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ABSTRACT

We consider the problem of automatically tracking the mitral valve in cardiac ultrasound time series and present
an unsupervised method for decomposing and segmenting the mitral valve from noisy ultrasound videos. To
do so we propose a Robust Nonnegative Matrix Factorization (RNMF) method that naturally decomposes the
time series into three separate parts, highlighting the cardiac cycle, mitral valve, and ultrasound noise. The low
rank component of RNMF captures the simple motions of the cardiac cycle effectively aside from the sporadic
motion of the mitral valve tissue that is captured innately in our RNMF sparse signal term. Using the RNMF
representation, we introduce a simple valve object detection algorithm. Our method performs especially well in
noisy time series when existing methods fail, differentiating general noise from the subtle and complex motions
of the mitral valve. The valve is then segmented using simple thresholding and diffusion. The method presented
is highly robust to low quality ultrasound video, and does not require manual preprocessing, prior labeling, or
any training data.

Keywords: Robust Nonnegative Matrix Factorization, Cardiac Ultrasound, Valve Detection, Motion segmen-
tation

1. INTRODUCTION

Echocardiography is a type of ultrasound test that uses high-pitched sound waves to produce an image of the
heart and provides valuable information for the assessment of heart diseases and abnormalities. Ultrasound
images from echocardiography are commonly used1,2 to determine the left ventricular ejection fraction (LVEF).
In the medical field today, highly trained specialists manually process these images by segmenting features of
interest. Due to the considerations of time, cost, and distance from specialists, the significance of automatic
segmentation of features in ultrasound images cannot be overstated.

The mitral valve, a dual-flap valve in the heart that lies between the left atrium and the left ventricle, plays an
important role in providing medical information about a plethora of valvular diseases3 and in potentially assessing
the left ventricular systolic function.4 Currently, the delineation of the mitral valve is a time-consuming process
manually done by a medical practitioner. Therefore, an automatic object tracking algorithm for the mitral valve
is of great interest.

Many methods for mitral leaflet segmentation tracks the valve are based on active contours.5 When such
methods segment the valve, they treat each frame separately resulting in tedious user involvement to initialize
each frame or to supervise the partial results to assure accurate segmentation results.6 More recently, low-
rank sparse decomposition techniques have been used for object tracking algorithms. Such algorithms have
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been designed to automatically track the mitral valve in ultrasound time series using a low-rank approximation,
utilizing the motion complexity of the mitral valve.7 Such low rank approximation methods, however, are often
misled by the particle noise presents in ultrasound videos and must improve in robustness. Such is the innovative
method presented in Ref. 7. for the unsupervised tracking of the mitral valve based on low-rank representation.
However, due to the high noise-level in echocardiography videos, the method is not robust enough to withstand
the speckle disturbance that is present in a wide range of ultrasound image sequences.

In this paper, we create an automatic algorithm to segment the mitral valve with low computational cost
using Robust Nonnegative Matrix Factorization (RNMF). In addition we use our RNMF framework to create
an improved mitral valve detection algorithm similar to that presented in Ref. 7. Our method does not rely on
users to manually adjust parameters tailored for each specific patient. On the contrary, only a generic window
size is required for a large collection of videos with a similar view of the heart. Instead of regarding all frames
from a single video as unrelated static images our method exploits the continuity of the video frames as a time
series. The key idea used in separating the mitral valve from the rest of the heart is using its motion complexity
that allows for separation of the valve’s non-linear motion from the generally low-rank ultrasound video. The
periodic low-rank expansion and contraction of the heart can be naturally captured by a low rank term in RNMF
whereas the mitral valve is captured as the high dimensional sparse term. Comparing to other dimensionality
reduction algorithms, RNMF provides highly meaningful end-members and corresponding coefficients in the
realm of echocardiography.

This paper extend on previous work8 done on low rank cardiac ultrasound that illustrated the advantage of
a rank-2 NMF method for the approximation of the cardiac cycle. NMF is a linear dimensionality reduction
method9 that is superior in non-negative datasets and allows for great interpretation of results. In the context of
cardiac ultrasound, rank-2 NMF approximates the heart cycle form cardiac ultrasound videos by describing each
frame as a non-negative mixture between two end-member frames. Each end-member generalizes the end systole
(fully contracted) or end diastole (fully expanded) stages of the heart cycle. In this paper we continue using such
framework but recognize that certain tissues of the heart, namely the mitral valve, are not captured effectively
by such low rank approximations and therefore improve the framework by using Robust NMF as opposed to
classic NMF. We illustrate that the new framework preserves the desired properties found in NMF. In addition,
the new robust framework is able to detect the mitral valve in noisy environments and separate it from the low
rank approximation inspired by classical NMF.

