
An Efficient Algorithm for Optimal Trajectory Generation for
Heterogeneous Multi-Agent Systems in Non-Convex Environments

D. Reed Robinson, Robert T. Mar, Katia Estabridis, and Gary Hewer

Abstract— Generating optimal trajectories for a large num-
bers of vehicles in real-time becomes extremely challenging
when including realistic dynamic models and time-varying
obstacle constraints. We present a novel method to efficiently
produce time-optimal collision-free trajectories in complex non-
convex maze-like environments while enforcing nonlinear con-
straints on velocity, acceleration, jerk, and snap. The approach
combines two complementary numerical techniques for opti-
mal control: level set reachability analysis and pseudospectral
orthogonal collocation. Applied in a multi-agent prioritized
planning framework, the methodology allows for heterogeneous
sizes, dynamics, endpoint conditions, and individualized op-
timization objectives, while achieving linear scaling in com-
putation time relative to the number of vehicles. Simulation
examples are shown with up to 26 static obstacles and 32
quadcopters in a tightly constrained space with computation
times averaging 3.5 seconds per vehicle.

I. INTRODUCTION

A. Motivation

Path planning for multiple robots with many degrees of
freedom is challenging due to the curse of dimensional-
ity. When differential constraints imposed by the physical
dynamics and limited control inputs of the robot are also
considered, planning becomes even harder and at times
intractable. Trajectory planning for time critical applications
requires simultaneous optimization in time and space re-
sulting in a challenging solution space. Obstacle dense and
maze-like environments further increase the difficulty of the
problem. Methods that work with sparse or convex obstacle
geometry can fail when environments become too complex.
Moving obstacles add another level of complexity even when
their motion is known at planning time. Thus, achieving
theoretically optimal cost in practically useful computation
time is an ongoing area of research.

Simultaneous multi-agent trajectory planning can become
intractable because its computational complexity can grow
exponentially with the number of agents. Decoupling meth-
ods are often used when dealing with large teams to di-
vide the dimensionality into sub-problems in exchange for
reduced performance [1]. Teams composed of heterogeneous
agents impose constraints unique to each platform, thus re-
quiring algorithms capable of incorporating a flexible frame-
work. Nevertheless, useful results can still be obtained when
some of the above requirements are relaxed for a variety of
applications. Planning can be made tractable by limiting the
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number of robots, requiring homogeneity, reducing solution
quality, allowing long off-line computation times, limiting
environment complexity, requiring time-invariant obstacles,
sacrificing time-optimality for a fixed-time minimum effort
problem, ignoring control saturation, replacing nonlinear
constraints with conservative linear constraints, or planning
with infeasible simplified dynamics and post-processing to
restore real-world feasibility. At the same time there are
many other applications where multi-robot systems need to
or are desired to operate at optimal performance. Examples
include the use of multi-agent teams to aid in search and
rescue operations after a disaster, to deliver supplies, or to
search an area as quickly as possible. Time-critical perfor-
mance of a team of quadcopters is representative of many
robotics applications, and it is the focus of this work.

B. Related Work

Direct trajectory optimization using variational methods
provides a methodology to search for optimal trajectories.
Variational methods discretize the continuous time state and
control, which results in a static optimization problem. The
choice of problem structure, discretization technique, and
underlying solver distinguishes the quality and efficiency
of the method. Simplified formulations are often used to
avoid nonlinearities and enable solvers based on quadratic
programming (QP) to work efficiently.

Impressive performance of a real quadcopter was demon-
strated in [2] with planning based on linearized dynamics
represented by minimum-snap piecewise polynomials that
traverse a set of waypoints in fixed time with corridor con-
straints. In [3], a novel change of variables is used to generate
time-optimal trajectories with predetermined path length for
a quadcopter with nonlinear dynamics and linear state and
input constraints. Conservative angular rate limits are used to
bound the trajectory following error. Both approaches focus
on structured environments where predefined corridors or
passages are given a priori.

