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Abstract In the fields of nanoscience and nanotechnology,
it is important to be able to functionalize surfaces chemi-
cally for a wide variety of applications. Scanning tunnel-
ing microscopes (STMs) are important instruments in this
area used to measure the surface structure and chemistry
with better than molecular resolution. Self-assembly is fre-
quently used to create monolayers that redefine the surface
chemistry in just a single-molecule-thick layer (Nuzzo and
Allara 1983; Smith et al 2004; Love et al 2005). Indeed,
STM images reveal rich information about the structure
of self-assembled monolayers since they convey chemical
and physical properties of the studied material.

In order to assist in and to enhance the analysis of STM
and other images (Thomas et al 2015, 2016), we propose
and demonstrate an image-processing framework that pro-
duces two image segmentations: one is based on intensities
(apparent heights in STM images) and the other is based
on textural patterns. The proposed framework begins with
a cartoon+texture decomposition, which separates an im-
age into its cartoon and texture components. Afterward,
the cartoon image is segmented by a modified multiphase
version of the local Chan-Vese model (Wang et al 2010),
while the texture image is segmented by a combination of
2D empirical wavelet transform and a clustering algorithm.
Overall, our proposed framework contains several new fea-
tures, specifically in presenting a new application of car-
toon+texture decomposition and of the empirical wavelet
transforms and in developing a specialized framework to
segment STM images and other data. To demonstrate the
potential of our approach, we apply it to actual STM im-
ages of cyanide monolayers on Au{111} and present their
corresponding segmentation results.

Keywords Scanning Tunneling Microscopy · Segmenta-
tion · Chan-Vese · Empirical Wavelets · Textures
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Fig. 1 In self-assembled monolayers, a single layer of
molecules is chemically bound to a solid or liquid sub-
strate. The wide range of substrates (e.g., metals, semi-
conductors, insulators, glasses, superconductors, nanopar-
ticles) that can be used call for complementary chemistries
of attachment of the molecular layers. The exposed func-
tional group at the ends of the molecules typically domi-
nates the interactions of the substrate with the surrounding
chemical, physical, and biological environment

1 Introduction

Self-assembled monolayers (SAMs) have been extensively
studied and applied in nanoscience, nanotechnology, and
beyond (Poirier 1997; Gooding et al 2003; Smith et al 2004;
Love et al 2005). These SAMs are formed by molecules
that have a head group (e.g., sulfur, selenium, carboxy-
late, phosphonate) that is chemically bound to a substrate
(e.g., gold, silver, copper, platinum, germanium), and often
form two-dimensional crystalline lattices (see Figure 1).
The strong affinity between the head group and the sub-
strate and the intermolecular interactions between the molec-
ular backbones and tail groups lead to self-assembly of
the monolayers via exposure of the substrate to the mole-
cules in solution, in vapor, or by contact with a support-
ing structure such as a polymer stamp. The organization of
the monolayer structure depends on the chemical proper-
ties and structures of the molecular monolayer components
(Claridge et al 2013). Controlling the design of a SAM re-
quires properly tuning the chemical and physical proper-
ties of the assembled molecules (Dameron et al 2005). As
a result, control of basic parameters and external stimuli
(e.g., deposition conditions, temperature, electrochemical
potential, and illumination) on SAMs has been examined
to target specific assemblies for nanotechnology research
and applications (Guttentag et al 2016a). One method of
analyzing the chemical and physical properties of SAM
is by examining molecular resolution images obtained by
scanning tunneling microscopy.

In order to obtain a scanning tunneling microsopy im-
age of a SAM, an atomically sharp conducting probe tip is
brought within one or two atomic diameters of the surface
of the sample so that electrons can tunnel from the surface
to the tip. A voltage bias is applied between the two and the
tip-sample separation is typically adjusted while scanning

to maintain a constant tunneling current of electrons. Since
the current is extremely sensitive to the tip-sample separa-
tion, better than atomic resolution is often obtained and ap-
parent height differences across the surface are recorded,
thereby acquiring nanoscale images with molecular fea-
tures. The scanning procedure is shown in Figure 2 and
examples of STM images of cyanide (CN) monolayers on
Au{111} are shown in Figure 3. These images show the
varying textures and different apparent heights (displayed
as intensities) as a result of the structure and chemical prop-
erties of the SAM. Partitioning the images according to
the apparent heights and texture patterns would help fa-
cilitate the understanding and analyses of SAMs and other
surfaces studied. We note that not only are the ordered re-
gions important but also are the boundaries between them
(Poirier 1997) since these domain boundaries determine
access of other molecules to the substrate and can be used
to isolate single molecules, or pairs, lines, or clusters of
molecules (Bumm et al 1996; Kim et al 2011; Claridge
et al 2013).

Here, we propose a novel framework to analyze STM
images that produces segmentation based on intensities and
segmentation based on texture features. The proposed meth-
od consists of three main steps. The first step performs a
cartoon+texture decomposition of the STM image. Its car-
toon and texture components are then analyzed separately.
The cartoon image is the component containing only the
edges or boundaries of homogeneous regions in the images
and it is devoid of any oscillatory patterns. On the other
hand, the texture image consists of oscillatory patterns. We
propose two parallel steps: the cartoon component is seg-
mented using a variant of the Chan-Vese model (Chan et al
2000) and the texture component is segmented by feeding
some classifier with features based on empirical wavelets
(Gilles 2013; Gilles et al 2014).

First, we propose a novel multiphase version of the lo-
cal Chan-Vese model (Wang et al 2010) and develop an
efficient algorithm based on the MBO scheme (Merriman
et al 1992, 1994) to solve it. The proposed model creates
a more accurate segmentation result that is robust against
intensity inhomogeneities compared to the original multi-
phase Chan-Vese model (Vese and Chan 2002). Secondly,
we improve the 2D empirical wavelet transform, specifi-
cally the empirical curvelet transform, so that it provides
a filter bank of empirical curvelets extracting meaningful
textural information. From the filter bank outputs, we de-
sign a texture feature matrix to feed a clustering algorithm
in order to identify regions of different textural patterns on
the STM image.

