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Image Segmentation via L1 Monge-Kantorovich
Problem
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Abstract—This paper provides a fast approach applying the
Earth Mover’s distance (EMD) (a.k.a optimal transport) for
supervised and unsupervised image segmentation. The model
globally cooperates the transportation costs (original Monge-
Kantorovich type) among histograms of multiple dimensional
features, e.g. gray intensity and texture, in image’s foreground
and background. The computational complexity is often high
for the EMD between two histograms on Euclidean spaces with
dimensions larger than one. We overcome this computational
difficulty via the L1 optimal transport. We rewrite the model
into an L1 type minimization with the linear dimension of feature
space. We then apply a fast algorithm based on the primal-dual
method. Compare to several state-of-the-art EMD models, the
experimental results based on image data sets demonstrate that
the proposed method has superior performance in terms of the
accuracy and the stability of the image segmentation.

Index Terms—Optimal transport, Earth Mover’s distance,
Primal-dual algorithm, L1 Monge-Kantorovich problem, Image
segmentation.

I. INTRODUCTION

IMAGE segmentation is a challenging fundamental problem
in computer vision [1], [2], [3]. It is to divide an image

into several meaningful regions. In the past few decades,
many algorithms based on active contour have been proposed.
In general, active contour models can be categorized into
two groups: the edge-based and region-based models. Edge-
based models use edge detector and evolve the curve towards
sharp gradients of pixel intensity [4], [5], [6], [7]. The edge-
based methods are often sensitive to the noise. To solve this
issue, the region-based methods are introduced. The first one
is proposed by Mumford-Shah [8], which approximates an
image by a piecewise smooth function. Starting from this
model, many other ones have been introduced [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18]. In particular, Chan and
Vese proposed the famous model (CV) [11], [19] based on
the level-set method, which deals with topological changes
[20], [21], [22]. The initial choice in CV model is important.
This is because its minimization problem is non-convex,
different initializations will result at various segmentations. To
deal with this problem, many models with convex properties
[23], [24], [25] have been introduced. On the other hand,
statistical segmentation [26], [27], [28] brings insights into
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the problem. The statistical information, i.e. histograms over
features, is introduced to measure the closeness between
forward/background regions. In this direction, the functionals
to measure closeness of histograms are needed. Typically, the
widely used measurements are the L1 distance [29], Kullback-
Leibler divergence [30] and Bhattacharyya distance [31] etc.

Recently, the other distance/measurement among his-
tograms, named Earth Mover’s distance (EMD) [32], has been
brought into attentions. Nowadays, it has been widely used in
image retrieval problems [33], and in hand gesture recognition
problems [34], [35]. The successful usage of EMD is because
of its many desirable theoretical properties; see [36] and many
references therein. A short review will be provided in section
II.

The usage of EMD in image segmentation is initialized by
the novel work of Chan et al. in [9]. They apply continuous cut
model, and compare the patches (local) around pixels by EMD.
Their model is convex within the framework of continuous cut,
thus it is a unsupervised model and global minimizers can be
computed very efficiently by existing algorithms. However, it
relies on the choice of the size of patches. Tuning the value of
size is not a straightforward task. Usually, it is required that the
local histogram correctly approximate or close to the global
ones. In addition, Peyre et al. [37], [38] consider Wasserstein
active contour methods. Their minimization problems are non-
convex. So their methods are sensitive to the initializations and
get struck at local minimizers. Swoboda et al. [39] and Rabin
et al. [40] introduce the convex minimization problems without
using patches, i.e. a global approach. Their models are built
for supervised segmentation and co-segmentation.

Besides the above local and global modeling issues, there
are one major difficulty limiting the application of EMD
segmentation. The one dimensional feature space, usually the
intensity of gray image, can hardly distinguish the foreground
and background. Even on a gray image, more information,
including texture, such as orientation and scale, should be
taken into account to enhance the recognition ability. Thus the
model needs to cooperate with multiple dimensional features,
i.e. EMD with multiple dimensional histograms. However, the
EMD in Rd with d larger than 1 has no analytical solutions.
Fast computation of EMD is a necessary but not simple task,
since EMD between histograms supported on Rd (nd bins,
where n is the number of discretization in one dimension)
requires to solve a linear programming problem with n2d

variables, such as [34], [35].
In this paper, we overcome the limitation by applying key

ideas in [41]. We introduce a global supervised and unsu-
pervised variation models, which have the ability to handle
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multiple dimensional features easily; see Fig.1 for illustration.
Our main idea inherits the formulation of [40], [39], and
applies the EMD with homogeneous degree one ground metric
(L1 optimal transport) [42]. Following the associated duality
structure, we formulate the model into an L1 type minimiza-
tion with O(nd) variables, instead of O(n2d) in the linear
programming. By leveraging its L1 minimization’s structure,
we apply a primal-dual method, in which the shrink operator
plays vital roles in handling various histograms. The updates
are very simple and explicit, and the convergence speed is fast.
The iterations contain only 6 line codes.