The aforementioned research considers only a single vehi-
cle without time-dependent obstacles. An adaptation of the
minimum-snap method [2] allows heterogeneous teams of
up to four quadcopters to avoid each other and rectangular
obstacles while moving through predetermined waypoints
using mixed integer quadratic programming (MIQP). The
approach uses linear dynamics and time scaling of the group
trajectory to trade off performance and feasibility without
explicit enforcement of control saturation limits. Low quality
solutions were generated in under 1 second, while optimal
solutions (in the fixed-time minimum-snap sense) for sce-



narios involving 2-4 quadcopters required over 550 seconds.
A single vehicle with more complex obstacle geometry took
35 seconds. The method is limited to small teams and few
obstacles due to the computational complexity of the MIQP
[4].

Alternatively, a method based on Sequential Convex Pro-
gramming (SCP) has fast solve times averaging 0.31 seconds
for a fixed-time minimum snap trajectory of five quadcopters
with no obstacles and linear dynamics [5]. However, the
method has computational complexity greater than O(N6)
in the number of vehicles, and generates trajectories that are
discontinuous in jerk (requiring infinite thrust). Computation
times for 12 vehicles are between 25 and 150 seconds.

Despite the successful demonstration of such methods for
small groups, simultaneous coordinated planning remains
impractical for large groups because it requires that the state
space be augmented for each agent causing the problem
space to grow with the number of agents, thus becoming
intractable.

Decoupled incremental SCP handles moving obstacles and
improves scalability by using sequential prioritized planning
to decouple inter-vehicle constraints. Solve time for ten
agents is around four seconds for simple scenarios [6].
It shows improved tolerance for non-convex obstacle con-
straints compared to standard SCP, but it still fails regularly
as scenario congestion increases. The trajectories are fixed-
time minimum-acceleration in 2D, have conservative linear
limits on states, and are jerk discontinuous.

Among the most powerful techniques for time optimal
planning for nonlinear systems are variational methods that
use general purpose nonlinear programming (NLP). Com-
pared to traditional Euler or Runge-Kutta based colloca-
tion methods, pseudospectral (PS) methods produce smaller
sparse NLP problems that allow accurate and efficient solu-
tions without simplification of the nonlinear dynamics and
constraints. Hurni [7] combines PS methods with prioritized
planning for four ground vehicles to produce time-optimal
trajectories using nonlinear 6-state dynamics with bounded
states and inputs while avoiding static and moving obstacles.
Computation times for single static obstacle scenarios are
around 35 seconds with straight line initialization. Maze-like
scenarios are solved but require a manually provided initial
trajectory. Local optimality is proven by numerically con-
structing the Hamiltonian using costate estimates provided
by the PS method.

The PS method in [8] shows time-optimal multi-vehicle
planning with up to 4 vehicles but, like other simultaneous
planning methods, has complexity that scales poorly with
the number of vehicles. The method addresses 2 common
challenges for PS collocation methods by enforcing collision
avoidance constraints along straight lines between additional
constraint enforcement points in order to 1) avoid undetected
constraint violations between collocation points, and 2) allow
different collocation times per vehicle to avoid restriction
to common start and end times for all vehicles. The latter
restriction arises in simultaneous planning because of the use
of a single large system state for all vehicles with common

collocation points, which is not the case for the sequential
planning approach.

A Projection Operator method (PRONTO) completely
avoids the undetected inter-sample constraint issue by use
of a variable-step continuous time ode solver at the core of
what is essentially an infinite-dimensional Newton’s method
for computation of locally optimal trajectories. It handles
very general nonlinear dynamics and has been applied to time
optimal single-vehicle planning [9], [3] and fixed-time min-
imum energy multi-agent planning [10]. The multi-vehicle
implementation is limited to small groups with common start
and end times as a result of simultaneous planning. The
minimum-time adaptation requires a change of variables that
eliminates time, thus making it unable to accommodate time-
dependent constraints. This prevents its application in time-
optimal multi-vehicle sequential planning. The continuous-
time ode solver is less efficient than more coarsely dis-
cretized methods, thus motivating work on a discrete-time
version [11].

Recent advances in PS methods and interior point NLP
solvers have given rise to software (GPOPS-II) for numerical
optimal control with unprecedented computational efficiency
and accuracy for high-dimensional nonlinear dynamics [12],
[13], [14]. A method developed by Fahroo and Ross for
calculating costate estimates from the Lagrange multipliers
of the NLP enables verification of local optimality [15]. The
method directly solves minimum time problems with variable
time horizon and time-dependent constraints.

