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Abstract

In many applications such as color image processing, data has more than one piece of information
associated with each spatial coordinate, and in such cases the classical optimal mass transport (OMT)
must be generalized to handle vector-valued or matrix-valued densities. In this paper, we discuss the
vector and matrix optimal mass transport and present three contributions. We first present a rigorous
mathematical formulation for these setups and provide analytical results including existence of solutions
and strong duality. Next, we present a simple, scalable, and parallelizable methods to solve the vector
and matrix-OMT problems. Finally, we implement the proposed methods on a CUDA GPU and present
experiments and applications.

1 Introduction

Optimal mass transport (OMT) is a subject with a long history. Started by Monge [38] and developed
by many great mathematicians [32, 8, 26, 37, 31, 5, 43], the subject now has incredibly rich theory and
applications. It has found numerous applications in different areas such as partial differential equations,
probability theory, physics, economics, image processing, and control [24, 29, 52, 39, 15, 16, 11]. See also
[47, 53, 2] and references therein.

However, in many applications such as color image processing, there is more than one piece of information
associated with each spatial coordinate, and such data can be interpreted as vector-valued or matrix-valued
densities. As the classical optimal mass transport works with scalar probability densities, such applications
require a new notion of mass transport. For this purpose, Chen et al. [18, 19, 14, 12] recently developed a
framework for vector-valued and matrix-valued optimal mass transport. See also [41, 40, 42, 25, 45, 55] for
other different frameworks. For vector-valued OMT, potential applications include color image processing,
multi-modality medical imaging, and image processing involving textures. For matrix-valued OMT, we have
diffusion tensor imaging, multivariate spectral analysis, and stress tensor analysis.

Several mathematical aspects of vector and matrix-valued OMT were not addressed in the previous work
[18, 19, 14]. As the first contribution of this paper, we present duality and existence results of the continuous
vector and matrix-valued OMT problems along with rigorous problem formulations.

Although the classical theory of OMT is very rich, only recently has there been much attention to nu-
merical methods to compute the OMT. Several recent work proposed algorithms to solve the L2 OMT
[3, 22, 7, 28, 6, 13, 17, 27] and the L1 OMT [34, 50]. As the second contribution of this paper, we present
first-order primal-dual methods to solve the vector and matrix-valued OMT problems. The methods simul-
taneously solve for both the primal and dual solutions (hence a primal-dual method) and are scalable as
they are first-order methods. We also discuss the convergence of the methods.

As the third contribution of this paper, we implement the proposed method on a CUDA GPU and present
several applications. The proposed algorithms’ simple structure allows us to effectively utilize the computing
capability of the CUDA architecture, and we demonstrate this through our experiments. We furthermore
release the code for scientific reproducibility.

The rest of the paper is structured as follows. In Section 2 we give a quick review of the classic OMT
theory, which allows us to present the later sections in an analogous manner and thereby outline the simi-
larities and differences. In Section 3 and Section 4 we present the vector and matrix-valued OMT problems
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and state a few theoretical results. In Section 5, we present and prove the analytical results. In Section 7,
we present the algorithm. In Section 8, we present the experiments and applications.

2 Optimal mass transport

Let Ω ⊂ Rd be a closed, convex, compact domain. Let λ0 and λ1 be nonnegative densities supported on Ω
with unit mass, i.e.,

∫
Ω
λ0(x) dx =

∫
Ω
λ1(x) dx = 1. Let ‖ · ‖ denote any norm on Rd.

In 1781, Monge posed the optimal mass transport (OMT) problem, which solves

minimize
T

∫
Ω

‖x− T (x)‖λ0(x) dx. (1)

The optimization variable T : Ω→ Ω is smooth, one-to-one, and transfers λ0(x) to λ1(x). The optimization
problem (1) is nonlinear and nonconvex. In 1940, Kantorovich relaxed (1) into a linear (convex) optimization
problem:

S(λ0, λ1) =


minimize

π

∫
Ω×Ω
‖x− y‖π(x,y) dxdy

subject to π(x,y) ≥ 0∫
Ω
π(x,y) dy = λ0(x)∫

Ω
π(x,y) dx = λ1(y).

 (2)

The optimization variable π is a joint nonnegative measure on Ω× Ω having λ0(x) and λ1(y) as marginals.
To clarify, S(λ0, λ1) denotes the optimal value of (2).

2.1 Scalar optimal mass transport

The theory of optimal transport [26, 53, 54] remarkably points out that (2) is equivalent to the following
flux minimization problem:

S(λ0, λ1) =


minimize

u

∫
Ω
‖u(x)‖ dx

subject to divx(u)(x) = λ0(x)− λ1(x)

u(x)Tn(x) = 0, for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω,

 (3)

where u = (u1, . . . , ud) : Ω → Rd is the optimization variable and divx denote the (spatial) divergence
operator. Although (3) and (2) are mathematically equivalent, (3) is much more computationally effective
as its optimization variable u is much smaller when discretized.

It is worth mentioning that OMT in formulation (3) is very close to the problems in compressed sensing.
Its objective function is homogeneous degree one and the constraint is linear. It can be observed that for
characterizing the OMT, the gradient operator in (3) and divergence operator in (3) play the key roles. Later
on, we extend the definition of L1 OMT problem by extending these differential operators into a general
meaning.

The optimization problem (3) has the following dual problem:

S(λ0, λ1) =

(
maximize

φ

∫
Ω
φ(x)(λ1(x)− λ0(x)) dx

subject to ‖∇xφ(x)‖∗ ≤ 1 for all x ∈ Ω,

)
(4)

where the optimization and φ : Ω→ R is a function. We write ‖ · ‖∗ for the dual norm of ‖ · ‖.
It is well-known that, strong duality holds between (3) and (4) in the sense that the minimized and

maximized objective values are equal [53]. Therefore, we take either (3) or (4) as the definition of S.
Rigorous definitions of the optimization problems (3) or (4) are somewhat technical. We skip this

discussion, as scalar optimal mass transport is standard. In Section 5, we rigorously discuss the vector-
OMT problems, so any rigorous discussion of the scalar-OMT problems can be inferred as a special case.
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Figure 1: Example graph with k = 4 nodes and ` = 5 edges. To make cj the cost of traversing edge j, the
edge weight is defined to be 1/c2j for j = 1, . . . , `.

2.2 Theoretical properties

The algorithm we present in Section 7 is a primal-dual algorithm and, as such, finds solutions to both
Problems (3) and (4). This is well-defined as both the primal and dual problems have solutions [53].

Write R+ for the set of nonnegative real numbers. Write P(Ω,R) for the space of nonnegative densities
supported on Ω with unit mass. We can use S(λ0, λ1) as a distance measure between λ0, λ1 ∈ P(Ω,R). The
value S : P(Ω,R)× P(Ω,R)→ R+ defines a metric on P(Ω,R) [53].

3 Vector optimal mass transport

Next we discuss the vector-valued optimal transport, proposed recently in [19]. The basic idea is to combine
scalar optimal mass transport with network flow problems [1].

