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Abstract Turbulence-degraded image frames are distorted by both turbulent de-
formations and space-time-varying blurs. To suppress these effects, we propose a
multi-frame reconstruction scheme to recover a latent image from the observed
distorted image sequence. Recent approaches are commonly based on registering
each frame to a reference image, by which geometric turbulent deformations can
be estimated and a sharp image can be restored. A major challenge is that a
fine reference image is usually unavailable, as every turbulence-degraded frame is
distorted. A high-quality reference image is crucial for the accurate estimation of
geometric deformations and fusion of frames. Besides, it is unlikely that all frames
from the image sequence are useful, and thus frame selection is necessary and
highly beneficial. In this work, we propose a variational model for joint subsam-
pling of frames and extraction of a clear image. A fine image and a suitable choice
of subsample are simultaneously obtained by iteratively reducing an energy func-
tional. The energy consists of a fidelity term measuring the discrepancy between
the extracted image and the subsampled frames, as well as regularization terms on
the extracted image and the subsample. Different choices of fidelity and regular-
ization terms are explored. By carefully selecting suitable frames and extracting
the image, the quality of the reconstructed image can be significantly improved.
Extensive experiments have been carried out, which demonstrate the efficacy of
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our proposed model. In addition, the extracted subsamples and images can be put
in existing algorithms to produce improved results.

Keywords Turbulence · Turbulent deformation · Multi-frame reconstruction ·
Frame selection · Image restoration

Mathematics Subject Classification (2000) 65D18 · 68U10

1 Introduction

The problem of restoring a clear image from a sequence of turbulence-degraded
frames is of high research interest, as the effect of geometric distortions and space-
and-time-varying blur would significantly degrade image quality. Under the effects
of the turbulent flow of air and changes in temperature, density of air particles,
humidity and carbon dioxide level, the refractive index changes accordingly and
light is refracted through several turbulence layers [10,20]. Therefore, when we
want to capture images in locations where the temperature variation is large, for
instance, deserts, roads with tons of vehicles, objects around flames, or from a long
distance to perform long-range surveillance or to take pictures of the moon, rays
from the objects would arrive at misaligned positions on the imaging plane, and
thus distorted images are formed. In general, there are two types of approaches
to deal with the problem, one being hardware-based adaptive optics techniques
[18][26] and the other being image-processing-based methods [6,9,12,15,22,24,27].
In this paper, we focus on an image-processing-based method to restore the image.
Since we are working on a sequence of distorted images or turbulence-degraded
video, we assume the original image is static and the image sensor is also fixed.
In order to model this problem, the mathematical model in this paper is based on
[4],

It(x) = [Dt
(
Ht(I

∗)
)
](x) + nt(x), t = 1, · · · , N (1)

where It, I
∗, and nt are the captured frame at time t, the true image, and the sen-

sor noise respectively. The vector x lies in the two-dimensional Euclidean space.
Ht represents the blurring operator, which is a space-invariant diffraction-limited
point spread function (PSF). Dt is the deformation operator, which is assumed to
deform randomly. Note each of the sequences {Dt} and {nt} are assumed to be
identically distributed random variables, and the subscripts indicate the different
actual outcomes that these variables turn out to be at different time instants. Un-
der this formulation, there are three components that need to be tackled, namely
the blurring operator Ht, the deformation operator Dt and the sensor noise nt.

Most existing restoration methods place their focus on the deformation opera-
tor Dt. The most intuitive way to reverse Dt is to register each frame to the true
image, which, being the solution of the original inverse problem, is unknown before-
hand. Hence most approaches to the problem involves estimating the true image
with a reference image. However, image registration is computationally costly, and
a satisfactory reference image is difficult to obtain from the turbulence-degraded
video. This motivates us to look for some efficient methods to compute a clear
image quickly, without applying image registration techniques or needing a satis-
factory reference image.

Having considered the computational cost of geometric registration-based ap-
proaches, while extracting a representative image from turbulence-distorted video,
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we propose neither to fixate on using deformation-based fidelity nor using the en-
tire sequence. Instead, comparable or even improved results can be achieved by
considering other forms of fidelity and a comparatively less-distorted subsampled
sequence. We propose adopting a variational model, where various fidelity and reg-
ularization terms can be employed to achieve different objectives. As a result, the
deformation and noise effects in the problem setting are simultaneously tackled.
On the other hand, as the deblurring problem has been extensively tackled with
deconvolution methods, we place the focus of this work on the other two aspects.
We refer the reader to related works such as [23].

The rest of the paper is organized as follows. In section 2, we review some previ-
ous works closely related to this paper. In section 3, we describe the contributions
of this paper. In section 4, our proposed model and algorithm are explained in
detail with numerical implementation. We analyze the proposed models and al-
gorithms in section 5. Experimental results are reported in section 6. Finally, we
conclude our paper in section 7.

2 Previous work

Since the video frames are corrupted by both blur and geometric distortion, it
is difficult to deal with them simultaneously, especially in the scenario where a
large portion of the images are severely degraded. The registration process is fur-
ther complicated by the lack of a good reference frame for the observed image
sequence. Therefore, several algorithms consisting of registration with reference
image and image fusion are proposed. Meinhardt-Llopis and Micheli [16][17] pro-
posed a reference extraction method which was coined the centroid method. The
basic idea behind is to warp each image by the average deformation field between
it and the other images from the turbulence-degraded video. This method assumes
the average deformation between the distorted frames and the latent ground truth
image to be zero. In a steady video sequence capturing a static image, the as-
sumption usually holds almost exactly as there is little movement across frames.
In a turbulence-distorted video, the estimated movements of individual pixels can
sometimes be much larger, and the mean displacement of each pixel may deviate
more significantly from zero. This may pose a challenge to the centroid method
to fully resolve the geometric distortion, especially when a large portion of the
images are severely degraded.

Another method is the “lucky frame” approach [28], which selects the sharpest
frame from the video. This method is motivated by statistical proofs [5] that
given sufficient video frames, there is a high probability that some frames would
contain sharp texture details. Since in practice it is rare that one can find a frame
which is sharp everywhere, Aubailly et al. [2] proposed the Lucky-Region method,
which selects at each patch location the sharpest patch across the frames and fuses
them together. Anantrasirichai et al. [1] adopted this idea and introduced frame
selection prior to registration. A composite cost function was introduced, and the
selection was done in one step by sorting. As a result, some of the selected frames
geometrically differ significantly from the reference image. In addition, the cost
function assumed the reference image (i.e. the temporal intensity mean over all
frames) to accurately approximate the underlying true image, which is usually
not the case. Another similar approach was proposed by Roggemann [19], where a
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subsample is selected from images produced by adaptive-optics systems to produce
a temporal mean with higher signal-to-noise ratio.

As atmospheric turbulence can severely distort video frames, even if a satis-
factory reference image is acquired, the video may not be registered well onto it.
A feasible approach to enable registration is to stabilize the video and reduce the
deformation between each frame and the reference image. Lou et al. [14] proposed
to stabilize video by sharpening each frame via spatial Sobolev gradient flow,
and temporally smoothing the video to reduce inter-frame deformation. However,
the distribution of the image intensities is not preserved under Sobolev gradient
sharpening, and temporally smoothing produces ghost artifacts.

Zhu et al. [30] proposed a B-spline nonrigid registration algorithm to tackle dis-
tortion, and a patch-wise temporal kernel regression based near-diffraction-limited
(NDL) image restoration to sharpen the image. Finally, they use blind deconvolu-
tion algorithm to deblur the fused image. This method works well with a mild or
moderate turbulence-degraded video. On the other hand, for video degraded under
strong turbulence, the reference image, which is the temporal mean of the whole
sequence, would lead to an unsatisfactory registration result. The misalignment
will make the NDL fusion stage produce defects on the fused image.

