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Abstract

Despite the vast literature on DRS, there has been very little work analyzing their behavior under
pathologies. Most analyses assume a primal solution exists, a dual solution exists, and strong duality
holds. When these assumptions are not met, i.e., under pathologies, the theory often breaks down
and the empirical performance may degrade significantly. In this paper, we establish that DRS only
requires strong duality to work, in the sense that asymptotically iterates are approximately feasible and
approximately optimal.

1 Introduction

Douglas-Rachford splitting (DRS) is a classical method originally presented in [45, 24, 34, 32]. Over the last
decade, DRS has enjoyed a resurgence of popularity, as the demand to solve ever larger problems grew.

DRS has strong theoretical guarantees and empirical performance, but such results are often limited
to non-pathological problems; in particular, most analyses assume a primal solution exists, a dual solution
exists, and strong duality holds. When these assumptions are not met, i.e., under pathologies, the theory
often breaks down and the empirical performance may degrade significantly. Surprisingly, there has been
very little work analyzing DRS under pathologies, despite the vast DRS literature.

In this paper, we analyze the asymptotic behavior of DRS under pathologies. While it is well-known that
the iterates “diverge” in such cases, the precise manner in which they do so was not known. We establish
that when strong duality holds, i.e., when p? = d? ∈ [−∞,∞], DRS works, in the sense that asymptotically
the divergent iterates are approximately feasible and approximately optimal. The assumption that primal
and dual solutions exist is not necessary.

Furthermore, we conjecture that DRS necessarily fails when strong duality fails, and we present empirical
evidence that supports (but does not prove) this conjecture. In other words, we believe strong duality is the
necessary and sufficient condition for DRS to work.

We organize the paper as follows. Section 2 reviews standard notions of convex analysis, states several
known results, and sets up the notation. Section 3 presents the main theoretical contribution of this paper.
Section 4 analyzes DRS under pathologies with the theory of Section 3. Section 5 presents counter examples
to make additional observations. Section 6 concludes the paper.

Notes Alternating directions method of multipliers (ADMM) is a method closely related to DRS [28, 29, 27].
There also has not been much work analyzing ADMM under pathologies. In this paper, we focus on DRS.

There is a degree of primal-dual symmetry to our results that we do not explicitly address in the interest
of space. Rather, we take the viewpoint that the primal problem is the problem of interest and the dual
problem is an auxiliary conceptual and computational tool.

Pathological conic programs can be solved with facial reduction [15, 17, 18, 51, 41, 19, 59, 60, 48, 36, 47,
43]. Facial reduction is a pre-processing step that rids the problem of difficult pathologies, and the simplified
problem can be solved with other methods. This approach, however, does not immediately generalize to
non-conic setups, and facial reduction is numerically challenging. In any case, this fact is besides the point,
as our goal is to analyze DRS when it is directly applied to pathological convex programs.

We reference and discuss other work that are related or that we build upon later as we discuss the relevant
concepts.

∗UCLA, Mathematics
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2 Preliminaries

In this section, we review standard notions of convex analysis, state several known results, and set up the
notation. For the sake of brevity, we omit proofs or direct references of the standard results and refer
interested readers to standard references such as [53, 52, 7].

Throughout this paper, we distinguish the scalar and vector zero by writing 0 for 0 ∈ R, and 0 for 0 ∈ Rn.

Convex set A set C ⊆ Rn is convex, if x, y ∈ C and θ ∈ [0, 1] implies

θx+ (1− θ)y ∈ C.

Given a set A ⊆ Rn, write A for its closure. If C is convex C is convex.

Minkowski sum Let A,B ⊆ Rn be two nonempty sets. The Minkowski sum and differences of A and B
are

A+B = {a+ b | a ∈ A, b ∈ B}, A−B = {a− b | a ∈ A, b ∈ B},

respectively. If A and B are convex, then A+B and A−B are convex. However, neither A+B nor A−B
is guaranteed to be closed, even when A and B are nonempty closed convex sets.

Distance between sets Let x ∈ Rn be a point and A,B ⊆ Rn be nomempty sets. Write

dist(x,A) = inf{‖x− a‖ | a ∈ A}

for the distance between the point x and the set A. Write

dist(A,B) = inf{‖a− b‖ | a ∈ A, b ∈ B}

for the distance between the sets A and B.
If A is a nonempty closed set, then dist(x,A) = 0 if and only if x ∈ A. However, dist(A,B) = 0 is possible

even when A ∩B = ∅, regardless of whether A and B are closed. By definition dist(A,B) = dist(0, A−B),
so dist(A,B) = 0 if and only if 0 ∈ A−B.

Convex function A function f : Rn → R ∪ {∞} is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ Rn and θ ∈ [0, 1].

Closed convex proper functions We say f : Rn → R ∪ {∞} is closed if its epigraph{
(x, α) ∈ Rn+1 | f(x) ≤ α

}
is a closed subset of Rn+1. We say f : Rn → R ∪ {∞} is proper if f(x) < ∞ for some x. In this paper,
we focus our attention on closed, convex, and proper (CCP) functions. Closedness and properness are mild
assumptions.

If A ∈ Rn×m and f is CCP, then f(Ax) is CCP or f(Ax) =∞ everywhere. If f and g are CCP functions,
then f + g is CCP or f + g =∞ everywhere. If γ > 0, then γf is CCP.

Domain Given a function f : Rn → R ∪ {∞}, define its (effective) domain as

dom f = {x ∈ Rn | f(x) <∞}.

If f is a convex function, then dom f is a convex set. However, dom f may not be closed even when f is
CCP. For any γ > 0, we have dom γf = dom f .

Conjugate function Given a function f : Rn → R ∪ {∞}, define its conjugate as

f∗(y) = sup
x∈Rn

{yTx− f(x)} = − inf
x∈Rn
{f(x)− yTx}.

If f is convex and proper (but not necessarily closed), then f∗ : Rn → R ∪ {∞} is CCP. If f is CCP, then
(f∗)∗ = f . For any γ > 0, we have (γf)∗(x) = γf∗(x/γ) and dom(γf)∗ = γ dom f∗. If h(x) = g(−x), then
h∗(y) = g∗(−y).
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Projection Given a nonempty closed convex set C ⊆ Rn, define the projection onto C as

ΠC(x0) = arg min
x∈C

‖x− x0‖2.

The operator ΠC : Rn → Rn is well-defined, i.e., the minimizer uniquely exists. The projection inequality
states that

〈v −ΠCx,ΠCx− x〉 ≥ 0

for any v ∈ C and x ∈ Rn.