A serious weakness of the PS, SCP, and PRONTO meth-
ods alike is that success and convergence rates are highly
dependent on the quality of the initialization[11], especially
for complex non-convex problems, where the solver must be
initialized in the locally convex region of the desired solution.
In crowded scenarios with many agents, or indoor scenarios
with rooms and hallways creating a maze-like structure,
the possibility of initialization near (and convergence to) a
point of local infeasibility reduces the probability of success
of these methods. In a sequential planning framework, the
group success rate quickly approaches zero as the group size
increases for such scenarios.

Level set (LS) methods based on reachability analysis
generate high-quality time-optimal trajectories for low di-
mensional systems with static and dynamic obstacles. Decou-
pled multi-agent planning methods using LS and sequential
planning are presented in [16], [17] respectively. LS methods
produce globally optimal results without initialization and
with computation time that is uncorrelated to the number
and shape of obstacles. However, there are two main limi-
tations: computational complexity that scales exponentially
with model dimension, which is a result of the lattice that
must be constructed over the entire state space; and the
method’s accuracy, which is limited by the resolution of the
grid. As a result, LS is limited to low dimensional dynamic
models for trajectory generation.



C. Contributions

We demonstrate generation of time-optimal trajectories
that are smooth enough to be followed by a quadcopter with
finite thrust, avoid collision with time-dependent obstacles,
and are not restricted to predefined corridors or waypoints.
The generated trajectories exhibit reliable convergence to
provably locally optimal solutions, with consistent compu-
tation times of a few seconds per vehicle without external
initialization even for crowded or maze-like scenarios. This
is achieved by combination of PS and LS methods, where LS
provides the necessary initialization to overcome the primary
weakness of the PS method.

The ability of the LS-PS planner to handle time-dependent
obstacles allows for a sequential planning framework, en-
abling multi-agent planning that scales well for large groups
and does not restrict agents to common start and end times.
Using sequential planning methods that have been previously
applied individually to LS, PS, and other methods [17], [7],
[6], we show that unprecedented multi-vehicle results are
achieved because of the unique capabilities of the underlying
LS-PS techniques. The sequential LS-PS planner provides
drastic improvements in group success rates compared to
sequential planning with only PS, as subsequent statistics
demonstrate in V-B for up to 30 vehicles.

It is worth noting that while our chosen PS method and
underlying NLP solver is capable of very general physics-
based nonlinear dynamics, our current examples use a 2-
D quadruple-integrator dynamic model with conservative
nonlinear bounds on derivatives to ensure feasibility in worst
case conditions, resulting in conservative solutions compared
to those of a physics-based model in which control inputs
can be directly constrained without compromise. The focus
of our current contribution is on the improved reliability of
the LS-PS combined planner, while its extension to nonlinear
physics-based dynamics is left for future work. The 2-
D model also provides a useful test for handling traffic
bottlenecks since it is more constrained than 3-D. Despite
the apparent simplicity of the linear differential constraints of
the quadruple-integrator, the minimum time objective creates
a variable time horizon and causes a nonlinear relationship
between decision variables and cost. These factors, when
taken together with the number of states and nonlinear time-
varying constraints, make our example problem intractable
for all the methods reviewed except for the PS methods.

D. Organization

The remainder of the paper is organized as follows.
In section II we provide our problem formulation. The
combined LS-PS single vehicle planner methodology is
presented in section III, with extension to multi-vehicle
planning discussed in section IV. Planned trajectories and
statistical results for multi-agent numerical examples are
shown in section V, followed by conclusions and future work
in section VI.

