
BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With
Quantized Weights∗

Penghang Yin† , Shuai Zhang‡ , Jiancheng Lyu‡ , Stanley Osher † , Yingyong Qi ‡ , and Jack
Xin ‡

Abstract. We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with
quantized weights. The set constraint that characterizes the quantization of weights is not imposed
until the late stage of training, and a sequence of pseudo quantized weights is maintained. Specifically,
we relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to
be the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are
obtained by linearly interpolating between the float weights and their quantizations. A continuation
strategy is adopted to push the weights towards the quantized state by gradually increasing the
regularization parameter. In the second phase, exact quantization scheme with a small learning rate
is invoked to guarantee fully quantized weights. We test BinaryRelax on the benchmark CIFAR-
10 and CIFAR-100 color image datasets to demonstrate the superiority of the relaxed quantization
approach and the improved accuracy over the state-of-the-art training methods. Finally, we prove
the convergence of BinaryRelax under an approximate orthogonality condition.

Key words. BinaryRelax, deep neural networks, quantization, continuous relaxation.

AMS subject classifications. 90C10, 90C26, 90C90

1. Introduction. Deep neural networks (DNNs) have achieved remarkable success in com-
puter vision, speech recognition, and natural language processing systems [14, 16, 15, 24].
There is thus a growing interest in deploying DNNs on low-power embedded systems with
limited memory storage and computing power, such as cell phones and other battery-powered
devices. However, DNNs typically require hundreds of megabytes of memory storage for
the trainable full-precision floating-point parameters or weights, and need billions of FLOPs
to make a single inference. This makes the deployment of DNNs impractical on portable
devices. Recent efforts have been devoted to the training of DNNs with coarsely quan-
tized weights which are represented using low-precision (8 bits or less) fixed-point arithmetic
[11, 5, 17, 32, 33, 29, 31, 21, 1]. Quantized neural networks enable substantial memory sav-
ings and computation/power efficiency, while achieving competitive performance with that
of full-precision DNNs. Moreover, quantized weights can exploit hardware-friendly bitwise
operations and lead to dramatic acceleration at inference time.

The simplest way to perform quantization would be directly rounding the weights of a
pre-trained full-precision network. But without re-training, this naive approach often leads
to poor accuracy at bit-width under 8. From the perspective of optimization, the training of

∗The second and third authors contributed equally.
Funding: The work was partially supported by NSF grants DMS-1522383, IIS-1632935, ONR grant N00014-

16-1-2157, DOE grant DE-SC00183838, and AFOSR grant FA 9550-15-0073.
†Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095. (yph@ucla.edu,

sjo@math.ucla.edu).
‡Department of Mathematics, University of California at Irvine, Irvine, CA 92697. (szhang3@uci.edu,

jianchel@uci.edu, yqi@uci.edu, jxin@math.uci.edu)

1

mailto:yph@ucla.edu, sjo@math.ucla.edu
mailto:yph@ucla.edu, sjo@math.ucla.edu
mailto:szhang3@uci.edu, jianchel@uci.edu, yqi@uci.edu, jxin@math.uci.edu
mailto:szhang3@uci.edu, jianchel@uci.edu, yqi@uci.edu, jxin@math.uci.edu

2 PENGHANG YIN, ET AL.

quantized networks can be abstracted as a constrained optimization problem of minimizing
some empirical risk subject to a set constraint that characterizes the quantization of weights:

(1) min
x∈Rn

f(x) :=
1

N

N∑
i=1

`i(x) subject to x ∈ Q.

The problem has specific structures. Given a training sample of input Ii and label ui, the
corresponding training loss takes the form

`i(x) = `(σl(xl ∗ · · ·σ1(x1 ∗ Ii))− ui),

where x = [x1, . . . , xl]
> and xi ∈ Rni contains the weights in the i-th linear (fully-connected or

convolutional) layer, σi is some element-wise nonlinear function. ”∗” denotes either matrix-
vector product or convolution operation; reshaping is necessary to avoid mismatch in di-
mensions. For layer-wise quantization, the set Q takes the form of Q1 × · · · × Ql, where
xi ∈ Qi := R+ × {±q1,±q2, . . . ,±qm}ni . Here R+ denotes the set of nonnegative real
numbers and 0 ≤ q1 < q2 < · · · < qm represent the m quantization levels and are pre-
determined. The weight vector in the i-th layer enjoys the factorization xi = si ·Qi for some
Qi ∈ {±q1,±q2, . . . ,±qm = 1}ni and some layer-wise scalar si ≥ 0. Note that si does not
have to be low-precision. si is shared by all weights across the i-th linear layer and will be
stored separately from the quantized numbers Qi for deployment efficiency. The storage for
the scaling factors is negligible as there are so few of them. Weight quantization has two
special cases as follows.

• 1-bit binarization: m = 1 and Qi = R+ × {±1}ni . The storage of Qi’s only needs
1 bit for representing the signs. Compared to the full-precision model, we have 32×
memory savings.
• 2-bit ternarization: m = 2 and Qi = R+ × {0,±1}ni . The storage needs 2 bits for

representing the signs and the zero. Therefore, it gives 16× model compression rate.
The acceleration through low-bit weights is achieved by leveraging the distributive law dur-
ing forward propagation. For example, propagation through the first linear layer yields the
computation of

x1 ∗ I = (s1Q1) ∗ I = s1(Q1 ∗ I).

