)ρ−4k

∥∥bt −X∗·,j∥∥22 +
2γ2

min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X·,j)∥∥22 ,

where we use the inequality (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R and the expectation inequality (EX)2 ≤
E(X2). Then we have∥∥bt −X∗·,j∥∥22 =

∥∥PΓ̂ (bt −X∗·,j)
∥∥2
2

+
∥∥PΓ̂ c(bt −X∗·,j)∥∥22

≤ 2(1− (2γ − γ2α4k)ρ−4k)
∥∥bt −X∗·,j∥∥22 +

2γ2

min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X∗·,j)∥∥22 +

∥∥PΓ̂ c(bt −X∗·,j)∥∥22 .
Moving the first term on the right hand side to the left hand side leads to∥∥bt −X∗·,j∥∥22 ≤ 2γ2

φ min
1≤i≤M

M2(p(i))2
Ei
∥∥PΓ̂∇gi,j(X·,j)∥∥22 +

1

φ

∥∥PΓ̂ c(bt −X∗·,j)∥∥22 ,
where φ = 2ρ−4k(2γ − γ2α4k)− 1. Maximizing φ with respect to γ yields γ = 1/α4k and φmax = (2ρ−4k −
α4k)/α4k. By choosing the optimal value of γ and taking the expectation with respect to It on the both
sides of the above inequality, we get (23).

Similarly, using the inequality EX ≤
√
E(X2) and the fact that a ≤ b + c yields a2 ≤ 2b2 + 2c2,

we are able to get the following result, which is different from Lemma 3 in [23] in that we consider the
expectation for the `2-norm squared here rather than that for the `2-norm.
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Lemma 3 Let X∗ be a feasible solution of (12) and X0 be the initial solution. Under Assumption 1,
the expectation of the recovery error squared at the t-th iteration of Algorithm 4 for estimating the j-th
column of X∗ is bounded by

Eit
∥∥PΓ̂ c(bt −X∗·,j)∥∥22 ≤ β2 ∥∥Xt

·,j −X∗·,j
∥∥2
2

+ δ2, (25)

where it is the index randomly selected at the t-th iteration of the CStoGradMP and

β2 = 4 max
1≤i≤M

Mp(i)
(2η21 − 1)ρ+4k − η21ρ

−
4k

η21ρ
−
4k

+
2(η21 − 1)

η21
,

δ2 = 8

 max
1≤i≤M

p(i)

ρ−4k min
1≤i≤M

p(i)

2

max
|Ω|≤4k
1≤i≤M

∥∥PΩ∇gi,j(X∗·,j)∥∥22 .
(26)

Theorem 4 Let X∗ be a feasible solution of (12) and X0 be the initial solution. Under Assumption 1,
at the (t + 1)-th iteration of Algorithm 4, there exist κ̃, η > 0 such that the expectation of the recovery
error is bounded by

E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̃t+1

∥∥X0 −X∗
∥∥
F

+ η, (27)

where Xt
·,j is the approximation of X∗·,j at the t-th iteration of CStoGradMP with the initial guess X0

·,j.

Proof At the t-th iteration of CStoGradMP, i.e., Algorithm 4, we have∥∥Xt+1
·,j − bt

∥∥2
2
≤ η22

∥∥∥bt(k) − bt
∥∥∥2
2
≤ η22

∥∥X∗·,j − bt
∥∥2
2
,

where bt(k) is the best k-sparse approximation of bt with respect to the atom set D. Therefore, we get∥∥Xt+1
·,j −X

∗
·,j
∥∥2
2
≤
∥∥Xt+1
·,j − bt + bt −X∗·,j

∥∥2
2

≤ 2
∥∥Xt+1
·,j − bt

∥∥2
2

+ 2
∥∥bt −X∗·,j∥∥22

≤ (2 + 2η22)
∥∥bt −X∗·,j∥∥22 .