II. PROBLEM FORMULATION

We plan for quadcopters in a 2-D cartesian space with
quadruple-integrator dynamics that are smooth enough for
finite thrust when mapping to the differentially flat 3-D
physical quadcopter model in [2]. We plan in the future
to apply these methods to a 3-D nonlinear physics-based
model that will realize performance approaching the physical
capability of a real quadcopter. Currently the flat outputs
σ = [rx, ry, 0, 0]

T are used, where the vertical position and
yaw angle are 0, and r = [rx, ry]

T is the position of the
center of mass in the horizontal plane. We refer the reader to
[2] for details of mapping a trajectory in the flat output space
into 3-D states and inputs and for controlling a quadcopter
along the trajectory. We generate a trajectory in σ by solving
the following optimal control problem:

x = [rx, ry, vx, vy, ax, ay, jx, jy]
T ∈ R8

u = [sx, sy]
T ∈ R2

Minimize J [x(· ),u(· ), t0, tf ] = tf − t0
Subject to ẋ = [vx, vy, ax, ay, jx, jy, sx, sy]

T

x(t0) =x0

x(tf ) =xf

xmin≤ x ≤xmax

v2x + v2y ≤ v2max

a2x + a2y ≤ a2max

j2x + j2y ≤ j2max

s2x + s2y ≤ s2max

0 ≤h(x, t)
(1)

where the state vector, x, consists of r and its first three
time derivatives: velocity, acceleration, and jerk. The control
input, u, is the fourth derivative of position, or snap.

The cost is time elapsed from start to end of flight.
Although simple in concept, this creates a challenging vari-
able time horizon and results in faster feasible flights than
minimum acceleration or minimum snap flight. The examples
in this paper use a fixed final time and require all vehicles
to arrive in unison at their respective goals, although this
method supports any combination of initial (t0 ) and terminal
(tf ) conditions per vehicle.

Differential constraints allow bounds on the derivatives
through snap. This is critical for feasibility of the trajectory
after it is mapped into 3-D physical space, since bounded
snap in the flat outputs corresponds to the bounded thrust
capability of a quadcopter motor.

Initial and final states, x0 and xf , derive their position
components from the starting point and assigned goal point
of each agent. The remaining derivatives are set to zero
for our examples, such that vehicles begin and end at rest,
although they may be specified to be nonzero or unspecified
according to the application.

Inequality constraints include linear bounds on the state,
which are used in our examples only for defining a rectan-
gular operation space in position. The nonlinear inequality



constraints bound the magnitude of each derivative vector to
limits based on physical capabilities of the quadcopter.

The vector-valued nonlinear function, h(x, t) ∈
R(nstat+ndyn), represents all obstacle constraints, with
negative values indicating collision, where nstat and ndyn
are the number of static and dynamic obstacles. These are
modeled as the convex hull of four circles of radius Ro

whose centers coincide with the four corners of a rectangle
centered at ro with half-widths wo = [wx, wy]

T . The signed
distance, d, between a vehicle safety circle of radius Rv

and the obstacle is given by

d = ‖max(0, |r− ro| −wo)‖ − (Ro +Rv). (2)

Though not shown here, obstacles may also be rotated at
any angle. This approach provides the flexibility to represent
a variety of geometry with a single inequality constraint,
including walls of any length or thickness and round or
square ends. More complex non-convex shapes are con-
structed by overlapping multiple obstacles. Other vehicles
are represented as circles, with the components of wo set
equal to zero.

III. SINGLE VEHICLE TRAJECTORY
GENERATION

We first show how the combination of LS and PS methods
results in a fast, robust, optimal single-vehicle planner in
many dimensions with avoidance of time-dependent obsta-
cles.

A. Graduated Optimization

Sensitivity to initial conditions is a major weakness of
iterative trajectory optimization methods and non-convex
optimization techniques in general. Graduated optimization
is a heuristic global optimization technique that can greatly
increase success for difficult problems by solving a simplified
problem whose solution lies in the locally convex region
around the global optimum of a more difficult problem.
This solution to the simple problem is used to initialize
the search for the solution to the difficult problem. The
process can be repeated with increasing difficulty until the
problem of interest is solved as demonstrated by Gashler
et al. for manifold learning [18]. Although this may lead
to globally optimal solutions, a more important result for
our application is that this technique can reliably generate
locally optimal solutions for previously unsolved problems.
In experiments with various initialization methods, we found
that any trajectory that is continuously feasible in terms of
obstacle constraints is sufficient for problems with static
obstacles. However, problems with dynamic obstacles are
sensitive to the timing of the initial trajectory, especially
for highly congested scenarios. Therefore, an initialization
method is required that handles differential constraints and
moving obstacles and is robust to complex non-convex
environments. LS methods are well matched to this task.

