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Abstract— Hyperspectral video sequences (HVSs) are well
suited for gas plume detection (GPD). The high spectral reso-
lution allows the detection of chemical clouds even when they
are optically thin. Processing this new type of video sequences
is challenging and requires advanced image and video analysis
algorithms. In this paper, we propose a novel method for
GPD recorded in HVSs. Based on the assumption that the
background is stationary and the gas plume is moving, the
proposed method separates the background from the gas plume
via a low-rank and sparse decomposition. Furthermore, taking
into consideration that the gas plume is continuous in both
spatial and temporal dimensions, we include total variation
regularization in the constrained minimization problem, which
we solve using the augmented Lagrangian multiplier method.
After applying the above process to each extracted feature,
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a novel fusion strategy is proposed to combine the information
into a final detection result. Experimental results using real data
sets indicate that the proposed method achieves very promising
GPD performance.

Index Terms— Detection, hyperspectral video sequences
(HVSs), low-rank, sparse, and total variation (LRSTV).

I. INTRODUCTION

HYPERSPECTRAL imaging has been used in a number
of applications such as land-use or land-cover mapping,

forest inventory, or urban-area monitoring [1]–[4]. However,
hyperspectral video sequences (HVSs) are much less com-
mon due to their large data size. Thanks to the dramatic
improvements of sensor technologies, HVSs are currently
being developed, opening the door to new research avenues
and application, involving critical new methodological
developments [5]–[8].

Standoff detection of chemical gas plume is necessary
to environmental monitoring, emergency response, chemical
warfare threat mitigation, and earth sciences [9]. However, this
task still remains a challenging problem as conventional RGB
images are not able to capture the potentially invisible gas
plume. For example, a wide range of chemical gases have dis-
tinctive spectral signatures in the long-wave infrared (LWIR)
region, requiring high resolution in the electromagnetic spec-
trum for detection. Another approach for plume detection
utilizes temporal information by capturing multiple images.
HVSs reveal the spectral properties of the scene and record
its evolution over time at the cost of processing a large data
hypercube [10]–[13].

Some prior work has been done on gas plume detec-
tion (GPD) in recent years. The existing works can be clas-
sified into three categories. The first category is methods
based on anomaly detection. In [14]–[16], the automatic
matched subspace detector (AMSD) was used to detect gas
plumes and the clutter matched filter (CMF) was used to
develop GPD algorithms [17], [18]. Both the AMSD and
CMF detectors can detect gas plumes against a complex
background, in which single-pixel false alarms are eliminated
by postprocessing techniques. Thus, these methods are widely
used in hyperspectral image. But in HVS, these methods
can only be applied frame by frame and the postprocessing
technique might be different in different scenes. The second
category performs clustering of spectral data to separate the
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plume from the background [8], [19], [20]. These methods
often exhibit more spatial continuity. In [8], it was shown that
principal component analysis (PCA) applied to each frame
resulting in temporal flicker for the video, requiring a midway
equalization procedure. The later works [19], [20] are able to
perform graph-based clustering across several video frames,
without this effect.

The third category is to extend the traditional object tracking
algorithms to HVS. The mean shift tracker is applied in [12].
In [21], the position of the plume is first estimated, using the
temporal redundancy between two consecutive frames. Then,
a binary partition tree is built and pruned according to the
previous estimation. By this way, the temporal continuity of
HVS is discovered. However, the spectral characteristic of
HVS is not fully used, because these methods work with only
a few features of HVS.

In this paper, we propose a method to process HVS for the
detection of a chemical gas plume diffusing in the atmosphere.
We assume that the gas plume is the only moving object
and the background of different frames is assumed to remain
almost constant. Some change is allowed such as variation
caused by illumination change or periodic motion of dynamic
textures. Thus, it is reasonable to assume that the background
information is low dimensional. Even in a static shot, there
may be noise corrupting the background, but the proper
low-dimensional approximation will remove this. Moreover,
the gas plume is a moving object which we assume moves
independently of the background. It includes spectral changes
that cannot be incorporated into the low-dimensional model of
background. These gas plume pixels are treated as outliers in
the low-dimensional model. As the gas plume occupies only
a small fraction of the image pixels, it can be treated as a
sparse contribution. We assume finally that the gas plume
forms a spatially and temporally connected set of pixels.
Based on these assumptions, we use a low-rank and sparse
matrix decomposition to separate the background from the
gas plume. In addition, the total variation (TV) regularization
for video can explicitly describe the gas plume continuity
in both the spatial and temporal directions. In traditional
moving object detection methods [22]–[27], one column of
the matrix is the vectorized image of a frame; hence, only one
2-D matrix is required to represent the video. However,
in HVS, there are hundreds of bands. And one 2-D matrix
becomes unwieldy large in order to cover all the information
contained in HVS.

To overcome this problem, we propose a novel fusion
strategy called MaxD. After first performing detection in
each band, it takes the maximum value of the detected gas
plume part across different features. In this way, we utilize
all the useful information contained in different features. The
experiments on real gas plume diffusing hyperspectral videos
demonstrate that our proposed model can achieve higher
detection accuracies in GPD compared with the methods
which only use one PC feature. Experimental results also show
that the proposed method particularly performs well for target
detection in noisy HVS with changing object outline. Thus, our
method is well suited to GPD in HVS since the imaging quality
in LWIR wavelength is lower than that in other wavelength.

Fig. 1. Diagram showing the flowchart of the proposed detection algorithm.
First, PCA is used to reduce the dimension. Then, the same PC of each
frame forms a matrix that can be decomposed into the background and gas
plume part by LRSTV. Finally, the detection results of different PCs are fused
together using MaxD strategy.