Indicator function Given a nonempty set C ⊆ Rn, define its indicator function as

δC(x) =

{
0 if x ∈ C
∞ otherwise.

When C is nonempty closed convex, δC : Rn → R ∪ {∞} is CCP.

Support function Given a nonempty set C ⊆ Rn, define its support function as

σC(y) = sup
x∈C
{xT y}.

σC : Rn → R∪{∞} is CCP. When C is nonempty and convex, we have σC = σC . If A,B ∈ Rn are nonempty
convex sets, then σA+B = σA + σB . If C is a nonempty closed convex set then (σC)∗ = δC .

Recession function Given a CCP function f : Rn → R ∪ {∞}, define its recession function as

rec f(d) = lim
α→∞

f(x+ αd)− f(x)

α
. (1)

The value rec f(d) is independent of the choice x ∈ dom f . An alternate equivalent definition is

rec f(d) = sup
x∈dom f

{f(x+ d)− f(x)}.

rec f : Rn → R ∪ {∞} is a positively homogeneous CCP function. By positively homogeneous, we mean
rec f(αd) = α rec f(d) for any α ≥ 0. If h(x) = g(−x), then rec(h∗)(d) = rec(g∗)(−d). When f and g are
CCP functions from Rn to R ∪ {∞} either f(x) + g(x) =∞ for all x ∈ Rn or rec(f + g) = rec f + rec g.

Recession functions and support functions are related through the following duality relationship. If f is
CCP, then

σdom f∗ = rec f, σdom f = rec(f∗).

Proximal operator Given a function f : Rn → R∪ {∞}, define its proximal operator Proxf : Rn → Rn as

Proxf (z) = arg min
x∈Rn

{
f(x) + (1/2)‖x− z‖22

}
.

When f is CCP, the arg min uniquely exists, and therefore Proxf is well-defined.
When C is a nonempty closed convex set, ProxδC = ΠC . When f is CCP, Proxf + Proxf∗ = I, where

I : Rn → Rn is the identity operator.

Nonexpansive and firmly-nonexpansive operators A mapping T : Rn → Rn is nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖

for all x, y ∈ Rn. Nonexpansive mappings are, by definition, Lipschitz continuous with Lipschitz constant
1. T is firmly-nonexpansive if T = (1/2)I + (1/2)S where S : Rn → Rn is another nonexpansive operator.
Alternatively, T : Rn → Rn is firmly-nonexpansive if and only if

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉

holds for all x, y ∈ Rn. Proximal and projection operators are firmly-nonexpansive.
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2.1 Duality and primal subvalue

We call the optimization problem
minimize
x∈Rn

f(x) + g(x), (P)

the primal problem. We call the optimization problem

maximize
ν∈Rn

−f∗(ν)− g∗(−ν), (D)

the dual problem. Throughout this paper, we assume f and g are CCP.

Feasibility The primal problem (P) is feasible, weakly infeasible, and strongly infeasible if

0 ∈ dom f − dom g (feasible)

0 ∈ dom f − dom g\(dom f − dom g) (weakly infeasible)

0 6= Πdom f−dom g(0), (strongly infeasible)

respectively. This characterization is complete; (P) always falls under exactly one of the three cases. (P) is
infeasible if it is not feasible.

The dual problem (D) is feasible, weakly infeasible, and strongly infeasible if

0 ∈ dom(f∗) + dom(g∗) (feasible)

0 ∈ dom(f∗) + dom(g∗)\(dom(f∗) + dom(g∗)) (weakly infeasible)

0 6= Π
dom(f∗)+dom(g∗)

(0), (strongly infeasible)

respectively. This characterization is complete; (D) always falls under exactly one of the three cases. (D) is
infeasible if it is not feasible.

These terse definitions are equivalent to the usual definitions of feasibility and infeasibility: (P) is feasible
if there is an x ∈ Rn such that f(x)+g(x) <∞, and infeasible otherwise; an infeasible problem (P) is weakly
infeasible if dist(dom f, dom g) = 0 and strongly infeasible if dist(dom f, dom g) > 0. The same can be said
with the usual analogous definitions for (D).

Optimal values and weak duality We call p? = inf{f(x) + g(x) |x ∈ Rn} the primal optimal value and
d? = sup{−f∗(ν)−g∗(−ν) | ν ∈ Rn} the dual optimal value. We let p? =∞ if (P) is infeasible and d? = −∞
if (D) is infeasible. Weak duality, which always holds, states that d? ≤ p?.
Strong duality If d? = p?, we say strong duality holds between the primal-dual problem pair (P) and (D).
This includes the cases d? = p? = −∞ and d? = p? = +∞. When f and g are convex, strong duality holds
often, but not always. This paper focuses on the case when strong duality holds.

Total duality Solutions to problems (P) and (D) may or may not exist. If (P) has a solution, (D) has a
solution, and strong duality holds, we say total duality holds between the primal-dual problem pair (P) and
(D).

Primal subvalue Define the primal subvalue of (P) as

p− = lim
ε→0+

inf
x,y∈Rn

{f(x) + g(y) | ‖x− y‖ ≤ ε} .

The notion of primal subvalue is standard in conic programming [33, 61, 37, 38]. Here, we generalize it to
general convex programs.

Lemma 1. If f and g are CCP, then d? = p− ≤ p?.

Although we have not seen Lemma 1 stated exactly in this form, the idea is well known [52].

Strong duality is well-posedness Lemma 1 tells us that strong duality holds when p− = p?, and we
can interpret strong duality as well-posedness of (P). The primal subvalue p− is the optimal value of (P)
achieved with infinitesimal infeasibilities. When the infinitesimal infeasibilities provide a non-infinitestimal
improvement to the function value, we can consider (P) ill-posed [52, 38, 46, 25, 26].
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2.2 Douglas-Rachford operator and fixed-point encoding

Douglas-Rachford splitting (DRS) applied to (P) is

xk+1/2 = Proxγf (zk)

xk+1 = Proxγg(2x
k+1/2 − zk) (2)

zk+1 = zk + xk+1 − xk+1/2

with a starting point z0 ∈ Rn and a parameter γ > 0. This iteration can be expressed more concisely as

zk+1 = Tγ(zk)

where

Tγ =
1

2
I +

1

2
(2 Proxγg −I)(2 Proxγf −I).

Tγ : Rn → Rn is a firmly-nonexpansive operator, and we interpret DRS as a fixed-point iteration.

Total duality and convergence of DRS The standard analysis of DRS assumes total duality.