The paper outline is as follows. In Section 2, we de-
scribe the nonlinear decomposition algorithm we use in our
approach to decompose an STM image into its cartoon and
textures components. In Section 3, we propose a modified
version of the local multiphase model and determine its
diffuse interface approximation in order to develop an al-
gorithm based on the MBO scheme to solve it. In Section 4,
we review the empirical wavelet transform (particularly the
empirical curvelet transform) and propose modifications
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Fig. 2 To obtain scanning tunneling microscope images, constant current is held as the tip moves across the surface, expe-
riencing voltage drops over bumps. Figure provided by Michael Schmid, TU Wien, at https://commons.wikimedia.
org/w/index.php?curid=180388

Fig. 3 Raw scanning tunneling microscope images of cyanide on Au{111}, reproduced from Guttentag et al (2016a) with
permissions. Images copyright American Chemical Society

on how the curvelets’ supports are detected. We then ex-
plain the design of the texture feature matrix based on the
empirical curvelet coefficients. In Section 5, our proposed
framework is applied to the images in Figure 3 in order to
evaluate its efficacy in partitioning STM images by inten-
sities and texture patterns. Finally, in Section 6, we sum-
marize our results and discuss possible research directions
to further improve the proposed framework.

2 The Cartoon+Texture Decomposition

As discussed in the introduction, the first step of our al-
gorithm involves the decomposition of an image into its
cartoon and textural components.

The cartoon+texture decomposition can be posed as an
inverse problem and it consists of decomposing an image
f : Ω → R, where Ω is the image domain, into

f = u+ v

https://commons.wikimedia.org/w/index.php?curid=180388
https://commons.wikimedia.org/w/index.php?curid=180388
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where u and v are the cartoon and the texture components,
respectively. The cartoon image carries broad information
about the image and is usually modeled by a function of
bounded variation (piecewise smooth with possibly a dis-
continuity set). The texture image contains oscillatory in-
formation and is thus usually modeled by oscillating func-
tions.

One of the earliest variational models that inspired car-
toon+texture decomposition is the Rudin-Osher-Fatemi to-
tal variation minimization model (Rudin et al 1992)

inf
u∈BV (Ω)

v∈L2(Ω)

{
σ‖u‖TV +‖v‖2

L2 , f = u+ v
}
, (1)

where ‖u‖TV is the total variation of u and σ is a tun-
ing parameter that controls the regularization strength. The
model was originally used for denoising purposes because
of the functional spaces that u and v belong to. The func-
tion u belongs to the space of functions of bounded varia-
tions

BV (Ω) =

{
u ∈ L1(Ω) :

∫
Ω

|∇u|< ∞

}
,

which penalizes oscillations such as noise and textures but
allows for piecewise-smooth functions made of homoge-
neous regions with sharp boundaries. However, the decom-
position is well-posed only in a multiresolution setup since
image features can be considered as texture in one scale
and cartoon at a different scale. One of the most popular
models in cartoon+texture decomposition is the TV − L1

model proposed by Chan and Esedoglu (2005), for which
Chambolle (2004) provided a fast projection algorithm.

Although models, such as (1) and the above mentioned,
are able to perform cartoon + texture decomposition, Meyer
(2001) argued that the texture image extracted by these
models does not fully characterize the oscillatory patterns
of the original image. As a result, he proposed to replace
the L2 norm in (1) by weaker norms (associated to spaces
of oscillatory distributions) in order to better capture the
oscillatory patterns. In practice, some of these norms are
difficult to compute. To remedy this drawback, Buades et al
(2011) developed a nonlinear version of the linearized Mey-
er’s model.

The linearized Meyer’s model is

inf
u∈H1(Ω)

v∈H−1(Ω)

{
σ

4‖∇u‖2
L2 +‖v‖2

H−1 , f = u+ v
}
, (2)

where H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)} and H−1(Ω)

is the dual space of the homogeneous version of H1(Ω).
They are defined in the Fourier domain by

H1(Ω)

= {u ∈ L2(Ω) :
∫

Ω

[1+(2π|ξ |)2]|F2(u)(ξ )|2dξ < ∞}

and

H−1(Ω)

= {v ∈ L2(Ω) :
∫

Ω

[1+(2π|ξ |)2]−1|F2(v)(ξ )|2dξ < ∞},

where F2(·) is the 2D Fourier Transform. Minimizing the
quadratic functional (2) yields the solution

u = Lσ ∗ f with F2(Lσ )(ξ ) =
1

1+(2πσ |ξ |)4 ,

where the convolution kernel is given in the Fourier do-
main. Since F2(Lσ )(ξ ) defines a low-pass filter, any fre-
quency ξ that is significantly smaller than 1

2πσ
is kept in

u. Otherwise, it is kept in v. Thus, the cartoon + texture
decomposition is performed by applying a low-pass/high-
pass filter onto f ,

(u,v) = (Lσ ∗ f ,(Id−Lσ )∗ f ).

The drawback of the low-pass filter is that sharp edges are
altered, while they should be preserved as much as possible
since they are necessary for cartoon segmentation.

The nonlinear version of (2) relies on a classifier which
determines whether a pixel of the original image belongs to
the cartoon or the texture component (Buades et al 2011).
The idea consists of measuring the rate of change of the
local total variation (LTV) between the original image and
its lowpass filtered version, defined by

λσ (x) =
LTVσ ( f )(x)−LTVσ (Lσ ∗ f )(x)

LTVσ ( f )(x)
, (3)

where

LTVσ ( f )(x) = Lσ ∗ |∇ f |(x). (4)

If a neighbourhood of a pixel x does not contain any tex-
tures, then f and Lσ ∗ f will be similar within the neigh-
bourhood, so λσ (x) is close to 0. If some textures are
present within the neighborhood, then the total variation of
the neighborhood in the filtered image will be smaller and
λσ (x) is close to 1. Therefore, the cartoon component u
is computed as the weighted average between the original
image f and the filtered image Lσ ∗ f depending on λσ , i.e.

u(x) = w
(
λσ (x)

)
(Lσ ∗ f )(x)+

(
1−w(λσ (x))

)
f (x),

with the soft threshold function w : [0,1]→ [0,1] given by

w(x) =


0 if x < a1

(x−a1)/(a2−a1) if a1 ≤ x≤ a2

1 if a2 < x

,

where 0 < a1 < a2 < 1. For our experiments in Section 5,
as suggested by Buades et al (2011), we fixed a1 = 0.25
and a2 = 0.50. The texture component is easily obtained
by computing the difference between the original image
and its cartoon component. The algorithm for the nonlinear
version is summarized in Algorithm 1.