When Q1 is under 1-bit or 2-bit representation, the computation of Q1 ∗ I can be extremely
fast as there are additions/subtractions involved only.

On the computational side, with sampled mini-batch gradient ∇fk at the k-th iteration,
the classical projected stochastic gradient descent (PSGD)

(2)

{
yk+1 = xk − γk∇fk(xk)
xk+1 = projQ(yk+1),

performs poorly however, and gets stagnated when updated with a small learning rate γk. It
is the quantization/projection of weights that “rounds off” small gradient updates and causes
the plateau [18]. Instead of using the standard gradient step in (2), a hybrid gradient update

(3) yk+1 = yk − γk∇fk(xk)

BINARY-RELAX 3

was proposed in [5] and showed significantly improved accuracy. This modification of PSGD
is refered as BinaryConnect. Despite the succinctness and effectiveness of BinaryConnect,
its convergence still lacks of understanding. The only analysis so far appears in [18], under
convexity assumption on the objective function f . Researchers have also explored different
schemes for quantizing float weights, whether deterministic or stochastic [5, 23, 32, 17, 29,
21, 31]. But to our knowledge, all these methods maintain a sequence of purely quantized
weights, if not the optimal, during the training.

In this paper, we propose a novel relaxed quantization approach called BinaryRelax, to
explore more freely the non-convex landscape of the objective function of the DNNs under
the discrete quantization constraint. We relax the set constraint into a continuous regularizer,
which leads to a relaxed quantization update. Besides, we set an increasing regularization
parameter, driving xk slowly to the quantized state. When the training error stops decaying
at small γk, we switch to exact quantization to get genuinely quantized weights as desired.
By exploiting the structure of quantization set Q, we prove the convergence of BinaryRelax
in the non-convex setting, which naturally covers that of BinaryConnect. To our knowledge,
this is the first convergence proof of BinaryConnect under non-convexity assumption.

The rest of the paper is organized as follows. In section 2, we introduce the proposed
BinaryRelax method. In section 3, we benchmark CIFAR-10 and CIFAR-100 datasets and
compare BinaryRelax with state-of-the-art methods to demonstrate the benefits of performing
relaxed quantization. In section 4, we establish the convergence results. The concluding
remarks are given in section 5. All technical proofs are provided in the appendix.

Notations. ‖ · ‖ denotes the Euclidean norm; ‖ · ‖1 denotes the `1 norm; ‖ · ‖0 counts the
number of nonzero components. 0 ∈ Rn represents the vector of zeros. For any vector x ∈ Rn
and closed set Q ⊂ Rn,

projQ(x) := arg min
z∈Q
‖x− z‖

is the projection of x onto Q, and

dist(x,Q) := min
z∈Q
‖x− z‖

is the Euclidean distance between x and Q. When Q is a subspace in Rn, x ⊥ Q means that
x is orthogonal to Q. sign(x) is the signum function acting pointwise on x, i.e.,

sign(x)i :=

1 if xi > 0,

−1 if xi < 0,

0 if xi = 0.

2. BinaryRelax. Without loss of generality, we assume the set of quantized weights

Q = R+ × {±q1, . . . ,±qm}n ⊂ Rn

throughout the paper, that is, we only consider the case for simplicity that a single scaling
factor is shared by all weights in the network.

4 PENGHANG YIN, ET AL.

2.1. Quantization. In fact, for b-bit quantization, Q = L1 ∪ · · · ∪ Lp is the union of p

one-dimensional subspaces Li in Rn, i = 1, . . . , p, where p = 2n−1 for b = 1 and p = (2b−1)n−1
2

for b ≥ 2, and

Li = {s ·Qi : s ∈ R, Qi ∈ {±q1, . . . ,±qm}n \ {0}}

with Qi 6= ±Qj for i 6= j.
Given the float weight vector yk in the k-th iteration, the quantized weights xk obtained

from yk is basically the projection of yk onto the set Q. Therefore, the quantization of yk

gives rise to the optimization problem

(4) xk = arg min
x∈Q

‖x− yk‖2 = projQ(yk).

The above projection/quantization problem can be reformulated as

(5) (sk+, Q
k) = arg min

s+,Q
‖s+ ·Q− yk‖2 subject to s+ ≥ 0, Q ∈ {±q1, . . . ,±qm}n,

which is essentially a constrained K-means clustering problem. The centroids are parameter-
ized by a single parameter s+. The assigned centroids or quantization is given by xk = sk+ ·Qk.

It has been shown that the closed form (exact) solution of (5) can be computed at O(n)
complexity for binarization [23] where Q ∈ {±1}n:

(6) sk+ =
‖yk‖1
n

, Qki =

{
1 if yki ≥ 0

−1 otherwise.