The paper is organized as follows. In section II, we briefly
review the segmentation models and L1 optimal transport.
Based on them, we introduce the proposed variation model. In
section III, we design a fast algorithm toward the supervised
and unsupervised image segmentation models, respectively.
Evaluation of the experimental results are presented in section
IV.

II. PROBLEM FORMULATION

In this section, we briefly review the related segmentation
models, and connect the model with the theory of optimal
transport, especially the L1 type. Based on these, we introduce
the proposed model.

Consider a two-phrase segmentation problem. Assume that
an image I : Ω → R1 or R3 represents gray or color images.
The segmentation seeks to find a meaningful partition Ω1, Ω2

in a spatial domain Ω of the image I , where Ω = Ω1∪Ω2 and
Ω1 ∩Ω2 = ∅. To achieve this goal, various models have been
proposed in literature. Following Mumford-Shah, consider the
following minimization problem:

min
Ω1,Ω2

λPer(Ω1,Ω2) + Dist(Ω1,Ref1) + Dist(Ω2,Ref2) (1)

where regions Ω1, Ω2 are minimization variables, Per is the
perimeter of Ω1 or Ω2’s boundary with the weight constant
λ > 0, Ref1, Ref2 are given references, known as the super-
vised terms, and Dist are functionals to estimate the closeness
between region and references. The purpose of solving this
minimization problem is as follows. The minimizer represents
two regions whose boundaries are short, and whose areas
are close to the references. The above minimization is not
proposed explicitly. One need to find proper analytical repre-
sentations for Ω1, Ω2. Many extensions have been discussed
in this direction. Among them, a famous example is the Chan-
Vese model. See [43] and many references therein for details.

The concept of distance between regions plays vital roles
in above models. Recently EMD provides a particular metric
among histograms, which can be used in this variational
problem [9], [40]:

min
Ω1,Ω2

λPer(Ω1,Ω2) + EMD(HistΩ1
,HistRef1)

+ EMD(HistΩ2 ,HistRef2)
(2)

Here we can represent Ω1, Ω2 by using their histograms
HistΩ1 , HistΩ2 in the feature spaces F ⊂ Rd. F represents
the d dimensional features of the image. So EMD can be used
to measure the closeness between the regions.

A. Review of Earth Mover’s Distance

In history, the EMD is first introduced by Monge in 1781,
and then relaxed by Kantorovich in 1940s as follows [44],
[45], [46], [47]. Given two histograms ρ0, ρ1 supported on
a compact, convex feature set F with equal total mass, and
c : F × F → R+ a ground cost function. Consider

EMD(ρ0, ρ1) := min
π

∫
F×F

c(y, ỹ)π(y, ỹ)dydỹ (3)

where the infimum is taken among all joint measures (transport
plans) π(y, ỹ) ≥ 0 having ρ0(y) and ρ1(ỹ) as marginals:∫

F
π(y, ỹ)dỹ = ρ0(y) ,

∫
F
π(y, ỹ)dy = ρ1(ỹ) . (4)

Problem (3) is a well known linear programming, whose
minimal value under suitable choice of c defines the EMD. It
is also named Wasserstein metric. However, the computation
of (3) is cumbersome for high-dimensional feature space Rd,
d ≥ 2. If F is discretized into nd points, it requires to solve
a linear programming problem with n2d variables.

We focus on c(y, ỹ) = ‖y− ỹ‖2 or ‖y− ỹ‖1, the Euclidean
or Manhattan ground distance. This choice of ground distance,
homogeneous degree one type, is very close to Monge’s
original problem in 1781. Here the minimization (3) has an
important reformulation [36], which settles the problem by

EMD(ρ0, ρ1) := inf
m

∫
F
‖m(y)‖dy , (5)

where the infimum is taken among all Borel flux functions
m(y) ∈ Rd, such that

∇y ·m(y) = ρ1(y)− ρ0(y) . (6)

Here∇y· is the divergence operator and m(y) satisfies the zero
flux condition: m(y) · n(y) = 0, if y ∈ ∂F , n(y) is the norm
vector on the boundary of F . Here ‖ · ‖ represents ‖ · ‖1 or
‖ · ‖2. In theory of optimal transport [42], it is well known
that (3), (5) provide the equivalent metric for histograms.
In particular, (5) enjoys many nice mathematical properties,
whose minimizer satisfies the famous Monge-Kantorovich
equation [48], [42].

In this paper, we focus on the modeling and computa-
tional advantages of (5). If F is discretized by nd bins,
(5) only requires solving minimization with O(nd) variables
and constraints. More importantly, (5) is very similar to the
problems in compressed sensing, whose objective functional is
homogeneous degree one and constraint is linear. Thus many
fast algorithms are available. These two properties help to
handle the computation of multiple dimension features model
easily.

B. Proposed Model

We present the model by rewriting (2) explicitly. We form
the variation problem in a continuous setting, and then provide
more details about computations in next section.