Our mitral valve segmentation algorithm has the immediate application of calculating the mitral annular
displacement. By selecting three points of interest according to the segmentation result and the original video,
we can approximate the mitral annular displacement. Recent research4 on the relationship between the left
ventricular ejection fraction and mitral annular displacement demonstrates a strong curvilinear relationship by
statistical fitting of data from patients’ cardiac cycle in the apical 4- and 2- chamber views. With this correlation
at hand, we present an automatic algorithm to estimate ejection fraction via our segmentation of the mitral
valve.

2. MATERIAL AND METHODS

2.1 Source of Data

A total of 99 echocardiogram samples in the apical 4- and 2- chamber view were collected randomly from a
database at the Keck Medical Center at the University of Southern California, and properly de-identified for
the analysis. All videos and relevant diagnosis data were obtained following a Health Sciences Review Board
(HSIRB) approved protocol HS-15-00258. HSIRB reviews all human subject research protocols in accordance
with federal regulation, state law, and university policy. The ultrasound images were originally obtained from
the GE Vivid E9 ultrasound system under the same settings prior to be transferred to the database. The
samples include a diverse group of abnormal conditions and a few normal studies to review the anatomical
structures pertinent to each condition and be subject of the analysis. The echocardiogram were obtained from
pathologic conditions that have different effects in the anatomical structures to be analyzed. These conditions
included ischemic cardiomyopathy, hypertrophic cardiomyopathy, heart failure, aortic valve stenosis, myocardial
infarction, pulmonary hypertension, systemic hypertension, myocardial toxicity, tamponade and congenital heart
disease.



Based on the quality of videos, we classify the selected 93 videos from our dataset into three categories: high
quality, medium quality, and low quality. There are 16 videos with high quality, where the presence of the mitral
valve is clear and where the noise level is low. There are 23 videos with medium quality, where the mitral valve
is visible but notable noise is present. The rest 54 videos are of low quality, where the valve is vague and the
noise level is high. For the purpose of valve segmentation, we disregard 6 videos in our dataset where the mitral
valve is completely absent.

2.2 Robust Nonnegative Matrix Factorization (RNMF)

RNMF is an extension of the dimensionality reduction method NMF. It approximates a nonnegative large matrix
as the sum of the product of two nonnegative low-rank matrices and a sparse noise matrix. Rank-2 NMF is
used in Ref. 8 to model the muscle movement as a linear combination of two end-members, which correspond to
end-systole and end-diastole stages of the cardiac ultrasound. In RNMF an important underlying assumption is
that the data matrix X is generally of low rank k aside from a sparse component S of assumed higher rank. Via
RNMF the nonnegative data matrix X ∈ Rm×n+ is factored into

X ≈WH + S (1)

with W ∈ Rm×k+ ,H ∈ Rk×n+ ,S ∈ Rm×n+ and S being sparse. Here, WH is a matrix of rank of at most k, being
the product of two matrices of rank k, and S is the sparse signal. To achieve the desired decomposition, one
needs to minimize the energy function

f(W,H,S) = ‖X−WH− S‖2F + λ‖S‖1. (2)

Intuitively speaking, the Frobenius norm ‖ · ‖F enforces the proximity of X to WH + S, and the ‖ · ‖1 norm on
S promotes the sparsity of the matrix S, where the sparsity parameter λ controls the extent to which sparsity is
enforced.

We intend on applying rank-2 RNMF to decompose the cardiac ultrasound time series as a low-rank ap-
proximation of the heart muscles and a sparse high dimensional term capturing the mitral valve. Initially the
ultrasound cardiac video is represented by a tensor T ∈ Rr×c×l+ consisting of a sequence of images T(·, ·, i) ∈ Rr×c+ .
To apply RNMF one needs to be convert T into a matrix. We reshape each image T(., ., i) ∈ Rr×c+ into a col-

umn vector xi ∈ R(r·c)×1
+ . All such column vectors are then concatenated together to produce an RNMF-ready

nonnegative data matrix X. We follow an iterative thresholding approach10 to solve our RNMF framework.