Next we establish the relationships among various expectations

EIt
∥∥Xt+1
·,j −X·,j

∥∥2
2
≤ (2 + 2η22)EIt

∥∥bt −X∗·,j∥∥22
≤ (2 + 2η22)(β1EIt

∥∥PΓ̂ (bt −X∗·,j)
∥∥2
2

+ δ1)

≤ (2 + 2η22)β1(β2EIt
∥∥Xt
·,j −X∗·,j

∥∥2
2

+ δ2) + (2 + 2η22)δ1

:= κj
∥∥Xt
·,j −X∗·,j

∥∥2
2

+ σj ,

where the first inequality is guaranteed by Lemma 2 and the second inequality is guaranteed by Lemma 3.
Here the contraction coefficient κj and the tolerance parameter σj are defined by

κj = (2 + 2η22)β1β2, σj = (2 + 2η22)β1δ2 + (2 + 2η22)δ1,

where β1, δ1 are defined in (24) and β2, β2 are defined in (26). Then similar to the proof of Theorem 2,
we can derive that

E
∥∥Xt+1 −X∗

∥∥
F
≤ κ̃t+1

∥∥X0 −X∗
∥∥
F

+ η

where

κ̃ =
√

max
1≤j≤L

κj , and η =

√√√√ ∑L
j=1 σj

1− max
1≤j≤L

κj
.
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In particular, if η1 = η2 = 1 and p(i) = 1/M , then

κ̃ = 4

√
α4k(ρ+4k − ρ

−
4k)

ρ−4k(2ρ−4k − α4k)
.

If, in addition, α4k = ρ−4k, then we have

κ̃ = 2κ,

where the contraction coefficient κ for MStoGradMP is given in (22), which implies that MStoGradMP
converges faster than CStoGradMP in this case due to the smaller contraction coefficient. Compared with
MStoIHT, MStoGradMP has even larger convergence improvement in terms of recovery accuracy and
running time.

6 Distributed Compressive Sensing Application

In this section, we show that the objective function commonly used in the distributed compressive sensing
problem satisfies the D-RSC and D-RSS properties, which paves the theoretical foundation for using
the proposed algorithms in this application. Suppose that there are L underlying signals xj ∈ Rn for
j = 1, 2, . . . , L, and their measurements are generated by

yj = A(j)xj , j = 1, 2, . . . , L

where A(j) ∈ Rm×n (m � n) is the measurement matrix (a.k.a. the sensing matrix). For discussion
simplicity, we assume all measurement matrices are the same, i.e., A(j) = A = [A·,1, . . . , A·,n]. By con-
catenating all vectors as a matrix, we rewrite the above equation as follows

Y = AX, Y = [y1, . . . ,yL] ∈ Rm×L, X = [x1, . . . ,xL] ∈ Rn×L.

Now assume that the atom set is finite and denoteD = {d1, . . . ,dN} with the corresponding dictionary
D = [d1, . . . ,dN ]. Consider the following distributed compressive sensing model with common sparse
supports [26]

min
X

1

2m

L∑
j=1

‖yj −Axj‖22 s.t. xj = Dθj supp(θj) = Ω ⊆ {1, 2, . . . , N}. (28)

Here the objective function has the form

F (X) =
1

2m
‖Y −AX‖2F . (29)

Then F (X) can be written as

F (X) =
1

M

M∑
i=1

fi(X),

where M = m/b and

fi(X) =
1

2b

L∑
j=1

(Yi,j −
n∑
k=1

Ai,kXk,j)
2 =

1

2b
‖Yi,· −Ai,·X‖22 . (30)
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The above expression shows that fi’s satisfy the Assumption 1 and thereby the concatenated algorithms
in Section 3 can be applied. We first compute the partial derivative. For s = 1, 2, . . . , n and t = 1, 2, . . . , L,
we have

∂fi(X)

∂Xs,t
=

1

2b

L∑
j=1

2

(
n∑
k=1

Ai,kXk,j − Yi,j

)
n∑
k=1

Ai,k
∂Xk,j

∂Xs,t

=
1

b

L∑
j=1

(
n∑
k=1

Ai,kXk,j − Yi,j

)
n∑
k=1

Ai,kδk,sδj,t

=
1

b

(
n∑
k=1

Ai,kXk,t − Yi,t

)
Ai,s.

Here δi,j = 1 if i = j and zero otherwise. Thus the generalized gradient of fi(X) with respect to X has
the form

∂fi(X)

∂X
=

1

b
ATi,·(Ai,·X − Yi,·).

Lemma 4 If the sensing matrix A ∈ Rm×n satisfies the Restricted Isometry Property (RIP), i.e., there
exists δk > 0 such that

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22
for any k-sparse vector x ∈ Rn, then the function F (X) defined in (29) satisfies the D-restricted strong
convexity property.