Recently, Robust Principal Component Analysis (RPCA) [3] is another tool
employed to tackle the problem of atmospheric turbulence. He et al. [8] proposed
a low-rank decomposition approach to separate the registered image sequence into
low-rank and sparse parts. The former has less distortion, but is blurry and has
few texture details; on the other hand, the latter contains texture information but
is noisy. Blind deconvolution is applied on the low-rank part to obtain a deblurred
result, which is combined with the enhanced detail layer to get the final result.
Xie et al. [29] proposed a hybrid method, which assigns the low-rank image to be
the initial reference image. The reference is then improved by solving a variational
model, and the frames are registered to the reference image.

3 Contributions

The contributions of this work can be summarized as follows:

1. We propose an energy model for joint subsampling of frames and extraction of
a restored image from turbulence-degraded video without involving geometric
registration. The model produces restored images of comparable or improved
quality with other state-of-the-art approaches.

2. We propose numerical algorithms to iteratively reduce the energies in the mod-
els. Experimental results show that the proposed algorithms are effective and
highly efficient.

3. We propose different fidelity terms in the energy model. These fidelity terms
are carefully explored to investigate their advantages and disadvantages.

In state-of-the-art methods, costly image registration like optical flow and non-
rigid registration are applied, resulting in a very long computational time. Also,
since all frames from the video are considered in those algorithms, misalignment
occurs in the registration stage for some comparatively severely distorted and
blurry frames. As a result, the fusion stage may produce artifacts if the observed
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video is degraded by severe atmospheric turbulence. In this work, we proposed a
variational model to simultaneously obtain an optimal subsample J of frames and
extract a reconstructed image I. The extraction of each of the subsample depends
on the quality of its reference image, and the reconstruction of a clear image also
relies on the quality of the sequence from which it reconstructs. Hence we pro-
pose to improve both processes by alternatingly optimizing the subsample and
the reference image, and take the final reference image (i.e. upon convergence) as
the reconstructed image. The model is compatible with various fidelity terms and
regularization terms. Moreover, effective algorithms are proposed to reduce the en-
ergies of the model in order to perform joint subsampling of frames and extraction
of a restored image. The proposed method is very flexible that it can tackle severely
turbulence-distorted video or even noisy turbulence-degraded video with different
regularization terms. Restoration by the proposed method is dramatically effective
that the computational time is within 2 seconds for a turbulence-degraded video
with 100 frames; at the same time the results are of comparable quality or even
outperform those of some state-of-the-art methods, which require several thousand
seconds or even over ten thousand seconds. Furthermore, the proposed method can
serve as a preparatory step for other methods. By applying the proposed extracted
image and subsampled video as reference image and video input, the registration
process becomes faster (as there are fewer frames in the subsampled video) and
more accurate (as a better reference image and video is used), and thus these
modified algorithms obtain a more satisfactory result.

4 Proposed algorithm

In this section, we describe our proposed mathematical model in detail. Our goal is
to reconstruct a non-distorted image I from a turbulence-degraded image sequence
affected by turbulent deformations and out-of-focus blurs.

4.1 Proposed model

Denote a turbulence-degraded image sequence capturing a static object O by I =
(I1, I2, ..., In). Suppose the size of each image frame Ik is r × s. By stacking each
frame Ik as a column vector, I can be considered as a rs× n matrix. To restore a
sharp and non-distorted image I from I, one commonly used approach is based on
a multi-frame reconstruction. This approach is based on registering each frame to a
reference image, by which the turbulent deformation matrix can be estimated and
a sharp image can be reconstructed. However, one of the main challenges is that
a reference image is usually unavailable. A good reference image is necessary for
the extraction of turbulent deformations and fusion of image frames. Each frame
of the turbulence-distorted video is often degraded by geometric distortions and
out-of-focus blurs, and cannot be used as a reference image. On the other hand,
frame selection is usually necessary, since it is unlikely that all frames are useful.
Therefore, it calls for developing an algorithm which can jointly subsample frames
and restore a clear image.

In this work, we propose variational models to simultaneously determine an
optimal subsampling J of frames and extract a clear image I. Here, J = {ij ∈
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N : 1 ≤ ij ≤ n, j = 1, 2, ..., |J |} is the index set representing the subsample of I.
Generally speaking, our variational models can be expressed in the following form.
We search for (I, J) that minimizes:

E(I, J) =
1

|J |

(∑
k∈J

F(I, Ik) + λQ(Ik)

)
+ µR1(I) + τR2(J) (2)

where F is the fidelity term measuring the discrepancy between the restored image
and frames. Q is the quality measure of each frame. R1 and R2 are the regular-
ization terms for I and J respectively.

There are different choices of F , Q, R1 and R2. In this paper, we propose three
models for the joint subsampling and restoration of turbulence-degraded images,
using different choices of regularization and fidelity terms.

4.1.1 Model 1

Our goal is to obtain a clear image, which can be treated as a resultant restored
image or reference image for the following registration, and a subsampled video
which only consists of comparatively sharp and mildly distorted frames. Therefore,
Model 1, which is a fast and simple model, is proposed to deal with video mildly
and moderately degraded by turbulence.

In this model, the fidelity term is chosen as the L2-fidelity term, which is
commonly used in image restoration. Mathematically, we define F(I, Ik) = ||I −
Ik||22. The fidelity term ensures the obtained image to be similar to the images in
the subsampled video, which comprises mildly distorted and sharp frames.
We define the quality measure to account for the sharpness of the subsampled
frames. The magnitude of the Laplacian has been used in this regard [11]. Our
quality measure Q(Ik) of each frame is based on a normalized version of ‖∆Ik‖1,
i.e.

Q(Ik) =

max
i=1,··· ,n

‖∆Ii‖1 − ‖∆Ik‖1

max
i=1,··· ,n

‖∆Ii‖1 − min
i=1,··· ,n

‖∆Ii‖1
(3)

In essence, ∆I is the convolution of I with the Laplacian kernel, which captures the
features or edges of objects in the image. The magnitude of ∆I is higher for sharper
images. Hence, Q(Ik) is smaller for sharper images. We normalize Q to the range
of [0, 1] for ease of implementation. We have no regularization term R1 as Model
1 has no additional preference on the restored image. The regularization term R2

is e−ρ|J|. This convex decreasing function is chosen, because more information
can be acquired from more frames, whereas a marginal increase in the size of the
subsample has reduced effect on the accuracy of the extracted restored image as
the number of subsampled frames increases.

Fixing J , the model just obtains the average of the subsampled frames. There-
fore, as long as the subsampled frames are sharp and mildly distorted, the resultant
restored image is satisfactory. The algorithm details will be illustrated in section
4.2.1.

The overall energy model can be formulated as:

E1(I, J) =
1

|J |
∑
k∈J

[
||I − Ik||22 + λQ(Ik)

]
+ τe−ρ|J| (4)
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where λ > 0 is a constant for controlling the importance of sharpness of the image
frames and τ > 0 is a constant for controlling the importance of the number of
frames that we want to capture.

4.1.2 Model 2

There are some situations where the video is degraded by severe turbulence and all
the frames are vigorously distorted and blurry. The simple L2-fidelity term may not
accurately measure the similarity between the observed frames and the restored
image. Moreover, the restored image obtained by taking average in the subsampled
video may be locally blurry if the observed video is severely degraded, as the pixel
intensities near edges may take average over different objects. Therefore, Model
2 is proposed to tackle this situation compromising the computational time but
resulting in a more accurate and clearer restored image.

In Model 2, F is defined as the L2-fidelity between I and the low-rank part of
the subsampled frames. More specifically, denote the subsample frames by a rs×|J |
matrix IJ . Robust Principal Component Analysis (RPCA) is applied to IJ . The
low-rank part L and the sparse part S are obtained, which captures the general
geometric structure and the turbulence respectively. As a result, by fixing J and L,
the restored image I becomes the average of Lk in the subsampled set J . Since the
severely turbulence-degraded intensities in the subsampled frames are captured
in the sparse component S via RPCA, the restored image I is comparatively
clearer and geometrically better-preserved than that obtained in Model 1 with
severely turbulence-degraded video. The other terms are the same as Model 1.
The algorithm details will be illustrated in section 4.2.2.