Theorem 2. [5] Total duality holds between (P) and (D) if and only if the DRS operator Tγ has a fixed
point for some γ > 0.

Theorem 3. [5] If total duality holds between (P) and (D), then DRS converges in that zk → z?, where
x? = Proxγf (z?) is a solution of (P). If total duality does not hold between (P) and (D), then DRS diverges
in that ‖zk‖ → ∞.

Theorem 2 and 3 are well known, although the term “total duality” is not always used. More often, total
duality is assumed by instead assuming a saddle point exists for an appropriate Lagrangian.

Despite the huge popularity of DRS, there has been surprisingly little work investigating the behavior
of DRS when total duality does not hold. The understanding is still incomplete, but there has been some
recent progress: [8, 12, 13, 35] present results in specific pathological setups, [10, 11, 13] present results on
general setups, and [49, 56, 4] analyze ADMM, which is closely related to DRS, under specific pathological
setups for conic programs.

Fixed-point encoding We can view DRS as an instance of a more general approach called fixed-point
encoding. The idea of fixed-point encoding is to transform a problem into an equivalent fixed-point problem
such that solutions of the original problem are encoded as fixed points. See, for example, the surveys
[20, 22, 21, 55] or the book [7] for more information on this subject. Another example of fixed-point encoding
is

minimize
x

f(x) ⇐⇒ solve
x

(I −∇f)(x) = x (3)

where f is a differentiable convex function.
A problem arises when the original problem has no solution or when the transformation fails due to

pathologies. For example, even when f has no minimizer in (3) the optimization problem can still be
meaningful, but it’s harder to ascribe meaning to the fixed-point problem without fixed points.

As stated in Theorem 2, the DRS operator Tγ has no fixed point when total duality fails. As we see in
Section 4, this can happen even when the primal problem (P) has a solution. In this case, the DRS iteration
is a fixed-point iteration without a fixed point.

2.3 Fixed-point iterations without fixed points

Analyzing fixed-point iterations without fixed points is a large part of our analysis of DRS in the absence of
total duality.
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Infimal displacement vector Let T be a firmly-nonexpansive operator. Write

range(I − T ) = {z − T (z) | z ∈ Rn}

for the range of the operator I − T . Note that T has a fixed point if and only if 0 ∈ range(I − T ). The
closure of this set, range(I − T ), is closed and convex [44].

We call
v = P

range(I−T )
(0)

the infimal displacement vector of T . If T has a fixed point, then v = 0, but v = 0 is possible even when T
has no fixed point. Remarkably, v elegantly characterizes the asymptotic behavior of fixed-point iterations
with respect to T .

Theorem 4 ([44, 3]). Assume T is firmly-nonexpansive. The fixed-point iteration zk+1 = T (zk) satisfies

zk+1 − zk → −v.

Some recent work used Theorem 4 to analyze algorithms that can be interpreted as fixed-point iterations
without fixed-points [6, 8, 16, 1, 10, 9, 12, 2, 39, 13, 54]. In fact, [10] coined the term infimal displacement
vector.

Finding approximate fixed points In a loose sense, we say z is an approximate fixed point if T (z) ≈ z.
Theorem 4 states the fixed-point iteration with respect to T finds an approximate fixed point if T is firmly-
nonexpansive and v = 0.

However, an approximate fixed point of Tγ does not always correspond to an approximate solution of the
(P), and analyzing the DRS iteration via approximate fixed points is not sufficient. We return to this point
in Section 3.2.

2.4 Infimal displacement vector of the DRS operator

Since DRS is a fixed-point iteration with respect to the firmly-nonexpansive operator Tγ , characterizing the
infimal displacement vector of Tγ is central to analyzing asymptotic behavior of DRS.

Recently, Bauschke et al. published the following elegant result.

Theorem 5 ([11]). The infimal displacement vector v of T1 is characterized by

v = arg min
z∈S

‖z‖2

where
S = dom f − dom g ∩ dom f∗ + dom g∗.

The original result stated in [11] is more general as it applies to the DRS operator of monotone operators.
In Section 3.1, we further refine this characterization of the infimal displacement vector for our setup.

3 Theoretical results

In this section, we present the main theoretical contribution of this paper. Our analysis requires a generalized
notion of improving directions, so we define it first. Section 3.1 analyzes DRS as a fixed-point iteration
without fixed points. Section 3.2 analyzes DRS as an optimization method that reduces function values.
Section 3.3 directly analyzes the evolution of the xk+1/2 and xk+1-iterates of DRS. Later in Section 4 we
combine these results to analyze the asymptotic behavior of DRS. The definition of improving directions via
recession functions is new, and identifying its value in the analysis is a key contribution of this work.
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Interpretation of recession function Recession functions and directional derivatives are related. Given
a function f : Rn → R ∪ {∞}, its directional derivative is

f ′(x; d) = lim
λ↘0

f(x+ λd)− f(x)

λ
.

When f is CCP, f ′(x; d) ∈ R ∪ {±∞} is well-defined for all x ∈ dom f and d ∈ Rn.

Lemma 6. If f is CCP, rec f(d) <∞, and x ∈ dom f , then x+ αd ∈ dom f for all α ≥ 0 and

f ′(x+ αd; d)↗ rec f(d)

as α→∞. In other words, f ′(x+ αd; d) monotonically increases to rec f(d).

Proof. That x + αd ∈ dom f for all α ≥ 0 when rec f(d) < ∞ follows from the definition of the recession
function.

Write g(α) = f(x+ αd), which is a convex function on R.

f(x+ αd)− f(x)

α
=
g(α)− g(0)

α
=

1

α

∫ α

0

g′(a) da

where g′ is the right-derivative of g. Note that g′(x) = f ′(x + αd; d). Since g′ is a non-decreasing function
on R,

rec f(d) = lim
α→∞

f(x+ αd)− f(x)

α
= lim
α→∞

1

α

∫ α

0

g′(a) da.

This implies f ′(x+ αd; d) = g′(α)→ rec f(d).

Lemma 6 allows us to interpret rec f(d) as the asymptotic directional derivative of f as we move in
direction d. In light of this interpretation, the following result makes more sense.

Lemma 7. If f is CCP, then
(1/α)f(x+ αd) = rec f(d) + o(1)

as α→∞.

Proof. From the definition (1), f(x+ αd)− f(x) ∼ α rec f(d) as α→∞.

Improving direction We say d ∈ Rn is a primal improving direction for the primal problem (P) if

rec f(d) + rec g(d) < 0.