In the case of ternarization where Q ∈ {0,±1}n, an O(n log n) exact formula was found in
[29]:

(7) t∗ = arg max
1≤t≤n

‖yk[t]‖
2
1

t
, sk+ =

‖yk[t∗]‖1
t∗

, Qk = sign(yk[t∗]),

where y[t] ∈ Rn keeps the t largest component in magnitude of y, while zeroing out the others.
For quantization with wider bit-width (b > 2), accurately solving (5) becomes computationally
intractable [29]. Empirical formulas have thus been proposed for an approximate quantized
solution [17, 29, 31], and they are sufficient for practical use. For example, a heuristic thresh-
olding scheme of O(n) complexity for ternarization was proposed in [17] as

(8) δ =
0.7‖yk‖1

n
, sk+ =

∑n
i=1 |yki | · 1|yki |≥δ∑n

i=1 1|yki |≥δ
, Qki =

{
sign(yki) if |yki | ≥ δ
0 otherwise.

The focus of this paper is not on how to quantize a float weight vector. So we simply
assume that the quantization projQ(yk) can be computed precisely, regardless the choice of
Q.

BINARY-RELAX 5

2.2. Moreau envelope and proximal mapping. In the seminal paper [20], Moreau intro-
duced what is now called the Moreau envelope and the proximity operator (a.k.a. proximal
mapping) that generalizes the projection. Let g : Rn → (−∞,∞] be a lower semi-continuous
extended-real-valued function. For any t > 0, the Moreau envelope function gt is defined by

gt(x) := inf
z∈Rn

g(z) +
1

2t
‖z − x‖2.

In general, gt is everywhere finite and locally Lipschitz continuous. Moreover, gt converges
pointwise to g as t→ 0+. Moreau envelope is closely related to the inviscid Hamilton-Jacobi
equation [4]

ut +
1

2
| ∇xu |2 = 0, u(x, 0) = g(x),

where u(x, t) = gt(x) is the unique viscosity solution of the above initial-value problem via
the Hopf-Lax formula

u(x, t) = inf
z

{
f(z) + tH∗

(
z − x
t

)}
with the Hamiltonian H(t, x, v) = 1

2‖v‖
2 and its Fenchel conjugate H∗ = H.

The proximal mapping of g is defined by

proxg(x) := arg min
z∈Rn

g(z) +
1

2
‖z − x‖2.

It is frequently used in optimization algorithms associated with non-smooth optimization
problems such as total variation denoising [9].

2.3. Relaxed quantization. Let us begin with the alternative form of DNNs quantization
problem (1):

(9) min
x∈Rn

f(x) + χQ(x),

where χQ(x) is the characteristic function of Q defined by

χQ(x) =

{
0 if x ∈ Q
∞ otherwise.

When both the objective function f(x) and the set Q are non-convex, the discontinuity of
χQ poses an extra challenge in minimization since a continuous gradient descent update can
be made stagnant when projected discontinuously. Since Q is closed and the characteristic
function of any closed set is lower semi-continuous, the Moreau envelope of χQ is well defined
for t > 0 and is given by

inf
z
χQ(z) +

1

2t
‖z − x‖2 =

1

2t
dist(x,Q)2.

The (squared) distance function dist(x,Q)2 is continuously differentiable almost everywhere,
except at points that have at least two nearest line subspaces, i.e., there exist two different

6 PENGHANG YIN, ET AL.

ways to quantize x. We use 1
2tdist(x,Q)2 as the approximant of the discontinuous χQ(z) and

propose to minimize the relaxed training error

(10) min
x∈Rn

f(x) +
λ

2
dist(x,Q)2,

where λ = t−1 > 0 is the regularization parameter. When λ → ∞, λ
2 dist(x,Q)2 converges

pointwise to χQ(x), and the global minimum of (10) converges to that of (9).

Proposition 2.1. Suppose f(x) is continuous. Let f∗Q = minx∈Q f(x) be the global minimum
of (9) and x∗λ be the global minimizer of relaxed quantization problem (10). Then

dist(x∗λ,Q)→ 0 and f(x∗λ)→ f∗Q, as λ→∞.

2.4. Algorithm. Inspired by the hybrid gradient update proposed in [5], we write a two-
line solver for the minimization problem (10):{

yk+1 = yk − γk∇fk(xk)
xk+1 = arg minx∈Rn

1
2 ‖x− y

k+1‖2 + λ
2 dist(x,Q)2.

The algorithm constructs two sequences: an auxiliary sequence of float weights {yk} and a
sequence of nearly quantized weights {xk}. The mismatch of discontinuous projection and
continuous gradient descent is resolved by the relaxed quantization step:

(11) xk+1 = arg min
x∈Rn

1

2
‖x− yk+1‖2 +

λ

2
dist(x,Q)2,

which calls for computing the proximal mapping of the function λ
2 dist(x,Q)2. This can be

done via a simple formula.

Proposition 2.2. Let

projQ(yk+1) = arg min
x∈Q
‖x− yk+1‖2

be the accurate quantization of yk+1, then the solution to relaxed quantization subproblem (11)
is given by

(12) xk+1 =
λ projQ(yk+1) + yk+1

λ+ 1
.

Note that we still need the exact quantization projQ(yk+1) to perform relaxed quantiza-
tion. The update xk+1 is essentially a linear interpolation between yk+1 and its quantization
projQ(yk+1), and λ controls the weighted average. xk+1 is not precisely quantized because
xk+1 6∈ Q, but xk+1 approaches Q as λ increases. Hereby we adopt a continuation strategy
and let λ grow exponentially, which may not be the best but gives satisfactory performance
in our experiments. Specifically, we inflate λ in every epoch by a factor ρ ' 1. Intuitively, the
relaxation with continuation will help skip over some bad local minima of (9) located in Q ,
because they are not local minima of the relaxed formulation in general.