The overall energy model can be formulated as

E2(I, J) =
1

|J |

(∑
k∈J

||I − (LJ)k||22 + λQ(Ik)

)
+ τe−ρ|J|, (5)

where (LJ)k is the kth column of LJ and

(LJ , SJ) = argmin
L,S

{||L||∗ + β||S||1} subject to L+ S = IJ (6)

4.1.3 Model 3

Our general model is so flexible that the fidelity term and the regularization terms
can be changed to suit different needs. To demonstrate the flexibility of the pro-
posed model, a more extreme situation is being tested: turbulence video with
additive noise in its pixel intensities.

In this model, the fidelity term is the L2-fidelity term. The regularization
term R1 is chosen as the total variation (TV) regularization. More specifically,
R1(I) = TV (I). By minimizing this term, a clearer and less noisy image can
be obtained. The quality measure Q(Ik) of each frame is also TV (Ik), as less
noisy frames are favoured to construct a clear restored image, and it is difficult
to estimate sharpness in a noisy image. The regularization term R2 is e−ρ|J| as
before.
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Note that by fixing J , this model is similar to the ROF model [21] on a sub-
sampled sequence of images {Ik}k∈J . The algorithm details will be illustrated in
section 4.2.3.

The overall energy model can be formulated as:

E3(I, J) =
1

|J |

(∑
k∈J

||I − Ik||22 + λTV (Ik)

)
+ µTV (I) + τe−ρ|J| (7)

4.2 Energy minimization

In this subsection, we describe three algorithms to approximate the solutions of
the above models, namely image restoring and image subsampling (IRIS), low-
rank image restoring and image subsampling (LIRIS) and total variation image
restoring and image subsampling (TVIRIS).

4.2.1 IRIS algorithm

Given a moderately turbulence-degraded image sequence capturing a static object
O by I = (I1, I2, ..., In), we now describe a fast and efficient algorithm to obtain a
subsampled set J consisting of sharp and mildly distorted frames along with recon-
structing a clear restored image I simultaneously, as described by the variational
model (4) in the last subsection. Intuitively, this model aims to find the optimal
restored image I and subsampled set J simultaneously. ||I − Ik||22 helps to ensure
that the restored image is similar to each Ik in J . Each Ik is comparatively sharp
among the whole image sequence, which is controlled by ‖∆Ik‖1. Traditionally, as
much as possible of the observed information should be used to obtain the best
result. However, based on the statistical proofs [5], it is not reasonable to assume
all the frames in a short exposure with atmospheric turbulence having the same
quality. Therefore, we quantify the diminishing improvement with larger samples
by the convex decreasing function τe−ρ|J|.

Now, to solve the optimization problem (4), an alternating minimization sch-
eme is applied. Suppose λ and ρ are fixed, and an initial image I0 is obtained.
Also, the quality measure Q(Ik) of each frame and the regularization term R2 for
each |J | ∈ {1, 2, . . . , n} are calculated. The initial image I0 is the temporal average
of the whole sequence, i.e.

I0 =
1

n

n∑
k=1

Ik (8)

The iterative scheme can then be described as follows for the tth iteration:

1. Fixing It−1, we minimize E1(It−1, J) over P({1, · · · , n}) to obtain Jt, i.e.

Jt = argmin
J

1

|J |

(∑
k∈J

||It−1 − Ik||22 + λQ(Ik)

)
+ τe−ρ|J| (9)

Note that ||It−1 − Ik||22 can be calculated easily for each iteration. Also, R2

and Q(Ik) have been calculated before the iteration starts. This allows us to
avoid exhaustive search over the 2n subsets of {1, 2, . . . , n}, and instead find the
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optimal subsample Jt via sorting over n subsets. Denote ||It−1−Ik||22+λQ(Ik)
by E1,k. Arrange E1,k such that:

E1,k1
≤ E1,k2

≤ ... ≤ E1,kj ≤ ... ≤ E1,kn . (10)

Then denote Sj be the accumulated energy, i.e.

Sj =
1

j

(
j∑

k=1

E1,kj

)
+ τe−ρj . (11)

Then arrange Sj such that:

Sj1 ≤ Sj2 ≤ ... ≤ Sjn . (12)

Then we obtain the optimal set Jt,

Jt = {k1, k2, . . . , kj1} (13)

2. Fixing Jt, we minimize E1(I, Jt) over Rr×s to obtain It, i.e.

It = argmin
I

1

|Jt|

(∑
k∈Jt

||I − Ik||22 + λQ(Ik)

)
+ τe−ρ|J

t|. (14)

Note that when Jt is fixed, the quality measure Q(Ik) and the regularization
term R2 are constant. Hence the I-subproblem (14) becomes

It = argmin
I

1

|Jt|

∑
k∈Jt

||I − Ik||22

 . (15)

By differentiating with respect to I, the minimizer is given by the temporal
mean of {Ik}k∈Jt :

It =
1

|Jt|
∑
k∈Jt

Ik. (16)

Repeat step 1 and step 2 above until the difference DE1 = Et−1
1 −Et1 between the

energies at the current and previous steps is smaller than some hyperparameter ε.
The overall algorithm is summarized in Algorithm 1.

4.2.2 LIRIS algorithm

In IRIS algorithm, the simple L2-fidelity term is applied to achieve a fast and sat-
isfactory result. However, the restored image may be locally blurry if the observed
images are degraded under severe atmospheric turbulence. In order to achieve a
better resultant restored image, the fidelity term in Model 2 is modified to be-
come the L2-fidelity between I and the low-rank part of the subsampled frames.
To solve the optimization problem (5), similar to IRIS algorithm, suppose λ, ρ,
Q(Ik), R2(J) and the initial image I0 are obtained. The initial image I0 is the
temporal average of the low-rank part of the whole sequence, i.e.

I0 =
1

n

n∑
k=1

(LI)k (17)
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Algorithm 1 Image Restoring and Image Subsampling (IRIS)

Input: Turbulence-degraded video sequence I = (I1, I2, ..., In).
Output: Subsampled image sequence {Ik}k∈J∞ ; Resultant image I∞.

1: Compute I0 =
1

n

n∑
k=1

Ik;

2: Compute the Quality measure Q(Ik) of each frame {Ik}nk=1;
3: repeat
4: Given It−1, Jt−1. Fix It−1 and obtain Jt by solving

Jt = argmin
J

1

|J |

∑
k∈J
||It−1 − Ik||22 + λQ(Ik)

 + τe−ρ|J|;

5: Compute E1,k = ||It−1 − Ik||22 + λQ(Ik) for each k and arrange them in ascending
order;

6: Compute accumulated sum Sj for each j and arrange them in ascending order;
7: Jt ← {k1, k2, . . . , kj1};
8: Fix Jt and obtain It by solving

It = argmin
I

1

|Jt|
∑
k∈Jt

||I − Ik||22;

9: It ← 1
|Jt|

∑
k∈Jt

Ik;

10: until Et−1
1 − Et1 ≤ ε;

11: Obtain desirable subsampled image sequence {Ik}k∈J∞ and resultant image I∞;

where (LI)k is the kth column of LI and LI is the low-rank part of the whole
sequence I, which is obtained in equation (6). The iterative scheme can then be
described as follows for the tth iteration:

1. Fixing It−1, we minimize E2(It−1, J) over P({1, · · · , n}) to obtain Jt, i.e.

Jt = argmin
J

1

|J |

(∑
k∈J

||It−1 − (LJ)k||22 + λQ(Ik)

)
+ τe−ρ|J|. (18)

To minimize this subproblem, RPCA should be applied to each of the 2n possi-
ble sampling combinations, which is extremely costly. To relax the subproblem,
we approximate the above optimization problem with the following:

Jt = argmin
J

1

|J |

(∑
k∈J

||It−1 − (LI)k||22 + λQ(Ik)

)
+ τe−ρ|J|. (19)

Intuitively, if {(LI)k}k∈J are similar to It−1 in L2 sense, the associated low-
rank part {(LJ)k}k∈J are also similar to It−1. The mathematical justification
will be shown in section 5. Therefore, the J-subproblem can be done by sorting
similar to subsection 4.2.1.