The simplified problem for our graduated optimization
scheme (solved by LS method) is restricted to R2 instead
of the high order model in (1) (solved by PS method).

It shares position and velocity with the high order model,
and velocities are now directly controlled. The obstacle
constraints and terminal conditions are shared between the
low fidelity and high fidelity formulations.

B. Level Set Method

Level Set method is a numerical technique for solving
partial differential equations [19]. Hamilton-Jacobi equations
are solved via the LS method by constructing a discrete
signed distance function (SDF) from the reachable (goal)
set. The scalar valued SDF represents the distance to the
reachable set where zero defines the set boundary, negative
values are contained inside the set, and positive values
exist outside the set. This SDF is propagated backwards in
discrete time according to the Hamiltonian, which causes the
reachable set to grow until the initial state is contained. The
optimal control is calculated using the gradient of the SDF
as described in section III-B.2. Assuming a solution exists
and the state space is sufficiently resolved, this algorithm is
guaranteed to find the global minimum.

1) Resolution versus Accuracy: Typically, the LS solution
is computed with high-order gradients and Runge-Kutta
integration to minimize the numeric dissipation required for
stability. The LS solution under this framework provides
initialization in a graduated optimization sequence, resulting
in lower accuracy requirements, which in turn allows the use
of first-order gradients and integration. This and other code
optimizations result in computation times that are orders of
magnitude faster than the standard implementation.

The spatial resolution of the LS solution is dictated by
the scenario requirements. For example, if a 1 meter vehicle
needed to pass through a 1.2 meter gap, the resolution must
be smaller than 0.1 meter to prevent aliasing of the gap.
The temporal resolution required for numerical stability is
approximately proportional to the spatial resolution; finer
spatial resolutions require a finer temporal resolution during
integration. Osher [19] quotes O(N log N) complexity for
the time-invariant Fast Marching version of the LS where
N is the number of grid nodes. The number of nodes at a
given resolution grows exponentially with dimension, thus
restricting the use of LS to up to four dimensions.

2) Optimal Trajectory Generation from the LS SDF: The
LS method indirectly solves the Hamilton-Jacobi equation
using the SDF. Post-processing is necessary to obtain the op-
timal state and control trajectory from that solution. Special
consideration must be given to dynamic obstacles, numeric
dissipation, and terminal conditions, in order to properly
generate the optimal trajectory.

It can be sufficient to find the latest time at which the
reachable set contains the current state and propagate in the
gradient direction at the nominal maximum speed to form the
trajectory for the case without dynamic obstacles. However,
due to errors in the SDF that are a side effect of numeric
dissipation terms, this can result in timing errors that would
cause collisions with moving obstacles. The dissipation terms
cause the reachable set to grow faster or slower than the



nominal speed in areas of significant curvature. The tra-
jectory becomes out of sync with the reachable set when
taking full time steps at the nominal speed. This is avoided
by requiring each trajectory propagation step to coincide
with the reachable boundary at the next time step. In very
degenerate cases, the gradient direction can also lead towards
an obstacle. It is then better to sample the SDF and replace
the gradient with the direction that minimizes the SDF at the
next time step. This results in trajectories that avoid obstacles
earlier and more directly.

Motion planning problems may specify a goal point rather
than a goal region, as is the case for (1). Standard LS
methods do not directly support planning to a final point
in state space. We complete the trajectory by interpolating
between the point of arrival at the goal set and the desired
final state.

C. Pseudospectral Method

The second and final stage in the graduated optimiza-
tion approach employs a multi-interval direct pseudospectral
orthogonal collocation method which generates trajectories
that satisfy necessary conditions for local optimality. The
continuous-time optimal control problem is time-discretized
and transcribed to a finite-dimensional static optimization
problem that can be solved by mature nonlinear program-
ming software.