Algorithm 1 Solving Robust Nonnegative Matrix Factorization using iterative thresholding

Input: Nonnegative matrix X ∈ Rn×m+ , rank k = 2, sparsity coefficient λ, tolerance ε, max iterations N

Output: Nonnegative matrices W ∈ Rn×k+ , H ∈ Rk×m+ , S ∈ Rn×m
1: i← 0, initialize W 0 and H0 randomly at uniform or using NMF.
2: while i ≤ N and |f(Wi−1, Hi−1)− f(Wi, Hi)| > ε do
3: Si+1 ← X −W iHi

4: Sij ←

{
Sij − λ

2 Sij >
λ
2

0 otherwise

5: W i+1 ←W i ◦ (X − Si+1)+H
T

WHHT

6: Hi+1 ← Hi ◦ W
T (X − Si+1)+
WTWH

7: W i+1 ← W i+1

‖W i+1‖F

8: Hi+1 ← Hi+1

‖Hi+1‖F
9: i← i+ 1

10: end while
11: Output Wi, Hi, Si



In the above and throughout the paper the truncation operator (x)+ refers to (x)+ :=

{
x x > 0

0 x < 0
and ◦

refers to the entry-wise matrix product.

2.3 Automatic Valve Detection

A direct application of RNMF is the object detection – that is to find a rectangular region (window) bounding
the desired object – of the mitral valve. In Ref. 7 the desired window is selected as the window of maximum
singular values tail sum, indicating of complex non-linear motion. Inspired by this idea, we propose an RNMF-
based approach in Algorithm 2, which selects the desired window as the window with the largest Frobenius norm
on the matrix S in RNMF. For the purpose of completeness, we also include the SVD-based window detection
algorithm used in 7. In the following algorithm, RNMF method refers to our newly designed method, and SVD
method refers to the existing approach.

Algorithm 2 Automatic Window Detection

Input: Data matrix M = (I1,. . . ,In), the set of all possible rectangular windows {Wj}, and singular value
threshold K > 0 (only for SVD method)

Output: Detected window Wj∗

1: for each spatial window Wj do
2: let Mj = M ◦Wj

3: for SVD method: compute the residual singular values σ1, ...σn for Mj , and
εj =

∑n
i=K+1 σ

2
i

4: for RNMF method: obtain the approximation Mj ≈WjHj + Sj , and
εj = ‖Sj‖F

5: end for
6: let j∗ = arg maxj εj

In Algorithm 2, each window Wj is a rectangular region with fixed size and position in the video. The size
of the spatial window is fixed for the entire data-set and is of the approximate size of the mitral valve. The
positions of the spatial windows start from the top left corner of the video and end at the bottom right corner,
with specified step sizes. For each window, either SVD or RNMF is performed. We then select the window that
maximizes nonlinearity measured either by the Frobenius norm of the sparse matrix (S) or by the sum of the
tail singular values starting from σK+1. In both options the calculated value is indicative of the dimensionality
of the window. The fast changing mitral valve region exhibits great dimensional complexity and is therefore
captured by such measures.

2.4 Ultrasound Time Series Data Decomposition

As mentioned before, the low rank approximation WH from RNMF highlights the myocardium movement while
the sparse term S from RNMF illustrates the motion of the mitral valve. Following this key idea, we present
an automatic segmentation method in Algorithm 3, which decomposes the original video into three components:
(1) myocardium, (2) mitral valve and (3) residual noise. In this algorithm, a thresholding function Tp and
an anisotropic diffusion operation11 Dr are used. The thresholding function Tp ranks the pixels in terms of
brightness, and returns a logical matrix consisting of the top p% pixels. The anisotropic diffusion operator Dr

connects small disjoint components and smooths the boundary of segmentation.