Although the combination of the TV regularization and
low-rank decomposition has been exploited in conventional
video object detection [28]–[30], it is the first time to use
the low-rank decomposition-based method in hyperspectral
video. The advantage of hyperspectral video is the abundant
spectral information that can provide us more information
about the gas plume. In this paper, the TV-regularized low-
rank decomposition method is used as an initial step to extract
the gas plume’s information from one spectral component or
combination. Then, a further step is conducted which fuses the
detection results of all the spectral information. In addition,
both the sparse and TV constraints are imposed on the gas
plume part according to the characteristic of gas plume.
However, different regularization combinations are imposed
on the foreground since the moving objects in [28] and [29]
are different from the gas plume.

For illustrative purposes, Fig. 1 shows the flowchart of
the proposed detection algorithm using a diagram. The main
contributions of this paper can be therefore summarized as
follows.

1) We propose a new framework of GPD in HVS different
from the conventional approaches found in the literature.
First, a low-rank and sparse decomposition with TV
regularization is employed to produce each feature’s
detection result. We then use the MaxD fusion strategy
to combine different features’ detection results into an
effective and efficient algorithm to solve the problem.

2) Taking into consideration that the gas plume is a small
cluster and moves continuously between neighboring
frames, we naturally incorporate the space and time
connectivity by introducing TV regularization.

3) HVS contain many bands which have important spec-
tral information. The proposed fusion strategy in the
decision process allows better using the information of
different features.

The rest of this paper is organized as follows. In Section II,
the details of the proposed GPD method based on low-
rank, sparse, and TV (GPD-LRSTV) model is described.
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In Section III, experiments with real data are described and
analyzed followed by conclusions in Section IV.

II. PROPOSED GAS PLUME DETECTION METHOD

A. Problem Formulation

In the HVS, a gas plume arises in a given frame and
moves during the sequence. Our goal is to separate the moving
gas plume from the background. Background modeling or
subtraction from video sequences is a popular approach to
detect activity in a scene which finds its application in video
surveillance from static cameras [27]. However, background
estimation is complicated by the presence of a moving object,
as well as variability in the background itself. Because back-
ground components in different frames are highly correlated,
it is reasonable to assume that this variability is low rank.
In addition, the foreground gas plume is spatially localized
and sparse. Due to these properties, robust RPCA [31] is
widely used for moving object detection. In traditional video,
however, each frame is composed of one band which is
vectorized as column of a matrix. Unlike these traditional
videos, HVS have hundreds of bands in each frame, and it
is very computational complex to put the whole frame in a
column. Thus, in the first step, a one-band image is extracted
at each frame. The extracted one-band image will be detailed
in Section II-C. Suppose we are given an HVS including
T frames, and each frame can be seen as a 3-D tensor of
size M × N × b, where M M , N, and b are the number of
rows, columns, and bands of each frame, respectively. Then,
the vectorized one-band images are stacked as columns of a
matrix X ∈ R

M N×T . This matrix can be expressed as the sum
of a low-rank matrix modeling the background and a sparse
error matrix representing the gas plume in the scene as follows:

min
A,E

rank(A)+ λ‖E‖0
s.t. A + E = X (1)

where A ∈ R
M N×T represents the background matrix and

E ∈ R
M N×T represents the sparse error matrix. λ is a positive

parameter controlling sparsity. Unfortunately, (1) is a highly
nonconvex optimization problem and no efficient solution is
known. A tractable optimization problem can be obtained by
relaxing (1), replacing �0 norm with �1 norm and the rank
norm with the nuclear norm ‖A‖∗ =∑i σi (A), where σi (A) is
the i th singular value of A. This yields the following convex
surrogate:

min
A,E
‖A‖∗ + λ‖E‖1

s.t. A + E = X. (2)

Candès et al. [32] proved that the underlying low-rank
matrix A and the underlying sparse matrix E can be exactly
recovered with high probability.

The original work of RPCA in [31] proposed iterative
thresholding methods with low complexity, but their con-
vergence is generally very slow. Then, various algorithms
have been developed for specific problems. Two of the most
popular techniques are the proximal gradient (PG) method and
the Augmented Lagrangian Method (ALM), both of which
are applicable to a variety of convex problems. The acceler-
ated PG (APG) methods proposed by Lin et al. [33] are faster

and generally more accurate. The ALM [34] achieves
state-of-the-art performance in terms of both speed and accu-
racy to the best of our knowledge. Moreover, the inexact ALM
proposed in [34] requires significantly fewer partial singular
value decomposition. Other methods [22]–[24] have also been
proposed in the Bayesian setting. Improved models have
been proposed by introducing regularizations such as adaptive
graph term [35] and structured sparse term [36]. Further,
nonconvex formulations of the original problem are introduced
by using the Schatten-p norm [37] or a nonconvex rank
approximation [38].

B. Total Variation-Regularized Low-Rank
Sparse Decomposition

In our HVS, the gas plume is continuously present in the
scene in both spatial and temporal dimensions. Classical object
detection methods use Markov dependencies to introduce this
property by adding spatial and temporal priors [23], [24]. The
approximate solution to these problems can be obtained either
by Markov chain Monte Carlo [39] analysis or with variational
Bayesian methods [40]. In this paper, TV regularization over
space–time is investigated to enforce spatial smoothness and
temporal consistency. In particular, the following optimization
problem is proposed:

min
A,E
‖A‖∗ + λ‖E‖1 + β‖E‖TV

s.t. A + E = X (3)

where ‖ · ‖TV is the TV norm and β is a coefficient for the
strength of that term. Before explaining the TV norm, we first
define the notation that will be used.