1) Choice of Methodology: In recent decades, extensive
study of numerical methods [13], [20], [14] for optimal
control has led to significant progress that contributes to the
success of our method. We prefer direct methods because
they do not require derivation of optimality conditions or ini-
tialization of the costate, and are more tolerant of low-quality
initialization. We choose collocation over shooting for further
robustness to initialization and better accuracy over long
time horizons. Pseudospectral discretization methods are a
major improvement over Euler or Runge-Kutta methods
because the high-accuracy quadrature provides exponential
(compared to polynomial) convergence rate. Other critical
improvements include the computation of accurate costates
for verification of optimality and efficient mesh refinement.
Pseudospectral methods using orthogonal basis functions
(Legendre polynomials) collocated at the polynomial roots
result in sparse differentiation matrices and a sparse NLP.
In an orthogonal pseudospectral method, the choice of dis-
cretization points is critical for avoiding the Runge phe-
nomenon and defects in costate estimation. Legendre-Gauss-
Radau (LGR) points are preferred over Legendre-Gauss-
Lobatto (LGL) points because they provide an accurate
estimate of the control and costate and are better suited
to multi-interval (also known as h p) methods. These h p
methods use a chain of low order polynomials instead of
one global polynomial (p method) spanning the entire time
interval [14]; this provides dramatic improvements in com-
putational efficiency for problems requiring many collocation
points. The use of many points improves obstacle detection
resolution, which enables safety at high speeds and over long
time horizons (see section III-C.4).

Among the robust implementations of PS methods, we
select GPOPS-II [12] because it uses: h p methods with LGR
points, accurate costate estimation, and the powerful open-
source interior-point sparse NLP solver, IPOPT.,

2) Initialization: The solution of the LS low order prob-
lem directly initializes the position and velocity for the high
fidelity problem in (1), and the remaining derivatives are
simply set to zero.

3) Collision Avoidance Constraints: The distance func-
tion in (2) has discontinuous first and second derivatives
w.r.t. r at certain locations. We find it necessary to use a
smoothing interpolation function in the obstacle interior. This
effectively replaces the first derivative discontinuous region
with a similarly shaped superellipse of the form used in [7].
This interpolation improved NLP efficiency and convergence
without affecting geometry. It was also found to solve more
quickly than with superellipse obstacles alone despite the
second derivative discontinuity.

4) Safe Handling of Small Obstacles, High Speeds, and
Long Time Horizon: A common challenge in collocation
methods for motion planning arises when the distance be-
tween position at the collocation times (nodes) is large
relative to obstacle size. This can result in trajectories that
satisfy collision constraints at each node but not along
the polynomial interpolated trajectory. This becomes more
likely with small obstacles, high speed, and long duration
trajectories. Our solution has three parts:

1) Use h p methods to increase node density.
2) Enforce obstacle constraints at nv−1 virtual nodes per

node via interpolation between nodes, where nv is an
integer constraint enforcement multiplier.

3) Increase the vehicle safety radius by a distance that
guarantees safety of the original radius for the worst
case (smallest obstacle/largest node spacing).

Item 3 has the effect of dilating the obstacles until they
cannot fit between the nodes.

The additional inequality constraints introduced in Item
2 do not necessarily cause a significant increase in active
constraints, just as there is only one point where a circle and
sampled tangent line touch regardless of sampling resolution.
In IPOPT, additional inactive inequality constraints have little
effect on iteration steps and computation time. However, ad-
ditional collocation points have a significant impact because
the number of always-active differential equality constraints
is increased. The net effect of the virtual node constraints
is to enable efficient computation of faster and longer safe
flights with smaller obstacles.

5) Feasibility and Local Optimality Check: Trajectories
generated by PS methods can be checked for feasibility by
propagating the state through the dynamic model by numer-
ical integration according to the control input and verifying
that the problem constraints and terminal conditions are
met. Long time horizons and unstable dynamics may require
closed loop propagation, where small corrections to the open
loop controls are made by a trajectory following controller
to avoid gradual divergence.



Local optimality is checked using the costate estimates to
construct the time history of the Hamiltonian and verifying
that it is constant as required by optimal control theory [15]
(see [7] for examples). The verification may fail if too few
collocation points are used, the problem has no solution, or
the initialization was inadequate for convergence.

D. Multi-Start for Congested Dynamic Environments

Initialization of the PS solver via the LS methods is
straightforward for static and uncongested dynamic envi-
ronments. As scenarios become more tightly constrained, it
becomes necessary to use a value of vmax in the LS method
that is less than the limit allowed in the PS solver. The LS
solution is not subject to derivative constraints beyond speed
and therefore finds solutions that require infinite acceleration.