Proof Let X ∈ Rn×L with k nonzero rows, which implies that each column of X has at most k nonzero
components. By the RIP of A, we have

(1− δk) ‖X·,j‖22 ≤ ‖AX·,j‖
2
2 ≤ (1 + δk) ‖X·,j‖22 , j = 1, . . . , L.

Note that ‖X‖2F =
∑L
j=1 ‖X·,j‖

2
2. Thus we get

(1− δk) ‖X‖2F ≤ ‖AX‖
2
F ≤ (1 + δk) ‖X‖2F .

For any two X,X ′ ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k, we have

F (X ′)− F (X)−
〈∂F (X)

∂X
,X ′ −X

〉
=

1

2m

(
‖Y −AX ′‖2F − ‖Y −AX‖

2
F

)
−
〈 1

m
AT (AX − Y ), X ′ −X

〉
=

1

2m
‖A(X ′ −X)‖2F

≥ 1− δk
2m

‖X ′ −X‖2F .

Thus F (X) satisfies the D-restricted strong smoothness property with ρ−k = 1−δk
2m .

Lemma 5 If the sensing matrix A ∈ Rm×n satisfies the following property: for any k-sparse vector
x ∈ Rn, there exists δk > 0 such that

1

b

∥∥ATτi,·Aτi,·x∥∥2 ≤ (1 + δk) ‖x‖2

where Aτi,· is formed by extracting rows of A with row indices in τi. Then the function fi(X) defined in
(30) satisfies the D-restricted strong convexity property.
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Proof Let X ∈ Rn×L have k nonzero rows. Then

1

b

∥∥ATτi,·Aτi,·X·,j∥∥2 ≤ (1 + δk) ‖X·,j‖2 , j = 1, . . . , L,

which implies that
1

b

∥∥ATτi,·Aτi,·X∥∥F ≤ (1 + δk) ‖X‖F .

For any two X,X ′ ∈ Rn×L with | supprD(X) ∪ supprD(X ′)| ≤ k, we have∥∥∥∥∂fi(X)

∂X
− ∂fi(X

′)

∂X

∥∥∥∥
F

=
1

b

∥∥ATi,·(Ai,·X − Yi,·)−ATi,·(Ai,·X ′ − Yi,·)∥∥F
=

1

b

∥∥ATi,·Ai,·(X −X ′)∥∥F
≤ (1 + δk) ‖X −X ′‖F .

Therefore fi(X) satisfies the D-restricted strong convexity with ρ+k (i) = 1 + δk.

By Lemma 4, Lemma 5 and the convergence analysis in Section 5, the contraction coefficient in the
proposed algorithms depends on the coefficient in the RIP condition, whose infimum for some special
type of matrices are available [27].

7 Numerical Experiments

In this section, we conduct a variety of numerical experiments to validate the effectiveness of the proposed
algorithms. More specifically, our tests include reconstruction of row sparse signals from a linear system
and joint sparse video sequence recovery. To compare different results quantitatively, we use the relative
error defined as follows

ReErr =
‖Xt −X∗‖F
‖X∗‖F

,

where X∗ is the ground truth and Xt is the estimation of X∗ at the t-th iteration. Regarding the
computational efficiency, we also record the running time which counts all the computation time over a
specified number of iterations excluding data loading or generation. Here we use the commands tic and
toc in Matlab. To assess the concatenated SMV algorithms, we apply the SMV algorithm sequentially
to the same sensing matrix and all columns of the measurement matrix Y , and save all intermediate
approximations of each column of X for further computation of the relative error. In all tests, we use
the discrete uniform distribution, i.e., p(i) = 1/M for i = 1, 2, . . . ,M in the non-batched version and
p(i) = 1/d for i = 1, 2, . . . , d in the batched version. The parameter η is fixed as 1. By default, each
algorithm is stopped when either the relative error between two subsequent approximations of X∗ reaches
the tolerance or the maximum number of iterations is achieved.

All our experiments are performed in a desktop with an Intel R© Xeon R© CPU E5-2650 v4 @ 2.2GHz and
64GB RAM in double precision. The algorithms are implemented in Matlab 2016a running on Windows
10.

7.1 Joint Sparse Matrix Recovery

In the first set of experiments, we compare the proposed algorithms and their concatenated SMV coun-
terparts in terms of reconstruction error and running time. In particular, we investigate the impact of
the sparsity level k, and the number of underlying signals L to be reconstructed on the performance
of the BStoIHT and BStoGradMP in both concatenated SMV and MMV versions, in terms of relative
error and the running time. To reduce randomness in the results, we run 50 trials for each test with fixed
parameters and then take the average over the number of trials.
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Fig. 1 Comparison of StoIHT and MStoIHT in both non-batched and batched versions for various sparsity levels k of the
signal matrix. From left to right: batch sizes are 1 and 10.