The sparse error matrix E can be represented as a 3-D
tensor ETen ∈ R

M×N×T , and we use ETen[m, n, t] to indicate
the intensity of position (m, n) at frame t . To simplify the

numerical computation, we stack all the entries of ETen into a
column vector EVec = vec(ETen) ∈ R

M NT×1 according to the
lexicographic order, where vec(·) represents the vectorization
operator.

Then, we denote Dh , Dv , and Dt ∈ R
M NT×M NT as

the first-order forward finite-difference operators along the
horizontal, vertical, and temporal directions, respectively. The
definitions of each operator are Dh EVec = vec(ETen[m + 1,
n, t] − ETen[m, n, t]), Dv EVec = vec(ETen[m, n + 1, t] −
ETen[m, n, t]), and Dt EVec = vec(ETen[m, n, t + 1] −
ETen[m, n, t]) with periodic boundary conditions [41].

The TV norm ‖E‖TV can either be defined as the anisotropic
TV norm [42]

‖E‖TV1 =
∑

i

(γh |[Dh EVec]i |

+ γv |[Dv EVec]i | + γt |[Dt EVec]i |) (4)

or the isotropic TV norm

‖E‖T V2

=
∑

i

√(
γ 2

h [Dh EVec]2i + γ 2
v [Dv EVec]2i + γ 2

t [Dt EVec]2i
)
(5)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where [·]i denotes the i th element of the argument and
(γh, γv , γt ) are constants used for greater flexibility in con-
trolling the forward difference along each direction. The
anisotropic TV norm will lead to piecewise smooth solutions
with defined horizontal and vertical edges in the sparse error
image. The isotropic TV norm tends to produce defined and
smooth edges in all directions.

Due to excellent performance suppressing discontinuous
changes generally regarded as noises, TV regularization has
been widely used for image and video denoising [43]–[45].

Denoting D = [γhDT
h , γvDT

v , γt DT
t ]T ∈ R

3M NT×M NT ,
‖E‖TV1 is the �1 norm of vector and ‖E‖T V2 is the �2,1 norm
of vector DEVec. Thus, we can use ‖DEVec‖1 and ‖DEVec‖2,1
to represent ‖E‖TV1 and ‖E‖TV2, respectively.

C. Algorithm

To solve problem (3), the alternating direction
method (ADM) [33] is applied. We first introduce auxiliary
variable J to split the energy

min
A,E
‖A‖∗ + λ‖E‖1 + β‖J‖TV

s.t A + E = X, J = E . (6)

The augmented Lagrangian function of problem (6) is

L(A, E, J, Y1, Y2)

= ‖A‖∗ + λ‖E‖1 + β‖J‖TV + 〈Y1, X − A − E〉
+ 〈Y2, E − J〉 + μ

2

(‖X − A − E‖2F + ‖E − J‖2F
)

= ‖A‖∗ + λ‖E‖1 + β‖J‖TV − 1

2μ

(‖Y1‖2F + ‖Y2‖2F
)

+ μ

2

(
‖X − A − E + Y1

μ
‖2F + ‖E − J + Y2

μ
‖2F
)

(7)

where Y1 and Y2 are the Lagrange multiplier matrices, μ is a
positive penalty scalar, 〈·, ·〉 denotes the matrix or Frobenius
inner product, and ‖ · ‖F represents the Frobenius norm. The
proposed algorithms consists in updating the variables A, E ,
and J repeatedly, by minimizing L with other variables fixed
as well as updating dual variables Y1 and Y2. With some
algebra, the updating schemes can be stated as follows:

Ak+1 ← arg min
A

1

μ
‖A‖∗ + 1

2

∥∥∥∥X − A − Ek + Y1

μ

∥∥∥∥
2

F
(8)

Ek+1 ← arg min
E

λ

2μ
‖E‖1

+1

2

∥∥∥∥E − 1

2

(
Jk − Y2

μ
+ X − Ak+1 + Y1

μ

)∥∥∥∥
2

F
(9)

Jk+1 ← arg min
J

β

μ
‖J‖TV + 1

2

∥∥∥∥J −
(

Ek+1 + Y2

μ

)∥∥∥∥
2

F
(10)

where (8) and (9) can be efficiently computed via the singular
value thresholding (for A) and the soft thresholding operator
(for E).

Then, the Lagrange multipliers are updated by Y1 ← Y1 +
μ(X − Ak+1 − Ek+1) and Y2 ← Y2 + μ(Ek+1 − Jk+1).

For the sake of simplicity, subscript k + 1 is omitted and
problem (10) can be rewritten as follows:

J Vec = arg min
J Vec

β

μ
‖DJ Vec‖q + 1

2

∥∥∥∥J Vec − vec
(

E + Y2

μ

)∥∥∥∥
2

(11)

where q represents either �1 or �2,1 norm. Here, we have used
the fact that the Frobenius norm of J−(E+(Y2/μ)) is the two
norms of J Vec−vec(E+(Y2/μ)), i.e., ‖J−(E+(Y2/μ))‖2F =‖J Vec − vec(E + (Y2/μ))‖2.

To solve the subproblem (11), another auxiliary variable
Q ∈ R

3M NT×1 is introduced to split this energy. Thus,
we have

J Vec = arg min
J Vec

β

μ
‖Q‖q + 1

2

∥∥∥∥J Vec − vec
(

E + Y2

μ

)∥∥∥∥
2

s.t. Q = DJ Vec. (12)

Denote B = vec(E + (Y2/μ)). Then, the augmented
Lagrangian function of (12) is

L J Vec(J Vec, B, Y3) = β

μ
‖Q‖q + 1

2
‖J Vec − B‖2

+ Y T
3 (Q − DJ Vec)+ η

2
‖Q − DJ Vec‖2

(13)

where η is the penalty parameter associated with the quadratic
penalty term ‖Q−DJ Vec‖2 and Y3 ∈ R

3M NT×1 is the Lagange
multiplier. Again, we use the ADM to iteratively solve the
problem.