We address this through a conservative vmax in the LS
method to increase the chance of the existence of a feasible
snap-limited solution in the neighborhood of the velocity-
limited LS solution. The effectiveness can be increased by
solving multiple LS-PS methods in parallel with varying
vmaxvalues used in the LS method. The first successful result
is then selected as the solution.

IV. MULTI-VEHICLE ALGORITHM

Sequential planning trades-off full coordination for in-
dependence. Each agent’s trajectory is decoupled and co-
ordinated through the avoidance of time-varying obstacles
that represent all higher priority agents [17]. The planning
problem becomes a succession of near independent, low-
dimension subproblems. Each subproblem can have inde-
pendent start/end time and cost functional; this level of
heterogeneity is impossible with simultaneous planning. The
computational complexity pitfalls of coordinated planning
are also avoided, since the marginal cost of adding an agent
is simply that agent’s subproblem.

Sequential planning imposes a strict agent priority that
must be assigned a priori by an external entity. Prioritized
planning may lead to infeasible subproblems for lower pri-
ority vehicles due to lack of consideration by higher priority
vehicles, but is still capable of impressive success rates in
congested scenarios as shown in section V-B.

The combination of graduated optimization and sequential
planning results in the bootstrapping architecture shown in
Fig. 1. Agent 1 plans its trajectory to the required fidelity
and adds it to the set of partial solutions. Agent 2 plans
its own trajectory while avoiding Agent 1. This continues
down the priority list of agents until the group trajectory is
complete. This architecture allows for any number of agents
and graduated optimization steps according to individual
fidelity requirements.

V. NUMERICAL EXAMPLES

Time optimal trajectories generated by the LS-PS method
are shown for two scenarios: Fig. 2 shows 8 het-
erogeneous quadcopters navigating a 26 obstacle maze,
and Fig. 3 shows 32 Hummingbird quadcopters cross-
ing in traffic without obstacles. Video animations of

Fig. 1: Sequential graduated planning

these examples are attached to this work and available
online at https://www.youtube.com/playlist?
list=PLwh1aTdBMRuelo9ZRESiwVIW4eiqrDx0s.

The presented scenarios are for coordinated time of arrival
while minimizing time of flight for latest departure of each
agent. We use 45 collocation nodes with a virtual node
multiplier of 5 for a total of 225 constraint enforcement
points and a safety margin of 1 centimeter added to the
vehicle safety radius of 34 centimeters. LS initializations are
run at 20%, 30%, and 40% of vmax. Derivative constraints
are representative of a Hummingbird quadcopter’s nominal
capability: vmax= 15 m/s, amax= 26.4 m/s2, and smax=
2784 m/s4. Constraints on jerk were made very large be-
cause quadcopters are capable of high pitch and roll rates that
are indirectly limited by angular acceleration. The velocity
limit is also large enough to be inactive for most of our
examples.

A. Solution Quality

The example solutions have the expected smoothness,
bounded derivatives, and accurately matched terminal con-
ditions. Time of flight of individual vehicle trajectories is
within 3-5 milliseconds (less than 0.2%) of locally optimal.
This is based on a cost comparison with reference trajectories
produced by incrementally increasing the number of collo-
cation points while observing convergence of 1) cost, and 2)
the time evolution of the Hamiltonian to a constant value as
explained in sections III-C.1 and III-C.5. In these examples
the vehicle safety radius is matched to the size of the
quadcopter so that the precision of the solution is obvious.
In practical scenarios, the agent’s safety radius would be
inflated to account for uncertainty. The quadcopters graze
but do not collide with obstacles and other agents because
any extra clearance would indicate missed potential time
savings. High priority trajectories take a more direct path
while low priority trajectories maneuver to avoid upstream
agents. Trajectories are intuitive except for the case where
low priority vehicles leave early to avoid congested traffic
and then must loiter in order to arrive in unison. The resulting
behavior can appear erratic, but it is in fact locally, if not

https://www.youtube.com/playlist?list=PLwh1aTdBMRuelo9ZRESiwVIW4eiqrDx0s
https://www.youtube.com/playlist?list=PLwh1aTdBMRuelo9ZRESiwVIW4eiqrDx0s
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Fig. 2: 8 heterogeneous quadcopters in a maze. The largest is the size and agility of a Hummingbird quadcopter and the
smallest proportionally less agile. Priority is slowest first in order of agility. Goal locations are opposite start locations.
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Fig. 3: 32 quadcopters in a 10 meter x 10 meter space. Trajectory snapshots range from t = -1.908 seconds to t = 0 seconds.