Consider an image I : Ω → R1, and denote a binary
segmentation u : Ω → {0, 1}. It is clear that the support
of u represents the foreground Ω1 or background Ω2. We
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Fig. 1: Overall framework of the proposed method.

introduce histograms based on the image I . Following the
ideas in [40], a feature space is introduced as follows. Consider
F ⊂ Rd, where d is the dimension of feature space. A map
is introduced by M : Ω → I. Clearly the map M depends
on the image I’s information. A feature map is needed to
transform the region into histograms (measures) of features.
Denote Measure(F) = {ρ ∈ L1(F) : ρ(y) ≥ 0 , y ∈ F},
and

H(u)(y) =

∫
Ω

h(x, y)u(x)dx (7)

where

h(x, y) =

{
1 if y = M(x) ;

0 Otherwise.

We remark that H is a linear operator from the function in Ω
to Measure(F). Thus the foreground and background can be
represented by their measures H(u), H(1−u) ∈ Measure(F),
respectively. Similarly, the references are two fixed histograms
a, b, where a(y), b(y) ≥ 0 and

∫
F a(y)dy =

∫
F b(y)dy = 1.

The total mass of H(u) and a may not be equal, and the
classical EMD between unbalanced masses is infinity. It is
worth mentioning that there are many ways to deal with this
unbalanced issue; see results in partial optimal transport [49].
Here we consider the method proposed by Rabin et al. [40].
Construct reference measures a, b by â, b̂ ∈ Measure(F):

â(u)(y) = a(y)

∫
F
H(u)(y)dy ,

b(u)(y) = b(y)

∫
F
H(1− u)(y)dy.

(8)

It is simple to check that â, b̂ and H(u), H(1 − u) have the
equal total mass. Let us formulate the variational problem. By
the co-area formula u(x) = 1Ω1

(x), we form (2) as

λ

∫
Ω

‖∇xu(x)‖dx+EMD(H(u), â(u))+EMD(H(1−u), b̂(u)) .

Then by relaxing u(x) ∈ {0, 1} to [0, 1], and using (5), we
arrive at

inf
u,m1,m2

λ

∫
Ω

‖∇xu(x)‖dx+

∫
F
‖m1(y)‖dy+

∫
F
‖m2(y)‖dy ,

(9a)

where the infimum is taken among u(x) and flux functions
m1(y), m2(y) satisfying

0 ≤ u(x) ≤ 1

∇y ·m1(y) +H(u)(y)− a(y)

∫
F
H(u)(y)dy = 0

∇y ·m2(y) +H(1− u)(y)− b(y)

∫
F
H(1− u)(y)dy = 0 .

(9b)
Variation (9) is the main problem considered in this paper. It

is not hard to observe that the objective functional is convex,
the constraint is linear and not empty. Thus there exists a
minimizer for the segmentation.

III. ALGORITHM

In this section, we perform finite volume discretization on
both spatial and feature domains. The discretized minimization
problem of (9) is homogeneous degree one, and enjoys a
suitable number of variables. We then design a fast algorithm
via primal-dual methods [50].

To simplify presentation, consider Ω ⊂ R2 and F ⊂ R2,
where Ω, F are squares. We prepare several necessary no-
tations. We discretize the spatial domain Ω uniformly by a
step size ∆x, and partition the features space F uniformly
with a step size ∆y. The node of Ω is represented by (i, j),
i, j ∈ [1, n1], |Ω| = n2

1 while the partition of F is denoted by
(k, l), k, l ∈ [1, n2], |F| = n2

2.
We first introduce the variables in the discretized model.

Denote u ∈ R|Ω|, where uij ∈ [0, 1]. A segmentation Ω =
Ω1 ∪ Ω2 is determined by u and a small constant threshold
δ > 0:

(i, j) ∈ Ω1 if uij < δ , and (i, j) ∈ Ω2 if 1− uij < δ .

So u and 1− u provide the segmentation. For simplicity, we
call Ω1 foreground, and name Ω2 background.

We then represent the foreground Ω1 and background
Ω2 by histograms. Consider a map M : Ω → F and
H : R|Ω| → R|F|, which transfers a partition in spatial
domain to a histogram in features spaces [40]. Here H =
(hij,kl)(i,j)∈Ω,(k,l)∈F ∈ R|Ω|×|F| is a matrix, whose indexes
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depend on both spatial and feature variables:

hij,kl =

1 if M(i, j) = (k, l) ;

0 Otherwise .

More details of map H can be found in section IV. We derive
the histogram of foreground by H(u) ∈ R|F|:

H(u)kl =
∑
i,j

hij,kluij .

Similarly, we write the histogram of background by H(1 −
u) ∈ R|F|:

H(1− u)kl =
∑
i,j

hij,kl(1− uij) .

We also introduce the supervised terms, which are given
by two fixed histograms a, b ∈ R|F|, with akl, bkl ≥ 0,
and

∑
k,l akl =

∑
k,l bkl = 1. It is worth noting that

histograms a and H(u) may not have the equal total mass
during computations, which does not satisfy the requirement
of EMD. To conquer this and keep the minimization linear,
we replace the histogram a by a

∑
H(u), where

∑
H(u) =∑

i,j,k,l hij,kluij . It is clear that∑
k,l

akl
∑
i,j,k,l

hij,kluij =
∑
i,j,k,l

hij,kluij =
∑
k,l

H(u)k,l .