Updating J Vec with other terms fixed

J Vec
l+1 ← arg min

J Vec

1

2
‖J Vec − B‖2 + Y T

3 (Ql − DJ Vec)

+ ηl

2
‖Ql − DJ Vec‖2. (14)

Setting the derivation of the objective function to zero,
we have

(J Vec − B)− DTY3 − ηlDT(Ql − DJ Vec) = 0. (15)

Then, the solution of (14) is found by considering the
normal equation

(I + ηlDTD)J Vec = DTY3 + ηlDT Ql + B. (16)

Traditionally, the optimal solution can be simply obtained
by computing the Moore–Penrose pseudo-inverse of
(I + ηlDTD). However, this approach is computationally
expensive due to the large matrix size. Due to its block-
circulant structure, it can be diagonalized by the 3-D-DFT
matrix [42]. Hence, (16) has the following solution:

F−1

(
F(DTY3 + ηlDTQl + B)

1+ ηl(|F(γhDh)|2 + |F(γvDv )|2 + |F(γt Dt )|2)

)

(17)

where F (·) denotes the 3-D Fourier transform operator, |·|2 is
the element-wise square, and the division is element-wise. The
denominator can be precalculated as it remains constant.
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Updating Ql+1 with the other terms fixed

Ql+1 = arg min
Q

β

μ
‖Q‖q + Y T

3

(
Q − DJ Vec

l+1

)
+ ηl+1

2

∥∥Q − DJ Vec
l+1

∥∥2
. (18)

For q = 1, the solution is

Ql+1 = Sβ/μη

(
DJ Vec

l+1 − Y3/ηl+1
)

(19)

where S(·) is the shrinkage operator whose definition on
scalars is Sε(x) = sgn(x) max(|x | − ε, 0). To extend the
shrinkage operator to vectors and matrix, it is applied element
wise.

For q = (2, 1), we first denote Ql+1 = [QT
l+1,h QT

l+1,v

QT
l+1,t ]T, Y3 = [Y T

3,h Y T
3,v Y T

3,t ]T, and Wh = γhDh J Vec
l+1 −

(1/ηl+1)Y3,h (analogous definitions for Wv and Wt ). The
solution in this case is given by

Ql+1,h = max(W − β/μη, 0) · Wh

W
(20)

where W = max((|Wh |2 + |Wv |2 + |Wt |2)1/2, ε) and ε is
a small constant. Here, the multiplication and division are
componentwise operations.

After solving each subproblem, we update the dual variable

Y3 ← Y3 + ηl
(

Ql+1 − DJ Vec
l+1

)
. (21)

As mentioned in [41], the method of multipliers can
achieve a faster rate of convergence by adapting the following
parameter η update scheme:

ηl+1 =
{

ρ2ηl , if
∥∥Ql+1 − DJ Vec

l+1

∥∥ ≥ α
∥∥Ql+1 − DJ Vec

l+1

∥∥
ηl , otherwise.

(22)

Here, we set ρ2 = 2. After obtaining the optimal J Vec, the
solution of (10) is obtained by reshaping vector J Vec back into
the 2-D matrix variable Jk+1.

The complete algorithm being proposed to solve (3) is
summarized in Algorithm 1.

D. MaxD Strategy for HVS Gas Plume

In HVS, there are potentially hundreds of spectral bands.
However, in the LRSTV model, only one-band video sequence
is processed to separate the gas plume from the background.
In order to make full use of the abundant spectral informa-
tion, a preprocess step is conducted to produce the one-band
video sequence before detection. The one-band video sequence
should contain the sufficient information from the HVS. Band
selection and feature extraction are two common technologies
for preprocessing. In GPD, the corresponding bands that reveal
the most information of a specific kind of gas are different,
so the band selection method is applied when the gas’s prior
information is known. The selected band should be determined
by the detected gas, but in this paper, the prior information
of the detected gas is unknown; thus, band selection method
cannot be treated as a common way in preprocess in regard
of different gases. Besides, due to the existence of earth’s
surface emission, atmospheric absorbance, and sensor noise,

Algorithm 1 Algorithm for LRSTV
Input: data matrix X, parameters β > 0, λ > 0
Initialize 1: A0 = E0 = J0 = 0, Y1 = X/
max(‖X‖2, λ−1‖X‖∞), Y2 = 0,
μ0 = 1.25/‖X‖2, μmax = μ0107, ρ1 = 1.5, k = 0,

tol1 = 10−7, tol2 = 10−3.
1. while |X − Ak − Ek‖F/‖X‖F < tol1 do
2. Update variable Ak+1:
Ak+1 = �(1/μk)(X − Ek + (1/μk)Y1)
where � is the singular value thresholding operator [46].