In Figure 4, we present results for both linear and non-
linear decompositions for one of the images in Figure 3 to
illustrate why choosing the nonlinear version is more inter-
esting. Although both decompositions succeed in separat-
ing the image into its cartoon and texture components, as
shown in Figures 4b and 4d, the nonlinear decomposition
gives sharper edges in the cartoon component than does the
linear decomposition. Since in general these edges do not
correspond to textures associated with molecular orienta-
tions but rather with topographic transitions of the molec-
ular layers, the nonlinear version is therefore preferable.
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Algorithm 1: Cartoon+Texture Decomposition

Input: Original image f , parameter σ > 0
1: Compute the LTV reduction rate using (3) at each

pixel.
2: Obtain the cartoon component:

u(x)← w
(
λσ (x)

)
(Lσ ∗ f )(x)

+
(
1−w(λσ (x))

)
f (x)

3: Obtain the texture component:

v(x)← f (x)−u(x)

Output: Cartoon and texture components u, v

3 Segmentation of the Cartoon Image

The cartoon component of an STM image provides infor-
mation about the stratification of scanned molecules. The
lighter the gray intensity is, the greater the apparent height.
Here, the largest variations are due to monoatomic steps in
the substrate; a single layer of molecules is present every-
where on the surface. Identifying different gray level re-
gions is therefore crucial for finding the topographic prop-
erties of the substrate and chemical layers.

We propose to use a level-set approach based on the
multiphase Chan-Vese (multiphase CV) model to perform
the segmentation of the cartoon component. The Chan-
Vese model is inspired by the pioneering work of Mum-
ford and Shah (1989), who suggested performing image
segmentation by solving the minimization problem

inf
u,Γ

{∫
Ω\Γ
|∇u|2 +λ

∫
Ω

(u−u0)
2 +µ

∫
Γ

ds
}
, (5)

where u0 : Ω → R is the cartoon image to be segmented
and µ and λ are weighing parameters. The function u is a
piecewise smooth approximation of u0, which is allowed
to have jumps across Γ – a closed subset of Ω given by a
finite union of rectifiable curves.

Although several algorithms have been proposed to com-
pute the solution (Ambrosio and Tortorelli 1990), its com-
putation (Vese and Chan 1997; March 1992) is relatively
complicated and numerically expensive. To overcome this
drawback, simplifications of the energy functional (5) to
piecewise constant functions have been proposed.

Based on the level-set approach (Osher and Sethian
1988), the multiphase CV segmentation model (Vese and
Chan 2002) remains one of the most popular models. In
this setup, the function u is allowed to have only four val-
ues c1,c2,c3, and c4, one for each of the four distinct re-
gions. Furthermore, using two level-set functions φ1 and
φ2, thus producing four phases {φ1 > 0,φ2 > 0},{φ1 >

0,φ2 < 0},{φ1 < 0,φ2 > 0}, and {φ1 < 0,φ2 > 0}, one can
show it is sufficient to generate a partition of the domain
Ω into regions of different intensities having triple junc-
tions or T -junctions such that Γ = {φ1 = 0} ∪ {φ2 = 0}
(See Vese and Chan (2002) for details).

(a) Original STM image

(b) Linear filtering: cartoon (c) Linear filtering: texture

(d) Nonlinear filtering: cartoon (e) Nonlinear filtering: texture

Fig. 4 Results of linear and nonlinear cartoon texture de-
compositions with σ = 3, reproduced from Guttentag et al
(2016a) with permission. Image in (a) copyright American
Chemical Society

Let u = (u1,u2) be a vector-valued function and c =

(c1,c2,c3,c4) be a vector of constants. The fidelity term is
defined as

E f id(c,u) =
∫

Ω

(c1−u0)
2u1u2

+
∫

Ω

(c2−u0)
2u1(1−u2)

+
∫

Ω

(c3−u0)
2(1−u1)u2

+
∫

Ω

(c4−u0)
2(1−u1)(1−u2).

(6)

The perimeter term is defined by

Eper(u) =
∫

Ω

|∇u1|+
∫

Ω

|∇u2|. (7)

Using the standard Heaviside function H with the no-
tations Φ = (φ1,φ2) and H(Φ) = (H(φ1),H(φ2)), the four-
phase piecewise constant Mumford-Shah model can be writ-
ten in terms of the level set functions φ1 and φ2 as

ECV (c,H(Φ)) = λE f id(c,H(Φ))+µEper(H(Φ)). (8)



6 Kevin Bui et al.

3.1 Local Multiphase Chan-Vese Model

The model (8) is, however, not robust against illumination
bias, such as shadows, or intensity inhomogeneities, such
as weak edges, usually present in STM images. For exam-
ple, if a region of an image is partially overlapped by a
shadow, it might be segmented into two regions. Or, on the
contrary, regions with inhomogeneous gray-level intensi-
ties, may not be segmented at all, even though they might
provide valuable information.

Wang et al (2010) proposed a local term that can be
added to (8) to counteract the lighting issues. We define, as
before, a local term

Eloc(d,u) =
∫

Ω

(gk ∗u0−u0−d1)
2u1u2

+
∫

Ω

(gk ∗u0−u0−d2)
2u1(1−u2)

+
∫

Ω

(gk ∗u0−u0−d3)
2(1−u1)u2

+
∫

Ω

(gk ∗u0−u0−d4)
2(1−u1)(1−u2),

(9)

where gk is a convolution kernel with (k× k)-size window
and d = (d1,d2,d3,d4) is a vector-valued function. The
local multiphase Chan-Vese model (local MCV) requires
minimizing the energy functional

ECV loc(c,d,H(Φ)) = ECV (c,H(Φ))+βEloc(d,H(Φ)).

(10)

With gk as a low-pass filter, the image difference be-
tween the filtered cartoon image and the original cartoon
image will have its edges properly identified and the ar-
eas with slowly varying intensities disregarded. By incor-
porating the image difference, the model would take into
account weak edges and illumination bias.

The effectiveness of incorporating (9) depends on the
choice of the convolution kernel gk. Since gk needs to be a
low-pass filter, one issue to be aware of is over-smoothing
of the edges. For the purpose of our paper, we use a Gaus-
sian filter, which weighs more pixels close to the center
than pixels distant from it. This property effectively pre-
serves the edges of the image as the image is being
smoothed. Moreover, the choice of standard deviation for
the Gaussian filter enables greater control in the amount of
smoothing.