Note rec f(d)+ rec g(d) = rec(f +g)(d) when (P) is feasible. While this definition still makes sense when (P)
is infeasible, we do not consider the case where an infeasible (P) has an improving direction in this paper.

The notion of (primal) improving direction is standard in conic programming [37, 40, 38]. Here, we
extend it to general convex programs of the form (P).

Corollary 8. Assume (P) has a feasible point x ∈ dom f ∩dom g and a primal improving direction d. Then

f(x+ αd) + g(x+ αd) = α rec(f + g)(d) + o(α)

as α→∞, and therefore p? = −∞.

So existence of a primal improving direction implies p? = −∞, but p? = −∞ is possible even when (P)
has no improving direction. We discuss such an example in Section 4.

Likewise, we say d ∈ Rn is a dual improving direction if

rec(f∗)(d) + rec(g∗)(−d) < 0.

Note (D) is a maximization problem. So decreasing f∗(ν)+g∗(−ν) is the same as increasing −f∗(ν)−g∗(−ν),
which is an improvement.

Corollary 9. Assume (D) is feasible and there is a dual improving direction. Then d? =∞.
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3.1 Infimal displacement vector of the DRS operator

In this section, we refine the characterization of the infimal displacement vector discussed in Section 2.4
using the generalized notion of improving directions. For the sake of simplicity, we first analyze

T1 =
1

2
I +

1

2
(2 Proxg −I)(2 Proxf −I)

and then translate the results to Tγ .
We first consider the case where (P) is feasible and characterize the infimal displacement vector based

on the primal improving direction or the absence of it.

Lemma 10. For the primal-dual problem pair (P) and (D), we have

−Π
(dom f∗+dom g∗)

(0) = Proxrec f+rec g(0).

Proof. Let A and B be nonempty convex sets. The properties of the support function discussed in Section 2
tell us

(δA+B)∗(x) = σA+B(x) = σA+B(x) = σA(x) + σB(x).

Setting A = dom f∗ and B = dom g∗ gives us

(δdom f∗+dom g∗)
∗(x) = σdom f∗(x) + σdom g∗(x).

Based on the previous identities we’ve discussed, we have

Πdom f∗+dom g∗(0) = Proxδ
dom f∗+dom g∗

(0)

= (I − Proxσ
dom f∗+dom g∗

)(0)

= −Proxσdom f∗+dom g∗ (0)

= −Proxσdom f∗+σdom g∗ (0)

= −Proxrec f+rec g(0)

Theorem 11. (P) has an improving direction if and only if (D) is strongly infeasible. Write

d = −Π
(dom f∗+dom g∗)

(0).

If (P) has an improving direction, then d 6= 0 and d is an improving direction. If (P) has no improving
direction, then d = 0.

Proof. Remember that rec f+rec g is a convex positively homogeneous function. Since rec f(0)+rec g(0) = 0,

0 = arg min
x

{
rec f(x) + rec g(x) + (1/2)‖x‖2

}
= Proxrec f+rec g(0)

if and only if rec f(x) + rec g(x) ≥ 0 for all x ∈ Rn. By our definition of an improving direction, rec f(x) +
rec g(x) ≥ 0 for all x ∈ Rn if and only if there is no improving direction.

By definition, 0 = Πdom f∗+dom g∗(0) if and only if (D) is not strongly infeasible. So with Lemma 10, we
conclude (P) has an improving direction if and only if (D) is strongly infeasible.

It remains to show that

d = arg min
x

{
rec f(x) + rec g(x) + (1/2)‖x‖2

}
is an improving direction, if d 6= 0. Since d is defined as a minimizer, we have

rec f(d) + rec g(d) + (1/2)‖d‖2 ≤ rec f(0) + rec g(0) + (1/2)‖0‖2 = 0.

This implies rec f(d) + rec g(d) ≤ −(1/2)‖d‖2 < 0, i.e., d is an improving direction.
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Theorem 12. Assume (P) is feasible. Then

v = −d = Πdom f∗+dom g∗(0)

is the infimal displacement vector of Tγ for γ = 1.

Proof. Let x0 be a feasible point of (P). Since rec f(d)+rec g(d) ≤ 0 <∞ by Theorem 11 and the definition of
an improving direction, we have x0 ∈ dom f , x0+d ∈ dom g, and thus −d ∈ dom f−dom g ⊆ dom f − dom g.
Since −d is the minimum-norm element of dom f∗ + dom g∗, Theorem 5 tells us that −d is the infimal
displacement vector of T1.

Corollary 13. Assume (P) is feasible, and (D) is feasible. Then v = 0 is the infimal displacement vector
of Tγ for any γ > 0.

Corollary 14. Assume (P) is feasible, and (D) is weakly infeasible. Then v = 0 is the infimal displacement
vector of Tγ for any γ > 0.

Corollary 15. Assume (P) is feasible, and (D) is strongly infeasible. Then

v = −γd = γΠdom f∗+dom g∗(0) 6= 0

is the infimal displacement vector of Tγ for any γ > 0. Furthermore, d is an improving direction of (P).

Next, we consider the case where (D) is feasible and characterize the infimal displacement vector based
on the dual improving direction or the absence of it.

Theorem 16. Assume (D) is feasible. Then

v = −d′ = Πdom f−dom g(0)

is the infimal displacement vector of T1.

Proof. Following the same logic as before, we have

Πdom f−dom g(0) = − arg min
ν

{
rec(f∗)(ν) + rec(g∗)(−ν) + (1/2)‖ν‖2

}
,

and
d′ = −Πdom f−dom g(0)

is a dual improving direction, if d′ 6= 0.
Let ν0 be any feasible point of (D). Then ν0 ∈ dom f∗ and −ν0 − d′ ∈ dom g∗. Therefore, −d′ ∈

dom f∗+dom g∗ ⊆ dom f∗ + dom g∗. Since−d′ is defined to be the minimum-norm element of dom f − dom g
we conclude the statement with Theorem 5.

Corollary 17. Assume (D) is feasible, and (P) is weakly infeasible. Then v = 0 is the infimal displacement
vector of Tγ for any γ > 0.

Corollary 18. Assume (D) is feasible, and (P) is strongly infeasible. Then

v = −d′ = Πdom f−dom g(0) 6= 0,

is the infimal displacement vector of Tγ for any γ > 0. Furthermore, d′ is a dual improving direction.

Note that for Corollary 18, the infimal displacement vector is independent of the value of γ.