By the similar reason, the histogram b can be changed to
b
∑
k,lH(1− u)kl. From now on, we compare two histogram

pairs, i.e. H(u), a
∑
k,lH(u)kl, and H(1− u), b

∑
k,lH(1−

u)kl. Later on, we denote
∑
k,l by

∑
to simplify the notation.

We last introduce the discrete divergence and gradient
operator. We illustrate them by F . Denote y = (y1, y2) ∈ F .
For flux function m = (my1 ,my2), my1 ,my2 ∈ R|F|. Define
the discrete divergence operator:

div(m)kl =
1

∆y
(my1,kl −my1,(k−1)l +my2,kl −my2,k(l−1))

And the zero flux condition is considered by

my1,1l = my1,n2l = my2,k1 = my2,kn2
= 0 , for k, l ∈ [0, n2]

For Φ ∈ R|F|, define the discrete gradient operator. Denote
gradΦ = (grady1Φ, grady2Φ), grady1Φ, grady2Φ ∈ R|F|:

(grady1Φ)ij = (1/∆y) (Φi+1,j − Φi,j) ,

(grady2Φ)ij = (1/∆y) (Φi,j+1 − Φi,j) .

It is simple to check that grad is the adjoint operator of div.

A. Supervised Model

Based on above notations, we introduce the discretized
variational problem of (9):

minimize
u,m1,m2

‖m1‖1,2 + ‖m2‖1,2 + λ‖gradu‖1,2

subject to 0 ≤ u ≤ 1

div(m1) +H(u)− a
∑

H(u) = 0

div(m2) +H(1− u)− b
∑

H(1− u) = 0 ,
(10)

where the objective function is∑
k,l

√
m2

1y1,kl
+m2

1y2,kl
+
∑
k,l

√
m2

2y1,kl
+m2

2y2,kl

+ λ ·
∑
i,j

√
gradxu

2
kl + gradyu

2
kl .

Since (10) is an L1 type minimization, whose objective
function is convex and constraints are linear, it admits a
minimizer. Following the classical convexity analysis, we
consider the saddle point problem to solve (10):

min
u,m1,m2

max
Φ1,Φ2,g

‖m1‖1,2 + ‖m2‖1,2 + λ〈u, div(g)〉

+ 1{‖g‖2 ≤ 1}+ 〈Φ1,div(m1) +H(u)

− a
∑

H(u)〉+ 〈Φ2,div(m2) +H(1− u)

− b
∑

H(1− u)〉 ,
(11)

where Φ1, Φ2 ∈ R|F| are the Lagrange multiplier of con-
straints, g is the other dual variable used to handle the total
variation term, and 〈·, ·〉 is the standard inner product in R|F|:

〈A,B〉 =
∑
k,l

AklBkl .

Saddle problem (11) can be computed easily via primal-
dual algorithms [50]. It applies the gradient descent in primal
variables u, m1, m2 with the step size µ > 0:

uK+1 = arg min
u

λ〈u,div(gK)〉+ 〈ΦK1 , H(u)

− a
∑

H(u)〉+ 〈ΦK2 , H(1− u)

− b
∑

H(1− u)〉+
1

2µ
‖u− uK‖22

mK+1
1 = arg min

m1

‖m1‖1,2 + 〈ΦK1 ,div(m1)〉

+
1

2µ
‖m1 −mK

1 ‖22

mK+1
2 = arg min

m2

‖m2‖1,2 + 〈ΦK2 ,div(m2)〉

+
1

2µ
‖m2 −mK

2 ‖22

(12)

While the updates use the gradient ascent in the dual variable
g, Φ1, Φ2 with step size τ > 0:

gK+1 = arg max
g

λ〈2uK+1 − uK ,div(g)〉

+ 1{‖g‖2 ≤ 1} − 1

2τ
‖g − gK‖22 ;

ΦK+1
1 = arg max

Φ1

〈Φ1,div(2mK+1
1 −mK

1 )

+H(2uK+1 − uK)− a
∑

H(2uK+1 − uK)〉

− 1

2τ
‖Φ1 − ΦK1 ‖22 ;

ΦK+1
2 = arg max

Φ2

〈Φ2,div(2mK+1
2 −mK

2 )

+H(1− (2uK+1 − uK))

− b
∑

H(1− (2uK+1 − uK))〉

− 1

2τ
‖Φ2 − ΦK2 ‖22 .

(13)
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In this case, optimization problems in primal and dual updates
(12), (13) have explicit formulas depending on indices i, j, k, l.
And the shrink operator plays vital roles in these computations,
especially for updating flux functions m1, m2. For example,
consider

min
m1

{
‖m1‖1,2 + 〈ΦK1 , div(m1)〉+

1

2µ
‖m1 −mk

1‖22
}

=
∑
k,l

min
m1,kl

(‖m1,kl‖2 − (gradΦK1 )kl ·m1,kl +
1

2µ
‖m1,kl

−mK
1,kl‖22) .