3.1 Gradient and divergence on graphs

Consider a connected, positively weighted, undirected graph G with k nodes and ` edges. To define an
incidence matrix for G, we say an edge {i, j} points from i to j, i.e., i→ j, if i < j. This choice is arbitrary
and does not affect the final result. With this edge orientation, the incidence matrix D ∈ Rk×` is

Die =

 +1 if edge e = {i, j} for some node j > i
−1 if edge e = {j, i} for some node j < i
0 otherwise.

For example, the incidence matrix of the graph of Figure 1 is

D =


1 1 0 1 0
−1 0 1 0 0
0 −1 −1 0 1
0 0 0 −1 −1

 .
Write ∆G = −D diag{1/c21, · · · , 1/c2`}DT for the (negative) graph Laplacian, where 1/c21, · · · , 1/c2` are the
edge weights. The edge weights are defined so that and cj represents the cost of traversing edge j for
j = 1, . . . , `.

We define the gradient operator on G as ∇Gx = diag{1/c1, · · · , 1/c`}DTx and the divergence operator
as divGy = −D diag{1/c1, · · · , 1/c`}y. So the Laplacian can be rewritten as ∆G = divG∇G . Note that
divG = −∇∗G , where ∇∗G is the adjoint of ∇G . This is in analogy with the usual spatial gradient and
divergence operators [36, 20, 21, 19].

3.2 Vector optimal mass transport

We say
⇀

λ : Ω→ Rk+ is a nonnegative vector-valued density with unit mass if

⇀

λ(x) =

λ1(x)
...

λk(x)

 , ∫
Ω

k∑
i=1

λi(x) dx = 1.
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Assume
⇀

λ0 and
⇀

λ1 are nonnegative vector-valued densities supported on Ω with unit mass.
We define the optimal mass transport between vector-valued densities as

V (
⇀

λ0,
⇀

λ1) =

 minimize
⇀
u,

⇀
w

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to divx(
⇀
u)(x) + divG(

⇀
w(x)) =

⇀

λ0(x)−
⇀

λ1(x)
⇀
u satisfies zero-flux b.c.

 (5)

where
⇀
u : Ω → Rk×d and

⇀
w : Ω → R` are the optimization variables, α > 0 is a parameter, and ‖ · ‖u is a

norm on Rk×d and ‖ · ‖w is a norm on R`. The parameter α represents the relative importance of the two
flux terms

⇀
u and

⇀
w. We write

⇀
u =

u
T
1
...
uTk

 ⇀
w =

w1

...
w`

 divx(
⇀
u) =

divx(u1)
...

divx(uk)

 .
We call divx the spatial divergence operator. The zero-flux boundary condition is

ui(x)Tn(x) = 0, for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω.

for i = 1, . . . , k. Note that
⇀
w has no boundary conditions.

The optimization problem (5) has the following dual problem:

V (
⇀

λ0,
⇀

λ1) =


maximize

⇀
φ

∫
Ω
〈
⇀

φ(x),
⇀

λ1(x)−
⇀

λ0(x)〉 dx

subject to ‖∇x

⇀

φ(x)‖u∗ ≤ 1

‖∇G
⇀

φ(x)‖w∗ ≤ α for all x ∈ Ω,

 (6)

where the optimization variable
⇀

φ : Ω→ Rk is a function. We write ‖ · ‖u∗ and ‖ · ‖w∗ for the dual norms of
‖ · ‖u and ‖ · ‖w, respectively.

As stated in Theorem 1, strong duality holds between (5) and (6) in the sense that the minimized and
maximized objective values are equal. Therefore, we take either (5) or (6) as the definition of V . In Section 5,
we rigorously define the primal and dual problems and prove Theorem 1.

3.3 Theoretical properties

The algorithm we present in Section 7 is a primal-dual algorithm and, as such, finds solutions to both
Problems (5) and (6). This is well-defined as both the primal and dual problems have solutions.

Theorem 1. The (infinite dimensional) primal and dual optimization problems (5) and (6) have solutions,
and their optimal values are the same, i.e., strong duality holds.

Write P(Ω,Rk) for the space of nonnegative vector-valued densities supported on Ω with unit mass. We

can use V (
⇀

λ0,
⇀

λ1) as a distance measure between
⇀

λ0,
⇀

λ1 ∈ P(Ω,Rk).

Theorem 2. V : P(Ω,Rk)× P(Ω,Rk)→ R+ defines a metric on P(Ω,Rk).

4 Quantum gradient operator and matrix optimal mass transport

We closely follow the treatment in [18]. In particular, we define a notion of gradient on the space of Hermitian
matrices and its dual, i.e., the (negative) divergence.

Some applications of matrix-OMT, such as diffusion tensor imaging, have real-valued data while some
applications, such as multivariate spectral analysis, have complex-valued data [51]. To accommodate the
wide range of applications, we develop the matrix-OMT with complex-valued matrices.
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Write C, H, and S for the set of k × k complex, Hermitian, and skew-Hermitian matrices respectively.
We write H+ for the set of k× k positive semidefinite Hermitian matrices, i.e., M ∈ H+ if v∗Mv ≥ 0 for all

v ∈ Ck. Write tr for the trace, i.e. for any M ∈ H, we have tr(M) =
∑k
i=1Mii.

Write CN for the block-column concatenation of N matrices in C, i.e., Z ∈ CN if Z = [Z∗1 · · ·Z∗N ]∗ and
Z1, . . . , ZN ∈ C. Define HN and SN likewise. For X,Y ∈ C, we use the Hilbert-Schmidt inner product

〈X,Y 〉 = Re tr(XY ∗) =

k∑
i=1

k∑
j=1

(ReXijReYij + ImXijImYij).

(This is the standard inner product when we view C as the real vector space R2n2

.) For X ∈ C, we use the

norm ‖X‖2 = (〈X,X〉)1/2. For X,Y ∈ CN , we use the inner product 〈X,Y〉 =
∑N
s=1〈Xs, Ys〉.

4.1 Quantum gradient and divergence operators

We define the gradient operator, given a L = [L1, · · · , L`]∗ ∈ H`, as

∇L : H → S`, X 7→

 L1X −XL1

...
L`X −XL`

 .
Define the divergence operator as

divL : S` → H, Z =

 Z1

...
Z`

 7→ ∑̀
s=1

−LsZs + ZsLs.

Note that divL = −∇∗L, where ∇∗L is the adjoint of ∇L. This is in analogy with the usual spatial gradient
and divergence operators. Write ∆L = divL∇L.

This notion of gradient and divergence operators is motivated by the Lindblad equation in Quantum
mechanics [18]. The choice of L affects ∇L. There is no standard way of choosing L. A standing assumption
throughout, is that the null space of ∇L, denoted by ker(∇L), contains only scalar multiples of the identity
matrix I.

4.2 Matrix optimal mass transport

We say Λ : Ω→ H+ is a nonnegative matrix-valued density with unit mass if∫
Ω

tr(Λ(x)) dx = 1.