2. Fixing Jt, we minimize E2(I, Jt) over Rr×s to obtain It, i.e.

It = argmin
I

1

|Jt|
∑
k∈Jt

‖I − (LJt)k‖22 (20)
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Therefore, to obtain LJt , the following optimization scheme is considered:

(LJt , SJt) = argmin
L,S

{||L||∗ + β||S||1} subject to L+ S = IJt . (21)

The augmented Lagrangian form of the above optimization problem can be
written as follows and solved by Exact Augmented Lagrange Multiplier
(EALM) algorithm:

L(L, S, Λ, α) = ‖L‖∗ + β‖S‖1 + 〈Λ, IJt − L− S〉+
α

2
‖IJt − L− S‖22 (22)

where Λ is the Lagrange multiplier and β, α are the algorithm parameters. For
more details, please refer to [13]. The code for EALM is retrieved from [25].

Then by differentiating with respect to I, the minimizer is given by the tem-
poral mean of {(LJt)k}k∈Jt :

It =
1

|Jt|
∑
k∈Jt

(LJt)k. (23)

Repeat step 1 and step 2 above until the difference DE2 = |Et−1
2 −Et2| between the

energies at the current and previous steps is smaller than some hyperparameter ε.
The overall algorithm is summarized in Algorithm 2.

4.2.3 TVIRIS algorithm

Similarly, we can reconstruct satisfactory resultant images and subsampled videos
from turbulence-degraded video with additive Gaussian noise by minimizing
E3(I, J) in (7). Taking the temporal average of the whole sequence as the initial
image as in (8), the optimization scheme is as follows:

1. Fixing It−1, we minimize E3(It−1, J) over P({1, · · · , n}) to obtain Jt, i.e.

Jt = argmin
J

1

|J |

(∑
k∈J

‖It−1 − Ik‖22 + λTV (Ik)

)
+ τe−ρ|J|, (24)

which can be done by sorting similar to subsection 4.2.1;
2. Fixing Jt, we minimize E3(I, Jt) over Rr×s to obtain It, i.e.

It = argmin
I

1

|Jt|
∑
k∈Jt

‖I − Ik‖22 + µTV (I) (25)

If we consider the anisotropic total variation

TVaniso(I) = ‖∇xI‖1 + ‖∇yI‖1,

then the above energy minimization problem can be relaxed by introducing
Dx and Dy to split operators, i.e.

(It, (Dx)t, (Dy)t) = argmin
I,Dx,Dy

1

|Jt|
∑
k∈Jt

‖I − Ik‖22 + µ(‖Dx‖1 + ‖Dy‖1) (26)

subject to Dx = ∇xI and Dy = ∇yI
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Algorithm 2 Low-rank Image Restoring and Image Subsampling (LIRIS)

Input: Turbulence-degraded video sequence I = (I1, I2, ..., In).
Output: Subsampled image sequence {Ik}k∈J∞ ; Resultant image I∞.
1: Compute LI by

(LI , SI) = argmin
L,S

{||L||∗ + β||S||1} subject to L+ S = I;

2: Compute

I0 =
1

n

n∑
k=1

(LI)k;

3: Compute the Quality measure Q(Ik) of each frame {Ik}Ik∈I as in Algorithm 1;
4: repeat
5: Given It−1, Jt−1. Fix It−1 and obtain Jt by solving

Jt = argmin
J

1

|J |

∑
k∈J
||It−1 − (LI)k||22 + λQ(Ik)

 + τe−ρ|J|;

6: Compute E2,k = ||It−1 − (LI)k||22 + λQ(Ik) for each k and arrange them in ascending
order;

7: Compute accumulated sum Sj for each j and arrange them in ascending order;
8: Jt ← {k1, k2, . . . , kj1};
9: Fix Jt and obtain LJt by solving

(LJt , SJt ) = argmin
L,S

{||L||∗ + β||S||1} subject to L+ S = IJt ;

10: Obtain It by solving

It = argmin
I

1

|Jt|
∑
k∈Jt

||I − (LJt )k||22;

11: It ← 1
|Jt|

∑
k∈Jt

(LJt )k;

12: until |Et−1
2 − Et2| ≤ ε;

13: Obtain desirable subsampled image sequence {Ik}k∈J∞ and resultant image I∞;

which by the Augmented Lagrangian method can be unconstrained to

(It, (Dx)t, (Dy)t, (Λx)t, (Λy)t) = argmin
I,Dx,Dy,Λx,Λy

1

|Jt|
∑
k∈Jt

‖I − Ik‖22

+ µ(‖Dx‖1 + ‖Dy‖1)

+ 〈Λx, Dx −∇xI〉+ 〈Λy, Dy −∇yI〉

+ γ(‖Dx −∇xI‖22 + ‖Dy −∇yI‖22)

(27)

Then the I-subproblem is:

It = argmin
I

1

|Jt|
∑
k∈Jt

‖I − Ik‖22 − 〈(Λx)t−1,∇xI〉 − 〈(Λy)t−1,∇yI〉 (28)

+ γ(‖(Dx)t−1 −∇xI‖22 + ‖(Dy)t−1 −∇yI‖22),
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which can be solved with the following linear system

(Id+ γ∆)It =
1

|Jt|
∑
k∈Jt

Ik +
1

2
(∇∗x(Λx)t−1 +∇∗y(Λy)t−1)

+ γ(∇∗x(Dx)t−1 +∇∗y(Dy)t−1),

(29)

where Id is the identity matrix. The Dx-subproblem is:

(Dx)t = argmin
A

µ‖A‖1 − 〈(Λx)t−1, A〉+ γ‖A−∇xIt‖22 (30)

= argmin
A

µ‖A‖1 + γ‖A− (Λx)t−1

2γ
−∇xIt‖22

= argmin
A

∑
i,j

[µ|Aij |+ γ(Aij −

(
(Λx)t−1

)
ij

2γ
− (∇xIt)ij)2],

which decouples over space:

(
(Dx)t

)
ij

= argmin
x

[µ|x|+ γ(x−

(
(Λx)t−1

)
ij

2γ
− (∇xIt)ij)2] (31)

=


max{

(
(Λx)t−1

)
ij

2γ
+ (∇xIt)ij −

µ

2γ
, 0} if (∇xIt)ij > 0

0 if (∇xIt)ij = 0

min{

(
(Λx)t−1

)
ij

2γ
+ (∇xIt)ij +

µ

2γ
, 0} if (∇xIt)ij < 0

= shrink µ
2γ

(

(
(Λx)t−1

)
ij

2γ
+ (∇xIt)ij)

=
1

2γ
shrinkµ

((
(Λx)t−1)

ij
+ 2γ(∇xIt)ij

)
,

and thus

(Dx)t =
1

2γ
shrinkµ((Λx)t−1 + 2γ(∇xIt)). (32)

Similarly, the Dy-subproblem yields:

(Dy)t =
1

2γ
shrinkµ((Λy)t−1 + 2γ(∇yIt)). (33)

Finally the multipliers Λx and Λy are updated accordingly:

(Λx)t = (Λx)t−1 +
1

2µ
((Dx)t −∇xIt) (34)

(Λy)t = (Λy)t−1 +
1

2µ
((Dy)t −∇yIt) (35)
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Algorithm 3 Total Variation Image Restoring and Image Subsampling (TVIRIS)

Input: Turbulence-degraded video sequence I = (I1, I2, ..., In).
Output: Subsampled image sequence {Ik}k∈J∞ ; Resultant image I∞.