Then mK+1
1 in (12) has a close form update:

mK+1
1,kl = shrink2(mK

1,kl + µ · (gradΦK1 )kl, µ) ,

where

shrink2(v, µ) =

{
(1− µ/‖v‖2)v for ‖v‖2 ≥ µ
0 for ‖v‖2 < µ ,

is the shrink operator in R2. Similarly update can be derived
for mK+1

2 . In addition, the iterations for u, Φ1, Φ2, g are
straightforward, because the minimizations there are linear.

We are now ready to state the proposed algorithm, which
mainly contains the following 6 explicit iterations.

Algorithm for supervised model
Input: Two given histogram of features a, b ∈ R|F|;

Initial guess of u0, g0 ∈ R|Ω|, m0
1, m0

2 ∈ R|F|,
step size µ, τ > 0, feature map H ∈ R|Ω|×|F|.

Output: Segmentation u

for K = 1, 2, · · · (Iterate until convergence)

1. uK+1
ij = uKij − h

{
λdiv(gK)ij −

∑
k,l Φ1,klhij,kl

+(
∑
k,l hij,kl) · (

∑
k,l Φ1,klakl)

+
∑
k,l Φ2,klhij,kl

−(
∑
k,l hij,kl) · (

∑
k,l Φ2,klbkl)

}
;

2. mK+1
1,kl = shrink2(mK

1,kl + µ · (gradΦK1 )kl, µ) ;

3. mK+1
2,kl = shrink2(mK

2,kl + µ · (gradΦK2 )kl, µ) ;

4. gK+1
ij = Proj{‖gij‖2≤1}

[
gKij − τ · (2(graduK+1)ij

−(graduK)ij)
]

;

5. ΦK+1
1,kl = ΦK1,kl + τ ·

{
div(2mK+1

1 −mK
1 )kl

−
∑
i,j hij,kl(2u

K+1
ij − uKij )

+akl
∑
i,j,k,l hij,kl(2u

K+1
ij − uKij )} ;

6. ΦK+1
2,kl = ΦK2,kl + τ ·

{
div(2mK+1

2 −mK
2 )kl

−
∑
i,j hij,kl(1− 2uK+1

ij + uKij )

+bkl
∑
i,j,k,l hij,kl(1− 2uK+1

ij + uKij )} ;

end

In fact, there are many other interesting choices of ground
metric, e.g. the Manhattan distance. The corresponding model
(9) forms

minimize
u,m1,m2

‖m1‖1,1 + ‖m2‖1,1 + λ‖gradu‖1,1

subject to 0 ≤ u ≤ 1

div(m1) +H(u)− a
∑

H(u) = 0

div(m2) +H(1− u)− b
∑

H(1− u) = 0 ,
(14)

where the objective function is∑
k,l

(
|m1y1,kl|+ |m1y2,kl|+ |m2y1,kl|+ |m2y2,kl|

)
+
∑
i,j

(
|gradxukl|+ |gradyukl|

)
.

It is worth noting that (14) is the other L1 optimization
problem. Since its objective function is not strictly convex, it
may have multiple minimizers. Motivated by the work in [41],
we conquer this issue by adding a quadratic regularization:

minimize
u,m1,m2

‖m1‖1,1 + ‖m2‖1,1 + λ‖gradu‖1,1

+
ε

2
‖m1‖21,2 +

ε

2
‖m2‖21,2

subject to 0 ≤ u ≤ 1

div(m1) +H(u)− a
∑

H(u) = 0

div(m2) +H(1− u)− b
∑

H(1− u) = 0 ,

Here ε > 0 is a small constant. Similar as the one with
Euclidean ground metric, the primal dual algorithm for solving
(14) has explicit and exact updates. Here we only point out the
difference in the update. More details can be found in [41].
Let us illustrate the updates of m1. Consider

min
m1

{‖m1‖1,1 +
ε

2
‖m1‖21,2 + 〈ΦK1 , div(m1)〉

+
1

2µ
‖m1 −mk

1‖22}

=
∑
k,l

{
min
m1y1,kl

(|m1y1,kl|+
ε

2
|m1y1,kl|2

− (grady1ΦK1 )kl ·m1y1,kl +
1

2µ
|m1y1,kl −mK

1y1,kl|
2)

+ min
m1y2,kl

(|m1y2,kl|+
ε

2
|m1y2,kl|2 − (grady2ΦK1 )kl

·m1y2,kl +
1

2µ
|m1y2,kl −mK

1y2,kl|
2
2)
}
.

Thus the update of flux m1 is very simple:

mK+1
1y1,kl

=1/(1 + εµ)shrink1(mK
1y1,kl + µ · (grady1ΦK1 )kl, µ)

mK+1
1y2,kl

=1/(1 + εµ)shrink1(mK
1y2,kl + µ · (grady2ΦK2 )kl, µ)

where

shrink1(v, µ) =

{
(1− µ/|v|)v for |v| ≥ µ
0 for |v| < µ ,

is the shrink operator in R1. The other updates are similar to
the one in Euclidean ground metric.
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We next demonstrate that the proposed algorithm converges
to the minimizer of (10) and (14).