Assume Λ0 and Λ1 are nonnegative matrix-valued densities supported on Ω with unit mass.
We define the optimal mass transport between matrix-valued densities as

M(Λ0,Λ1) =

 minimize
U,W

∫
Ω
‖U(x)‖u + α‖W(x)‖w dx

subject to divx(U)(x) + divL(W(x)) = Λ0(x)− Λ1(x)
U satisfies zero-flux b.c.

 (7)

where U : Ω → Hd and W : Ω → S` are the optimization variables, α > 0 is a parameter, and ‖ · ‖u is a
norm on Hd and ‖ · ‖w is a norm on S`. The parameter α represents the relative importance of the two flux
terms U and W. We write

U =

U1

...
Ud

 W =

W1

...
W`

 uij =

(U1)ij
...

(Ud)ij

 .
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We define the spatial divergence as

divx(U) =


divx(u11) divx(u12) · · · divx(u1k)

divx(u12)
. . .

...
...

. . .
...

divx(u1k) divx(u2k) · · · divx(uk,k)

 .
The zero-flux boundary condition is

uij(x)Tn(x) = 0, for all

{
x ∈ ∂Ω,

n(x) normal to ∂Ω.

for i, j = 1, . . . , k. Note that W has no boundary conditions [14].
The optimization problem (7) has the following dual problem:

M(Λ0,Λ1) =

 maximize
Φ

∫
Ω
〈Φ(x),Λ1(x)− Λ0(x)〉 dx

subject to ‖∇xΦ(x)‖u∗ ≤ 1
‖∇LΦ(x)‖w∗ ≤ α for all x ∈ Ω,

 (8)

where the optimization variable Φ : Ω→ H is a function. We write ‖ · ‖u∗ and ‖ · ‖w∗ for the dual norms of
‖ · ‖u and ‖ · ‖w, respectively.

As stated in Theorem 3, strong duality holds between (7) and (8) in the sense that the minimized and
maximized objective values are equal. Therefore we take either (7) or (8) as the definition of M .

To avoid repeating the same argument with different notation, we simply point out that the rigorous
definitions of the matrix optimal mass transport problems are analogous to those of the vector setup. So the
precise definitions of (7) or (8) can be inferred from the discussion of Section 5.

4.3 Theoretical properties

The algorithm we present in Section 7 is a primal-dual algorithm and, as such, finds solutions to both
Problems (7) and (8). This is well-defined as both the primal and dual problems have solutions.

Theorem 3. The (infinite dimensional) primal and dual optimization problems (7) and (8) have solutions,
and their optimal values are the same, i.e., strong duality holds.

Write P(Ω,H+) for the space of nonnegative matrix-valued densities supported on Ω with unit mass. We
can use M(Λ0,Λ1) as a distance measure between Λ0,Λ1 ∈ P(Ω, ,H+).

Theorem 4. M : P(Ω,H+)× P(Ω,H+)→ R+ defines a metric on P(Ω,H+).

5 Duality proof

In this section, we establish the theoretical results. For notational simplicity, we only prove the results for
the vector-OMT primal and dual problems (5) and (6). Analogous results for the matrix-OMT primal and
dual problems (7) and (8) follow from the same logic.

Although the classical scalar-OMT literature is very rich, standard techniques for proving scalar-OMT
duality do not simply apply to our setup. For example, Villani’s proof of strong duality, presented as
Theorem 1.3 of [53], relies on and works with the linear optimization formulation (2). However, our vector
and matrix-OMT formulations directly generalize the flux formulation (3) and do not have formulations
analogous to (2). We need a direct approach to analyze duality between the flux formulation and the dual
(with one function variable), and we provide this in this section.

We further assume Ω ⊂ Rd has a piecewise smooth boundary. Write Ω◦ and ∂Ω for the interior and
boundary of Ω. For simplicity, assume Ω as full affine dimensions, i.e., Ω◦ = Ω.
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The rigorous form the dual problem (6) is

maximize
⇀
φ∈W 1,∞(Ω,Rk)

∫
Ω
〈
⇀

φ(x),
⇀

λ1(x)−
⇀

λ0(x)〉 dx

subject to ess supx∈Ω ‖∇x

⇀

φ(x)‖u∗ ≤ 1

supx∈Ω ‖∇G
⇀

φ(x)‖w∗ ≤ α,

(9)

where W 1,∞(Ω,Rk) is the standard Sobolev space of functions from Ω to Rk with bounded weak gradients.
That (9) has a solution directly follows from the Arzelà-Ascoli Theorem.

To rigorously define the primal problem (5) requires more definitions, and we do so later as (11).

5.1 Fenchel-Rockafellar duality

Let L : X → Y be a continuous linear map between locally convex topological vector spaces X and Y , and
let f : X → R ∪ {∞} and g : Y → R ∪ {∞} are lower-semicontinuous convex functions. Write

d? = sup
x∈X
{−f(x)− g(Lx)} p? = inf

y∗∈Y ∗
{f∗(L∗y∗) + g∗(−y∗)},

where

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} g∗(y∗) = sup

y∈Y
{〈y∗, y〉 − g(y)}.

In this framework of Fenchel-Rockafellar duality, d? ≤ p?, i.e., weak duality, holds unconditionally, and
this is not difficult to prove. To establish d? = p?, i.e., strong duality, requires additional assumptions and
is more difficult to prove. The following theorem does this with a condition we can use.

Theorem 5. [Theorem 17 and 18 [48]] If there is an x ∈ X such that f(x) < ∞ and g is bounded above
in a neighborhood of Lx, then p? = d?. Furthermore, if p? = d? <∞, the infimum of infy∗∈Y ∗{f∗(L∗y∗) +
g∗(−y∗)} is attained.

5.2 Spaces

Throughout this section, ‖·‖1, ‖·‖2, . . . denote unspecified finite dimensional norms. As all finite dimensional
norms are equivalent, we do not bother to precisely specify which norms they are.

Define

C(Ω,Rk) =

{
⇀

φ : Ω→ Rk
∣∣∣ ⇀

φ is continuous, ‖
⇀

φ‖∞ = max
x∈Ω
‖

⇀

φ(x)‖1 <∞
}
.

Then C(Ω,Rk) is a Banach space equipped with the norm ‖ · ‖∞. We define C(Ω,Rk×d) likewise. If
⇀

φ ∈ C(Ω,Rk) is continuously differentiable, ∇x

⇀

φ is defined on Ω◦. We say ∇x

⇀

φ has a continuous extension

to Ω, if there is a g ∈ C(Ω,Rk×d) such that g|Ω◦ = ∇x

⇀

φ. Define

C1(Ω,Rk) =
{

⇀

φ : Rd → Rk
∣∣ ⇀

φ is continuously differentiable on Ω◦,

∇x

⇀

φ has a continuous extension to Ω,

‖
⇀

φ‖∞,∞ = max
x∈Ω
‖

⇀

φ(x)‖2 + sup
x∈Ω
‖∇x

⇀

φ(x)‖3 <∞
}
.