1: Compute I0 =
1

n

n∑
k=1

Ik;

2: Compute the Quality measure Q(Ik) = TV (Ik) of each frame {Ik}nk=1;
3: repeat
4: Given It−1, Jt−1. Fix It−1 and obtain Jt by solving

Jt = argmin
J

1

|J |

∑
k∈J
‖It−1 − Ik‖22 + λ(TV (Ik))

 + τe−ρ|J|;

5: Compute E3,k = ||It−1 − Ik||22 + λTV (Ik) for each k and arrange them in ascending
order;

6: Compute accumulated sum Sj for each j and arrange them in ascending order;
7: Jt ← {k1, k2, . . . , kj1};
8: Fix Jt and obtain It by solving

It = argmin
I

1

|Jt|
∑
k∈Jt

||I − Ik||22 + µTV (I);

9: if TV = TVaniso then
10: repeat
11: It ← Equation (29)
12: (Dx)t ← Equation (32)
13: (Dy)t ← Equation (33)
14: (Λx)t, (Λy)t ← Equation (35)

15: until |Et,m3 − Et,m−1
3 | ≤ ε;

16: else if TV = TViso then
17: repeat
18: It ← Equation (38)
19: (Dx)t ← Equation (42)
20: (Dy)t ← Equation (43)

21: sti,j ←
√

(∇xIt)2ij + (∇yIt)2ij
22: (Λx)t, (Λy)t ← Equation (45)

23: until |Et,m−1
3 − Et,m3 | ≤ ε;

24: end if
25: until |Et−1

3 − Et3| ≤ ε;
26: Obtain desirable subsampled image sequence {Ik}k∈J∞ and resultant image I∞;

On the other hand, if we consider the isotropic total variation

TViso(I) =
∑
i,j

√
(∇xI)2ij + (∇yI)2ij ,

the energy minimization problem can be similarly relaxed by introducing Dx
and Dy to split operators, i.e.

(It, (Dx)t, (Dy)t) = argmin
I,Dx,Dy

1

|Jt|
∑
k∈Jt

‖I − Ik‖2 + µ
∑
i,j

√
(Dx)2ij + (Dy)2ij

(36)

subject to Dx = ∇xI and Dy = ∇yI
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which by the Augmented Lagrangian Method can be unconstrained to

(It, (Dx)t, (Dy)t, (Λx)t, (Λy)t) = argmin
I,Dx,Dy,Λx,Λy

1

|Jt|
∑
k∈Jt

‖I − Ik‖2

+ µ
∑
i,j

√
(Dx)2ij + (Dy)2ij

+ 〈Λx, Dx −∇xI〉+ 〈Λy, Dy −∇yI〉

+ γ(‖Dx −∇xI‖22 + ‖Dy −∇yI‖22)

(37)

Then the I-subproblem can be solved with the same linear system as for the
anisotropic case, i.e.

(Id+ γ∆)It =
1

|Jt|
∑
k∈Jt

Ik +
1

2
(∇∗x(Λx)t−1 +∇∗y(Λy)t−1)

+ γ(∇∗x(Dx)t−1 +∇∗y(Dy)t−1).

(38)

On the other hand, the Dx- and Dy-subproblems vary from the anisotropic
case, and they no longer decouple over space.

The Dx-subproblem is:

(Dx)t = argmin
A

µ
∑
i,j

√
A2
ij + ((Dy)t−1)2ij + 〈(Λx)t−1, A〉+ γ‖A−∇xIt‖22,

(39)
whose minimizer (Dx)t satisfies

µ
(
(Dx)t

)
ij√(

(Dx)t
)2
ij

+
(
(Dy)t−1

)2
ij

+
(
(Λx)t−1)

ij
+ 2γ

((
(Dx)t

)
ij
− (∇xIt)ij

)
= 0,

(40)
the first term of which renders the problem nonlinear. Hence we further relax
the problem by introducing

sti,j =
√(

(Dx)t
)2
ij

+
(
(Dy)t

)2
ij
, (41)

and then explicitly solve the linear equations

(µ+ 2γst−1
i,j )((Dx)t)ij = st−1

i,j

(
2γ(∇xIt

)
ij
−
(
(Λx)t−1)

ij
). (42)

Similarly, the Dy-subproblem can be solved with the linear equations

(µ+ 2γst−1
i,j )

(
(Dy)t

)
ij

= st−1
i,j

(
2γ(∇yIt)ij −

(
(Λy)t−1)

ij

)
. (43)

Then each sti,j is updated with (Dx)t and (Dy)t.

Finally the multipliers Λx and Λy are updated accordingly:

(Λx)t = (Λx)t−1 +
1

2µ

(
(Dx)t −∇xIt

)
(44)

(Λy)t = (Λy)t−1 +
1

2µ

(
(Dy)t −∇yIt

)
(45)
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Steps 1 and 2 are repeated until the difference DE3 = |Et−1
3 − Et3| is smaller

than some hyperparameter ε. The overall algorithm is summarized in Algorithm
3.

5 Analysis of the model

Theorem 1 Let {It, Jt}∞t=1 be the sequence obtained by Algorithm 1. Then
E1(It+1, Jt+1) ≤ E1(It, Jt) and the scheme stops after finitely many iterations.

Proof First, E1(I, J) has a lower bound. When the subsampled set J is fixed, the
optimized I is the temporal average over the subsampled set J . Since {1, 2, · · · , n}
is finite and thus its power set is finite, E1(I, J) has a lower bound over Rr×s ×
P({1, · · · , n}).

Suppose It and Jt are obtained. When It is fixed, by applying a simple sort-
ing method the global minimizer Jt+1 is obtained. Therefore, E1(It, Jt+1) ≤
E1(It, Jt). When Jt+1 is fixed, the global minimizer It+1 has an explicit form,
which is

It =
1

|Jt|
∑
k∈Jt

Ik.

Therefore, E1(It+1, Jt+1) ≤ E1(It, Jt+1) ≤ E1(It, Jt). Since E1(I, J) has a lower
bound, E1(It, Jt) is non-increasing over each iteration of Algorithm 1. As each Jt

is chosen from the finite set P({1, 2, · · · , n}), Algorithm 1 stops in finitely many
iterations.

Theorem 2 Consider the J-subproblem in Algorithm 2 with fixed |J | = p.
Let lp = max

i∈J⊆{1,··· ,n}:|J|=p
‖(LI)i − (LJ)i‖2, and let M = max

i∈J⊆{1,··· ,n}
‖I −

(LJ)i‖2.
Let dE,p be the minimum separation distance between energies Ei = ‖I−(L∗I)i‖22+
Q(Ii).

If lp <
dE,p
4M

at each iteration, then Algorithm 2 gives the same subsample J∗p as

if the J∗-subproblem is solved via exhaustive search over subsamples of cardinality
p.

Proof Define the minimum separation distance dE,p between energies Ei’s by
dE,p = min

1≤i,j≤n
i6=j

|Ei − Ej |. By sorting {Ei} into {Eij} in ascending order, dE,p

is given by the minimum separation distance between consecutive energies, i.e.

dE,p = min
1≤j≤N−1

(Eij+1 − Eij ), (46)

where Eij ≤ Eij+1 for j = 1, 2, · · · , n− 1.

Suppose lp <
dE,p
4M

. Given reference image I, let J∗p be the optimal subsample
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obtained by exhaustive search over subsamples of cardinality p. Then for any
i ∈ J∗p ,

|‖I − (LI)i‖22 − ‖I − (LJ∗p )i‖22|

= [‖I − (LI)i‖2 + ‖I − (LJ∗p )i‖2]
∣∣∣‖I − (LI)i‖2 − ‖I − (LJ∗p )i‖2

∣∣∣
≤ 2M‖I − (LI)i − I + (LJ∗p )i‖2

= 2M‖(LI)i − (LJ∗p )i‖2 ≤ 2Mlp <
dE,p

2
,

and thus the sorted order in the J-subproblem in Algorithm 2 with |J | = p is the
same as that produced by exhaustive search. Thus with |J | = p fixed, the index
set Jp of frames subsampled by Algorithm 2 is J∗p .