3.2 Ginzburg-Landau Approximation for the Local MCV
Model

Computing the minimizer for the energy functional (10)
can be computationally expensive. For example, see the
work of Getreuer (2012). Instead, one could alternatively
obtain an approximate solution by threshold dynamics, sug-
gested by Esedoglu and Tsai (2006). To this end, we ap-
proximate the energy functional (10) by a sequence of en-
ergies

E ε
CV loc(c,d,u) = λE f id(c,u)+µE ε

GL(u)+βEloc(d,u),

(11)

where the perimeter term Eper in the multiphase CV model
(8) is replaced by the Ginzburg-Landau functional

E ε
GL(u) = ε

∫
Ω

(|∇u1|2 + |∇u2|2)+
1
ε

∫
Ω

(W (u1)+W (u2)),

where W (u) = u2(1−u)2. Applying the results of Modica
and Mortola (1977); Modica (1987), it can be shown that
E ε

GL(u) Γ -converges to Eper(u) as ε → 0+. Note that ev-
erything in the new energy functional is now expressed in
terms of the new functions ui instead of H(φi) for i = 1,2.

By calculus of variations, keeping d and u fixed and
minimizing with respect to c, we obtain

c1 = A [u0,u1,u2]

c2 = A [u0,u1,1−u2]

c3 = A [u0,1−u1,u2]

c4 = A [u0,1−u1,1−u2],

(12)

where

A [u0,u1,u2] =

∫
Ω

u0u1u2∫
Ω

u1u2
.

Similarly, keeping c and u fixed and minimizing with re-
spect to d, we obtain

d1 = A [gk ∗u0−u0,u1,u2]

d2 = A [gk ∗u0−u0,u1,1−u2]

d3 = A [gk ∗u0−u0,1−u1,u2]

d4 = A [gk ∗u0−u0,1−u1,1−u2].

(13)

Keeping now c and d fixed and minimizing E ε
CV loc with re-

spect to u, we deduce the Euler-Lagrange equations for u.
It is a common technique to parametrize the descent direc-
tion by an artificial time variable t ≥ 0 and initialize u(x,0).
The equations for u(x, t) = (u1(x, t),u2(x, t)) are

∂u1

∂ t
=−λL (u0,c,u2)[u1]

−βL (gk ∗u0−u0,c,u2)[u1]

+µ

(
2ε∆u1−

1
ε

W ′(u1)

) (14)

∂u2

∂ t
=−λL (u0, c̄,u1)[u2]

−βL (gk ∗u0−u0, c̄,u1)[u2]

+µ

(
2ε∆u2−

1
ε

W ′(u2)

)
,

(15)

where c̄ = (c1,c3,c2,c4) and the operator L (u0,c,u2)[u1]

is constant with respect to u1, is linear in u2, and is given
by

L (u0,c,u2)[u1] =(c1−u0)
2u2 +(c2−u0)

2(1−u2)

− (c3−u0)
2u2− (c4−u0)

2(1−u2).
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At t = 0, we initialize u1 and u2 as the checkerboard func-
tions

u1(x,0) = 1{sin πx1
3 sin πx2

3 >0}

u2(x,0) = 1{sin πx1
10 sin πx2

10 >0},
(16)

where 1 is the characteristic function, since initialization
of the checkerboard function was observed to have faster
convergence to the solution for the two-phase model (Ge-
treuer 2012).

3.3 MBO scheme for Solving the Local MCV

In order to solve the above system of parabolic PDEs, we
implement the MBO scheme (Merriman et al 1992, 1994).
The underlying idea is to solve the PDE in three steps:
solve the linear ODE

∂w
∂ t

=−λL (u0,c,u)[w]−βL (gk ∗u0−u0,c,u)[w],

(17)

solve the heat equation,

∂v
∂ t

= 2µε∆v (18)

and apply thresholding, which corresponds to solving the
nonlinear ODE

∂u
∂ t

=−µ

ε
W ′(u). (19)

We use the fact that as ε → 0, the solution is approaching
one of the steady states (u = 0 and u = 1). Since we are
dealing with a system of equations, we need to alternate
the steps between the two functions u1 and u2.

Using the MBO scheme, we develop an iterative algo-
rithm that computes a sequence of solutions {cn,dn,un} .
After initialization of u0 = (u0

1,u
0
2) as the checkerboard

functions (16) and the computation of

ũ0 = gk ∗u0−u0,

for each iteration n ∈ N we proceed as follows:

1. Compute the average intensities

cn
1 = A [u0,un

1,u
n
2]

cn
2 = A [u0,un

1,1−un
2]

cn
3 = A [u0,1−un

1,u
n
2]

cn
4 = A [u0,1−un

1,1−un
2].

(20)

and average differences of intensities

dn
1 = A [ũ0,un

1,u
n
2]

dn
2 = A [ũ0,un

1,1−un
2]

dn
3 = A [ũ0,1−un

1,u
n
2]

dn
4 = A [ũ0,1−un

1,1−un
2].

(21)

2. Let vn+1
1 be the solution of the ODE (17), with initial

data un
1, computed at time dt for the operator L (·,c,un

2).

This can be easily solved via a finite difference scheme
of the form

vn+1
1 −un

1
dt

=−λL (u0,c,un
2)[u

n
1]

−βL (ũ0,c,un
2)[u

n
1].

(22)

3. Let wn+1
1 be the solution of the heat equation (18), with

initial data vn+1
1 , computed at time dt. The equation

can be solved in the Fourier domain as

F2(wn+1
1 ) =

1
1+2µ dt|ξ |2

F2(vn+1
1 ). (23)

4. Threshold to approach steady-state solutions of equa-
tion (19) as follows:

un+1
1 =

{
0 if wn+1

1 ∈ (−∞, 1
2 ]

1 if wn+1
1 ∈ ( 1

2 ,+∞).
(24)

5. Set vn+1
2 to be the solution of the ODE (17), with initial

data un
2, computed at time dt, for the operator

L (·, c̄,un+1
1 ). This can be solved, as before, via a finite

difference scheme of the form

vn+1
2 −un

2
dt

=−λL (u0, c̄,un+1
1 )[un

2]

−βL (ũ0, c̄,un+1
1 )[un

2].

(25)

6. Let wn+1
2 be the solution of the heat equation (18), with

initial data vn+1
2 , computed at time dt. As before, we

solve the equation in the Fourier domain as

F2(wn+1
2 ) =

1
1+2µ dt|ξ |2

F2(vn+1
2 ). (26)

7. Threshold to approach steady-state solutions of equa-
tion (19) as follows:

un+1
2 =

{
0 if wn+1

2 ∈ (−∞, 1
2 ]

1 if wn+1
2 ∈ ( 1

2 ,+∞).
(27)

In order to obtain the segmented result ũ, we multiply
u2 by two and add it to u1 to form at most four segmented
regions. If we simply add u1 and u2 together, we would
have at most three regions. The algorithm for minimizing
(10) is summarized in Algorithm 2. Results are shown and
discussed in Section 5.