Then C1(Ω,Rk) is a Banach space equipped with the norm ‖ · ‖∞,∞.
Write M(Ω,Rk) for the space of Rk-valued signed finite Borel measures on Ω, and define M(Ω,Rk×d)

likewise. Write (C(Ω,Rk×d))∗, (C1(Ω,Rk))∗ for the topological dual of C(Ω,Rk×d), C1(Ω,Rk), respectively.
The standard Riesz-Markov theorem tells us that (C(Ω,Rk×d))∗ =M(Ω,Rk×d).

Fully characterizing (C1(Ω,Rk))∗ is hard, but we do not need to do so. Instead, we only use the following

simple fact. Any g ∈M(Ω,Rk) defines the bounded linear map
⇀

φ 7→
∫

Ω
〈
⇀

φ(x), g(dx)〉 for any
⇀

φ ∈ C1(Ω,Rk).

In other words, M(Ω,Rk×d) ⊂ (C1(Ω,Rk))∗ with the appropriate identification.
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5.3 Operators

We redefine ∇x : C1(Ω,Rk) → C(Ω,Rk×d) so that ∇x

⇀

φ is the continuous exntension of the usual ∇x

⇀

φ to
all of Ω. This makes ∇x a bounded linear operator. Define the dual (adjoint) operator ∇∗x :M(Ω,Rk×d)→
(C1(Ω,Rk))∗ by ∫

Ω

〈
⇀

φ(x), (∇∗x
⇀
u)(dx)〉 =

∫
Ω

〈(∇x

⇀

φ)(x),
⇀
u(dx)〉

for any
⇀

φ ∈ C1(Ω,Rk) and
⇀
u ∈M(Ω,Rk×d).

Define the ∇G (which is simply a multiplication by a Rk×` matrix) as ∇G : C1(Ω,Rk)→ C(Ω,Rk). Since
C1(Ω,Rk) ⊂ C(Ω,Rk), there is nothing wrong with defining the range of ∇G to be C(Ω,Rk), and this still
makes ∇G a bounded linear operator. Define the dual (adjoint) operator ∇∗G : M(Ω,Rk) → (C1(Ω,Rk))∗

by identifying ∇∗G with the transpose of the matrix that defines ∇G . Since ∇∗G is simply multiplication by a
matrix, we can further say

∇∗G :M(Ω,Rk)→M(Ω,Rk) ⊂ (C1(Ω,Rk))∗.

We write divG = −∇∗G .

5.4 Zero-flux boundary condition

Let
⇀
m : Ω→ Rk×d a smooth function. Then integration by parts tells us that∫

Ω

〈∇x
⇀
ϕ(x),

⇀
m(x)〉 dx = −

∫
Ω

〈⇀ϕ(x),divx
⇀
m(x)〉 dx

holds for all smooth
⇀
ϕ : Ω → Rk if and only if

⇀
m(x) satisfies the zero-flux boundary condition, i.e.,

⇀
m(x)n(x) = 0 for all x ∈ ∂Ω, where n(x) denotes the normal vector at x. Here divx denotes the usual
(spatial) divergence. To put it differently, ∇∗x = −divx holds when the zero-flux boundary condition holds.

We generalize this notion to measures. We say
⇀
u ∈M(Ω,Rk×d) satisfies the zero-flux boundary condition

in the weak sense if there is a
⇀
g ∈M(Ω,Rk) ⊂ (C1(Ω,Rk))∗ such that∫

Ω

〈∇x

⇀

φ(x),
⇀
u(dx)〉 = −

∫
Ω

〈
⇀

φ(x),
⇀
g(dx)〉

holds for all
⇀

φ ∈ C1(Ω,Rk). In other words,
⇀
u satisfies the zero-flux boundary condition if∇∗x

⇀
u ∈M(Ω,Rk) ⊂

(C1(Ω,Rk))∗. In this case, we write divx(
⇀
u) =

⇀
g and divx(

⇀
u) = −∇∗x(

⇀
u). This definition is often used in

elasticity theory.

5.5 Duality

To establish duality, we view the dual problem (6) as the primal problem and obtain the primal problem (5)
as the dual of the dual. We do this because the dual of C(Ω,Rk×d) is known, while the dual ofM(Ω,Rk×d)
is difficult to characterize.

Consider the problem

maximize
⇀
φ∈C1(Ω,Rk)

∫
Ω
〈
⇀

φ(x),
⇀

λ1(x)−
⇀

λ0(x)〉 dx

subject to ‖∇x

⇀

φ(x)‖u∗ ≤ 1

‖∇G
⇀

φ(x)‖w∗ ≤ α for all x ∈ Ω,

(10)

which is equivalent to (9). Define

L : C1(Ω,Rk)→ C(Ω,Rk×d)× C(Ω,Rk)
⇀

φ 7→ (∇x

⇀

φ,∇G
⇀

φ)

and

g(a, b) =

{
0 if ‖a(x)‖u∗ ≤ 1, ‖b(x)‖w∗ ≤ α for all x ∈ Ω
∞ otherwise.

8



Rewrite (10) as

maximize
⇀
φ∈C1(Ω,Rk)

∫
Ω
〈
⇀

φ(x),
⇀

λ1(x)−
⇀

λ0(x)〉 dx− g(L
⇀

φ),

and consider its Fenchel-Rockafellar dual

minimize
⇀
u∈M(Ω,Rk×d)
⇀
w∈M(Ω,Rk)

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to −∇∗x
⇀
u−∇∗G

⇀
w =

⇀

λ0 −
⇀

λ1 as members of (C1(Ω,Rk))∗.

The constraint
−∇∗x

⇀
u =

⇀

λ0 −
⇀

λ1 − divG
⇀
w ∈M(Ω,Rk) ⊂ (C1(Ω,Rk))∗

implies
−∇∗x

⇀
u ∈M(Ω,Rk),

i.e.,
⇀
u satisfies the zero-flux boundary condition.

We now state the rigorous form of the primal problem (5)

minimize
⇀
u∈M(Ω,Rk×d)
⇀
w∈M(Ω,Rk)

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w dx

subject to divx
⇀
u + divG

⇀
w =

⇀

λ0 −
⇀

λ1 as members of M(Ω,Rk)
⇀
u satisfies zero-flux b.c in the weak sense.

(11)

The point
⇀

φ = 0 satisfies the assumption of Theorem 5. Furthermore, it is easy to verify that the optimal
value of the dual problem (6) is bounded. This implies strong duality, (11) is feasible, and (11) has a solution.

Given that V (
⇀

λ0,
⇀

λ1) <∞ for all
⇀

λ0,
⇀

λ1 ∈ P(Ω,Rk), it is not hard to prove that V : P(Ω,Rk)×P(Ω,Rk)→
R+ defines a metric. Interested readers can find the argument in [14].

6 Algorithmic preliminaries

Consider the Lagrangian for the vector optimal transport problems (5) and its dual (6)

L(
⇀
u,

⇀
w,

⇀

φ) =

∫
Ω

‖⇀u(x)‖u + α‖⇀
w(x)‖w dx

+

∫
Ω

〈
⇀

φ(x),divx(
⇀
u)(x) + divG(

⇀
w(x))−

⇀

λ0(x) +
⇀

λ1(x)〉 dx, (12)

which is convex with respect to
⇀
u and

⇀
w and concave with respect to φ.