3.2 Function-value analysis

In Section 3.1, we analyzed the infimal displacement vector of the fixed-point iteration zk+1 = Tγ(zk).
This, however, is not sufficient for characterizing the asymptotic behavior of DRS in relation to the original
optimization problem (P).
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Why function-value analysis is necessary Consider the convex function

f(x, y) = x2/y

defined for y > 0. Note that f has minimizers, (0, y) for any y > 0, and the operator I−∇f has fixed points.
However, even though, f(

√
y, y) = 1 we have ∇f(

√
y, y) = (2/

√
y,−1/y) → 0 as y → ∞. This means

the point (
√
y, y) for large y is not an approximate minimizer for f but is an approximate fixed point for the

operator I −∇f . It is possible to construct a similar example with a DRS operator.
So approximate fixed points do not always correspond to approximate solutions of the original problem.

This is why we need the function-value analysis to accompany the fixed-point theory in order to conclude
the DRS iteration provides approximate solutions to the original optimization problem.

The function-value analysis We now present function-value analysis of DRS that is distinct from the
fixed-point analysis of Section 3.1.

Lemma 19. Assume xk+1/2 and xk+1 are the DRS iterates as defined in (2). Then

f(xk+1/2) + g(xk+1)− f(x)− g(x)

≤ (1/γ)(xk+1 − xk+1/2)T (x− zk+1)

for all k = 0, 1, . . . and any x ∈ Rn.

Proof. Write

∇̃f(xk+1/2) = (1/γ)(zk − xk+1/2)

∇̃g(xk+1) = (1/γ)(2xk+1/2 − zk − xk+1).

From the definition of the DRS iteration (2), we can verify that

∇̃f(xk+1/2) ∈ ∂f(xk+1/2), ∇̃g(xk+1) ∈ ∂g(xk+1)

and that
∇̃f(xk+1/2) + ∇̃g(xk+1) = (1/γ)(xk+1/2 − xk+1).

We also have
zk+1 = zk − γ∇̃f(xk+1/2)− γ∇̃g(xk+1) = xk+1/2 − γ∇̃g(xk+1).

If x /∈ dom f ∩dom g, then f(x) + g(x) =∞ for all x ∈ Rn , and there is nothing to prove. Now, consider
any x ∈ dom f ∩ dom g. Then, by definition of subdifferentials,

f(xk+1/2)− f(x) + g(xk+1)− g(x)

≤ ∇̃f(xk+1/2)T (xk+1/2 − x) + ∇̃g(xk+1)T (xk+1 − x)

= (∇̃f(xk+1/2) + ∇̃g(xk+1))T (xk+1/2 − x) + ∇̃g(xk+1)T (xk+1 − xk+1/2)

= (xk+1 − xk+1/2)T (∇̃g(xk+1)− (1/γ)(xk+1/2 − x))

= (1/γ)(xk+1 − xk+1/2)T (x− zk+1).

Corollary 20. Assume xk+1/2 and xk+1 are the DRS iterates as defined in (2). Then

2γ

k + 1

k∑
i=0

(
f(xi+1/2)− f(x) + g(xi+1)− g(x)

)
≤ − 1

k + 1
‖zk+1‖2 +

1

k + 1
‖z0‖2 − 1

k + 1

k∑
i=0

‖zk+1 − zk‖2 +
2

k + 1
(zk+1 − z0)Tx.

for all k = 0, 1, . . . and any x ∈ Rn.
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Proof. If ∆0,∆1, . . . is any sequence in Rn, then

k∑
j=0

(∆j)T
j∑
i=0

∆i =

k∑
j=0

k∑
i=0

1{i ≤ j}(∆j)T (∆i)

=
1

2

∥∥∥∥∥
k∑
i=0

∆i

∥∥∥∥∥
2

+
1

2

k∑
i=0

∥∥∆i
∥∥2 .

More specifically, we let ∆k = zk+1 − zk = xk+1 − xk+1/2. Now summing inequality of Lemma 19 gives
us

γ

k∑
i=0

f(xi+1/2)− f(x) + g(xi+1)− g(x) ≤
k∑
j=0

(∆j)T (x− z0)−
k∑
j=0

(∆j)T
j∑
i=0

∆i

= (zk+1 − z0)T (x− z0)− 1

2
‖zk+1 − z0‖2 − 1

2

k∑
i=0

‖zi+1 − zi‖2

= −1

2
‖zk+1‖2 +

1

2
‖z0‖2 + (zk+1 − z0)Tx− 1

2

k∑
i=0

‖zi+1 − zi‖2.

Finally, dividing both sides by (k + 1)/2 produces the stated result.

Lemma 21. Assume xk+1/2 and xk+1 are the DRS iterates as defined in (2). Then

lim sup
k→∞

1

k + 1

k∑
i=0

(
f(xi+1/2) + g(xi+1)

)
≤ p?

Proof. Assume p? <∞, as otherwise there is nothing to prove. Let x be any x ∈ dom f ∩ dom g.
By Theorem 4, zk ∼ kv. If v 6= 0, then the first (negative) term on the right-hand side of Corollary 20

dominates the positive terms. If v = 0, then zk+1 − zk = o(1), and both positive terms on the right-hand
side of Corollary 20 converge to 0. In both cases, we have

lim sup
k→∞

1

k + 1

k∑
i=0

f(xi+1/2)− f(x) + g(xi+1)− g(x) ≤ 0.

Since

lim sup
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) ≤ f(x) + g(x)

for all x ∈ dom f ∩ dom g, we minimize the right-hand side to obtain p?.

The following result is well known for the non-pathological setup where (P) has a solution, (D) has a
solution, and p? = d? ∈ (−∞,∞). It is still true under certain pathologies.

Theorem 22. Assume p? = d? ∈ [−∞,∞]. Assume xk+1/2 and xk+1 are the DRS iterates as defined in
(2). Assume the infimal displacement vector v of Tγ satisfies v = 0. Then

lim
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p?

and
lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?.

11



Proof. By Theorem 4, v = 0 implies xk+1/2 − xk+1 → 0. In turn, by Lemma 1, we have

lim inf
k→∞

f(xk+1/2) + g(xk+1) ≥ p?.

Combining this with Lemma 21 gives us the first stated result.
If a real-valued sequence ak satisfies

lim inf
k→∞

ak ≥ a, lim
k→∞

1

k

k∑
i=1

ai = a,

then
lim inf
k→∞

ak = a.

The second stated result follows from this argument.

Corollary 23. Assume p? = d?. Assume xk+1/2 and xk+1 are the DRS iterates as defined in (2). If
xk+1/2, xk+1 → x? for some x?, then x? is a solution.