4 Texture segmentation using Empirical Wavelet
Transform

STM images may be comprised of various texture patterns,
as shown in Figure 3. These patterns are not in general sim-
ple waves but rather a combination of several simple oscil-
lations. The goal of this section is to partition the image
textures into several components, each grouping together
pixels belonging to a similar pattern. Texture segmentation
is in general a difficult task because it needs to take into
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Algorithm 2: MBO scheme for local MCV

Input: Image u0, parameters λ ,µ,β , dt
1: Compute

ũ0 = gk ∗u0−u0

using the Gaussian filter, preferably imgaussfilt in
MATLAB.

2: Initialize u1 and u2 as in (16).
3: for i = 1 to n do
4: Compute the average intensities ci as in (20).
5: Compute the average intensities di as in (21).
6: Compute the solution ui using equations

(22)-(27).
7: end for
8: Combine un

1 and un
2 to obtain multiphase image ũn,

i.e.
ũn = un

1 +2un
2

Output: Segmented Image ũn

account all types of variability within textures. Such diffi-
culties can be leveraged in the case of particular textures,
as for STM images, since the textures correspond to pe-
riodic patterns at different frequencies and with different
orientations.

Directional image decomposition methods involve a de-
composition of the Fourier spectrum into basis elements.
These methods include Gabor filters (Jain and Farrokhnia
1991; Dunn and Higgins 1993; Dunn et al 1994; Dunn and
Higgins 1995; Weldon et al 1996), wavelets (Strang 1993;
Arivazhagan and Ganesan 2003; Unser 1995), curvelets
(Arivazhagan et al 2006; Candes and Donoho 2005; Can-
des et al 2006; Shen and Yin 2009) and shearlets (Guo et al
2006). However, they are not adaptive and may result in in-
coherent partitions for STM-type images. Adaptive meth-
ods, on the other hand, provide better image decomposi-
tion since the basis elements are generated by the informa-
tion contained in the image itself. Among these adaptive
methods, the 2D variational mode decomposition (VMD)
is a non-recursive, fully adaptive algorithm that sparsely
decomposes signals/images into ensembles of constituent
modes (Dragomiretskiy and Zosso 2014, 2015; Zosso et al
2017b). By minimizing an energy functional, this method
simultaneously retrieves a given number of modes (tex-
ture patterns) together with their supports and the frequen-
cies around which they are band-limited. To accommodate
microscopy images, where texture patterns are combina-
tions of simple modes, the energy functional is adapted
to lattices by coupling several modes with a single sup-
port function. The solution to the energy functional is op-
timized using alternating direction method of multipliers
(ADMM) (Gabay and Mercier 1976; Glowinski and Mar-
roco 1975) and the MBO scheme, requiring several pa-
rameters to tune for the fidelity, penalty, and regularization
terms involved as well as the convergence rate of ADMM
(Boyd et al 2011). The VMD is an effective segmenta-
tion model, which has been demonstrated to work well
on a broad variety of images. However, for our purpose, it

Fig. 5 Partitioning of the Fourier spectrum of a 1D signal

presents two major inconveniences: (1) the large number of
parameters to be tuned, which can become time consuming
when trying to achieve the best texture segmentation result,
and (2) the explicit number of active modes required in the
decomposition, which is restrictive.

An alternative method is the empirical wavelet trans-
form (EWT) recently proposed by Gilles (2013). It is very
well adapted to patterns specific to STM image textures,
and it automatically finds the number of modes while re-
quiring very few parameters to tune. Using EWT, we pro-
pose a texture segmentation algorithm adapted to microscopy
image textures, which consists of three steps: (1) perform
the EWT on the texture component, (2) construct a feature
matrix based on the processed EWT coefficients, and (3)
apply a clustering algorithm to the feature matrix in order
to obtain the final segmentation. Detailed below, the main
contributions in the EWT algorithm are the improvement
of boundary detection and partitioning the Fourier spec-
trum and the selection of texture features based on their
local energy.

4.1 The Empirical Wavelet Transform

The EWT was originally proposed as a signal decomposi-
tion method that detects and separates the signals’ princi-
pal harmonic modes. The principal modes are modeled as
amplitude modulated-frequency modulated (AM-FM) sig-
nals with compact support in the Fourier domain (Gilles
2013). The EWT consists of two steps: (1) it partitions
the Fourier spectrum into N supports and it builds in the
Fourier domain a filter bank, where each wavelet filter cor-
responds to a support, and (2) it filters the input signal
with the obtained filter bank to produce the different com-
ponents. The filter bank consists of N wavelet filters: one
low-pass filter corresponding to the approximation compo-
nent and N−1 bandpass filters corresponding to the details
components.

The partitioning of the Fourier spectrum is as important
as building the adaptive wavelets since it provides informa-
tion about the principal harmonic components. Several ap-
proaches to perform the boundaries detection in the Fourier
domain were investigated by Gilles (2013); Gilles and Heal
(2014); Gilles et al (2014). In particular, Gilles and Heal
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(2014) proposed a fully automatic algorithm based on a
combination of a scale-space representation and Otsu’s
method. The advantage of this approach is in that it auto-
matically finds the number N of expected modes as well
as detects the boundaries of the Fourier supports. We used
this approach in all experiments.