Finding a saddle point of (12) is equivalent to solving (5) and (6), when the primal problem (5) has
a solution, the dual problem (6) has a solution, and the optimal values of (5) and (6) are equal. See [4,
Theorem 7.1], [35, Theorem 2], or any reference on standard convex analysis such as [48] for further discussion
on this point.

To solve the optimal transport problems, we discretize the continuous problems and apply PDHG method
to solve the discretized convex-concave saddle point problem.

6.1 PDHG method

Consider the convex-concave saddle function

L(x, y, z) = f(x) + g(y) + 〈Ax+By, z〉 − h(z),

where f , g, and h are (closed and proper) convex functions and x ∈ Rn, y ∈ Rm, z ∈ Rl, A ∈ Rl×n, and
B ∈ Rl×m. Note L is convex in x and y and concave in z. Assume L has a saddle point and step sizes
µ, ν, τ > 0 satisfy

1 > τµλmax(ATA) + τνλmax(BTB).

9



Write ‖ · ‖2 for the standard Euclidean norm. Then the method

xk+1 = argmin
x∈Rn

{
L(x, yk, zk) +

1

2µ
‖x− xk‖22

}
yk+1 = argmin

y∈Rm

{
L(xk, y, zk) +

1

2ν
‖y − yk‖22

}
(13)

zk+1 = argmax
z∈Rl

{
L(2xk+1 − xk, 2yk+1 − yk, z)− 1

2τ
‖z − zk‖22

}
converges to a saddle point. This method is called the the Primal-Dual Hybrid Gradient (PDHG) method
or the (preconditioned) Chambolle-Pock method [23, 10, 46].

PDHG can be interpreted as a proximal point method under a certain metric [30]. The quantity

Rk =
1

µ
‖xk+1 − xk‖22 +

1

µ
‖yk+1 − yk‖22 +

1

τ
‖zk+1 − zk‖22

− 2〈zk+1 − zk, A(xk+1 − xk) +B(yk+1 − yk)〉.

is the fixed-point residual of the non-expansive mapping defined by the proximal point method. Therefore
Rk = 0 if and only if (xk, yk, zk) is a saddle point of L, and Rk decreases monotonically to 0, cf., review
paper [49]. We can use Rk as a measure of progress and as a termination criterion.

6.2 Shrink operators

As the subproblems of PDHG (13) are optimization problems themselves, PDHG is most effective when
these subproblems have closed-form solutions.

The problem definitions of scalar, vector, and matrix-OMT involve norms. For some, but not all, choices
of norms, the “shrink” operators

shrink(x0;µ) = argmin
x∈Rn

{
µ‖x‖+ (1/2)‖x− x0‖22

}
have closed-form solutions. Therefore, when possible, it is useful to choose such norms for computational
efficiency. Readers familiar with the compressed sensing or proximal methods literature may be familiar
with this notion.

For the vector-OMT, we focus on norms

‖⇀u‖22 =

d∑
s=1

‖us‖22 ‖⇀u‖1,2 =

d∑
s=1

‖us‖2 ‖⇀u‖1 =

k∑
s=1

‖us‖1

for
⇀
u ∈ Rk×d and

‖⇀
w‖22 =

∑̀
s=1

(ws)
2 ‖⇀

w‖1 =
∑̀
s=1

|ws|

for
⇀
w ∈ R`. The shrink operators of these norms have closed-form solutions.
For the matrix-OMT, we focus on norms

‖U‖22 =

d∑
s=1

k∑
i,j=1

|(Us)ij |2 ‖U‖1 =

d∑
s=1

k∑
i,j=1

|(Us)ij | ‖U‖1,nuc =

d∑
s=1

‖Us‖nuc

for U ∈ Hd and ‖ · ‖2, ‖ · ‖1, and ‖ · ‖1,nuc for W ∈ S`, which are defined likewise. The nuclear norm ‖ · ‖nuc

is the sum of the singular values. The shrink operators of these norms have closed-form solutions.
We provide further information and details on shrink operators in the appendix.
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7 Algorithms

We now present simple and parallelizable algorithms for the OMT problems. These algorithms are, in
particular, very well-suited for GPU computing.

In Section 7 and 8 we deal with discretized optimization variables that approximate solutions to the
continuous problems. For simplicity of notation, we use the same symbol to denote the discretizations and
their continuous counterparts. Whether we are referring to the continuous variable or its discretization
should be clear from context.

As mentioned in Section 6, these methods are the PDHG method applied to discretizations of the con-
tinuous problems. In the implementation, it is important to get the discretization at the boundary correct
in order to respect the zero-flux boundary conditions. For interested readers, the details are provided in the
appendix.

Instead of detailing the somewhat repetitive derivations of the algorithms in full, we simply show the key
steps and arguments for the

⇀
u update of vector-OMT. The other steps follow from similar logic.

When we discretize the primal and dual vector-OMT problems and apply PDHG to the discretized
Lagrangian form of (12), we get

⇀
uk+1 = argmin

⇀
u∈Rn×n×k×d

∑
ij

‖⇀uij‖u + 〈
⇀

φij , (divxu)ij〉+
1

2µ
‖⇀uij −

⇀
ukij‖22


= argmin

⇀
u∈Rn×n×k×d

∑
ij

µ‖⇀uij‖u − µ〈(∇x

⇀

φ)ij ,uij〉+ (1/2)‖⇀uij −
⇀
ukij‖22

 .

Since the minimization splits over the i, j indices, we write

⇀
uk+1
ij = argmin

⇀
uij∈Rk×d

{
µ‖⇀uij‖u − µ〈(∇x

⇀

φ)ij ,uij〉+ (1/2)‖⇀uij −
⇀
ukij‖22

}
= argmin

⇀
uij∈Rk×d

{
µ‖⇀uij‖u + (1/2)‖⇀uij − (

⇀
ukij + µ(∇x

⇀

φ)ij)‖22
}

= shrink(
⇀
ukij + µ(∇x

⇀

φ)ij ;µ).

At the boundary, these manipulations need special care. When we incorporate ghost cells in our discretiza-
tion, these seemingly cavalier manipulations are also correct on the boundary. We further explain the ghost
cells and discretization in the appendix.

7.1 Scalar-OMT algorithm

The scalar-OMT algorithm can be viewed as a special case of vector-OMT or matrix-OMT algorithms. This
scalar-OMT algorithm was presented in [34], but we restate it here for completeness.