Algorithm 3 Mitral Valve Decomposition

Input: image sequence M = (I1,...,In), thresholding function TP , diffusion function D, percentage parameters
P1, P2

Output: myocardium W2H2, mitral valve R and noise M −W2H2 −R
1: Apply RNMF to obtain M ≈W1H1 + S1

2: Apply the Window Detection Algorithm 2 to detect the region Wj∗

3: Calculate Image sequence without valve M
′

= M ◦ (1− S′), where S
′

= Dr(Wj∗ ◦ TP1
(S1)).

4: Apply RNMF again to obtain muscle motion M
′ ≈W2H2 + S2

5: Find valve R = Dr(Wj∗ ◦ TP2
(M −W2H2))

By applying the thresholding function Tp to the resulting sparse matrix S, we are able to obtain Tp1(S) that
highlights the pixels corresponding to the most complex and nonlinear motion of the mitral valve, as well as
some noise from the myocardium. We then remove the noise by restricting our result to the window obtained by
the window detection Algorithm 2. Furthermore, using anisotropic diffusion on the data allows us to ensure the
connectivity of our valve segmentation and accurate detection of the boundary of the tissue. We then subtract
the temporary segmentation result S

′
from the original data to highlight the muscle motion. To provide a low

rank approximation of the muscle motion we apply RNMF one more time to obtain the low-rank term W2H2.
The resultant residue S2 then fully highlights the mitral valve including tissue neglected by the first sparse term
S1. Therefore we obtain our final mitral valve segmentation R by applying thresholding and anisotropic diffusion
on S2 again in order. Finally, we obtain the residual noise term simply by subtracting W2H2 +R from original
data.

2.5 LVEF Estimation from Mitral Annular Displacement

Automatic estimation of LVEF is of great interest in medical image processing. One important application of the
valve-muscle decomposition in Algorithm 3 is in calculating the mitral annular displacement (MD). According
to recent research,4 LVEF is highly correlated with the MD between the two cardiac end-stages. To compute
MD, one needs to trace three key points consisting of the apical myocardium and the hinge points of the mitral
valve leaflets with the septal and lateral aspects of mitral annulus.

In Algorithm 4, we detect the apical myocardium by image morphology and a moving-window threshold
function. For the two hinge points, we utilize our segmentation results to find the leftmost and rightmost end
points of the mitral valve. Then we track the movement of these points by optical flow.12 The displacement of
the midpoint between the two hinge points towards the apex point is recorded. To account for different scales of
the left ventricle, the displacement of the two hinge points is normalized by the chamber length during cardiac
end-diastole. Figure 1 displays the locations of the three points of interest.



Algorithm 4 Apical Myocardium and Hinge Points Detection

Input: image sequence M = (I1, . . . , In), valve segmentation result V = (V1, . . . , Vn)
1: for each j do
2: Binarize Ij as Tj using window shift thresholding
3: Apply morphological closure of Tj with disc of diameter 5
4: {Apical Myocardium tracking:}
5: Find the third row with non-zero elements from top of Tj , Record row number as p
6: Find the midpoint of the non-zero elements in row p, record the column number of this point as topcolj .
7: Select the first zero element in col topcolj starting from row p, record the row number of this element as

toprowj
8: {hinge points tracking:}
9: Find the third column with non-zero elements in Vj from the left side, Record column as q1

10: Find the midpoint (leftrowj , leftcolj) of the non-zero elements in column q1 of Vj
11: Find the third column with non-zero elements in Vj from the right side, Record column as q2
12: Find the midpoint (rightrowj , rightcolj) of the non-zero elements in column q2 of Vj
13: end for
Output: Output the coordinate of apical myocardium (toprowj , topcolj), left hinge point (leftrowj , leftcolj) and

right hinge point (rightrowj , rightcolj) for each j

The third pixel is chosen in Algorithm 4 to avoid possible outliers and does not pose other significant
discrepancies.

Figure 1: The top left image illustrates the locations of the apical myocardium and the hinge points of the
mitral valve leaflets with the septal and lateral aspects of mitral annulus. The valve segmentation result is used
to determine the locations of the hinge points. The picture on the top right represents how mitral annulus
displacement (MD) is measured between the two end-member phases. The bottom image demonstrates how the
chamber length is calculated during cardiac end-diastole.