Assume that the Fourier spectrum is partitioned into
N contiguous segments with boundaries {ωn}N

n=0, where
ω0 = 0 and ωN = π (see Figure 5). Then, based on Meyer’s
wavelet formulation, we construct a filter bank of wavelets

{φ1(x),{ψn(x)}N−1
n=1 },

on the corresponding segments [ωn−1,ωn]. The Fourier
transform (denoted as F1 in the 1D case) of the empirical
scaling function is given by

F1(φ1)(ω) =


1 if |ω| ≤ (1− γ)ω1

cos
[

π

2 B
(

1
2γω1

(|ω|− (1− γ)ω1)
)]

if (1− γ)ω1 ≤ |ω| ≤ (1+ γ)ω1

0 if otherwise

,

(28)

whereas the Fourier transforms of the empirical wavelets
are given by

F1(ψn)(ω) =

1 if (1+ γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[

π

2 B
(

1
2γωn+1

(|ω|− (1− γ)(ωn+1)
)]

if (1− γ)ωn+1 ≤ |ω| ≤ (1+ γ)ωn+1

sin
[

π

2 B
(

1
2γωn

(|ω|− (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn

0 if otherwise

, (29)

for n = 1, . . . ,N. The function B is an arbitrary C k([0,1])
function satisfying the properties that B(t) = 0 if t ≤ 0,
B(t) = 1 if t ≥ 1, and B(t)+B(1− t) = 1 and B(t) ∈
(0,1) for all t ∈ [0,1]. The parameter γ is chosen to ensure
that two consecutive transition areas (shown as dashed ar-
eas in Figure 5) do not overlap. As shown by Gilles (2013),
a proper selection of γ guarantees that the filter bank
{φ1,{ψn}N−1

n=1 } is a tight frame in L2(R). Then, the EWT
is defined in the same way as the classical Wavelet Trans-
form. For the signal function f , the details coefficients are
given as

W E
f (n,x) = F ∗

1

(
F1( f )(ω)F1(ψn)(ω)

)
(x), (30)

and the approximation coefficient as

W E
f (0,x) = F ∗

1

(
F1( f )(ω)F1(φ1)(ω)

)
(x), (31)

where F ∗
1 stands for the inverse 1D Fourier Transform.

The EWT was later generalized to 2D images for vari-
ous kinds of wavelet transform, specifically tensor wavelets,
Littlewood-Paley wavelet transform, the ridgelet transform,
and the curvelet transform (Gilles et al 2014).

4.2 The Empirical Curvelet Transform

Textures in STM images can be seen as oscillatory pat-
terns with multiple orientations. Among all of the above
mentioned variants, curvelets are wavelets that take into
account various orientations (Candes and Donoho 2005).
Therefore, its empirical counterpart, the Empirical Cur-
velet Transform (ECT), is the most appropriate adaptation
of EWT to partition texture images. Similar to the EWT,
the ECT builds a filter bank in the Fourier domain where
each filter has its support on a polar wedge.

As shown in Figure 6b, the Fourier domain is parti-
tioned in this case into a disk centered at the origin, which
contains the low frequencies, and concentric annuli and an-
gular sectors (polar wedges), which contain high frequen-
cies. In order to build the filter bank adaptively, the ECT
needs to detect the boundaries of the polar wedges empiri-
cally, which correspond to finding the scales for the angle
and the radii. Following Gilles et al (2014), this step can
be achieved by considering the pseudo-polar Fourier trans-
form (Averbuch et al 2006, 2008) and performing the pre-
viously described 1D detection to 1D spectra correspond-
ing to averaging with respect to the frequency magnitude
and orientation, respectively. Gilles et al (2014) proposed
three different cases: (1) scales and angles are detected in-
dependently, (2) scales are detected first and angles are de-
tected per each scale, and (3) angles are detected first and
scales are detected per each angular sector. In this work, we
will consider the second option because STM images con-
tain texture patterns with different main orientations hav-
ing varying frequency magnitudes.

In the following, we will denote ω = (ωx1 ,ωx2) the
frequency coordinates in the Fourier plane, |ω| its mag-
nitude and θ its angle. Otsu’s boundary detection method
will then provide Nθ number of angles and Nm

s number of
scales per each angular sector m = 1, . . . ,Nθ . This is equiv-
alent to obtaining the set of angular boundaries {θm}Nθ

m=1

and the set of scale boundaries {ωm
n }

Nm
s

n=1 per angular sec-
tor for m = 1, . . . ,Nθ . Note that ω1

1 = . . . = ω
Nθ

1 because
all together they form the disk centered at the origin of
the Fourier domain. The corresponding curvelet filters are
then defined in the Fourier domain (we denote F2 the 2D
Fourier transform) in the following way. The purely radial
lowpass filter φ1 is given by

F2(φ1)(ω,θ)=


1 if |ω| ≤ (1− γ)ω1,

cos
[

π

2 B
(

1
2γω1

(|ω|− (1− γ)ω1)
)]

if (1− γ)ω1 ≤ |ω| ≤ (1+ γ)ω1,

0 if otherwise,

(32)

where ω1 = ω1
1 = . . .= ω

Nθ

1 . The polar curvelet associated
to the polar wedge Im

n := [θm,θm+1]× [ωm
n ,ω

m
n+1] can be

written as

F2(ψm,n)(ω,θ) =W m
n (|ω|)Vm(θ), (33)
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where the radial window W m
n is

W m
n (|ω|)=



1 if (1+ γ)ωm
n ≤ |ω| ≤ (1− γ)ωm

n+1,

cos
[

π

2 B
(

1
2γωm

n+1

(
|ω|− (1− γ)ωm

n+1
))]

if (1− γ)ωm
n+1 ≤ |ω| ≤ (1+ γ)ωm

n+1,

sin
[

π

2 B
(

1
2γωm

n
(|ω|− (1− γ)ωm

n )
)]

if (1− γ)ωm
n ≤ |ω| ≤ (1+ γ)ωm

n ,

0 if otherwise,

(34)

for n 6= Nm
s −1 and

W m
Nm

s −1(|ω|) =

1 if (1+ γ)ωm
Nm

s −1 ≤ |ω|,

sin
[

π

2 B

(
1

2γωm
Nm

s −1

(
|ω|− (1− γ)ωm

Nm
s −1

))]
if (1− γ)ωm

Nm
s −1 ≤ |ω| ≤ (1+ γ)ωm

Nm
s −1,

0 if otherwise,
(35)

for n = Nm
s −1, while the angular window Vm is

Vm(θ) =



1 if θm +∆θ ≤ θ ≤ θm+1−∆θ ,

cos
[

π

2 B
( 1

2∆θ
(θ −θm+1 +∆θ)

)]
if θm+1−∆θ ≤ θ ≤ θm+1 +∆θ ,

sin
[

π

2 B
( 1

2∆θ
(θ −θm +∆θ)

)]
if θm−∆θ ≤ θ ≤ θm +∆θ ,

0 if otherwise.
(36)

The parameters γ and ∆θ are chosen in order to guarantee
the tight frame property (see Gilles et al (2014) for details).
This leads to the construction of the filter bank of empirical
curvelets{

φ1(x),{ψm,n(x)} m=1,...,Nθ

n=1,...,Nm
s −1

}
. (37)

From (37), the empirical curvelet transform of the tex-
ture component v is given by the detail coefficients as

W E C
v (m,n,x) = F ∗

2

(
F2(v)F2(ψm,n)

)
(x), (38)

and the approximation coefficients as

W E C
v (0,0,x) = F ∗

2

(
F2(v)F2(φ1)

)
(x), (39)

where F ∗
2 stands for the inverse 2D Fourier Transform. We

can reconstruct the image v(x) by the inverse transform:

v(x) = F ∗
2

(
F2

(
W E C

v (0,0, ·)
)

F2(φ1)

+
Nθ

∑
m=1

Nm
s −1

∑
n=1

F2

(
W E C

v (m,n, ·)
)

F2(ψm,n)

)
(x).