Theorem 3 Let l = max
i∈J⊆{1,··· ,n}

‖(LI)i−(LJ)i‖2, and let M = max
i∈J⊆{1,··· ,n}

‖I−

(LJ)i‖2.
Let dS be the minimum separation distance between accumulated energies Sk de-
fined by

Sk =
1

k

k∑
j=1

Eij + τe−ρk, (47)

where Ei is defined as in Theorem 2, and Eij ≤ Eij+1 for j = 1, · · · , n− 1.

If l <
dS
4M

, then Algorithm 2 gives the same sequence {It, Jt}∞t=1 as if the J-

subproblem is solved via exhaustive search over all subsamples.

Proof Suppose l <
dS
4M

. Given reference image It at the tth iteration, let the

optimal subsample from exhaustive search over all samples be Jt,∗. Then for each
ij ∈ Jt,∗, with Eij ≤ Eij+1 for j = 1, · · · , |Jt,∗|,

∣∣∣Sk − (1

k

k∑
j=1

[‖It − (LJt,∗)ij‖
2
2 +Q(Iij )] + τe−ρk

)∣∣∣
=

1

k

∣∣∣∣∣∣
k∑
j=1

(‖It − (LI)ij‖
2
2 − ‖It − (LJt,∗)ij‖

2
2)

∣∣∣∣∣∣
≤ 1

k

k∑
j=1

(
‖It − (LJt,∗)ij‖2 + ‖It − (LI)ij‖2

) ∣∣‖It − (LJt,∗)ij‖2 − ‖I
t − (LI)ij‖2

∣∣
≤ 2M

k

k∑
j=1

‖(LJt,∗)ij − (LI)ij‖2 ≤ 2Ml <
dS
2
,

and thus the sorted order in the J-subproblem in Algorithm 2 is the same as that
produced by exhaustive search. Thus the index set Jt of subsampled frames by
Algorithm 2 is Jt,∗. As long as the subsampled frames remain the same, solving

the I-subproblem in Algorithm 2 produces the same It. Hence given l <
dS
4M

,

Algorithm 2 produces the same sequence {It, Jt}∞t=1 as if the J-subproblem is
solved via exhaustive search over all subsamples.
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Theorem 4 Let {It, Jt}∞t=1 be the sequence obtained by Algorithm 3. Then the
scheme for the I-subproblem converges by the modified Split Bregman algorithm.

Proof The I-subproblem is written as follows:

It+1 = argmin
I

1

|Jt|
∑
i∈Jt
‖I − Ii‖22 + µTV (I).

Note that each of the functionals
1

|Jt|
∑
i∈Jt
‖I − Ii‖22 and µTV (I) is convex,

and that
1

|Jt|
∑
i∈Jt
‖I − Ii‖22 is differentiable. Hence from the results of [7], the

scheme for the I-subproblem is of the form of the Split Bregman algorithm and
thus converges.

6 Experimental Result and Discussion

In this section, the proposed method is justified in detail and illustratively with ex-
perimental results. Firstly, we show the improvement of the final image compared
to those of several methods. Both qualitative and quantitative measures are used
to evaluate the quality of the restored image by the proposed algorithm compared
to several state-of-the-art methods. Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) and computational time are computed to assess the
performance of our proposed method quantitatively. Then, we show the impor-
tance of subsampling the video sequence, which not only obtains a better restored
image but also reduces the computational time. We also demonstrate situations
that motivate the formulation of Models 2 and 3.

To quantitatively evaluate the performance of the proposed algorithm, both
simulated data sets (namely Car, Carfront, Desert and Road) and real data sets
(namely Building and Chimney) are used to compare with the proposed meth-
ods. The Carfront sequence is a data set obtained from [1] which contains mildly
distorted frames when compared with the Desert and Road sequences. Note that
the Carfront sequence is cropped from the original sequence. The Car, Desert and
Road sequences are generated with severe simulated turbulence distortions. The
Desert and Road sequences consist of 100 frames each, among which 70 frames
are degraded under severe distortion and the rest are deformed relatively mildly.
The Car sequence contains 80 frames, among which only 15 are mildly distorted
frames and the others are severely distorted. It serves as an extreme test case
where most of the frames are severely degraded. As a result, Model 2 is used for
the Car sequence while Model 1 is used for the other simulated sequences.

For all experiments, the parameters λ and ρ in the energy model (2) in the
subsampling stage are in the ranges of [200, 400] and 0.1 respectively. For Model 3,
the smoothing parameter is set to be 0.5. The proposed algorithm is implemented
in Matlab with MEX and C++. All the experiments are executed on an Intel Core
i7 3.4GHz computer. The error threshold in our experiment is set to be ε = 10−5.

The results produced by the proposed method are shown in Figure 1. The
first column contains observed frames; the second column contains images recon-
structed with the proposed method without deblurring; and the third column



Joint image reconstruction and image subsampling 19

Fig. 1 Results of the proposed method. Left: Observed. Center: Proposed method. Right:
Proposed method + deblurring.

contains deblurred versions of the images in the second column, using an exist-
ing blind deconvolution algorithm [23]. The focus of subsequent comparisons is
to evaluate the proposed method in its abilities to remove geometric deformation
and produce satisfactory subsamples. As a result, from here onwards we show
reconstructed images without applying deblurring algorithms.
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Table 1 Comparison between the performances of the proposed method and other restoration
methods, evaluated with PSNR (in dB), SSIM and computational time (in seconds).

Sequence SGL Centroid Proposed

Car
23.6366 28.3825 28.2689
0.7558 0.8539 0.8624
136.8 13564 574.1

Carfront
16.8052 20.1188 20.9223
0.6920 0.8048 0.8375
15.5 1610.7 1.0535

Desert
21.1075 26.2154 30.2849
0.7299 0.8231 0.9258
112.3 13778 1.1621

Road
24.8007 28.1933 32.1232
0.7479 0.8273 0.9005
107.3 13309 1.1252

6.1 Comparison between results of the proposed method with existing methods

6.1.1 Quantitative analysis

The proposed method is compared with two representative methods: Sobolev
gradient-Laplacian method [14] (SGL) and the Centroid method [17] (Centroid).
The code of SGL [14] is provided by the respective authors, and the parameters
used are default setting. The comparisons are made on results generated from both
synthetic sequences, namely Car, Carfront, Desert and Road, and real sequences
Building and Chimney.

Table 1 gives the PSNR (in dB), SSIM and the computational time (in seconds)
for the restoration results of four different restoration algorithms. The performance
indicators of each sequence are contained in three rows, among which the first de-
notes the PSNR values, the second denotes the SSIM values and the third denotes
the computational time. For the extreme case (Car), the Centroid method achieves
the highest PSNR, the proposed method achieves the highest SSIM, whereas the
SGL method is the fastest to compute. Except for the extreme case, the pro-
posed method demonstrates its effectiveness by outperforming the other methods
in PSNR, SSIM and computational time. This justifies that image restoration of
comparable quality can be achieved without registration in generic cases, while
registration techniques are advantageous to tackling extreme distortions.

6.1.2 Mildly distorted sequences

The Carfront sequence contains mildly distorted frames only, and the turbulence
strengths applied on each image are similar. The restoration results of the Car-
front sequence are shown in Figure 2. The centroid method keeps the geometric
structure well but the result is blurry. The shape of the restored image by SGL is
slightly distorted and the intensities are unnatural. The proposed method preserves
the geometric structure and gets a reasonably sharp result. Note that deblurring
has not been applied to these results, as to demonstrate the effectiveness of our
model to remove geometric distortions. The sharpness of the image can be further
improved by applying existing deblurring algorithms (see Figure 1).
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(a) Ground truth (b) Observed (c) Proposed (Model 1)

(d) Centroid[17] (e) SGL[14]

Fig. 2 Comparison between results from the Carfront sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.

6.1.3 Strongly distorted sequences

The majority of the frames in the Desert and Road sequences are strongly dis-
torted. The restoration results of the sequences are shown in Figure 3 and Figure
4.