BINARY-RELAX 7

Proposition 2.3. Suppose f(x) is differentiable. Any point x∗ ∈ Q is not a local minimizer
of the relaxed quantization problem (10) unless ∇f(x∗) = 0.

In order to obtain purely quantized weights in the end, we turn off the relaxation mode
and enforce exact quantization

(13)

{
yk+1 = yk − γk∇fk(xk)
xk+1 = projQ(yk+1).

The BinaryRelax algorithm is summarized in Alg. 1 below. In fact, the Phase II update (13)
is not new, and it has become the workhorse for weight quantization of networks [5, 23, 17,
32, 29]. In a recent study [18], it was referred as the BinaryConnect scheme.

Algorithm 1 BinaryRelax.

Input: number of epochs for training, batch size, schedule of learning rate {γk}, growth factor
ρ ' 1.

for i = 1, 2,. . . , nb-epoch do
Randomly shuffle the data and partition into batches.
for j = 1, 2, . . . , nb-batch do
yk+1 = yk − γk∇fk(xk)
if i ≤ T then

xk+1 =
λkprojQ(yk+1)+yk+1

λk+1 // Phase I
λk+1 = ρλk

else
xk+1 = projQ(yk+1) // Phase II

end if
k = k + 1

end for
end for

Remark 2.4. The idea of relaxing the discrete sparsity constraint ‖x‖0 ≤ s into a contin-
uous and possibly non-convex regularizer has been long known in the contexts of statistics
and compressed sensing [27, 8, 2]. For example, compressed sensing solvers for minimizing
the convex `1 norm [9] or non-convex sparse proxies, such as `1/2 (with smoothing) [3] and
`1−2 [28], often outperform those directly tackling the nonzero counting metric `0. Interest-
ingly, similar to Q, the sparsity constraint set {x ∈ Rn : ‖x‖0 ≤ s} is also a finite union of
low-dimensional subspaces in Rn.

Remark 2.5. BinaryConnect resembles the linearized Bregman algorithm proposed by Os-
her et al. [30] for solving the basis pursuit problem{

vk+1 = vk −A>(Auk − b)
uk+1 = δ · shrink(vk+1, µ)

where δ, µ > 0 are parameters. In linearized Bregman, A>(Au − b) is the gradient of sum

8 PENGHANG YIN, ET AL.

CIFAR-10 CIFAR-100

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

apple

aquarium fish

baby

bear

beaver

bed

bee

beetle

bicycle

bottle

Figure 1. Sample images from CIFAR datasets: 10 classes in CIFAR-10 (left); 10 out of 100 classes in
CIFAR-100 (right).

of squares 1
2‖Au − b‖2, and shrink(v, µ) is the proximal operator of `1 norm (a.k.a. soft-

thresholding operator [7]):

shrink(v, µ) := arg min
u

1

2µ
‖u− v‖2 + ‖u‖1.

3. Experimental Results. We tested BinaryRelax on benchmark CIFAR-10 and CIFAR-
100 color image datasets [13], and compared with BinaryConnect on layer-wise binarization
and ternarization. The CIFAR-10 dataset consists of 60000 32×32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images. CIFAR-
100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each.
There are 500 training images and 100 test images per class. Fig. 1 shows some sample
images from CIFAR datasets. In the experiments, we used the testing images for validation.
We coded up the BinaryRelax in PyTorch [22] platform. All experiments were carried out on
two desktops with Nvidia graphics cards GTX 1080 Ti and Titan X.

The two baselines are the BinaryConnect framework (13) combined with the exact bina-
rization formula (6) (BWN) [23] and the heuristic ternarization scheme (8) (TWN) [17], resp..
We used the same quantization formulas for BinaryRelax in the relaxed quantization update
(12). Besides, we ran the same number of epochs, and the schedules of learning rate were
also the same. We set the multi-step learning rates {0.1, 0.01, 0.001} and the initial relaxation
parameter λ0 = 1 in all of our experiments. Phase II starts a few epochs after the learning
rate decreases to 0.001 in the last stage of training. Then we find a proper growth factor ρ,
such that λ ∈ (100, 200) at the moment Phase I ends. In Phase II, BinaryRelax basically
reduces to BWN or TWN. In addition, we used batch size = 128, `2 weight decay = 10−4,
batch normalization [12], and momentum = 0.95.

We tested the algorithms on the popular VGG [26] and ResNet[10] architectures, and
the validation accuracies for CIFAR-10 and CIFAR-100 are summarized in Tab. 1 and Tab.

BINARY-RELAX 9

2, resp.. Note that ResNet-18 and ResNet-34 tested here were originally constructed for the
more challenging ImageNet classification [6] and then adapted for CIFAR datasets. They have
wider channels in the convolutional layers and are much larger than the other ResNets. For
example, ResNet-18 has ∼ 11 million parameters, whereas ResNet-110 has only ∼ 1.7 million.
This explains their higher accuracies. All quantized networks were initialized from their full-
precision counterparts whose validation accuracies are listed in the second column. Fig. 2
shows the validation accuracies for CIFAR-100 tests with VGG-16 and ResNet-34 during
the training process. With approximately the same training cost, our relaxed quantization
approach consistently outperforms the hard quantization counterpart in validation accuracies.
As seen from the tables and figure, the advantage of relaxed quantization is particularly clear
when it comes to the large nets ResNet-18 and ResNet-34, where we have more complex
landscapes with spurious local minima. In this case, our accuracies of binarized networks
even surpass that of TWN. The relaxation indeed helps skip over bad local minima during
the training.