(40)

Each empirical curvelet subband W E C
v (m,n, ·) contains

either some textural pattern or noise. In many cases, some

of these curvelets may have extremely weak oscillatory
patterns or pure noise, deeming them useless in our tex-
ture analysis. Therefore, we propose a pre-processing step
and a post-processing step in order to obtain only empirical
curvelets with meaningful information.

4.3 Improved Boundaries Detection

In this section, we propose modifications in the boundary
detection algorithm in order to reduce the number of ir-
relevant polar wedges. Since the detection is performed in
the pseudo-polar Fourier domain, the following processing
will also be performed in the pseudo-polar domain. Here-
after, we will denote FP(v) as the pseudo-polar Fourier
transform of the input texture image v.

Our first improvement is a preprocessing step before
the actual detection. Since the goal is to isolate clusters of
high magnitude frequencies in FP(v) we suggest thresh-
olding the Fourier coefficients in order to remove all fre-
quencies that are not relevant. Let T be the hard-
thresholding operator defined as

T (a,τ) =

{
0 if |a| ≤ τ

a if |a|> τ
. (41)

The preprocessing step consists of performing the detec-
tion on T (FP(v),τ) instead of FP(v). The threshold τ

is chosen as a certain percentile of the magnitude of the
Fourier coefficients: we create a vector whose entries are
the magnitudes of the Fourier coefficients listed in increas-
ing order and we set τ to be the value of the n× p− th
entry of the vector, where n is the length of the vector
and p the specified percentile (i.e. p ∈ (0,1)). Figure 6 il-
lustrates the effects of performing such thresholding. Fig-
ures 6a and 6c show the original spectrum as well as its
thresholded version (using a 92 percentile). Figures 6b and
6d provide the corresponding detected partitions. We note
that the partition obtained from the thresholded spectrum
provides a separate angular sector for the high magnitude
clusters near the top right corner while these clusters are
associated with another angular sector in the partition ob-
tained from the original spectrum.

Unfortunately, sometimes some meaningless polar wed-
ges are detected in each angular sector. Our second im-
provement aims at removing these useless polar wedges by
merging them with their neighbors. Suppose that {θm}Nθ

m=1

and
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1
are the set of angles and scales de-

tected on T (FP(v),τ). In the pseudo-polar domain, a po-
lar wedge corresponds to the rectangle Im

n , whose area we
denote by Am

n = area(Im
n ) = (ωm

n+1−ωm
n )(θm+1−θm). We

define the information density per polar wedge by

Mm
n =
‖T (FP(v),τ)1Im

n ‖1

Am
n

, (42)

where 1Im
n is the characteristic function over the domain Im

n .
As a reference, we use the largest density M̃ = maxm,n Mm

n
and we threshold at a certain fraction η = 0.1 as follows.
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(a) Original spectrum (b) Detected boundaries on the
original spectrum

(c) Thresholded spectrum (d) Detected boundaries on the
thresholded spectrum

Fig. 6 Comparison of partitions obtained from the original
spectrum and its thresholded version. The spectrum shown
is reproduced and modified from Guttentag et al (2016a)
with permission. STM image spectrum is copyright from
American Chemical Society

For a given angular sector, we start from the polar wedge
that is the farthest from the origin until we reach the one
closer to the origin. If Mm

n ≤ ηM̃, then the Im
n polar wedge

is irrelevant and we merge it with Im
n−1, i.e we remove ωm

n−1

from the list
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1
and update Nm

s := Nm
s −1. If

Mm
n > ηM̃, we move to the next polar wedge Im

n−1 and re-
peat the procedure. The corresponding merging algorithm
is summarized in Algorithm 3.

Partitions obtained before and after merging are illus-
trated in Figure 7. It is easy to see that some polar wedges
having less information were merged to form a new set of
polar wedges having a minimum amount of useful infor-
mation (see for instance the most vertical angular sector,
the thin outer wedge no longer exist in the updated parti-
tion).

Based on the updated partition, the empirical curvelet
filter bank is then constructed accordingly to (32) and (33).
The full modified empirical curvelets transform is summa-
rized in Algorithm 4.

As shown in Gilles et al (2014), the tight frame prop-
erty depends only on the construction process of the
curvelet filters themselves and does not depend on how the
supports detection is done. Therefore, the original proof
remains valid even within the framework of our modified
support detection algorithm, implying that the tight frame
property is preserved.

Algorithm 3: Merging Curvelet partition

Input: Thresholded Fourier domain T (FP(v),τ),
original boundaries {θm}Nθ

m=1 and{
{ωm

n }
Nm

s
n=1

}Nθ

m=1
1: Compute Mm

n for m = 1 . . .Nθ and n = 1 . . .Nm
s

according to (42).
2: Compute M̃ = maxm,n Mm

n .
3: for i = 1 to Nθ do
4: Set j := Ni

s.
5: while j ≥ 3 do
6: if Mi

j−1 < 0.10M̃ then

7: Remove ω i
j−1 from

{
{ωm

n }
Nm

s
n=1

}Nθ

m=1
.

8: Set Ni
s := Ni

s−1.
9: end if

10: j := j−1.
11: end while
12: end for
Output: Updated boundaries{

{θm}Nθ

m=1,
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1

}
.

4.4 Texture Features

After applying our modified empirical curvelet transform
to the texture component of the image, we finally construct
the relevant information to characterize different textures.
This information could be directly given by the empirical
curvelets coefficients by reshaping each one into a vector
corresponding to each pixel. However, this kind of feature
vector does not have any inherent spatial information of the
local neighborhood of its corresponding pixel. Instead, we
consider computing the local “energy” of the curvelet coef-
ficients. Then, we build a set of feature vectors associated
to each pixel of the texture component. This set will form
together a feature matrix whereby a clustering algorithm
can be applied to it.