3. Update variable Ek+1:
Ek+1 = Sλ/(2μk)

(
Jk−(1/μk)Y2+X−Ak+1+(1/μk)Y1

2

)
4. Update variable Jk+1:

Solve problem:
arg min

J V ec

β
μ‖DJ V ec‖q + 1

2‖J V ec − vec(Ek+1 + Y2
μ )‖2

Initialize 2: J V ec
0 = vec(Ek+1 + Y2

μ ), Q0 = DJ V ec
0 ,

Y3 = 0, l = 0,
compute the matrices F(γhDh), F(γvDv ), F(γt Dt ),
set ρ2 = 2, α = 0.7, η0 > 0
While not converged do
4.1. Update J V ec

l+1 via (16)
4.2. Update
Ql+1 = arg min

Q

β
μ‖Q‖q+Y T

3 (Q−DJ V ec
l+1 )+ ηl+1

2 ‖Q−
DJ V ec

l+1 ‖2
Ql+1 via either (18) for the anisotropic total variation
or (19) for the isotropic one
4.3. Update multiplier via (20)
4.4. Update ηl+1 via (21)
4.5 Check convergence

If ‖J V ec
l+1 − J V ec

l ‖2/‖J V ec
l ‖2 < tol2 then

break
end if

4.6. l ← l + 1.
Output: optimal solution (J V ec, Q)
Reshape J V ec to its 2-D matrix shape Jk+1

5: Update the out loop Lagrange multipliers as follows:
Y1 ← Y1 + μk(X − Ak+1 − Ek+1).
Y2 ← Y2 + μk(Ek+1 − Jk+1)

6: Update μ as follows:
μk+1 = min(μmax, ρ1μk)

7: k ← k + 1.
8: end while
Output: an optimal solution (A, E, J ).

the captured HVS has limited quality. The band selection
method is not appropriate as it directly selects the one-band
video sequence from the lower quality raw HVS data. To get a
high-quality video sequence and design, a common method—
a feature extraction method—PCA is applied in this paper.
PCA is the most popular linear feature extraction method,
which can keep the most information in the few components
in terms of variance. Due to the low complexity and the
absence of parameters, PCA is competitive for the purpose of
classification and target detection of hyperspectral data [47].
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Fig. 2. HVS-aa12, frame 14. (a) Ground truth; the red pixels represents
the gas plume. Then, the resulted gas plume part using (b) first, (c) second,
(d) third, (e) fourth, and (f) fifth PCs. Note that for better comparison, all the
gas plume images are scaled to [0, 1]. (b) and (f) are close to the ground
truth, which means that the first and fifth PCs have high contrast between gas
plume and background in frame 14.

In this paper, for each frame of the HVS, PCA is performed
and the first p components are kept. By performing PCA, the
PCs act as a type of spectral filter where each component rep-
resents a particular chemical spectrum in the image. To obtain
a p-dimensional representation of the data, each pixel is
projected onto these p PCs. A natural strategy of GPD is to
extract one feature which provides the best contrast between
plume and background in each frame; then, the extracted
feature can be used as the input data matrix X of Algorithm 1.
However, it is hard to decide which component has the best
contrast between gas plume and background. Moreover, some
parts of the gas plume are obvious in one PC and some other
plume parts will be obvious in other components. For example,
Fig. 2(b)–(f) shows the resulted gas plume part using different
PCs from frame 14, HVS-aa12. Details of HVS aa12 are
presented in Section III-A. Compared to the ground-truth map
[Fig. 2(a)], the first and fifth PCs have better detection results
than those of the other three components. In Fig. 3(b)–(f), the
gas plume part using different PCs of frame 22 HVS aa12
is shown. The third PC is the best among the first five PCs.
For different frames, the best feature for detection may not
be the same. Thus, it is unreasonable to use only one feature
to represent the hyperpsectral image for GPD. To detect the
gas plume with high probability in each frame, we propose
a more robust method by combining all the features. In the
first step, PCA is performed frame by frame to extract the first
p PCs. Then, the i th PC of all frames are combined to form
matrix Xi , where each column is each frame’s i th feature. For
fair comparison, all matrices Xi , i = 1, 2, . . . , p are normal-
ized by Xi ← (1/(max([Xi ])))Xi , where max([Xi ]) repre-
sents the maximum entry of the matrix Xi . Each matrix Xi

is then decomposed into the background part Ai and the
plume part Ei using (3) with the same parameters λ and β.
As different PCs have different projections of the original

Fig. 3. HVS-aa12, frame 22. (a) Ground truth; the red pixels represent
the gas plume. Then, the resulted gas plume part using (b) first, (c) second,
(d) third, (e) fourth, and (f) fifth PCs. Note that for better comparison, all the
gas plume images are scaled to [0, 1]. (d) is close to the ground truth, which
means that the third PC has high contrast between gas plume and background
in frame 22.

features, the resulting moving objects Ei of different PCs have
different abilities to reveal the gas plume. To combine all the
information, the plume detection is Ẽ where each entry is the
maximum value of all Ei at the same coordinate, which can
be written as

Ẽi, j = max
{

E1
i, j , E2

i, j , . . . , E p
i, j

}
i = 1, 2, . . . , M, j = 1, 2, . . . , N. (23)

Here, Ẽi, j represents the absolute value of the i th row and
j th column entry of matrix Ẽ . In this way, gas plume detected
by different PCs is kept. For PCs which have low contrast
between background and gas plume, the corresponding moving
object part Ei will be small, and it will not affect the final
result as only the maximum value will be stored. Moreover,
although this strategy is sensitive to noise, the TV regulariza-
tion has removed the noise in prior steps. In [10], a midway
method for histogram equalization is used to reduce flicker
between frames. Whereas in our method, the flicker between
frames will not affect the final detection because we normalize
all the PCs matrix Xi and the low rank matrix is able to
describe the flicker between frames. Thus, the sparse error
matrix will not affect by the flicker which only shows the gas
plume.