Since the deformations among Desert and Road frames are large, the restora-
tion results of the proposed algorithm differ from existing methods. As the imaged
objects are significantly displaced across frames, even after being warped back by
the average deformation field, the pixels may not align well with the underlying
true image. Hence the imaged objects in the registered sequence remain somewhat
displaced, and the temporal averaging in the centroid method produces noticeable
blur. This is more observable in the Desert experiment, where the many vertical
edges are obscured by the blur, whereas in the Road sequence, thin strips parallel
to the road are also diminished. A similar temporal smoothing effect manifests
in SGL as overlapping shadowy artifacts. The proposed algorithm preserves clean
edges and texture details. It is because the comparatively less distorted and sharper
frames are selected and a good restored image is obtained from these frames. As
a result, the proposed algorithm outperforms existing methods.

6.1.4 Extreme case

Most of the frames in the Car sequence are severely distorted, even more so than
the Desert and Road sequences. Moreover, the distortions of the less distorted
frames in the Car sequence are stronger than those in the Desert and Road se-
quences. The restoration results are shown in Figure 5. The result produced by the
Centroid method is fairly blurry, and its intensity contrast is significantly lower
than other methods. Besides the intensity overshoots, several regions of the SGL
result are noticeably deformed. The proposed method retains less deformation and
maintains reasonable sharpness in the absence of fusion.
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(a) Ground truth (b) Observed (c) Proposed (Model 1)

(d) Centroid[17] (e) SGL[14]

Fig. 3 Comparison between results from the Desert sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.

(a) Ground truth (b) Observed (c) Proposed (Model 1)

(d) Centroid[17] (e) SGL[14]

Fig. 4 Comparison between results from the Road sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.
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(a) Ground truth (b) Observed (c) Proposed (Model 2)

(d) Centroid[17] (e) SGL[14]

Fig. 5 Comparison between results from the Car sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.

Table 2 Comparison between the reference images evaluated by PSNR (in dB) and SSIM.

Sequence Temporal mean [30] Mean of low-rank part [29] Proposed

Car
25.9726 26.6132 28.2689
0.7855 0.8100 0.8624

Carfront
19.3090 19.5607 20.9233
0.7666 0.7770 0.8375

Desert
23.9504 24.6356 30.2849
0.7219 0.7506 0.9258

Road
25.9164 26.9449 32.1232
0.7600 0.7881 0.9005

6.1.5 Real experiments

We have also tested our proposed method on two real turbulence-distorted se-
quences, namely the Chimney and Building sequences. The restoration results of
the Building sequence and Chimney sequence are shown in Figures 6 and 7 re-
spectively.

The temporal averaging in the centroid method smooths out edges and sharp
features as seen in Figure 6(c) and 7(c). In this aspect, the Sobolev gradient-
Laplacian method performs better and reconstructs results with sharp details,
such as Figure 6(d) and 7(d). However, the overall intensity distribution of the SGL
results differ from that of the original sequence. The proposed method produces
results which have similar geometric structure and are reasonably sharp. On the
other hand, the computational times of the SGL method and proposed algorithm
are much shorter than that of the centroid method.
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(a) Observed (b) Proposed (Model 2)

(c) Centroid[17] (d) SGL[14]

Fig. 6 Comparison between results from the Building sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.

6.2 Explanation for alternating optimization of subsample and restored image

6.2.1 Importance of subsampling

In this subsection, the importance of subsampling is demonstrated via qualitative
and quantitative measurements. Each frame in a good subsample of the video
should have sharp texture details while containing minimal geometric distortion,
so that the frames are closely aligned, and as many texture details are kept as
possible.

Moreover, note the short computational time of our algorithm (in Table 1), and
the shorter length of the subsampled video compared to original footage. If the
subsampled sequence is applied in existing restoration or stabilization algorithms,
the total computational time is reduced significantly. We incorporate the centroid
method [17] to support our claims. The fusion results with and without subsam-
pling are compared. Each frame of the video sequences is warped with the mean
deformation field over the sequence to which it belongs. Then the temporal mean
of the centroids is taken as the output. Computational time, visual comparison
and quantitative measures will be used to justify our conclusion.

Comparing the right images to the left images in Figure 8, the former are
sharper and have clearer edges. This observation can be explained by the geomet-
ric similarity of the subsampled frames with the underlying truth, which alleviates



Joint image reconstruction and image subsampling 25

(a) Observed (b) Proposed (Model 2)

(c) Centroid[17] (d) SGL[14]

Fig. 7 Comparison between results from the Chimney sequence by the proposed and existing
methods. Note that deblurring has not been applied to these results.

the blur induced by temporal averaging; and the comparative sharpness of the sub-
sampled frames. Note that the total time taken to obtain the proposed subsampled
sequence, and then using the centroid method on the subsampled sequence with
the proposed reference as a reference image, is at most one tenth of that of the
original method (with reference to Table 3). Adopting the subsampled sequence of
the proposed method yields improved results in computational time, visual quality
and quantitative measures.

6.2.2 Comparison between the proposed restored image and the reference images
employed in other methods

Our proposed method is efficient and gives a good reference image. To justify this,
both qualitative and quantitative assessments are employed. The qualitative jus-
tification of the proposed method is shown by comparing the extracted reference
images obtained by the proposed method with those used by other methods. See
Figure 9. The effectiveness of the proposed method is justified quantitatively in
Table 2. The visual quality of the reference images obtained by the proposed algo-
rithm, temporal averaging, the temporal average of the low-rank and the centroid
method [17] are compared qualitatively in this subsection. The reference images
are shown in Figure 10: the first column contain observed images from ‘Chimney’
and ‘Car’ sequences while the other four columns are the reference images gener-
ated by temporal mean, mean of low rank, the centroid method and the proposed
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Fig. 8 Comparison between results of the centroid method [17] using the original sequence and
the proposed subsampled sequence. Left: Original. Right: Subsampled. Note that deblurring
has not been applied to these results.

algorithm. In the Chimney sequence, the proposed algorithm preserves sharpness
and details better than the other three methods. This is because the subsampled
sequence only consists of sharper and less distorted images, and hence the ob-
tained image is clearer. For the other methods, the blurry and severely deformed
frames are also taken into account, so the reference image is corrupted. For an
even more severely turbulence-degraded video (Car sequence), the blurring effect
is more noticeable. From the mean of the low-rank part, the general geometric
structure is extracted and so sharp edges are preserved. However, most texture
details will go to the sparse part, so the details are removed. For the centroid
method, the texture details are kept as every image is warped by a deformation
field towards the ‘average position’, and there is no direct manipulation on image
intensities except for interpolation. However, since the centroid method is based on
the zero-mean assumption of the deformation fields between ground truth and the
distorted sequence, which sometimes does not hold for turbulence-distorted video,
the geometric structure may not be well kept. For the proposed method, the ref-
erence image is reconstructed from a good subsampled sequence, which minimizes
the energy (2) considering similarity and sharpness and is improved iteratively. As
a result, the edges are sharp, the geometric structure is preserved and the texture
details are kept. The PSNR of the reference images also justifies the result.
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Fig. 9 Comparison between the reference images for the investigated sequences. From left
to right are, respectively, an observed frame, the temporal mean used in [30], the mean of
low-rank part by RPCA used in [29] and the extracted image of the proposed method.

6.2.3 How the proposed algorithm can enhance existing methods

In order to get the best restored image from the turbulence-degraded sequence,
registration and fusion are needed. However, in general, there are inevitable draw-
backs in the registration process:

1. Registration is typically computationally heavy, especially in the context of
registering severely distorted sequences with a large number of frames.

2. A sharp reference image with details and geometric structure preserved is
needed in the registration process. Otherwise, misalignment artifacts will be
produced in the fusion stage.

The proposed method is not only standalone restoration method, but can also
serve as a preprocessing step to existing restoration approaches to enhance their



28 C.P. Lau, Y.H. Lai, L.M. Lui

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10 The images extracted from the Chimney and Car sequences. (a)(f) Observed. (b)(g)
Temporal mean [30]. (c)(h) Mean of low-rank by RPCA [29]. (d)(i) Centroid method [17]. (e)(j)
Proposed method (Model 2). The PSNR of (g), (h), (i), (j) from Car sequence are 25.9726,
26.3510, 26.7398, 28.2659 (in dB) respectively. Note that deblurring has not been applied to
these results.