3. RESULT

3.1 Robust Nonnegative Matrix Factorization Properties

In NMF the residue term X - WH was shown to highlight the movement of the mitral valve since its complex,
nonlinear motion cannot be captured by a low-rank decomposition. Inspired by this observation, this paper
introduces a sparse term S in RNMF which captures complex motions in the data matrix X. Unlike the residue
term X-WH in NMF, which has negative entries, the components of S are non-negative and only capture physical
objects. In Figure 2, we illustrate the great extent of noise previously present in the residue term X-WH which
is eliminated in the sparse term S. Nonetheless, the mitral valve structure and texture of the valve remain.

Figure 2: We present two frames to illustrate the sparse term S in RNMF side by side with the NMF residual
X-WH in absolute value. S consists of 6% of the total pixels, while X-WH consist of 40% of all the pixels in
the video.

An important property of rank-2 NMF in the realm of echocardiography is its effective capture of the cardiac
cycle. That is, the coefficient matrix H describes the nonnegative mixture of the video frames and the heart
cycle and can lead to automatic detection of the frames of end-systole and end-diastole.8 We illustrate that this
property is preserved when one switches from NMF to its robust counterpart, RNMF. In an NMF decomposition
each column vector of a matrix W is said to be an end-member, and the corresponding row vector of the matrix H
represents the nonnegative linear coefficients for the corresponding end-members across the given time series. In
rank-2 RNMF, the matrices W and H produce the same desired interpretation as in rank-2 NMF. In particular,
when we apply rank-2 (R)NMF to ultrasound cardiac time series, the two end-members of (R)NMF are the
frames corresponding to end-systole and end-diastole.

To understand the periodic pattern of the coefficients in H, we plot the normalized coefficients over time in
both RNMF and NMF in Figure 3. The blue and orange curves represent the coefficients for the first and second
end-members of W respectively. To identify the frames corresponding to the end-systole and end-diastole, we
select the frames at which the blue or the orange curves attain their maximum values. That is, we select the two
frames in the time series that most resemble one of the end-members in W. Despite some small discrepancies
in the two graphs, the results of automatic detection of end-systole and end-diastole are not affected. The
meaningful cyclic properties of rank-2 NMF are therefore preserved in rank-2 RNMF.



Figure 3: Plots illustrating the non-negative linear coefficients present in H. The periodic pattern of the
coefficients is preserved in RNMF as in NMF.

3.2 Window Detection

In the following tables, we present the window detection results from Algorithm 2 based on the three video
quality categories we discussed above. To help understand the performance of RNMF-based window detection
algorithm, we compare its results with the SVD-based algorithm used in Ref. 7.

We observe that the SVD-based algorithm produces accurate results when the videos are of high qual-
ity. However, its accuracy drops significantly when processing videos with medium or low quality. On the
other hand, RNMF performs well under high-quality videos and maintains its good performance in the cases of
medium-quality videos. Despite an accuracy drop for low-quality videos, RNMF still outperforms the SVD-based
algorithm significantly.

Table 1: Quantitative evaluation for mitral valve detection between methods. The window method with a fixed
size across all cases is successful if more than 65% of the window is contained in the manually-generated bounding
box for the valve.

High Quality Videos number of successful cases Total cases Success rate (%)
RNMF on window 15 16 94
SVD on window 15 16 94

Medium Quality Videos number of successful cases Total cases Success rate (%)
RNMF on window 21 23 91
SVD on window 17 23 74

Low Quality Videos number of successful cases Total cases Success rate (%)
RNMF on window 30 54 56
SVD on window 26 54 48

In particular, we should point out that the results of the SVD are likely affected by the high intensity of
noise in the videos. In Figure 4, we demonstrate the resilience of the rank-2 RNMF technique to varying pixel
intensity as compared to SVD. This might explain why the SVD-based algorithm experiences a considerable
drop in accuracy with reduced video quality while RNMF maintains better results.

3.3 Mitral Valve Segmentation

In Algorithm 3, we decompose the original video into mitral valve, myocardium, and residual noise. The de-
composition uses RNMF results and applies the threshold and diffusion operators. Figure 5 shows the video
decomposition results from four cases. For the purpose of comparison, we manually trace the valve motion and



Figure 4: Resulting selected windows from the valve detection algorithm (Algorithm 2) of our proposed RNMF
method (green) and SVD method (red) in Apical 4 chamber views.

create a ground truth (GT) segmentation for the mitral valve. In addition, the existing algorithm by Ref. 7 is also
included for comparison. Both of the methods are automatic and do not require additional manual adjustments
from the user.