Theorem 1: Assume
√
τµ < 1/max{λ2 · λmax(∆Ω),

λmax(∆F )}, where ∆Ω, ∆F denotes the discrete Laplacian
operator in Ω, F , and λmax denotes their largest eigenvalues.
Then the iterations in (12) and (13) converges a minimizer of
(10) or (14).

B. Unsupervised Model

In this part, we extend the framework into the unsupervised
segmentation. We further modify the segmentation model (1)
so that the input reference histograms are not required.

In this case, the proposed minimization is

inf
a,b,u

λ

∫
Ω

1

1 + β(∇I(x))2
|∇u(x)|dx

+ EMD(H(u), â(u)) + EMD(H(1− u), b̂(u)) ,

(15)

where u(x) ∈ [0, 1] and reference histograms a, b are mini-
mization variables. For better locating the boundary between
foreground and background, we apply the weighted total
variation, where β is a positive constant. For simplicity, we
assume that a, b are delta histograms, which support at one
point.

We propose to solve (15) with respect to references a, b, and
partition variable u iteratively. For each iteration step k > 0,
we first fix uk, and solve minimization (15) only with variables
a, b.

ak+1 = arg inf
a∈D

EMD(H(uk), â(uk))

bk+1 = arg inf
b∈D

EMD(H(1− uk), b̂(uk)) ,
(16)

where D is the set of delta histograms.
We then fix ak+1, bk+1, and apply the supervised algorithm

to solve (15), i.e.

uk+1 = arg inf
u
λ

∫
Ω

1

1 + β(∇I(x))2
|∇u(x)|dx

+ EMD(H(u), âk+1(u)) + EMD(H(1− u), b̂k+1(u))
(17)

In fact, the minimization in first step (16) has an explicit
solution.

Lemma 1: Denote a joint histogram µ in Rd, whose
marginal distribution in each dimension is µi, i = 1, · · · , d.
Let xi0 be the median point of measure µi, i.e. µi(ỹi > xi0) =
µi(ỹi ≤ xi0). Then the delta measure supported at the median
point x0 = (xi0)di=1:

a∗(x) = δ(xi
0)di=1

(x)

is the unique minimizer of

a∗(x) = inf
a∈D

EMD(a, µ) .

Remark 1: Lemma 1 is only true for Earth Mover’s distance
with Manhattan ground distance, i.e. c(x, y) = ‖x− y‖1.

Following Lemma 1, ak+1, bk+1 are delta measures, which
are supported at median points w.r.t. measure Hu, H(1− u)
respectively. We now state the unsupervised model as follows.

Algorithm for unsupervised model
Input: Initial guess of u0; Feature map H ∈ R|Ω|×|F|.
Output: Segmentation u

for K = 1, 2, · · · (Iterate until convergence)

1. Fix uK and choose aK+1 as a delta histogram supported
at the median point of H(uK).

2. Fix uK and choose bK+1 as a delta histogram supported
at the median point of H(1− uK).

3. Fix aK+1, bK+1 and apply the algorithm in supervised
model to solve uK+1 in (17).

end

IV. EXPERIMENTAL RESULTS

In this section, we will show the implementation details and
settings of the proposed methods.

A. Details on Feature Extractions

In experiments, we extract two kinds of features, the in-
tensity and the texture features from the original image. Here
the intensity features can be obtained from the image intensity
directly; see Fig.2(a), and the texture features; see Fig.2(b), is
obtained by texture function [51].

Fig. 2: The corresponding features map obtained from the test
image. (a) shows the intensity features map. (b) is the texture
features map.

Under these features, we consider the following map func-
tion

M : Ω→ F = [0, 256]2 , M(x1, x2) = (Mi(x1, x2))2
i=1 .

Here {
M1(x1, x2) =I(x1, x2)

M2(x1, x2) =F (x1, x2)
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Fig. 3: Exemplar regions with bounding boxes of the test
images. The blue bounding box is the foreground and the red
bounding boxes are the background.

where I is the intensity of the image at each pixel (x1, x2),
the texture function F is given by

F (x1, x2) = exp(−det(gx1x2
)

σ2
) ,

gx1x2 =

(
1 + (∂x1

px1,x2
)2 ∂x1

px1,x2
∂x2

px1,x2

∂x1
px1,x2

∂x2
px1,x2

1 + (∂x2
px1,x2

)2

)
,

px1,x2
is the square patch of size τ × τ around the pixel

(x1, x2), i.e. px1,x2
(I) = {I(x1 + t1, x2 + t2)}, t1 ∈ [− τ2 ,

τ
2 ],

t2 ∈ [− τ2 ,
τ
2 ], , τ is a scaling parameter which controls the

degree of the image details. In experiments, we select τ = 10.
By the map M , we then construct the corresponding histogram
in 2D feature spaces.

We next illustrate the supervised terms. They are derived
from exemplary regions, which are defined by the user with
bounding boxes. These regions are only used to build prior
foreground and background histograms; see Fig.3. The blue
bounding box is the foreground and the red bounding boxes
are the background.