Proof. We first note that closed functions are by definition lower semi-continuous, and that f and g are
assumed to be closed. By Theorem 22 we have

f(x?) + g(x?) ≤ lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?,

and we conclude f(x?) + g(x?) = p?.

Corollary 24. Assume (P) is feasible and has an improving direction. Then

f(xk+1/2) + g(xk+1)→ −∞.

Proof. By Corollary 15 and Theorem 4, we have

zk+1 − zk = xk+1 − xk+1/2 → γd.

Then Lemma 19 tells us that

(1/k)(f(xk+1/2) + g(xk+1)) ≤ −(1/γ)(xk+1 − xk+1/2)T ((1/k)zk+1) +O(1/k)

→ −γ‖d‖2,

which proves the statement.

3.3 Evolution of shadow iterates

Since DRS is a fixed-point iteration with respect to the zk-iterates, the xk+1/2 and xk+1-iterates are some-
times called the shadow iterates. Section 3.1 characterized the evolution of the zk-iterates. Here, we analyze
the evolution of the shadow iterates.

Theorem 25. If v = 0, then xk+3/2 − xk+1/2 → 0 and xk+2 − xk+1 → 0.

Proof. Since v = 0, we have zk+1 − zk → 0. Since the map the defines zk 7→ xk+1/2 and zk+1 7→ xk+3/2

is Lipschitz continuous, xk+3/2 − xk+1/2 → 0. Finally, zk+1 − zk → 0 and xk+3/2 − xk+1/2 → 0 implies
xk+2 − xk+1 → 0.

Theorem 26. If (P) is strongly infeasible and (D) is feasible, then xk+3/2−xk+1/2 → 0 and xk+2−xk+1 → 0.

12



Proof. Write −d′ for the infimal displacement vector as given by Corollary 18. By Theorem 4, we have

zk+1 − zk = xk+1 − xk+1/2 → d′.

Since −d′ = Πdom f−dom g(0) the projection inequality tells us that

〈d′, x− xk+1〉+ ‖d′‖2 ≤ 0

for any x ∈ dom f . Using the fact that xk+1/2 = Proxγf (zk) and firm-nonexpansiveness of Prox, we get

‖Proxγf (zk + d′)− xk+1/2‖2 ≤ 〈d′,Proxγf (zk + d′)− xk+1/2〉
= 〈d′,Proxγf (zk + d′)− xk+1〉+ 〈d′, xk+1 − xk+1/2〉
→ 0

since 〈d′, xk+1 − xk+1/2〉 → ‖d′‖2. So Proxγf (zk + d′) − xk+1/2 → 0. Since Prox is Lipschitz continuous,
zk+1 − zk − d→ 0 implies

Proxγf (zk + d)− Proxγf (zk+1)→ 0.

Putting everything together we conclude

xk+3/2 − xk+1/2 = Proxγf (zk+1)− Proxγf (zk)→ 0.

Since
zk+2 − zk+1 = zk+1 − zk︸ ︷︷ ︸

→d′

+xk+2 − xk+1 − (xk+3/2 − xk+1/2)︸ ︷︷ ︸
→0

→ d′

we also conclude that xk+2 − xk+1 → 0.

Theorem 27. If (P) has an improving direction, and (P) is feasible, then xk+3/2−xk+1/2 → γd and xk+2−
xk+1 → γd, where −γd = γΠdom f∗+dom g∗(0) is the infimal displacement vector as given in Corollary 15.

Proof. For simplicity, assume γ = 1. For γ 6= 1, we scale f and g to get the stated result.
Rewrite the DRS iteration as

xk+1/2 = Proxf (zk)

νk+1/2 = zk − xk+1/2 = Proxf∗(z
k)

xk+1 = Proxg(2x
k+1/2 − zk)

νk+1 = 2xk+1/2 − zk − xk+1 = Proxg∗(2x
k+1/2 − zk)

zk+1 = zk − (νk+1 + νk+1/2).

By Theorem 4, we have
zk+1 − zk = xk+1 − xk+1/2 → d.

By the same reasoning as in Theorem 26, we can use the projection inequality and firm-nonexpansiveness
to show that

νk+3/2 − νk+1/2 = Proxf∗(z
k+1)− Proxf∗(z

k)→ 0.

Since
zk+1 − zk = νk+3/2 − νk+1/2︸ ︷︷ ︸

→0

+xk+3/2 − xk+1/2 → d,

we have xk+3/2 − xk+1/2 → d.
Since

zk+2 − zk+1 = zk+1 − zk︸ ︷︷ ︸
→d

+xk+2 − xk+1 − (xk+3/2 − xk+1/2)︸ ︷︷ ︸
→d

→ d

we also conclude that xk+2 − xk+1 → d.
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4 Application to DRS

In this section, we use the theory of Section 3 to analyze DRS under pathologies. We classify the primal-dual
problem pair (P) and (D) into 7 cases and provide convergence analyses for the first 6 cases, which are the
ones that assume strong duality. A rough summary is that DRS essentially works when strong duality holds.

4.1 Classification

The primal-dual problem pair, (P) and (D), falls under exactly one of the following 7 distinct cases.

Case (a) Total duality holds between (P) and (D), i.e., d? = p? is finite, both (P) and (D) have solutions,
and d? = p?. For example, the primal problem

minimize x− log x

and its dual problem
maximize 1 + log(y)
subject to y = 1

both have solutions, and d? = p? = 1.

Case (b) d? = p? is finite, (P) has a solution, but (D) has no solution. For example, the primal problem

minimize δ{(x1,x2) | x2
1+x

2
2≤1}(x1, x2)︸ ︷︷ ︸

f(x)

+x2 + δ{(x1,x2) | x1=1}(x1, x2)︸ ︷︷ ︸
g(x)

has a solution but its dual problem

maximize −
√
ν21 + ν22 + ν1 − δ{ν2=1}(−ν2)

does not. Nevertheless, d? = p? = 0.

Case (c) d? = p? is finite, (P) is feasible, but (P) has no solution. To get such an example, swap the role
of the primal and the dual in the example for case (b).

Case (d) d? = p? = −∞, (P) is feasible, but there is no improving direction. This implies (D) is weakly
infeasible. For example, the primal problem

minimize δ{x | x≥1}(x)− log x

has no solution and has optimal value p? = −∞. Since the asymptotic derivative of the objective x→∞ is
0, the primal problem has no improving direction. The dual problem

maximize y + 1 + log(y)
subject to y ≤ 0

is weakly infeasible.