First, we compare StoIHT and MStoIHT in both non-batched and batched versions, and fix the
maximum number of iterations as 1000 and γ = 1 in both algorithms. To start with, we create a sensing
matrix A ∈ R100×200 where each entry follows the normal distribution with zero mean and variance of
1/100 and each column of A is normalized by dividing its `2-norm. In this way, it can be shown that the
spark of A, i.e., the smallest number of linearly dependent columns of A, is 100 with probability one.
To create a signal matrix X∗ ∈ R200×40, we first generate a Gaussian distributed random matrix of size
200×40, and then randomly zero out (200−k) rows where k is the row sparsity of X∗. The measurement
matrix Y is created by AX for the noise-free cases. By choosing the sparsity level k ∈ {5, 10, 15, 20}
and the batch size b ∈ {1, 10}, we obtain the results shown in Figure 1. Since the initial guess for the
signal matrix is set a zero matrix, all the error curves start with the point (0, 1). Notice that to show
the computational efficiency, we use the running time in seconds as the horizonal axis rather than the
number of iterations. It can be seen that as the sparsity level grows, i.e., the signal matrix is less joint
sparse, more running time (or iterations) is required to achieve the provided tolerance in terms of the
relative reconstruction error. Meanwhile, as the batch size increases, BMStoIHT performs better than the
sequential BStoIHT. With large sparsity levels, the inaccurate joint support obtained in the concatenated
SMV algorithms cause large relative errors in the first few iterations (see Figure 1).

Next, we fix the sparsity level k as 5 and choose the number of signals as L ∈ {20, 40, 60, 80}.
Figure 2 compares the results obtained by BStoIHT and BMStoIHT when the batch size is 1 and 10.
In general, BMStoIHT takes less running time than its sequential concatenated SMV counterpart. We
can see that mini-batching significantly improves the reconstruction accuracy and reduces the running
time of BMStoIHT. After a large number of tests, we also find that the computational speedup of
BMStoIHT is almost linear with respect to the number of signals to be reconstructed. Lastly, to test
the robustness to noise, we add the Gaussian noise with zero mean and standard deviation (a.k.a. noise
level) σ ∈ {0.02, 0.04, 0.06, 0.08} to the measurement matrix Y . The relative errors for all BStoIHT and
BMStoIHT results versus running time are shown in Figure 3. It is worth noting that the change of
sparsity and noise levels have insignificant impact on the running time, which explains that the curve
corresponding to the same algorithm stops almost at the same horizontal coordinate in Figure 1 and
Figure 3. By contrast, the running time grows as the number of signals to be recovered increases which
suggests that the endpoint of each curve has different horizontal coordinates in Figure 2.

In the second set of tests, we compare StoGradMP and MStoGradMP in non-batched and batched
versions. It is known that StoGradMP usually converges much faster than StoIHT. We fix the maximum
number of iterations as 30, γ = 1, and the batch size as 1 (non-batched version). Similar to the previous
tests, we create a 100× 200 random matrix whose columns are normalized, and fix the number of signals
L = 40. Figure 4 shows the results obtained by StoGradMP and MStoGradMP with sparsity level
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Fig. 2 Comparison of StoIHT and MStoIHT in both non-batched and batched versions for various numbers of signals L
to be reconstructed. From left to right: batch sizes are 1 and 10.
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Fig. 3 Comparison of StoIHT and MStoIHT in both non-batched and batched versions for various noise levels σ to the
measurement matrix. From left to right: batch sizes are 1 and 10.