(a) Ground truth (b) Observed (c) Centroid[17] (d) Centroid[17] +
Proposed (Model 1)

(e) SGL[14] (f) SGL[14] + Pro-
posed (Model 1)

Fig. 11 Comparison between results from the Carfront sequence

performance. First, less distorted frames are subsampled in the proposed method.
This greatly reduces the computational time for registration. Second, a good re-
stored image is obtained by the proposed method so registration is improved.
Experiments are carried out and the results are evaluated both qualitatively and
quantitatively. From the Table 3, comparing the results of the proposed method
to existing methods, the performance is significantly improved in terms of PSNR,
SSIM and computational time. Except the SGL case in the Car sequence where
the proposed method with Model 3 is applied, all the restoration results by the
state-of-the-art methods are improved by first applying the proposed method in
terms of PSNR, SSIM and computational time. This justifies that the proposed
method is dramatically effective.
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(a) Ground truth (b) Observed (c) Centroid[17] (d) Centroid[17] +
Proposed (Model 1)

(e) SGL[14] (f) SGL[14] + Pro-
posed (Model 1)

Fig. 12 Comparison between results from the Desert sequence

(a) Ground truth (b) Observed (c) Centroid[17] (d) Centroid[17] +
Proposed (Model 1)

(e) SGL[14] (f) SGL[14] + Pro-
posed (Model 1)

Fig. 13 Comparison between results from the Road sequence

6.3 Justification for the variants of the proposed model

6.3.1 Comparison between Model 1 and Model 2

One aim of our proposed method is to obtain a good restored image. Model 1 gives
a fast and reasonable result. The computation time is within 2 seconds in general.
Also, the obtained restored image is satisfactory for further usage, for instance,
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Table 3 Comparison between the performances existing restoration methods of with and
without enhancing with the proposed method, evaluated by PSNR (in dB), SSIM and compu-
tational time (in seconds).

Sequence SGL
SGL

Centroid
Centroid

+ Proposed + Proposed

Car
23.6366 22.9945 28.3825 29.7958
0.7558 0.7609 0.8539 0.8867
136.8 606.2 13564 1232.3

Carfront
16.8052 17.7973 20.1188 20.9859
0.6920 0.7214 0.8048 0.8419
15.5 4.2 1610.7 65.1

Desert
21.1075 21.9822 26.2154 30.3749
0.7299 0.7941 0.8231 0.9273
112.3 10.5 13778 78.8

Road
24.8007 24.8087 28.1933 32.3209
0.7479 0.7974 0.8273 0.9013
107.3 14.2 13309 177.6

(a) Ground truth (b) Observed (c) Centroid[17] (d) Centroid[17] +
Proposed (Model 2)

(e) SGL[14] (f) SGL[14] + Pro-
posed (Model 3)

Fig. 14 Comparison between results from the Car sequence

registration purpose. The efficiency of Model 1 owes to the simple 2-norm of the
fidelity term. However, if the video is severely distorted or the reference image
is required to be of high visual quality, Model 1 may not be able to fulfill these
aims. It is because the temporal average of a severely distorted video may give a
noticeable localized blur on the distorted pixel. Therefore, Model 2 is proposed to
tackle this kind of situation, as it has a fidelity term involving the low-rank part
of the observed images. This fidelity term can give a more accurate result and
mitigate the blurring effect.

In Figure 17, the comparison between Model 1 and Model 2 on both the syn-
thetic and real severely distorted video is illustrated. The PSNR and SSIM of the
restored image obtained from Model 2 are slightly higher than that of Model 1.
Also, the blurring effect of the restored image in Model 2 is weaker than that in
Model 1. For example, the boundary of the windows in the restored image ob-
tained by applying the proposed method with Model 1 in the Building sequence
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(a) Observed (b) Centroid[17] (c) Centroid[17] +
Proposed (Model 2)

(d) SGL[14] (e) SGL[14] + Pro-
posed (Model 2)

Fig. 15 Comparison between results from the Building sequence

is blurry, while the blurring effect is mitigated in that obtained in Model 2. This
is because the fidelity term involving low-rank part in the Model 2 gives a more
accurate similarity measure. The computational time of Model 2 is much longer
than Model 1 as computing RPCA is relatively costly, especially in computing
the initial low-rank part of the observed video which usually consists of about 100
frames. Therefore, in general, Model 2 is applied in the severe turbulence-degraded
video or more demanding restoration result.

6.3.2 Analysis on Model 3

Our proposed method has a general setting and gives the flexibility to tackle
different problems. For example, the observed turbulence-degraded sequence is
severely degraded by noise. Model 3 which consists of a TV regularization term
on the restored image is proposed to tackle this problem. To demonstrate the
effectiveness of Model 3, Gaussian noise is added to the Building and Chimney
sequences. Also, experiments are carried out with these noisy sequences. In general,
it is very hard to have a satisfactory result by denoising one single noisy image if
the noise is strong. However, if we have a sequence of noisy images of the same
stationary object, a better denoised result can be obtained. Unfortunately, this
is not our case as all the images are distorted, and thus the object positions
do not align well. As a result, some comparatively good images are needed to
be subsampled to limit the magnitude of distortion and noise, so as to obtain a
satisfactory result.

In Figure 18, the restored image obtained by the proposed method with Model
3 is shown. In Figure 18(b), the denoising result is not satisfactory as the noise
level of the chimney image is strong. If all observed images are taken into account
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(a) Observed (b) Centroid[17] (c) Centroid[17] +
Proposed (Model 2)

(d) SGL[14] (e) SGL[14] + Pro-
posed (Model 2)

Fig. 16 Comparison between results from the Chimney sequence

in the denoising model, the restored image is blurry. In Figure 18(c), since all
observed images are taken into account, including severely distorted images, the
resultant image is blurry. If we can subsample those mildly distorted and less noisy
images, we can obtain a comparatively sharper result. See Figure 18(d).

7 Conclusion

This paper presents a general framework to simultaneously restore an image and
obtain an optimal subsample consisting of less distorted and sharper frames. Also,
three models with different fidelity terms and regularization terms are proposed
along with the corresponding efficient algorithms. The major tasks are (1) speeding
up the restoration of a clear image from turbulence-degraded video, (2) quickly
restore a clear image from video severely degraded by turbulence and noise without
applying costly image registration techniques. To solve the first task, we propose
the IRIS algorithm to alternatively optimize the energy in Model 1, which consists
of a simple yet effective L2 fidelity term, and regularizers on image sharpness
and subsample size to restore a clear image within 2 seconds for a 100-frames
video. To tackle the second task, the LIRIS and TVIRIS algorithms are proposed,
which are instead equipped with a low-rank fidelity term and a TV regularization
term respectively, to restore an image from severely turbulence-degraded video
with additive Gaussian noise. As a by-product of the proposed algorithm, the
restoration of other state-of-the-art methods can also be significantly enhanced by
applying the proposed restored image as a reference image and optimal subsampled
video as the input observed video in their corresponding algorithms. In the future,
we are going to apply the proposed general framework to more applications, such



Joint image reconstruction and image subsampling 33

(a) (b) (c)

(d) (e) (f)

Fig. 17 The comparison of reference images obtained by Model 1 and Model 2 from the
Building and Car sequences. (a) Observed. (b) Model 1. (c) Model 2. The PSNR of (b), (c)
from Car sequence are 28.1232 and 28.2689 (in dB) respectively. The SSIM of (b), (c) from Car
sequence are 0.8547 and 0.8624 respectively. The computational times of Model 1 on Building
and Car sequence are 1.357 and 1.164 (in seconds) respectively. The computational times of
Model 2 on Building and Car sequence are 269.0 and 574.1 (in seconds) respectively. Note that
blind deconvolution for deblurring has not been applied to these results.

as restoring images from other turbulent medium, and investigating the possibility
of other fidelity and regularization terms.
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