B. The Evolution Process of the Segmentation

In this sequel, we briefly explain the process of the seg-
mentation for the proposed method. In Fig.4, we show the
segmentation results for certain period of iterations. On the
left, the figure shows the evolution of contour for the cheetah.
On the right, it describes the corresponding movement of
histograms. In details, Fig.4(a) illustrates the original image
with exemplary regions. The corresponding 2D histogram
contour of the blue bounding box is shown in Fig.4(b). The
relationship between the image segmentation evolution process
and the movement of the corresponding probability distribu-
tion contours is shown in Fig.4(c) and Fig.4(d), respectively. In
Fig.4(d), these directions represent the flux function m1 used
in the algorithm, which gives the directions of movement for
the histogram. In this example, one may note that the quality
of the results on these images uses 64-bin quantized gray-scale
intensities. Our tests are all based on a Matlab code, working
on a Dell OPTIPLEX 990, with Intel(R) Core(TM) i5-2400
processor, 3.1GHZ, 8GB RAM.

C. Supervised Segmentation

We next exhibit the advantages of considering multi-
dimension features over histograms. We present a comparison
with the local histogram based segmentation (LHBS) model

proposed by Ni et al [9] which uses 1D features (the gray-
intensity). Fig.5 shows the comparison results by using the
LHBS model and the proposed method with 2D features (the
gray-intensity and the texture), in which the first row shows the
input images with bounding boxes, and from the second to the
third rows are the segmentation results by applying the LHBS
model and the proposed model, respectively. It can be clearly
seen that the proposed method can achieve better segmentation
results with more accurate foreground boundary. From our
experimental results, it seems that the more features are used,
the better segmentation can be derived. It is reasonable that
2D features are better than 1D features in segmenting the
images since more information is taken into consideration to
distinguish the foreground and background.

D. Unsupervised Segmentation

In this part, we present several examples to demonstrate the
effectiveness of the unsupervised model.

We first apply 1D features (the gray-intensity) information
to segment the images. Consider an initial partition of the
image with u0, the reference histograms a, b obtained by
calculating the median gray-intensity of the foreground region
and background region, respectively. Fig.6 shows how we
select the reference measure in each step. It is chosen as the red
one, i.e. the delta measure supported at the median point of the
blue histogram. The right figure demonstrates that the energy
function decreases during each iterative steps. The segmenta-
tion results are presented in Fig.7. The number of iterations
of the three images in Fig.7 (from left to right) is 50, 70 and
85, respectively, and the corresponding time is 42s, 63s, 74s.
However, it can be seen that the usage of 1D information can
hardly obtain the satisfying results. We then do segmentation
the images with 2D features (the gray-intensity and the texture
features). Fig.8 shows the segmentation results, the number of
iterations is 40, 55, 80, respectively, and the corresponding
time is 120s, 165s, 190s. The segmentation results in Fig.8
indicates that the performance of the 2D algorithm is better
than the one in the 1D algorithm.

E. Qualitative and Quantitative Experiments

In this section, we use two popular public databases, Mi-
crosoft GrabCut database and Berkeley segmentation data set
to evaluate the quality of the unsupervised model with 2D
features (the gray-intensity and the texture).

Fig.9 illustrates some segmentation examples on the Mi-
crosoft GrabCut database, which demonstrates that the pro-
posed method can work better since it combines the gray-
intensity and the texture feature together. The ratio of the
number of correctly segmented pixels to the total number
of pixels of the image which we called the accuracy rate is
used as the accuracy measurement of the segmentation results.
Fig.10 depicts the accuracy rate for each image between the
LHBS model and our method. The comparison results show
that the proposed descriptors can obtain the less segmentation
error rate. The qualitative and quantitative comparison results
indicates that the proposed model is able to segment the image
more precisely.
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(a) (b)

(c) (d)
 

Fig. 4: Dynamical segmentation map. (a) shows the original image with bounding boxes. (b) is the corresponding 2D histogram
contour of the blue bounding box. (c) is the evolution segmentation process. (d) illustrates the corresponding movement of 2D
contours.

Fig. 5: Supervised model with comparison to LHBS [9] model.
Row 1st shows the input images with boundary boxes. Row
2nd shows the LHBS model. Row 3rd shows the proposed
method based on 2D feature histograms.

We next give a further comparison on the Berkeley seg-
mentation data set. In addition, we compare our method with
the nonlocal active contours(NLAC) model [37]. We select
50 test images for experimental comparisons, and use Jaccard
index and Hausdorff distance to quantitatively evaluate the
performance of the comparing methods. Fig.12 and Fig.13
display the corresponding Jaccard index value and Hausdorff
distance for each test images, respectively. It can be clearly
seen that our method obtains the higher Jaccard index and
lower Hausdorff distance, which means that our method has
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Fig. 6: The left figure shows that how we select the reference
measure in each step. It is chosen as the red one, i.e. the
delta measure supported at the median point of the blue his-
togram. The right figure demonstrates that the energy function
decreases during these iterative steps.

Fig. 7: Unsupervised model with 1D features (the gray-
intensity).
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Fig. 8: Unsupervised model with 2D features (the gray-
intensity and the texture).