k ∈ {60, 70, 80, 90}. Note that for better visualization, we skip the starting point (0,1) for all relative error
plots, and use the base 10 logarithmic scale for the horizontal axis of running time since the MStoGradMP
takes much less running time than StoGradMP after the same number of iterations. Unlike StoIHT and
MStoIHT, both StoGradMP and MStoGradMP require that the sparsity level is no more than n/2,
i.e., 100 in our case. As the sparsity k increases, the operator pinv for computing the pseudo-inverse
matrix becomes more computationally expensive for matrices with more columns than their rank, which
results in the significant growth of running time. For sparse signal matrices, StoGradMP performs better
than StoIHT in terms of convergence. Next, we set the number of signals as 20, 40, 60, 80, and get the
results shown in Figure 5. It can be seen that MStoGradMP always takes less running time with even
higher accuracy than the sequential StoGradMP. We also discovered that the computation speedup of
MStoIHT is almost constant with respect to the number of signals to be reconstructed. The robustness
comparison is shown in Figure 6, where the noise level ranges in {0.02, 0.04, 0.06, 0.08}. Furthermore, it
is empirically shown that the BMStoGradMP performs much better than BMStoIHT considering their
respective convergence behavior and robustness.
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Fig. 4 Comparison of BStoGradMP and BMStoGradMP with various sparsity levels k. From left to right: batch sizes are
1 and 10.
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Fig. 5 Comparison of BStoGradMP and BMStoGradMP with various numbers of signals L. From left to right: batch sizes
are 1 and 10.

7.2 Joint Sparse Video Sequence Recovery

In this set of experiments, we compare the proposed Algorithm 8 and the split Bregman algorithm
for constrained MMV problem (SBC) [11, Algorithm 2], on joint sparse video sequence reconstruction.
We first download a candle video consisting of 75 frames from the Dynamic Texture Toolbox in http:

//www.vision.jhu.edu/code/. In order to make the test video sequence possess a joint sparse structure,
we extract 11 frames of the original data, i.e., frames 1 to 7, 29, 37, 69 and 70, each of which is of size
80 × 30. Then we create a data matrix X ∈ R2400×11, whose columns are a vectorization of all video
frames. To further obtain a sparse representation of X, the K-SVD algorithm [28] is applied to obtain a
dictionary Ψ ∈ R2400×50 for X. The K-SVD dictionary Ψ and the support of the corresponding coefficient
matrix Θ for the extracted 11 frames are shown in Figure 7 (a) and (b). Some selected columns of
the dictionary Ψ , namely atoms, are reshaped as an image of size 80 × 30 illustrated in Figure 7 (c)
and (d). It can be seen that these 11 frames are nearly joint sparse under the learned dictionary. The

relative error of using this K-SVD dictionary Ψ to represent the data matrix X is ‖X−ΨΘ‖F‖X‖F = 0.0870.

A Gaussian random matrix Φ ∈ R60×2400 with zero mean and unit variance is set as a sensing matrix,

http://www.vision.jhu.edu/code/
http://www.vision.jhu.edu/code/
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Fig. 6 Comparison of BStoGradMP and BMStoGradMP with various noise levels σ. From left to right: batch sizes are 1
and 10.

which is used to measure this data matrix. In other words, the measurements Y ∈ R60×11 are generated
via Y = ΦX. Given the measurements Y and the new sparse representation dictionary A = ΦΨ , we then
apply Algorithm 8 and SBC to recover the joint sparse coefficient matrix Θ̂. In Algorithm 8, the sparsity
level k is set as 10, and the block size b is set as 3, which implies that there are d = 20 blocks. In addition,
we set η1 = η2 = 1. Both algorithms stop when the residual error reaches a tolerance threshold τ = 10−6,
i.e., ‖Y −AΘ̂‖F ≤ τ . The first four recovered frames are shown in Figure 8. Regarding the computation
time, the proposed Algorithm 8 is about ten times faster than SBC according to our experiments. The
proposed algorithm takes less running time than SBC since it stops at the 10-th iteration while SBC stops
at the 1691-th iteration. Even surprisingly, although the same error tolerance is set for both algorithms,

the proposed algorithm yields a smaller relative error (
‖X:,i−ΨΘ̂:,i‖2
‖X:,i‖2 ) than SBC. Figure 9 compares the

relative discrepancy ‖Y − AΘ̂‖F / ‖Y ‖F versus running time for both algorithms, where we can see the
zigzag pattern in the SBC result.

8 Conclusions

In this paper, we study the multiple measurement vector sparse reconstruction problem, which is of great
importance in a large amount of signal processing applications. We propose two stochastic greedy al-
gorithms, MStoIHT and MStoGradMP, together with their respective accelerated versions by applying
the mini-batching technique. Our convergence analysis has shown theoretically that the proposed algo-
rithms converge faster than their concatenated SMV counterparts. A variety of numerical experiments
on linear systems and video frame processing have shown that the proposed algorithms outperform the
concatenated SMV algorithms in terms of efficiency, accuracy and robustness to the noise.
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