globally, time optimal, since no later departure time would
allow the agent to reach the goal in time.

B. Success Rate and Computational Efficiency

The 32 vehicle example took 112 seconds total, or an
average of 3.5 seconds per vehicle. This includes both LS
and PS solve times and is based on an Ubuntu Linux laptop
running MATLAB 2017b on an Intel Core i7-6700K CPU @
4.0GHz with 64GB of RAM. Success and runtime statistics
with 100 samples per scenario were captured for empty
square rooms of side length between 4 and 10 meters for
up to 30 agents. The starting and ending locations were
sampled uniformly, except that the distance between all
starting (ending) locations was required to be at least 125%
of the the safe separation distance, and the ending location
was required to be at least 30% of the room’s diagonal
distance from the starting location. These two requirements
were introduced to avoid infeasible initialization and trivial
solutions, respectively. Example solutions of 10 and 20
agents in rooms with side length of 4 and 6 meters, respec-
tively, are shown in Fig. 4, with both LS and PS trajectories
shown for comparison. Fig. 5b shows the success probability
using Level Set initialization (solid line) versus trivial linear
initialization (dashed lines). LS initialization results in much
higher success rates than PS alone, especially for the most
difficult cases. The limitations of sequential planning are
apparent in the cases where the LS-PS success rate drops
rapidly for very crowded scenarios. In these cases, the LS
solver fails to find a feasible solution for a low priority
vehicle because all previously existing solutions have been
eliminated by motion of higher priority vehicles, as discussed
in IV. Fig. 5a shows the total run time mean and standard
deviation; the LS-PS method is faster than PS alone even
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Fig. 5: 1-30 agents in a square room

with the added computational expense of the LS method.
Statistics were also computed for a non-convex building-

like space with 1-10 agents. Starting and ending locations
were required to be at least 1 meter from the building
walls. Fig. 6a shows a successful example scenario with
4 agents. Note that the LS initialization naturally avoids
the walls, thereby allowing the PS optimization to find the
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Fig. 7: 1-10 agents in a building

locally optimal solution. Fig. 6b shows a rare success case
for straight line initialization in blue, and a common failure
case in red, where the local gradient information did not
have enough global information to allow the solver to escape
the local infeasibility. Fig. 7b show the success probability
using LS initialization (solid line) versus linear initialization
(dashed lines) with LS-PS success rates ranging from 72%
to 98% higher than PS alone. Clearly, rich initialization
is absolutely critical for trajectory generation in maze-like
environments. LS-PS success rates less than 100% are due
to limitations inherent in sequential planning. Fig. 7a shows
the total run time mean and standard deviation indicating
complexity that scales slightly greater than linearly with the
number of vehicles. Note that, since there were no successes
(out of 100 samples) using linear initialization with 4 or more
agents, these are indicated with zero run time.

VI. CONCLUSIONS

The proposed LS-PS trajectory planning method is shown
to produce time optimal trajectories for high-dimensional
dynamics with nonlinear constraints in congested non-convex
scenarios for a given priority sequence. Reliably solving
problems of this level of difficulty in a few seconds per
vehicle in such crowded scenarios represents significant
progress in single agent and multi-agent motion planning.
The resulting success rates for the presented scenarios are
beyond what has been demonstrated in the current litera-
ture not because of any novelty in the sequential planning
methodology but because of the unique synergism of the

underlying LS-PS trajectory planner. Although, we have
focused the work on time optimal trajectories, the presented
framework is flexible enough to support other optimization
objectives, such as maximizing efficiency or range of flight.

We plan to extend this work to 3-D physics-based dynam-
ics in preparation for flight demonstration.
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