Fig. 9: unsupervised model with comparison to the LHBS [9]
model. Row 1st shows the original images. Row 2nd shows
the segmentation results achieved by the LHBS model. Row
3rd shows the proposed method segmentation results. Row 4th
shows the binary results of the LHBS model. Row 5th shows
the binary results of proposed method. Row 6th shows the
ground truth.

more high-quality segmentation results. Fig.14 illustrates the
average Jaccard index values of the three methods, the LHBS
model is about 0.695, the NLAC is about 0.708, and our
method is about 0.83. Their corresponding standard deviations
are 0.119., 0.118. and 0.068, respectively. Furthermore, as
shown by Fig.15, the average Hausdorff distances of the three
methods are 9.4594, 8.7923, and 6.5533, respectively. The
standard deviations of above methods are 2.3779, 2.1437,
and 1.7408, respectively. Therefore, it demonstrates that our
method has been proven more effective and higher stable
segmentation accuracies among these methods.

V. CONCLUSION

In this paper, we propose a segmentation model inheriting
key ideas in optimal transport theory and homogeneous degree
one regularization. Compared to existing methods, our model
leverages the structure of original Monge-Kantorovich prob-
lem [41], which allows us to compute the segmentation with
multiple dimensional easily, and thus to enhance the accuracy
of the image segmentation. It is worth mentioning that the

model is a L1 type minimization, whose minimization variable
keeps the same number of feature spaces. This fact allows us
to design fast algorithms via primal-dual approach and keep
the computational complexity at a reasonable level. It is highly
parallelizable [52]. The experimental results demonstrate the
effectiveness of the method, comparing with several state-of-
the-art Earth mover’s distance methods. Furthermore, due to
the optimal transport theory, our technique can easily deal
with a variety of image processing problems, such as image
retrieval, video tracking and so on. Therefore, our future
work will focus on applying the model on these challenging
problems.

APPENDIX

Proof of Theorem 1: To prove the convergence, we only
need to check the conditions in [50]. Denote the prime variable
X = (u,m1,m2), and dual variable Y = (g,Φ1,Φ2). Rewrite
the Lagrangian in (11) by

L(X,Y ) = G(X) +XTKY − F (Y ) ,

where G, F can be shown as convex functions and K =λ · divΩ 0 0

0 divF 0

0 0 divF

 , where divΩ, divF represents the

discrete divergence operator in Ω and F . Since

KKT =

λ
2 ·∆Ω 0 0

0 ∆F 0

0 0 ∆F


and the algorithm converges for µτ‖KKT ‖22 < 1, we prove
the result.

Proof of Lemma 1: The proof is from the definition of
Earth Mover’s distance. Consider

EMD(a, µ) := min
π

∫
Rd×Rd

‖y − ỹ‖1π(y, ỹ)dydỹ

s.t.∫
Rd

π(y, ỹ)dỹ = a(y) ,

∫
Rd

π(y, ỹ)dy = µ(ỹ) , π(y, ỹ) ≥ 0 .

Since a(y) is the delta measure supported at x0, then π(y, ỹ) =
0 a.e. if y 6= x0, and

∫
{y=x0} π(y, ỹ)dy = µ(ỹ). Thus∫

Rd

( ∫
Rd

‖y − ỹ‖1π(y, ỹ)dy
)
dỹ

=

∫
Rd

( ∫
{y=x0}

‖x0 − ỹ‖1π(y, ỹ)dy
)
dỹ

=

∫
Rd

‖x0 − ỹ‖1
( ∫
{y=x0}

π(y, ỹ)dy
)
dỹ

=

∫
Rd

‖x0 − ỹ‖1µ(ỹ)dỹ =

∫
Rd

d∑
i=1

‖xi0 − ỹi‖1µ(ỹ)dỹ

=

d∑
i=1

∫
R1

‖xi0 − ỹi‖1µi(ỹi)dỹi .

Since µi is fixed and the minimization is taken among xi0,
i = 1, · · · , d, then the optimal xi0 is attached at the median
point of µi.
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Fig. 10: The segmentation accuracy tested on the Microsoft GrabCut database. The magenta contour, and green contour are
the segmentation accuracy of the LHBS[9] model, and our method, respectively.

Fig. 11: Some comparison examples on Berkeley segmentation data set. Top to bottom: test images, results of the NLAC [37]
model, the LHBS [9] model, and our method, respectively.

Fig. 12: The Jaccard values of segmentation results on the 50 Berkeley data set images. The magenta contour, the green
contour, and the blue contour are the Jaccard values of the proposed method, the LHBS [9] model, and the NLAC [37] model,
respectively.
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Fig. 13: The Hausdorff distances of segmentation results on the 50 Berkeley data set images. The magenta contour, the green
contour, and the blue contour are the Hausdorff distances of the proposed method, the LHBS [9] model, and the NLAC [37]
model, respectively.

Fig. 14: The average Jaccard index values of the LHBS model,
the NLAC model, and our method, respectively.

Fig. 15: The average Hausdorff distances of the LHBS model,
the NLAC model, and our method, respectively.
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