CIFAR-10 Float
Binary Ternary

BWN Ours TWN Ours

VGG-11 91.93 88.70 89.28 90.48 91.01

VGG-16 93.59 91.60 91.98 92.75 93.20

ResNet-20 92.68 87.44 87.82 88.65 90.07

ResNet-32 93.40 89.49 90.65 90.94 92.04

ResNet-18 95.49 92.72 94.19 93.55 94.98

ResNet-34 95.70 93.25 94.66 94.05 95.07

Table 1
CIFAR-10 validation accuracies.

CIFAR-100 Float
Binary Ternary

BWN Ours TWN Ours

VGG-11 70.43 62.35 63.82 64.16 65.87

VGG-16 73.55 69.03 70.14 71.41 72.10

ResNet-56 70.86 66.73 67.65 68.26 69.83

ResNet-110 73.21 68.67 69.85 68.95 72.32

ResNet-18 76.32 72.31 74.04 73.15 75.24

ResNet-34 77.23 72.92 75.62 74.43 76.16

Table 2
CIFAR-100 validation accuracies.

4. Convergence Analysis. In this section, we analyze the convergence property of the
proposed BinaryRelax. More precisely, we will focus on the iterations (13) in Phase II of

10 PENGHANG YIN, ET AL.

VGG-16 Binary VGG-16 Ternary

ResNet-34 Binary ResNet-34 Ternary

Figure 2. Comparisons of validation accuracy curves for CIFAR-100 using VGG-16 and ResNet-34. The
initial learning rate γ0 = 0.1 and decays by a factor of 0.1 at epoch 120 and 220. The initial regularization
parameter λ0 = 1 and grows by a factor of ρ = 1.02 after each epoch until epoch 240 where Phase II starts.

BinaryRelax (i.e., BinaryConnect):{
yk+1 = yk − γk∇fk(xk)
xk+1 = projQ(yk+1).

Although the convergence of BinaryConnect at a small learning rate is observed empirically
(as seen from our experiments), the only convergence results, to our knowledge, were estab-
lished in [18], in terms of the object value under convexity assumption made on f . However,
the loss functions in deep learning are notoriously non-convex. Under more realistic assump-
tions, we shall show the sequence {xk} generated by Alg. 1 subsequentially converges in
expectation to an approximate critical point. The convergence is established under a novel
approximate orthogonality condition by exploiting the property of the set Q being the union
of line subspaces Li. Therefore, our analysis cannot be readily extended to problems under
general discrete constraint.

4.1. Preliminaries. We have the following basic assumptions.

BINARY-RELAX 11

Assumption 4.1. f(x) is bounded from below. Without loss of generality, we assume the
lower bound is 0.

Assumption 4.2. f(x) is L-Lipschitz differentiable, i.e., for any x, y ∈ Rn, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Assumption 4.3. E[‖∇f(xk) − ∇fk(xk)‖2] ≤ σ2 for all k ∈ N, where the expectation is
taken over the stochasticity of the algorithm.

Our proof relies on the following technical lemmata that exploit the structure of set Q.

Lemma 4.4 (Approximate orthogonality). Let {yk}, {xk} be defined in Alg. 1. There exists
αk ≥ 0, such that

αk‖xk+1 − xk‖2 + ‖yk − xk‖2 = ‖yk − xk+1‖2.
Proposition 4.5. Let θmin be the smallest angle formed by any two line subspaces in Q. If

‖xk+1 − xk‖ < ‖xk‖ sin θmin, then αk = 1 in Lemma 4.4. Moreover, αk may have to be 0 only
when ‖yk − xk‖ = ‖yk − xk+1‖ and ∇fk(xk) ⊥ Li with Li containing xk+1.

The above proposition implies that αk is generally positive and approaches 1 when the relative
change in consecutive iterates is getting small.

Lemma 4.6 (Alternative update). Let {xk} be defined in Alg. 1. Suppose xk+1 ∈ Li ⊂ Q
with Li being some line subspace and define x̃k := projLi(y

k), then

xk+1 = arg min
x∈Li
‖x− (x̃k − γk∇fk(xk))‖2.

Moreover, xk+1 is a local minimizer of the following problem

(14) min
x∈Q
‖x− (x̃k − γk∇fk(xk))‖2.

Lemma 4.7. Let αk and x̃k be defined in Lemma 4.4 and 4.6, resp., it holds that

‖xk+1 − x̃k‖2 ≤ αk‖xk+1 − xk‖2.

As always, the descent lemma is crucial for constructing the Lyapunov function.

Lemma 4.8 (Descent lemma). For any x, y, it holds that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2.

We recall the definition of subdifferential for proper and lower semicontinuous functions.