Case (e) d? = p? = −∞, (P) is feasible, and there is an improving direction. This implies (D) is strongly
infeasible. For example, the primal problem

minimize x+ x

has an improving direction, namely d = −1, and the dual problem

maximize δ{1}(x) + δ{1}(−x)

is strongly infeasible.
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Case (f) d? = p? =∞ and (P) is infeasible. For example, the problem

minimize 1/
√
−x− log(x)

is infeasible, and its dual
maximize (3/22/3)y1/3 + 1 + log(y)
subject to y ≥ 0

has optimal value d? =∞.

Case (g) d? < p?, i.e. strong duality fails. We do not consider this case.

4.2 Convergence results

We now provide convergence analyses for cases (a) through (f).

Theorem 28. [34, 23] In case (a), xk+1/2, xk+1 → x?, where x? is a solution of (P) and

lim
k→∞

f(xk+1/2) + g(xk+1) = p?.

Theorem 29. In case (b), xk+1 − xk+1/2 → 0 and

lim
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p?, lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?.

Furthermore, if xk+1/2 → x? (or equivalently if xk+1 → x?) then x? is a solution.

Proof. This follows from Theorem 4, Corollary 13, Theorem 22, and Corollary 23.

Theorem 30. In case (c), xk+1 − xk+1/2 → 0,

lim
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p?, lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?,

and (xk+1/2, xk+1) do not converge.

Proof. This follows from Theorem 4, Corollary 13, Theorem 22, and the contrapositive of Corollary 23.

Theorem 31. In case (d), (D) is weakly infeasible, xk+1 − xk+1/2 → 0,

lim
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = −∞, lim inf
k→∞

f(xk+1/2) + g(xk+1) = −∞,

and (xk+1/2, xk+1) do not converge.

Proof. This follows from Theorem 4, Theorem 11, Corollary 14, Theorem 22, and the contrapositive of
Corollary 23.

Theorem 32. In case (e), (D) is strongly infeasible, xk+1−xk+1/2 → γd, where d is an improving direction,

lim
k→∞

f(xk+1/2) + g(xk+1) = −∞,

and (xk+1/2, xk+1) do not converge. Furthermore, dist(xk+1/2,dom g)→ 0 and
dist(xk+1,dom f)→ 0.
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Proof. All but the last assertions follows from Theorem 4, Theorem 11, Corollary 15, Corollary 24, and the
contrapositive of Corollary 23.

By Theorem 27 xk+1/2 − xk−1/2 → γd and by Theorem 4 and Corollary 15 xk − xk−1/2 → γd. So
xk+1/2 − xk → 0. Since xk ∈ dom g, we have

dist(xk+1/2,dom g) ≤ dist(xk+1/2, xk)→ 0.

Since xk+1/2 ∈ dom f , we have

dist(xk,dom f) ≤ dist(xk, xk+1/2)→ 0.

Theorem 33. In case (f), ‖xk+1 − xk+1/2‖ → dist(dom f, dom g).

Proof. This follows from Theorem 4 and Corollary 17 and 18.

4.3 Interpretation

We can view the DRS as an algorithm with two major goals: make the iterates feasible and optimal. With
some caveats, DRS succeeds at both. As an auxiliary goal, we want the shadow iterates of DRS to converge
to a solution if one exists. With some caveats, DRS succeeds at this as well.

Feasibility In cases (a), (b), (c), and (d) the iterates become approximately feasible in that xk+1 −
xk+1/2 → 0. In case (e) the iterates become approximately feasible in that dist(xk+1/2,dom g) → 0 and
dist(xk+1,dom f)→ 0. In case (f), feasibility is impossible, but DRS does its best to achieve feasibility.

Optimality In cases (a), (b), (c), (d), and (e), the function values on average converge to the solution. In
other words, DRS finds the correct optimal value in these cases.

Shadow iterate convergence In case (a), the shadow iterates, the xk+1/2 and xk+1 iterates, converge to
a solution. In case (b), we do not know whether the shadow iterates converge to a solution. However, if
they converge the limit is a solution. In cases (c), (d), and (e), the shadow iterates do not converge, which
is good since there is no solution to converge to.

4.4 Notes

For in-depth studies problems of case (g), i.e., convex programs for which strong duality fails, see [50, 57,
58, 26, 42].

The papers [8, 12, 13] study DRS applied to infeasible convex feasibility problems and conditions that
allow the shadow iterates to converge. In other words, these work study setups of case (f) for which the
shadow iterates converge.

Finally, we clarify how some aspects of the results of Section 4.2 are, in subtle ways, not as strong as the
standard convergence results for case (a).

In case (a) and (e), we have
lim
k→∞

f(xk+1/2) + g(xk+1) = p?. (4)

For cases (b), (c), and (d), we are only able to show

lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?

and

lim
k→∞

1

k + 1

k∑
i=0

f(xi+1/2) + g(xi+1) = p?. (5)

The stronger result (4) says the function values are near optimal for large k. The weaker result (5) says the
function values are usually near optimal for large k, since the average function value is near optimal for large
k. Results of the form (5) are sometimes called ergodic convergence.
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In case (a), the standard results state the shadow iterates converge to a single solution. In case (b), we
are only able to show that the iterates achieve approximate optimality. When there are many solutions in
case (b), we do not know whether or not the shadow iterates have multiple optimal limit points.

Often, dom f ∩dom g is called the feasible set. In case (a), the standard results state dist(xk+1/2,dom f ∩
dom g) → 0 and dist(xk+1,dom f ∩ dom g) → 0, i.e., xk+1/2 and xk+1 converge to the feasible set. In cases
(b), (c), (d), and (e), we show xk+1/2 − xk → 0, xk+1/2 ∈ dom f , and xk+1 ∈ dom g. This, however, does
not imply xk+1/2 or xk+1 converge to the feasible set. To see why the implication fails, see the example of
Section 5.2. So the iterates approach approximate feasibility, but we have not shown whether the iterates
converge to the feasible set.

5 Counter examples

Throughout this paper, we analyzed and proved convergence without asking how fast the convergence is,
and we assumed strong duality without asking what happens without it. In this section, we address these
issues through counter examples.

The claims of this section are based largely on experimental observations rather than analytical results.
For the sake of scientific reproducibility, we release the code used for the experiments.