The maximum value detection strategy is noted as MaxD
and the main steps for the GPD-LRSTV algorithm are shown
in Algorithm 2.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we provide experimental results for our GPD
algorithm with real data sets. From different perspectives,
we adopt two evaluation criteria. Because the gas plume
can be seen as the anomaly in each frame, we can use
the receiver operating characteristic (ROC) curve to measure
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Algorithm 2 Algorithm for GPD-LRSTV
Input: hyperspectral video sequence, parameters β > 0,
λ > 0, p
1. Using PCA to extract the first p principal components in
every frame
2. For i = 1 : p

2.1. Form matrix Xi where the j th column is the
vectorized i th principal component of the j th
frame.
2.2. Normalize Xi as follows
Xi ← 1

max([Xi ]) Xi

2.3. solve the following problem using
Algorithm 1

min
Ai ,Ei

‖Ai‖∗ + λ‖Ei‖1 + β‖Ei‖T V

s.t Ai + Ei = Xi

End for
5. Compute the final moving object part E , subject to:
Ẽi, j = max{[E1]i, j , [E2]i, j , . . . , [E p]i, j }, i = 1, 2, . . . , M ,
j = 1, 2, . . . , N

Output: an optimal solution Ẽ

the performance of the methods. A better detector would lie
nearer to the top-leftmost corner and result in a larger area
under the curve [48]. As more than one frame has to be
compared, the area under the ROC curve (AUC) of each frame
is calculated for comparison. A bigger AUC statistic represents
a better performance. For quantitative evaluation, we measure
the accuracy of GPD by comparing our result with the ground
truth [49]. We can evaluate the results using precision and
recall, which are defined as

precision = TP

TP+ FP
, recall = TP

TP+ FN
(24)

where TP, FP, TN, and FN are the numbers of true positives,
false positives, true negatives, and false negatives, respectively.
To analyze the performance, we use the F-measure

F-measure = 2 · precision · recall

precision+ recall
. (25)

The higher the F-measure, the more accurate is the
detection. In all the experiments, the final detection map is
obtained by thresholding the sparse matrix. The threshold
is not known in prior, and we only compare the mentioned
methods. For fair comparison, we take the threshold that gives
the maximal F-measure with the ground truth in all methods,
thus comparing all methods’ best F-measures.

The parameters (γh, γv , γt ) are set to (1, 1, 0.1)
empirically. For λ and β, detailed discussions are presented
in Section III-C. In our experiments, we adopt the isotropic TV,
that is, to say q = (2, 1). The number of features extracted by
PCA is p = 5, which we find keeps most of the information
in the original HVS.

A. Data Sets Description

The first two hyperspectral data sets used in our experi-
ments were provided by the Applied Physics Laboratory at

Fig. 4. First PC of 12 consecutive frames of a hyperspectral sequence.

Johns Hopkins University. They consist of video sequences
recorded during the release of chemical plumes at the Dugway
Proving Ground. The videos were captured by three different
long-wave infrared spectrometers placed at different locations
to track the release of known chemicals. The cameras were
about 1.25 miles away from each release at an elevation
of about 1300 feet. The sensors captured one data cube
every 5 s consisting of measurements at wavelengths in the
LWIR portion of the electromagnetic spectrum.

Fig. 4 features 12 consecutive frames of a hyperspectral
sequence, provided by the Applied Physics Laboratory at
Johns Hopkins University.1 They have been acquired by the
US Defense Threat Reduction Agency and the National Sci-
ence Foundation. Since the original data have several hundreds
of spectral bands, the actual visualization of the data is not a
straightforward task. For illustrative purpose, we simply plot
here the first PC of each picture. This exhibits somewhat low
contrast and low signal-to-noise ratio. Monitoring of the plume
could be seen as a standard computer vision task of detection,
segmentation, and object tracking; however, this is actually
much more challenging for the following reasons.

1) The plume is not a solid object. It is impacted by sig-
nificant modifications of its shape between each frame,
even though there is some temporal continuity that we
want to use. The tracking must take this into account.

2) The plume is not opaque. One can see the background
information through it, and it has very diffuse edges.
Consequently, standard segmentation is not a sufficient
approach for the analysis of the data, while this should
anyway be considered as a first step.

3) As previously mentioned, due to the high dimensionality
of the data, many traditional image analysis methods will
not work.

Furthermore, in order to evaluate the extensibility and
effectiveness of our proposed detection method on traditional
moving objects, we perform the experiments on a third data
set, which is a sequence of 30 frame hyperspectral video

1The images are of dimension 128× 320 × 129, where the last dimension
indicates the number of channels, each depicting a particular frequency from
7820 to 11 700 nm, spaced 30 nm apart. The sets of images were taken
from videos captured by three LWIR spectrometers, each placed at a different
location about 2 km away from the release of plume at an elevation of around
1300 feet. One hyperspectral image is captured every 5 s. The size of each
frame is reduced to 128× 320 × 5 after PCA dimensional reduction.
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TABLE I

AUC STATISTIC FOR DIFFERENT FRAMES FOR HVS-aa13

of a static scene with a moving box sliding from the right
side of the image to the middle of the image. In each frame,
33 bands are sensed covering the range from 430 to 720 nm at
10-nm resolution, so the size of each frame is 480×752×33.
It is originally used to testify the restoration accuracy of a
hyperspectral video of dynamic scenes from a few measured
multispectral bands per frame [50].

B. Detection Results

The first data set studied is the HVS-aa13 map. It has a total
of 31, with 20 containing the gas plume. Along with the HVS
data, 11 frames of gas plume ground truth are provided to
evaluate the performance. Qualitative and quantitative results
of our methods on this data set are given.