Definition 4.9 (Subdifferential [19, 25]). Let h : Rn → (−∞,+∞] be a proper and lower
semicontinuous function. We define dom(h) := {x ∈ Rn : h(x) < +∞}. For a given x ∈
dom(h), the Fréchet subdifferential of h at x, written as ∂̂h(x), is the set of all vectors u ∈ Rn
which satisfy

lim
y 6=x

inf
y→x

h(y)− h(x)− 〈u, y − x〉
‖y − x‖

≥ 0.

When x /∈ dom(h), we set ∂̂h(x) = ∅. The (limiting) subdifferential, or simply the subdiffer-
ential, of h at x ∈ Rn, written as ∂h(x), is defined through the following closure process

∂h(x) := {u ∈ Rn : ∃xk → x, h(xk)→ h(x) and uk ∈ ∂̂h(xk)→ u as k →∞}.

12 PENGHANG YIN, ET AL.

4.2. Main results. We are in the position to present the convergence results, which are
established under an approximate orthogonality condition on αk in Lemma 4.4.

Theorem 4.10. Let {xk} be the sequence generated by Alg. 1. Suppose there exist
¯
α, ᾱ, γ >

0 such that
¯
α ≤ αk ≤ ᾱ and γk+1 ≤ γk ≤ γ < ¯

α
2L for all k ∈ N. Then

lim
k→∞

E[‖xk+1 − xk‖2] = 0,

if
∑∞

k=0 γ
2
k <∞. If further

∑∞
k=0 γk =∞, we have

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤ σ2

3

(
4ᾱ

¯
α2

+ 1

)
,

where h = f + χQ.

5. Concluding Remarks. From the view point of optimization, we proposed BinaryRelax,
a novel relaxation approach based on Moreau envelope, for training quantized neural networks.
Our algorithm iterates between a hybrid gradient step for updating the float weights and a
weighted average of the computed float weights and their quantizations. We increase slowly
the parameter that controls the average to drive the weights to the quantized state. In order
to get the purely quantized weights, exact quantization replaces the weighted average in the
second phase of training. Extensive experiments shows that with about the same training cost,
BinaryRelax is consistently better than its BinaryConnect counterpart in terms of validation
accuracy. It has clearer advantage on larger networks, which yield more complex landscape of
the training loss with spurious local minima. In addition, BinaryRelax is provably convergent
in expectation under an approximate orthogonality condition, which is another contribution
of this paper.

REFERENCES

[1] Z. Cai, X. He, J. Sun, and N. Vasconcelos, Deep learning with low precision by half-wave gaussian
quantization, Computer Vision and Pattern Recognition, IEEE Conference on, (2017).

[2] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal rconstruction from
highly incomplete frequency information, IEEE Trans. Info. Theory, 52 (2006), pp. 489–509.

[3] R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing, Acoustics, speech
and signal processing, IEEE international conference on, (2008).

[4] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, Deep relaxation: partial differ-
ential equations for optimizing deep neural networks, arXiv preprint arXiv:1704.04932, (2017).

[5] M. Courbariaux, Y. Bengio, and J. David, Binaryconnect: Training deep neural networks with
binary weights during propagations, In Advances in Neural Information Processing Systems, (2015),
pp. 3123–3131.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, Imagenet: A large-scale hierarchical image
database, Computer Vision and Pattern Recognition, IEEE Conference on, (2009).

[7] D. Donoho, De-noising by soft-thresholding, IEEE Trans. Info. Theory, 41 (1995), pp. 613–627.
[8] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J.

Amer. Stat. Assoc., 96 (2001), pp. 1348–1360.
[9] T. Goldstein and S. Osher, The split bregman method for `1-regularized problems, SIAM J. Imaging

Sci., 2 (2009), pp. 323–343.

BINARY-RELAX 13

[10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, arXiv preprint
arXiv:1512.03385, (2015).

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized neural networks:
Training neural networks with weights and activations constrained to +1 or -1, CoRR, (2016).

[12] S. Ioffe and C. Szegedy, Normalization: Accelerating deep network training by reducing internal co-
variate shift, arXiv preprint arXiv:1502.03167, (2015).

[13] A. Krizhevsky, Learning multiple layers of features from tiny images, (2009).
[14] A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural

networks, In Advances in neural information processing systems, (2012), pp. 1097–1105.
[15] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), pp. 436–444.
[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, In Proceedings of the IEEE, 86 (1998), pp. 2278–2324.
[17] F. Li, B. Zhang, and B. Liu, Ternary weight networks, arXiv preprint arXiv:1605.04711, (2016).
[18] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, Training quantized nets: A deeper

understanding, Advances in Neural Information Processing Systems, (2017).
[19] B. Mordukhovich, Variational analysis and generalized differentiation I: Basic theory, Springer Science

& Business Media, 2006.
[20] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique de

France, 93 (1965), pp. 273–299.
[21] E. Park, J. Ahn, and S. Yoo, Weighted-entropy-based quantization for deep neural networks, Computer

Vision and Pattern Recognition, IEEE Conference on, (2017), pp. 5456–5464.
[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, Automatic differentiation in pytorch, (2017).
[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net: Imagenet classification using

binary convolutional neural networks, arXiv preprint arXiv:1603.05279, (2016).
[24] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region

proposal networks, In Advances in neural information processing systems, (2015), pp. 91–99.
[25] R. Rockafellar and R. Wets, Variational analysis, Springer Science & Business Media, 2009.
[26] S. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,

arXiv preprint arXiv:1409.1556, (2014).
[27] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B., 58 (1996),

pp. 267–288.
[28] P. Yin, Y. Lou, Q. He, and J. Xin, Minimization of `1−2 for compressed sensing, SIAM J. Sci. Comput.,