5.1 Rate of convergence

When total duality holds between the primal-dual problem pair (P) and (D), i.e., when we have case (a),
the convergence rate

‖zk+1 − zk‖2 ≤ o(1/k)

is guaranteed for DRS [27, 23].
Under pathologies, however, the rate can be much slower. Consider the problems

minimize δ{(x1,x2) | xq
1+x

q
2≤1}(x1, x2)︸ ︷︷ ︸

f(x)

+x2 + δ{(x1,x2) | (x1−2)2+x2
2≤1}(x1, x2)︸ ︷︷ ︸

g(x)

,

where q > 1. These problems are in case (b), and has the unique solution x? = (1, 0). We run DRS with
γ = 1 and experimentally observe a rate of

‖zk+1 − zk‖2 ≤ O(1/k4/(q+1))

as shown in Figure 1. For q > 3, the rate is slower than O(1/k). To solve the projections onto the q-norm
ball, we used CVX [31, 30].

Although the results are purely experimental, it does make the following point: There is no reason to
expect the usual o(1/k) rate under pathologies, and in some cases we do observe a slower rate.

5.2 When strong duality fails

In the analyses of DRS in Sections 4 we assumed strong duality. When strong duality fails, i.e., when d? < p?,
we conjecture that DRS fails.

Conjecture. When strong duality fails, DRS necessarily fails in that

lim inf
k→∞

f(xk+1/2) + g(xk+1) < p?.

In other words, DRS finds the wrong objective value.

As discussed in Section 4.2, DRS tries to achieve feasibility and optimality. As discussed in Section 2.1,
strong duality is well-posedness. Therefore, when the problem is ill-posed, we expect DRS to reduce the
function value below p? while achieving an infinitesimal infeasibility. We support the conjecture with exam-
ples.
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Figure 1: Plot of ‖zk+1 − zk‖2 and O(1/k4/(q+1)).

Analytical counter example As our first example, taken from [35], consider the primal problem

minimize δ{(x1,x2,x3) | x3≥(x2
1+x

2
2)

1/2}(x)︸ ︷︷ ︸
f(x)

+x1 + δ{(x1,x2,x3) | x2=x3}︸ ︷︷ ︸
g(x)

(x)

which has the solution set {(0, t, t) | t ∈ R} and optimal value p? = 0. Its dual problem

maximize −δ{(ν1,ν2,ν3) | −ν3≥(ν2
1+ν

2
2 )

1/2}(ν)− δ{(ν1,ν2,ν3) | ν1=1, ν2=−ν3}(−ν)

is infeasible. Given z0 = (z01 , z
0
2 , 0), the DRS iterates have the form

zk+1
1 =

1

2
zk1 − γ

zk+1
2 =

1

2
zk2 +

1

2

√
(zk1 )2 + (zk2 )2

zk+1
3 = 0.

With this, it is relatively straightforward to show xk+1/2 − xk+1 → 0, x
k+1/2
1 → −2γ, x

k+1/2
2 → ∞,

x
k+1/2
3 →∞, and f(xk+1/2)+g(xk+1)→ −2γ. Also, xk+1/2 9 dom f∩dom g even though xk+1/2−xk+1 → 0.

Note that
d? < lim

k→∞
f(xk+1/2) + g(xk+1) < p?.

So this counter example proves, at least in some cases, that DRS solves neither the primal nor the dual
problem in the absence of strong duality.

Experimental counter examples To further support the conjecture, we run DRS on several problems for
which strong duality fails and report the experimental results.

The problem, taken from [14],

minimize
x∈R2

exp(−
√
x1x2)︸ ︷︷ ︸

f(x)

+ δ{(x1,x2) | x1=0}(x)︸ ︷︷ ︸
g(x)

has optimal value p? = 1 but d? = 0. Experimentally, for all γ > 0 and choice of z0 we observe d? <
limk→∞ f(xk+1/2) + g(xk+1) < p?.
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The problem, taken from [26],

minimize
X∈S3

δS3
+

(X)︸ ︷︷ ︸
f(X)

+X22 + δ{X∈S3 |X33=0,X22+2X13=1}(X)︸ ︷︷ ︸
g(X)

,

where S3 and S3
+ respectively denote the set of symmetric and positive semidefinite 3 × 3 matrices, has

optimal value p? = 1 but d? = 0. Experimentally, we observe d? = limk→∞ f(xk+1/2) + g(xk+1) for γ ≥ 0.5,
and d? < limk→∞ f(xk+1/2) + g(xk+1) < p? for 0 < γ < 0.5. This behaviour does not depend on z0.

The problem, taken from [62],

minimize
X∈S3

δS3
+

(X)︸ ︷︷ ︸
f(X)

+ 2X12 + δ{X∈S3 |X22=0,−2X12+2X33=2}(X)︸ ︷︷ ︸
g(X)

has optimal value p? = 0 but d? = −2. Experimentally, we observe d? =
limk→∞ f(xk+1/2) + g(xk+1) for γ ≥ 1, and d? < limk→∞ f(xk+1/2) + g(xk+1) < p? for 0 < γ < 1. This
behaviour does not depend on z0.

The problem, taken from [58],

minimize
X∈S5

δS5
+

(X)︸ ︷︷ ︸
f(X)

+X44 +X55 + δ{X∈S3 |X11=0,X22=1,X34=1,2X13+2X45+X55=1}(X)︸ ︷︷ ︸
g(X)

has optimal value p? = (
√

5− 1)/2 but d? = 0. Experimentally, we observe d? =
limk→∞ f(xk+1/2) + g(xk+1) for γ ≥ 0.8, and d? < limk→∞ f(xk+1/2) + g(xk+1) < p? for 0 < γ < 0.8. This
behaviour does not depend on z0.

The conjecture holds for all examples. Interestingly, for some examples, there is a threshold γmin such
that d? < limk→∞ f(xk+1/2) +g(xk+1) < p? when 0 < γ < γmin and d? = limk→∞ f(xk+1/2) +g(xk+1) when
γmin ≤ γ. Investigating this behavior is an interesting direction of future work.

6 Conclusion

In this paper, we analyzed DRS under pathologies. With some caveats, DRS works when strong duality
holds. Furthermore, we conjectured that DRS necessarily fails when strong duality fails, and we provided
empirical evidence supporting this conjecture.

As discussed in Section 4.4 and 5, there are some theoretical questions remaining. Strengthening the
convergence results, analyzing the rate of convergence, and analyzing DRS in the absence of strong duality
are all interesting future directions of research.

One conclusion of this paper is that we can solve pathological convex programs DRS, provided strong
duality holds. However, should we? Studying how effective DRS is compared to other approaches that can
solve pathological convex programs is another interesting future direction of research.

As mentioned in Section 1, ADMM is a closely related method, which behavior under pathologies also
has not been studied extensively. Analyzing ADMM under pathologies is another direction worth pursuing.
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