First-order Method for S-OMT
Input: Problem data λ0, λ1

Initial guesses u0, φ0 and step sizes µ, τ
Output: Optimal u? and φ?

for k = 1, 2, · · · (Iterate until convergence)

uk+1
ij = shrink(ukij + µ(∇Φk)ij , µ) for i, j = 1, . . . , n

φk+1
ij = φkij + τ(divx(2uk+1 − uk)ij + λ1

ij − λ0
ij) for i, j = 1, . . . , n

end

This method converges for step sizes µ, τ > 0 that satisfy

1 > τµλmax(−∆x).
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For the particular setup of Ω = [0, 1]×[0, 1] and ∆x = 1/(n−1), the bound λmax(−∆x) ≤ 8/(∆x)2 = 8(n−1)2

is known. In our experiments, we use µ = 1/(16τ(n− 1)2), a choice that ensures convergence for any τ > 0.
We tune τ for the fastest convergence.

7.2 Vector-OMT algorithm

Write shrinku and shrinkw for the shrink operators with respect to ‖ · ‖u and ‖ · ‖w. The vector-OMT
algorithm is as follows:

First-order Method for V-OMT
Input: Problem data G,

⇀

λ0,
⇀

λ1, α

Initial guesses
⇀
u0,

⇀
w0,

⇀

φ0 and step sizes µ, ν, τ

Output: Optimal
⇀
u?,

⇀
w?, and

⇀

φ?

for k = 1, 2, · · · (Iterate until convergence)
⇀
uk+1
ij = shrinku(

⇀
ukij + µ(∇

⇀

φk)ij , µ) for i, j = 1, . . . , n
⇀
wk+1
ij = shrinkw(

⇀
wkij + ν(∇G

⇀

φkij), αν) for i, j = 1, . . . , n
⇀

φk+1
ij =

⇀

φkij + τ(divx(2
⇀
uk+1 −⇀

uk)ij + divG(2
⇀
wk+1 − ⇀

wk)ij +
⇀

λ1
ij −

⇀

λ0
ij)

for i, j = 1, . . . , n
end

This method converges for step sizes µ, ν, τ > 0 that satisfy

1 > τµλmax(−∆x) + τνλmax(−∆G).

For the particular setup of Ω = [0, 1]× [0, 1] and ∆x = 1/(n−1), the bound λmax(−∆x) ≤ 8(n−1)2 is known.
Given a graph G, we can compute λmax(−∆G) with a standard eigenvalue routine. In our experiments, we
use µ = 1/(32τ(n − 1)2) and ν = 1/(4τλmax(−∆G)), a choice that ensures convergence for any τ > 0. We
tune τ for the fastest convergence.

7.3 Matrix-OMT algorithm

Write shrinku and shrinkw for the shrink operators with respect to ‖ · ‖u and ‖ · ‖w. The matrix-OMT
algorithm is as follows:

First-order Method for M-OMT
Input: Problem data L, Λ0, Λ1, α,

Initial guesses U0, W0, Φ0 and step sizes µ, ν, τ
Output: Optimal U?, W?, and Φ?

for k = 1, 2, · · · (Iterate until convergence)

Uk+1
ij = shrinku(Uk

ij + µ(∇Φk)ij , µ) for i, j = 1, . . . , n

Wk+1
ij = shrinkw(Wk

ij + ν(∇LΦkij), αν) for i, j = 1, . . . , n

Φk+1
ij = Φkij + τ(divx(2Uk+1 −Uk)ij + divL(2Wk+1 −Wk)ij + Λ1

ij − Λ0
ij)

for i, j = 1, . . . , n
end

This method converges for step sizes µ, ν, τ > 0 that satisfy

1 > τµλmax(−∆x) + τνλmax(−∆L).
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For the particular setup of Ω = [0, 1] × [0, 1] and ∆x = 1/(n − 1), the bound λmax(−∆x) ≤ 8(n − 1)2

is known. Given L, we can compute the value of λmax(−∆L) by explicitly forming a k2 × k2 matrix
representing the linear operator −∆L and applying a standard eigenvalue routine. In our experiments, we
use µ = 1/(32τ(n − 1)2) and ν = 1/(4τλmax(−∆L)), a choice that ensures convergence for any τ > 0. We
tune τ for the fastest convergence.

(a)
⇀

λ0 (b)
⇀

λ1

(c) Velocity field u with c1 = 1, c2 = 1, c3 = 1,
α = 1 and norms ‖⇀u‖1,2, ‖⇀

w‖1.

V (
⇀

λ0,
⇀

λ1) = 0.57.

(d) Velocity field u with c1 = 1, c2 = 1,
c3 = 1, α = 1 and norms ‖⇀u‖1, ‖⇀

w‖1.

V (
⇀

λ0,
⇀

λ1) = 0.67.

Figure 2: Color image vector-OMT example.
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Grid Size Iteration count Time per-iter Iteration time τ V (
⇀

λ0,
⇀

λ1)
32× 32 0.5× 104 27µs 0.14s 1 0.57
64× 64 0.5× 104 27µs 0.14s 1 0.57

128× 128 2× 104 23µs 0.47s 3 0.57
256× 256 2× 104 68µs 1.36s 3 0.57

Table 1: Computation cost for vector-OMT as a function of grid size.

7.4 Parallelization

For the vector-OMT, the computation for the
⇀
u,

⇀
w, and

⇀

φ updates splits over the indices (i, j), i.e., the
computation splits pixel-by-pixel. Furthermore, the

⇀
u and

⇀
w updates can be done in parallel. Parallel

processors handing jobs split over (i, j) must be synchronized before and after the
⇀

φ update. The same is
true for the scalar-OMT and matrix-OMT.

This highly parallel and regular algorithmic structure makes the proposed algorithms very well suited for
CUDA GPUs. We demonstrate this through our experiments.

8 Examples

In this section, we provide example applications of vector and matrix-OMT with numerical tests to demon-
strate the effectiveness of our algorithms. As mentioned in the introduction, potential applications of vector
and matrix-OMT are broad. Here, we discuss two of the simplest applications.

We implemented the algorithm on C++ CUDA and ran it on a Nvidia GPU. For convenience, we MEXed
this code, i.e., the code is made available as a Matlab function. For scientific reproducibility, we release this
code.

8.1 Color images

Color images in RGB format is one of the more immediate examples of vector-valued densities. At each
spatial position of a 2D color image, the color is represented as a combination of the three basic colors red
(R), green (G), and blue (B). We allow any basic color to change to another basic color with cost c1 for R
to G, c2 for R to B, and c3 for G to B. So the graph G as described in Section 3.1 has 3 nodes and 3 edges.

Consider the two color images on the domain Ω = [0, 1] × [0, 1] with 256 × 256 discretization shown in

Figures 2a and 2b. The initial and target densities
⇀

λ0 and
⇀

λ1 both have three disks at the same location,
but with different colors. The optimal flux depends on the choice of norms. Figures 2c and 2d, show fluxes
optimal with respect to different norms.

Whether it is optimal to spatially transport the colors or to change the colors depends on the parameters
c1, c2, c3, α as well as the norms ‖ · ‖u and ‖ · ‖w. With the parameters of Figure 3a it is optimal to spatially
transport the colors, while with the parameters of Figure 3b it is optimal to change the colors.

Finally, we test our algorithm on the setup of Figure 2c with grid sizes 32 × 32, 64 × 64, 128 × 128, and
256× 256. Table 1 shows the number of iterations and runtime tested on a Nvidia Titan Xp GPU required
to achieve a 10−3 precision, measured as the ratio between the duality gap and primal objective value.