First, to demonstrate the superiority of the introduced TV
regularization, we compare our results with inexact augmented
Lagrange multiplier (IALM) [34], DECOLOR [25], and non-
convex rank approximation (NRA) [38] methods. The IALM
and NRA separate the background and gas plumes without
considering the spatial and temporal smoothness. DECOLOR
adopts the nonconvex sparsity penalty and Markov random
field to detect outliers which prefers the regions that are
relatively dense and contiguous. As the DECOLOR directly
gives the foreground mask without tuning thresholds, it cannot
be used to compute the AUC statistics and applied in the MaxD
progress. We employ the difference between the original video
and the background part as the detection result. Fig. 5(a)
shows the 18th frame’s first PC, and Fig. 5(b)–(e) shows the
foreground part of the IALM, DECOLOR, NRA, and LRSTV
methods, respectively. To better show the differences between
these different methods, we normalize the foreground part
dividing by their corresponding maximum value as shown
in Fig. 5(b)–(d). The detected gas plume of LRSTV is obvious
and smooth, and there is no noise in the background positions
as shown in Fig. 5(d). This indicates the denoising effect of
the introduced TV regularization.

Next, we use the above three methods to detect the fore-
ground part in Algorithm 2. We denote the resulting methods
using IALM, DECOLOR, NRA, and LRSTV as GPD-IALM,
GPD-DECOLOR, GPD-NRA, and GPD-LRSTV, respectively.
The final results are shown in Fig. 6. We see that the results
are noisy except for GPD-LRSTV which is clean, similar to
the ground truth. Since the gas plume dissipates, it is hard
to detect by the 28th frame shown in the last row. Here, the
results of GPD-IALM, GPD-DECOLOR, and GPD-NRA are

Fig. 5. (a) First PC of frame 18, HVS aa13. The detected result over the
first PC using (b) IALM, (c) DECOLOR, (d) NRA, and (e) proposed LRSTV
method.

rather poor. Because of the spatial and temporal continuity
constraint enforced by TV regularization, our method can still
recover the faded plume. GPD-LRSTV enforces continuity
along the temporal dimension which penalizes rapid change
between consecutive frames. To provide an objective compar-
ison, the AUC and F-measure values of these frames are given
in Tables I and II. The anisotropic TV norm is also consid-
ered for comparison. We use GPD-LRSTV(a) to denote the
method using anisotropic norm. We can see that the proposed
GPD-LRSTV achieves the best numerical results of every
frame in terms of both AUC and F-measure statistics.
GPD-LRSTV(a) achieves a similar result with GPD-LRSTV
which indicates that the anisotropic TV norm and isotropic
TV norm have the similar effect in the GPD.

The second data are the HVS-aa12 sequence. As with
HVS-aa13 sequence, it has 31 frames and 20 frames with a
gas plume present. The results are shown in Fig. 7. We find
that GPD-IALM and GPD-NRA detect most of the gas plume,
but many isolated background pixels are detected as well.
The GPD-DECOLOR algorithm produces fewer incorrectly
detected pixels. The GPD-LRSTV does not have this problem,
and the detected gas plume is continuous. The numerical
results shown in Tables III and IV prove the effectiveness of
the proposed GPD-LRSTV.
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Fig. 6. Detection results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on the HVS-aa13 sequence. First column is the false-color images
of frame (9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28), respectively. Second column is the ground truth. Third and fifth columns display the results obtained by
GPD-IALM and GPD-NRA, which did not consider the spatial and temporal continuity. The fourth column shows the results of GPD-DECOLOR. There still
exists noise in these images calculated by GPD-DECOLOR. The sixth column is the results of GPD-LRSTV which achieves the best results especially in the
last row.

TABLE II

F-MEASURE STATISTIC FOR DIFFERENT FRAMES FOR HVS-aa13

To verify the efficiency of the proposed MaxD strategy,
the detected results using a single PC are compared with the
proposed GPD-LRSTV. We use the PC1-LRSTV to represent
the method with p = 1, taking the first PC with analogous
definitions for other PCs. Fig. 8(a) and (b) shows the AUC and
F-measure statistics of the methods using different PCs and
the full GPD-LRSTV method using five components. It can
be seen that in frames 11, 12, and 14, PC1-LRSTV (LRSTV
using the first PC) achieves good results, and in the following
frames, PC3-LRSTV (LRSTV using the third PC) achieves
good results. However, GPD-LRSTV generally achieves the
best results in every frame. This demonstrates that the gas

plume may not be detected by one single PC, but by taking
the maximum value of the PCs’ results, we can obtain a robust
detection result in every frame.

Then, we apply our proposed method on the third data set.
The results are shown in Fig. 9. In this video, the moving
object has fixed shape and size in all frames and the differences
between moving object and background is clearer than the
gas plume videos. Thus, the detection task is easier in this
HVS. From Fig. 9, it can be seen that all methods can
detect the moving box and give a complete outline. This is
because the scene is simpler and the original RPCA model can
detect the moving object very well. Tables V and VI show the
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Fig. 7. Visual results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on HVS-aa12 sequence. First column is the false-color images of
frame (11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30), respectively. Second column is the ground truth. Third and fifth columns display the results obtained by
GPD-IALM and GPD-NRA, which did not consider the spatial and temporal smoothness. The fourth column shows the results of GPD-DECOLOR. There
also exists noise in these images calculated by GPD-DECOLOR. The sixth column is the results of GPD-LRSTV. It achieves the best results among the
compared methods.