37 (2015), pp. A536–A563.
[29] P. Yin, S. Zhang, Y. Qi, and J. Xin, Quantization and training of low bit-width convolutional neural

networks for object detection, arXiv preprint arXiv:1612.06052, (2016).
[30] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for `1-minimization

with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2010), pp. 143–168.
[31] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, Incremental network quantization: Towards lossless

cnns with low-precision weights, International Conference on Learning Representations, (2017).
[32] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, Dorefa-net: Training low bitwidth convolutional

neural networks with low bitwidth gradients, arXiv preprint arXiv: 1606.06160, (2016).
[33] C. Zhu, S. Han, H. Miao, and W. Dally, Trained ternary quantization, arXiv preprint

arXiv:1612.01064, (2016).

Appendix: Technical Proofs.

Proof of Proposition 2.1. Since x∗λ is the global minimizer of (10),

f∗Q ≥ f(x∗λ) +
λ

2
dist(x∗λ,Q)2 ≥ f∗ +

λ

2
dist(x∗λ,Q)2,

14 PENGHANG YIN, ET AL.

where f∗ = minx∈Rn f(x) > −∞. So

dist(x∗λ,Q) ≤
√

2(f∗Q − f∗)
λ

→ 0, as λ→∞.

Denote x∗λ,Q = projQ(x∗λ), then ‖x∗λ,Q − x∗λ‖ → 0 as λ → ∞. Since f∗Q is the minimum in Q,
further we have

f(x∗λ) +
λ

2
dist(x∗λ,Q)2 ≤ f∗Q ≤ f(x∗λ,Q)→ f(x∗λ), as λ→∞.

Therefore, limλ→∞ f(x∗λ) = f∗Q.

Proof of Proposition 2.3. Proof by contradiction. Let us assume x∗ ∈ Q is a local mini-
mizer of problem (10) and ∇f(x∗) 6= 0. Then for any point x in the neighborhood of x∗, we
have

f(x∗) ≤ f(x) +
λ

2
dist(x,Q)2 ≤ f(x) +

λ

2
‖x− x∗‖2.

Set x = x∗ − β∇f(x∗) with a small β > 0. The above inequality reduces to

(15) f(x∗) ≤ f(x∗ − β∇f(x∗)) +
λβ2

2
‖∇f(x∗)‖2.

On the other hand, by Taylor’s expansion,

(16) f(x∗ − β∇f(x∗)) = f(x∗)− β‖∇f(x∗)‖2 + o(β).

Combining (15) and (16), we have

‖∇f(x∗)‖2 ≤ λβ

2
‖∇f(x∗)‖2 + o(1),

which leads to a contradiction as we let β → 0.

Proof of Proposition 2.2. Problem (11) is the same as

min
x

min
z∈Q

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2 = min

z∈Q
min
x

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2.

With fixed z ∈ Q, the inner problem is minimized at x = λ z+yk

λ+1 . Then it reduces to

z∗ = arg min
z∈Q

1

2

∥∥∥∥λz + yk

λ+ 1
− yk

∥∥∥∥2

+
λ

2

∥∥∥∥z − λz + yk

λ+ 1

∥∥∥∥2

= arg min
z∈Q
‖z − yk‖2 = projQ(yk).

Therefore, xk =
λ projQ(yk)+yk

λ+1 is the optimal solution.

BINARY-RELAX 15

Figure 3. Illustration of Lemma 4.6. yk+1 = yk − γk∇fk(xk), so xk+1 is also the projection of x̃k −
γk∇fk(xk) onto Li.

Proof of Lemma 4.4. Since xk, xk+1 ∈ Q and xk = projQ(yk), it holds that ‖yk − xk‖2 ≤
‖yk − xk+1‖2, i.e., αk ≥ 0.

Proof of Proposition 4.5. Since the only intersection of the line subspaces is the origin, the
distance between xk and any other line is at least ‖xk‖ sin θmin. If ‖xk+1−xk‖ < ‖xk‖ sin θmin,
then xk and xk+1 must lie in the same line, and therefore αk = 1. On the other hand, if αk can
only be 0, then it must hold that ‖xk − yk‖ = ‖xk − yk+1‖ and xk 6= xk+1, meaning that xk+1

is a different projection of yk onto Q. Moreover, since the projection of yk+1 = yk−γk∇fk(xk)
onto Q is also xk+1. Suppose xk+1 ∈ Li ⊂ Q, then ∇fk(xk) ⊥ Li.

Proof of Lemma 4.6. By the assumption, we have

xk+1 = projLi(y
k − γk∇fk(xk)) = projLi(x̃

k − γk∇fk(xk) + yk − x̃k).

Note that yk − x̃k ⊥ Li (see Fig. 3), then

xk+1 = projLi(x̃
k − γk∇fk(xk)).

So xk+1 is the closest point to x̃k − γk∇fk(xk) on Li. If x̃k − γk∇fk(xk) = 0, then xk+1 = 0
is the global minimizer of (14). Otherwise, xk+1 6= 0. Since the line subspaces that constitute
Q only intersect at the origin, there exists a neighborhood N of xk+1 such that N ∩Q ⊂ Li.
Therefore, xk+1 is a local minimizer of problem (14).