8.2 Diffusion tensor imaging

Diffusion tensor imaging (DTI) is a technique used in magnetic resonance imaging. DTI captures orientations
and intensities of brain fibers at each spatial position as ellipsoids and gives us a matrix-valued density.
Therefore, the metric defined by the matrix-OMT provides a natural way to compare the differences between
brain diffusion images. In Figure 4 we visualize diffusion tensor images by using colors to indicate different
orientations of the tensors at each voxel. In this paper, we present simple 2D examples as a proof of concept
and leave actual 3D imaging for a topic of future work.
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(a) c1 = 1, c2 = 1, c3 = 1, α = 10. (b) c1 = 1, c2 = 1, c3 = 1, α = 0.1.

Figure 3: Color image vector-OMT example, with a more complicated shape and norms ‖⇀u‖1,2, ‖
⇀
w‖2.

Parameters M(Λ0,Λ1) M(Λ0,Λ2) M(Λ1,Λ2)
α = 10 2.71 0.27 3.37
α = 3 0.81 0.27 1.08
α = 1 0.27 0.27 0.54
α = 0.3 0.081 0.27 0.35
α = 0.1 0.027 0.27 0.29

Table 2: Distances between the three images Λ0,Λ1 and Λ2.

Consider three synthetic matrix-valued densities Λ0, Λ1, and Λ2 in Figure 5. The densities Λ0 and Λ1

have mass at the same spatial location, but the ellipsoids have different shapes. The densities Λ0 and Λ2

have the same ellipsoids at different spatial locations.
We compute the distance between Λ0, Λ1, and Λ2 for different parameters α and fixed L = [L1, L2]∗ with

L1 =

1 0 0
0 2 0
0 0 0

 , L2 =

1 1 1
1 0 0
1 0 0

 .
Table 2, shows the results with ‖U‖2 and ‖W‖1 and grid size 128 × 128. As we can see, whether Λ0

is more “similar” to Λ1 or Λ2, i.e., whether M(λ0, λ1) < M(λ0, λ2) or M(λ0, λ1) > M(λ0, λ2), depends on
whether the cost on U, spatial transport, is higher than the cost on W, changing the ellipsoids.

Again, we test our algorithm on the setup of Figure 5 with α = 1 on grid sizes 32×32, 64×64, 128×128,
and 256 × 256. Table 3 shows the number of iterations and runtime tested on a Nvidia Titan Xp GPU
required to achieve a precision of 10−3, measured as the ratio between the duality gap and primal objective
value.

9 Conclusions

In this paper, we studied the extensions of Wasserstein-1 optimal transport to vector and matrix-valued
densities. This extension, as a tool of applied mathematics, is interesting if the mathematics is sound, if the
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Figure 4: Example of 2D diffusion tensor images.

(a) Λ0 (b) Λ1 (c) Λ2

Figure 5: Synthetic matrix-valued distributions.

numerical methods are good, and if the applications are interesting. In this paper, we investigated all three
concerns.

From a practical viewpoint, that we can solve vector and matrix-OMT problems of realistic sizes in
modest time with GPU computing is the most valuable observation. Applying our algorithms to tackle real
world problems in signal/imaging processing, medical imaging, and machine learning would be interesting
directions of future research.

Another interesting direction of study is quadratic regularization. In general, the solutions to vector and
matrix-OMT problems are not unique. However, the regularized version of (5)

minimize
⇀
u,

⇀
w

∫
Ω
‖⇀u(x)‖u + α‖⇀

w(x)‖w + ε(‖⇀u(x)‖2u + ‖⇀
w(x)‖2w) dx

subject to divx(
⇀
u)(x) + divG(

⇀
w(x)) =

⇀

λ0(x)−
⇀

λ1(x)
⇀
u satisfies zero-flux b.c

is strictly convex and therefore has a unique solution. A similar regularization can be done for matrix-OMT.
As discussed in [34, 50], this form of regularization is particularly useful as a slight modification to the
proposed method solves the regularized problem.
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Grid Size Iteration count Time per-iter Iteration time τ M(Λ0,Λ1)
32× 32 1× 104 39µs 0.39s 10 0.27
64× 64 1.5× 104 39µs 0.59s 10 0.27

128× 128 2× 104 85µs 1.70s 30 0.27
256× 256 4× 104 330µs 13.2s 60 0.27

Table 3: Computation cost for matrix-OMT as a function of grid size.
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A Discretization

Here, we discribe the discretization for the vect-OMT problem (5) and (6). The discretization for the
matrix-OMT problem is similar. We consider the 2D square domain, but (with more complicated notation)
our approach immediately generalizes to more general domains. Again, we use the same symbol for the
discretization and its continuous counterpart.

Consider a n × n discretization of Ω with finite difference ∆x in both x and y directions. Write the x
and y coordinates of the points as x1, . . . , xn and y1, . . . , yn. So we are approximating the domain Ω with
{x1, . . . , xn} × {y1, . . . , yn}. Write C(x, y) for the ∆x×∆x cube centered at (x, y), i.e.,

C(x, y) = {(x′, y′) ∈ R2 | |x′ − x| ≤ ∆x/2 , |y′ − y| ≤ ∆x/2} .

We use a finite volume approximation for
⇀

λ0,
⇀

λ1,
⇀
w and

⇀

φ. Specifically, we write
⇀

λ0 ∈ Rn×n×k with

⇀

λ0
ij ≈

∫
C(xi,yj)

⇀

λ0(x, y) dxdy,

for i, j = 1, . . . , n. The discretizations
⇀

λ1,
⇀

φ ∈ Rn×n×k and
⇀
w ∈ Rn×n×` are defined the same way.

Write
⇀
u = (

⇀
ux,

⇀
uy) for both the continuous variables and their discretizations. To be clear, the subscripts

of
⇀
ux and

⇀
uy do not denote differentiation. We use the discretization

⇀
ux ∈ R(n−1)×n×k and

⇀
uy ∈ Rn×(n−1)×k.

For i = 1, . . . , n− 1 and j = 1, . . . , n

⇀
ux,ij ≈

∫
C(xi+∆x/2,yj)

⇀
ux(x, y) dxdy,

and for i = 1, . . . , n and j = 1, . . . , n− 1

⇀
uy,ij ≈

∫
C(xi,yj+∆x/2)

⇀
uy(x, y) dxdy.

In defining
⇀
ux and

⇀
uy, the center points are placed between the n×n grid points to make the finite difference

operator symmetric.
Define the discrete spacial divergence operator divx(

⇀
u) ∈ Rn×n×k as

divx(
⇀
u)ij =

1

∆x
(
⇀
ux,ij −

⇀
ux,(i−1)j +

⇀
uy,ij −

⇀
uy,i(j−1)),

for i, j = 1, . . . , n, where we mean
⇀
ux,0j =

⇀
ux,nj = 0 for j = 1, . . . , n and

⇀
uy,i0 =

⇀
uy,in = 0 for i = 1, . . . , n.