TABLE III

AUC STATISTICS FOR DIFFERENT FRAMES FOR HVS-aa12

TABLE IV

F-MEASURE STATISTICS FOR DIFFERENT FRAMES FOR HVS-aa12

AUC and F-measure statistics for HVS-MB. GPD-DECOLOR
gained the best performance as DECOLOR had been proven
to be effective in object detection where the object keeps the

same outline and has obvious differences with the background.
Besides, in HVS-MB data set, there is less noise in the scene
due to the high imaging quality in 430–710-nm wavelength.
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Fig. 8. (a) AUC statistics for methods using different PCs and GPD-LRSTV of HVS-aa12. (b) F-measure statistics for methods using different PCs and
LRSTV-MaxD of HVS-aa12. The PCn-LRSTV (n = 1, 2, 3, 4, 5) denotes LRSTV using the first, second, third, fourth, and fifth PCs, respectively.

Fig. 9. Visual results of GPD-IALM, GPD-DECOLOR, GPD-NRA, and GPD-LRSTV on HVS-MB sequence. First column is the false-color images of
frame (1, 4, 7, 10, 13, 16, 19, 22, 25, 28), respectively. Second column is the ground truth. Third column displays the results obtained by GPD-IALM, which
did not consider the spatial and temporal smoothness. The forth column shows the results of GPD-DECOLOR. The fifth column is the results of GPD-NRA.
The sixth column is the results of GPD-LRSTV.

It is reasonable that GPD-DECOLOR achieved the best results
in HVS-MB. However, we can still see that the result of
GPD-LRSTV is contiguous in spatial direction and has less
background part being detected as moving object.

We concluded that our proposed GPD-LRSTV method
achieves very competitive detection results on all the tested
HVS data sets. Moreover, the TV regularization can elim-
inate the noise errors, thus leading to the best detection
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TABLE V

AUC STATISTICS FOR DIFFERENT FRAMES FOR HVS-MB

TABLE VI

F-MEASURE STATISTICS FOR DIFFERENT FRAMES FOR HVS-MB

Fig. 10. Joint consideration of β and λ for HVS-aa12. (a) AUC statistics.
(b) F-measure statistics.

accuracy while processing the HVS with low signal-to-noise
ratio.

C. Sensitivity to the Regularization Parameters

The proposed method involves two important regularization
parameters: λ and β. Ideally, we desire a robust method
to select them using MAP estimation. Due to the computa-
tional complexity, we do not use a robust estimation method
here. Fig. 10 illustrates the obtained AUC and F-measure of
HVS-aa12 when jointly taking the two regularization parame-
ters into consideration. To add to this, for each pair, we sum
the F-measure of the 11 frames for which we have ground
truth in the considered data set. λ is chosen from {0, 0.0005,
0.0001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004} and
β is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}. When
β = 0, (3) degenerates to the RPCA problem which can be
solved by IALM. The previous experiment has shown that
the proposed GPD-LRSTV is superior to GPD-IALM which
advocates including the advance of TV regularization. From
Figs. 10 and 11, we can see that for λ = 0, the detection results
are inferior to the results obtained for λ > 0. This confirms
that gas plume takes a small part of the whole image scene;
hence, the foreground matrix is sparse. For the aa12 sequence,

Fig. 11. Joint consideration of β and λ for HVS-aa13. (a) AUC statistics.
(b) F-measure statistics.

GPD-LRSTV achieves a high F-measure when λ ∈
[0.0005, 0.002] and β ∈ [0.03, 0.05]. In our experiments, we
set λ = 0.001 and β = 0.04. Analogous to HVS-aa12, the best
sets for HVS-aa13 are λ ∈ [0.001, 0.002] and β ∈ [0.01, 0.02]
as shown in Fig. 10. For this HVS, we set λ = 0.002 and
β = 0.02.

D. Convergence Analysis

In this section, we evaluate the convergence of LRSTV, as it
is an iterative algorithm. LRSTV is applied on the first PC of
HVS-aa13 data set. The residuals ‖X− A−E‖F and objective
function value at each iteration are computed. The curves of
residual and objective function value versus the number of
iterations are shown in Fig. 12, where we can clearly see that
LRSTV convergences quickly.

E. Computational Complexity

The computation costs of the GPD methods have also been
compared. Detailed results are presented in Table VII. The
algorithms are tested on a computer with a 64-b quad-core
Intel Xeon CPU 3.33-GHz processor under Windows 7.
GPD-IALM, GPD-NRA, and the proposed method are imple-
mented in MATLAB, while the core part of GPD-DECOLOR
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Fig. 12. Convergence analysis of LRSTV algorithm on the first PC of HVS-aa13 data set. (a) Residual over iterations. (b) Objective function value over
iterations.

TABLE VII

EXECUTION TIMES (IN SECONDS) IN GPD

is implemented in C++. So we can infer that the methods
with temporal–spatial regularization (GPD-DECOLOR,
GPD-LRSTV) cost more execution time than that of original
RPCA methods (GPD-IALM, GPD-NRA). In the future,
we will explore parallel implementations of our proposed
method on graphics processing units (GPUs) to accelerate the
execution of the algorithm, which is important for the applica-
tion of our proposed method.

IV. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, a novel hypserspectral video sequence for
GPD framework named GPD-LRSTV is proposed. It is based
on the assumption that the background in different frames is
reasonably stable and the moving object changes gradually in
both space and time. We have formulated the variational GPD
problem and introduced spatial and temporal continuity with
TV regularization. Because there may exist hundreds of bands
in an HVS, it is hard to extract a single band or feature to use
for the LRSTV model. Thus, we adopt a novel strategy which
takes the maximum value over each PC’s detection result. This
way, we obtain a robust detection for every frame. Our results
on three HVSs demonstrate the advantage of GPD-LRSTV.

The proposed method works well when the background
is static. The case of dynamic background is for the future
work. Another important aspect deserving future research is
the computational complexity of the proposed method. In this
regard, we are currently developing efficient implementa-
tions using high-performance computing architectures such as
commodity GPUs.
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