Table 2: Four high-quality videos are chosen randomly from our dataset. In all of the three metrics, our method
outperforms the current method7 with the only exception of precision in Case B.

Algorithm 3 (RNMF Based) Precision (%) Recall (%) MAD (mm)
Case A 0.86 ± 0.07 0.63 ± 0.12 0.81 ± 0.21
Case B 0.80 ± 0.07 0.64 ± 0.12 0.69 ± 0.22
Case C 0.78 ± 0.12 0.66 ± 0.18 0.69 ± 0.23
Case D 0.75 ± 0.15 0.60 ± 0.18 0.94 ± 0.99
Overall 0.80 ± 0.10 0.63 ± 0.15 0.78 ± 0.41

Method in Ref. 7 Precision (%) Recall (%) MAD (mm)
Case A 0.77 ± 0.09 0.39 ± 0.07 1.49 ± 1.21
Case B 0.86 ± 0.12 0.35 ± 0.08 0.93 ± 0.29
Case C 0.42 ± 0.26 0.15 ± 0.10 3.82 ± 2.37
Case D 0.43 ± 0.25 0.31 ± 0.17 4.71 ± 3.64
Overall 0.62 ± 0.18 0.30 ± 0.11 2.74 ± 1.88

We compare both results with the ground truth in three metrics: precision, recall and mean absolute distance
(MAD). The definitions are as follows:

precision =
|Ralg ∩RGT|
|Ralg|

, recall =
|Ralg ∩RGT|
|RGT|

,

MAD(Calg, CGT) =
1

2

∫ 1

0

[ d(Calg(s), CGT + d(CGT(s), Calg) ] ds.

Here, Ralg denotes the algorithm-generated mask for segmentation, RGT stands for the manually-traced segmen-
tation of the mitral valve, and |S| is defined as the number of pixels inside the region S. C(s) is a parametrization
of contour C, namely the boundary of R, with constant velocity |C ′(s)|, and d(p, C) = minq ‖p− C(q)‖2 is the
minimum distance from a point p to a contour C. The higher the value in precision and recall, the closer the
segmentation is to the ground truth. Meanwhile, the lower the value in MAD, the closer the contour of segmen-
tation is to that of the ground truth. In Table 2, four high-quality videos are chosen randomly from our dataset.
In all of the three metrics, our method outperforms the method in Ref. 7 except for the precision in Case B.



(a) (b)

(c) (d)

Figure 5: Video decomposition results from four random cases of our data. Three frames are selected for each
video. The three columns from left to right represent original image, myocardium, and mitral valve segmentation
respectively.

3.4 LVEF Estimation

We estimate the ejection fraction of patients using the mitral valve excursion as presented in Ref.13. The recent
research suggests that there exists a curvilinear relationship between MD and LVEF (R2 = 0.642). The following
correlation is achieved by statistical fitting from 266 patients:4

LV EF = −4.256 + 8.263 ∗MD − 0.242 ∗MD2. (3)

Table 3: EF estimation by mitral valve excursion using equation (3).
MD EF GT (EF)

Case 1 11.91 59.84 58
Case 2 18.18 65.98 63
Case 3 17.31 66.26 62
Case 4 10.97 57.26 65



4. FUTURE WORK

For future work, one could estimate the Ejection Fraction (EF) using the mitral valve excursion. Employing our
segmentation result, we are also interested in developing a direct method for the EF using Simpson’s biplane
method: by segmenting the mitral valve from the cardiac video one is able to obtain a much simpler time series
for the detection of the heart walls used in the calculation of EF. We are interested in expanding such detection
in order to build algorithms for the detection of the boundaries of the left ventricle which will be outside of our
mitral valve segmentation.

In addition, the current algorithm does not use the temporal information of the video sequence. To improve
that, we could exploit the spatio-temporal connectivity of the valve tissue. It is also necessary to change the valve
window size according to the scale of each video as we fix the valve window size for all scale videos. However, it
is a challenging task because our algorithm measures the scale of each video based on the chamber length which
is measured using two hinge points estimated from the valve segmentation result. Therefore, we need to measure
the scale of each video by another algorithm that does not depend on the window detection algorithm.
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