This definition of divx(
⇀
u) makes the discrete approximation consistent with the zero-flux boundary condition.
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For
⇀

φ ∈ Rn×n, define the discrete gradient operator ∇x

⇀

φ = ((∇
⇀

φ)x, (∇
⇀

φ)y) as

(∇
⇀

φ)x,ij = (1/∆x)
(

⇀

φi+1,j −
⇀

φi,j

)
for i = 1, . . . , n− 1, j = 1, . . . , n

(∇
⇀

φ)y,ij = (1/∆x)
(

⇀

φi,j+1 −
⇀

φi,j

)
for i = 1, . . . , n, j = 1, . . . , n− 1.

So (∇
⇀

φ)x ∈ R(n−1)×n×k and (∇
⇀

φ)y ∈ Rn×(n−1)×k, and the ∇x is the transpose (as a matrix) of −divx.
Ghost cells are convenient for both describing and implementing the method. This approach is similar

to that of [34]. We redefine the variable
⇀
u = (

⇀
ux,

⇀
uy) so that

⇀
ux,ij =

{
⇀
ux,ij for i < n
0 for i = n

⇀
uy,ij =

{
⇀
uy,ij for j < n
0 for j = n ,

for i, j = 1, . . . , n, and
⇀
ux,

⇀
uy ∈ Rn×n×k. We also redefine ∇

⇀

φ = ((∇
⇀

φ)x, (∇
⇀

φ)y) so that

(∇
⇀

φ)x,ij =

{
(∇

⇀

φ)x,ij for i < n
0 for i = n

(∇
⇀

φ)y,ij =

{
(∇

⇀

φ)y,ij for j < n
0 for j = n ,

for i, j = 1, . . . , n, and (∇
⇀

φ)x, (∇
⇀

φ)y ∈ Rn×n×k.
With some abuse of notation, we write

‖⇀u‖u =

n∑
i=1

n∑
j=1

‖(⇀ux,ij ,
⇀
uy,ij)‖u ‖⇀

w‖w =

n∑
i=1

n∑
j=1

‖⇀
wij‖w.

Using this notation, we write the discretization of (5) as

minimize
⇀
u,

⇀
w

‖⇀u‖u + α‖⇀
w‖w

subject to divx(
⇀
u) + divG(

⇀
w) =

⇀

λ0 −
⇀

λ1,

where the boundary conditions are implicitly handled by the discretization.

B Shrink operators with closed-form solutions

Define shrink1 : C→ C as

shrink1(x;µ) = argmin
z∈C

{
µ|z|+ (1/2)|z − x|2

}
=

{
(1− µ/|x|)x for |x| ≥ µ
0 otherwise

for µ > 0. Define shrink2 : Ck → Ck as

shrink2(x;µ) = argmin
z∈Ck

{
µ‖z‖2 + (1/2)‖z − x‖22

}
=

{
(1− µ/‖x‖2)x for ‖x‖2 ≥ µ
0 otherwise

for µ > 0, where ‖ · ‖2 is the standard Euclidean norm. Define shrinknuc : C → C as

shrinknuc(X;µ) = argmin
Z∈C

{
µ‖Z‖∗ + (1/2)‖Z −X‖22

}
= U diag ([(σ1 − µ)+, . . . , (σn − µ)+])V T

where ‖ · ‖∗ is the nuclear norm and X = U diag ([σ1, . . . , σn])V T is the singular-value decomposition of X
[9]. If x = (x1, x2, . . . , xk) and ‖x‖ = ‖x1‖1 + ‖x2‖2 + · · · + ‖xk‖k for some norms ‖ · ‖1, . . . , ‖ · ‖k, then
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the shrink operators can be applied component-by-component. So if shrink1, shrink2, . . . , shrinkk are the
individual shrink operators, then

shrink(x;µ) =


shrink1(x1;µ)
shrink2(x2;µ)

...
shrinkk(xk;µ)

 .
All shrink operators we consider in this paper can be built from these shrink operators. These ideas are
well-known to the compressed sensing and proximal methods community [44].

However, there is a subtlety we must address when applying the shrink operators to matrix-OMT: the U
update is defined as the minimization over H, not all of C, and the W update is defined as the minimization
over S, not all of C. Fortunately, this is not a problem when we use unitarily invariant norms (such as the
nuclear norm) thanks to the following lemma.

Lemma 1. Let M ∈ H and N ∈ S. Let ‖ · ‖ be a unitarily invariant norm, i.e., ‖UAV ‖ = ‖A‖ for any
A ∈ C, and U, V ∈ C unitary. Then

M+ = argmin
A∈H

{
‖A‖+

1

2
‖A−M‖22

}
= argmin

A∈C

{
‖A‖+

1

2
‖A−M‖22

}
is Hermitian

N+ = argmin
A∈S

{
‖A‖+

1

2
‖A−N‖22

}
= argmin

A∈C

{
‖A‖+

1

2
‖A−N‖22

}
is Skew-Hermitian.

Proof. The minimum over H ⊂ C is the same as the minimum over all of C, if the minimum over all of C is
in H. Likewise, the minimum over S ⊂ C is the same as the minimum over all of C, if the minimum over all
of C is in S.

Write σ : C → Rn for the function that outputs singular values in decreasing order. Because of unitary
invariance, we can write ‖X‖ = f(σ(X)), where f : Rn → R is a norm on Rn [56]. Furthermore, it’s
subdifferential can be written as [33]

∂‖ · ‖(X) = {U diag(µ)V T |µ ∈ (∂f)(σ(X)), U diag σ(X)V T = X is SVD}.

Write M = UΣUT for M ’s eigenvalue decomposition, which is also its singular value decomposition.
Define

σ+ = argmin
s
{f(s) + (1/2)‖s− σ(M)‖22},

which implies 0 ∈ ∂f(σ+) + σ+ − σ(M). With this, we can verify that

0 ∈ U diag(∂f(σ+))UT + U diag(σ+)UT − U diag(σ(M))UT ,

i.e., U diag(σ+)UT satisfies the optimality conditions of the optimization problem that defines M+. So
M+ = U diag(σ+)UT , which is Hermitian.

Likewise, write N = UΛUT for N ’s eigenvalue decomposition. N has orthonormal eigenvectors and
its eigenvalues are purely imaginary. We separate out the magnitude and phase of Λ and write N =
U diag(σ(N))PUT . More precisely, σ(N) = |diag(Λ)| and P is a diagonal matrix with diagonal components
±i. Then the SVD of N is N = U diag(σ(N))V T where PUT = V T . With the same argument as before,
we conclude that N+ = U diag(σ+)V T for some σ+ ∈ Rn. So N+ = UΛ+UT where Λ+ = diag(σ+)P is
diagonal and purely imaginary, and we conclude N+ is skew-Hermitian.

The norm ‖ · ‖1 as described in Section 6.2, is not unitarily invariant. However, its shrink operator acts
element-by-element, so it is easy to arrive at a conclusion similar to that of Lemma 1.
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