Proof of Lemma 4.7. Using the facts xk = projQ(yk), x̃k = projLi(y
k) ∈ Q and xk+1 ∈ Li

and invoking Lemma 4.4, we have

‖xk+1 − x̃k‖2 = ‖yk − xk+1‖2 − ‖yk − x̃k‖2

≤‖yk − xk+1‖2 − ‖yk − xk‖2 = αk‖xk+1 − xk‖2.

16 PENGHANG YIN, ET AL.

Proof of Theorem 4.10. By Lemma 4.8,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

=f(xk) + 〈∇fk(xk), xk+1 − xk〉+ 〈∇f(xk)−∇fk(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.(17)

The cross terms need care. We rewrite the update xk+1 = projQ(yk − γk∇fk(xk)) as

xk+1 = arg min
x∈Q
〈∇fk(xk), x〉+

1

2γk
‖x− yk‖2.

Since xk ∈ Q, we have

〈∇fk(xk), xk+1〉+
1

2γk
‖xk+1 − yk‖2 ≤ 〈∇fk(xk), xk〉+

1

2γk
‖xk − yk‖2.

Then by Lemma 4.4,

(18) 〈∇fk(xk), xk+1 − xk〉 ≤ 1

2γk
(‖xk − yk‖2 − ‖xk+1 − yk‖2) ≤ − ¯

α

2γk
‖xk+1 − xk‖2.

By Young’s inequality,

(19) 〈∇f(xk)−∇fk(xk), xk+1 − xk〉 ≤ γk

¯
α
‖f(xk)−∇fk(xk)‖2 + ¯

α

4γk
‖xk+1 − xk‖2.

Combining (17), (18) and (19) and taking the expectation gives

(20) E[f(xk+1)] ≤ E[f(xk)]− ¯
α− 2γkL

4γk
E[‖xk+1 − xk‖2] +

γkσ
2

¯
α

.

Multiplying (20) by γk and using αk ≥
¯
α > 0, γk+1 ≤ γk ≤ γ < ¯

α
2L and f ≥ 0, we obtain

γk+1E[f(xk+1)] ≤ γkE[f(xk+1)] ≤ γkE[f(xk)]− (
¯
α− 2γL)E[‖xk+1 − xk‖2] +

γ2
kσ

2

¯
α

Rearranging terms in the above inequality and taking the sum over k, we have

(
¯
α− 2γL)

∞∑
k=0

E[‖xk+1 − xk‖2] ≤ γf(x0)− lim
k→∞

γkE[f(xk)] +
σ2

¯
α

∞∑
k=0

γ2
k <∞.

Therefore, limk→∞ E[‖xk+1 − xk‖2] = 0.

Next we prove the second claim. By Lemma 4.6, the first-order optimality condition of
(14) holds at xk+1. So

0 ∈ ∇fk(xk) +
xk+1 − x̃k

γk
+ ∂χQ(xk+1),

BINARY-RELAX 17

which implies

−x
k+1 − x̃k

γk
−∇fk(xk) +∇f(xk+1) ∈ ∇f(xk+1) + ∂χQ(xk+1) = ∂h(xk+1).

Therefore,

E[dist(0, ∂h(xk+1))2]

≤E

[∥∥∥∥−xk+1 − x̃k

γk
−∇fk(xk) +∇f(xk+1)

∥∥∥∥2
]

≤1

3

(
E[

[
‖xk+1 − x̃k‖2]

γ2
k

]
+ E[‖∇fk(xk)−∇f(xk)‖2] + E[‖∇f(xk)−∇f(xk+1)‖2]

)
≤1

3

(
ᾱE
[
‖xk+1 − xk‖2

γ2
k

]
+ σ2 + L2E[‖xk+1 − xk‖2]

)
.(21)

The second inequality above holds because of Cauchy-Schwarz inequality. In the last inequal-
ity, we used Lemma 4.7 and the assumption that f is L-Lipschitz differentiable. We want to

bound lim infk→∞ E
[
‖xk+1−xk‖2

γ2k

]
. From (20) it follows that

γk

(
(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2

4γ2
k

]
− σ2

¯
α

)
≤ E[f(xk)− f(xk+1)].

Summing the above inequality over k yields

∞∑
k=0

γk

(
(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2]

4γ2
k

]
− σ2

¯
α

)
≤ f(x0) <∞.

Since γk > 0 and
∑∞

k=1 γk =∞, we must have

lim inf
k→∞

(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2]

4γ2
k

]
− σ2

¯
α
≤ 0.

and thus

lim inf
k→∞

E
[
‖xk+1 − xk‖2

γ2
k

]
≤ lim

k→∞

4σ2

¯
α(

¯
α− 2γkL)

=
4σ2

¯
α2

.

Finally, from (21) it follows that

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤ σ2

3

(
4ᾱ

¯
α2

+ 1

)
,

which completes the proof.

	Introduction
	BinaryRelax
	Quantization
	Moreau envelope and proximal mapping
	Relaxed quantization
	Algorithm

	Experimental Results
	Convergence Analysis
	Preliminaries
	Main results

	Concluding Remarks