Define the local energy at (m,n,x) as

EME C
m,n (x) =

‖1B(x,rm,n)W
ME C

v (m,n, ·)‖2

|B(x,rm,n)|
(43)

where B(x,rm,n) is a (2rm,n+1)×(2rm,n+1) neighborhood
window centered at x. The radius rm,n is determined by the
frequency of the texture pattern so that EME C

m,n (x) captures
enough information around x. Hence, with ωm

n related to
frequency, we choose rm,n proportional to d 1

ωm
n
e so that the

radius relates to the period of the texture pattern. In prac-
tice, we set rm,n = d π

ωm
n
e. Note that for pixels near or at the

border of the image, we apply symmetric padding to align
with our assumption that texture patterns are periodic.

After calculating (43) for each pixel for each empiri-
cal curvelet subband, we construct the feature matrix D by
casting all energy matrices EME C

m,n as vectors so that they
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(a) Thresholded spectrum (b) Partition before merging (c) Partition after merging

Fig. 7 Influence of the merging algorithm on the obtained partitions. The spectrum shown is reproduced and modified
from Guttentag et al (2016a) with permission. STM image spectrum is copyright American Chemical Society

Algorithm 4: Modified Empirical Curvelet Trans-
form

Input: Image v(x), Threshold Value τ

1: Compute the Pseudo-Polar FFT FP(v).
2: Threshold the Fourier coefficients to obtain

T (FP(v),τ).
3: Detect the original partition{
{θm}Nθ

m=1,
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1

}
using Otsu’s Method

as described in Gilles et al (2014); Gilles and Heal
(2014).

4: Compute the updated set{
{θm}Nθ

m=1,
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1

}
by applying the

merging algorithm Algorithm 3.
5: Construct the corresponding curvelet filter bank

BME C =

{
φ1(x),{ψm,n(x)} m=1,...,Nθ

n=1,...,Nm
s −1

}
accordingly to (32)-(33).

6: Filter v(x) using (38)-(39) to obtain W ME C
v ={

W ME C
v (0,0,x),{W ME C

v (m,n,x)} m=1,...,Nθ

n=1,...,Nm
s −1

}
Output: Spectrum boundaries{

{θm}Nθ

m=1,
{
{ωm

n }
Nm

s
n=1

}Nθ

m=1

}
, empirical

curvelet filter bank BME C , empirical
curvelets coefficients W ME C

v .

form the columns of D . Thus, D has the form

D =

 | . . . | | . . . |
EME C

1,1 . . . EME C
1,N1

s −1 EME C
2,1 . . . EME C

Nθ ,N
Nθ
s −1

| . . . | | . . . |

 . (44)

Because texture patterns are locally periodic in an image,
pixels belonging to the same texture pattern should both
have similar energies as defined by (43). Hence, we could
group the column vectors as belonging to the same class.
We can then apply any clustering algorithm, such as k-
means or multiclass MBO clustering (Garcia-Cardona et al

2014; Merkurjev et al 2014), on D to identify the texture
patterns of the image.

5 Experimental Results

In this section, we present results of our framework applied
to the images in Figure 3. All algorithms in this paper were
implemented in MATLAB R2016a. The codes and the re-
sults are available at https://github.com/kbui1993/
Microscopy-Codes.

In order to segment the images according to intensities
or texture patterns, we first perform the cartoon+texture de-
composition on each of them to obtain their cartoon and
texture components. In our experiments, we select σ = 3
in Algorithm 1. This parameter leads to more appealing
segmentation results compared to other values of σ . More-
over, σ = 3 is the minimum value for which humans could
perceive region as textures (Buades et al 2011).

After obtaining the cartoon and texture components for
each image, we apply our proposed methods to each com-
ponent. Our results are divided into two subsections. The
cartoon segmentation results are given in Section 5.1 while
the texture segmentation results are given in Section 5.2.

5.1 Cartoon Segmentation Results

For comparison, we apply the multiphase algorithm based
on the MBO scheme (Esedoglu and Tsai 2006) and the
proposed local multiphase segmentation algorithm (Algo-
rithm 2) to the cartoon component of each image in Fig-
ure 3. Convergence for both methods is reached when both
phase fields u1 and u2 do not change within the same it-
eration. Otherwise, the maximum number of iterations is
set at 200. For each image, the values for λ and µ are set
the same between both methods, but the time step dt might
be different because both methods are minimizing differ-
ent energy functionals. Finally, the standard deviation for
the Gaussian filter in Algorithm 2 is set to 10.

Here, we discuss the parameter selection for both the
multiphase and local multiphase methods. In our experi-

https://github.com/kbui1993/Microscopy-Codes
https://github.com/kbui1993/Microscopy-Codes
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original cartoon multiphase local multiphase

(a)

(b)

(c)

(d)

Fig. 8 Comparison between the multiphase CV and local MCV algorithms. The parameters are (a) λ = 10, µ = 10−3×
2552, β = 10, dtCV = 0.75, dtCV loc = 3.2 (b) λ = 10, µ = 10−3× 2552, β = 300, dtCV = 4, dtCV loc = 4 (c) λ = 10,
µ = 10−3× 2552, β = 60, dtCV = 2, dtCV loc = 2 (d) λ = 10, µ = 10−3× 2552, β = 10, dtCV = 2.5, dtCV loc = 2. Raw
scanning tunneling microscope images of cyanide on Au{111}, reproduced from Guttentag et al (2016a) with permission.
Images copyright American Chemical Society

ments, the values of λ in (8) are set to 5, 7, or 10. If there
are multiple regions or regions of varying sizes in the im-
age, the value µ should be small. Otherwise, it should be
large. For our images of size 255×255, we adopt four val-
ues for µ: 10−4 × 2552, 10−3 × 2552, 10−2 × 2552, and
10−1×2552. The parameter β from (10) is set as the same
value as λ if there is intensity homogeneity. Otherwise, if
there is intensity inhomogeneity, β is set to be larger than
λ to ensure that potential regions with weak edges are de-
tected. To ensure Γ -convergence of (11) when running Al-
gorithm 2, the time step dt needs to be small (we set here
dt < 20), and the number of iterations needs to be large,
which is why the maximum is set to 200.

The results of each method are shown along with the
original and the cartoon images in Figures 8 and 9. We
observe that the results differ between the two methods.
In general, local multiphase is robust against illumination

bias and intensity inhomogeneity, thus leading to segmen-
tation results that look similar to the cartoon images. On
the other hand, multiphase produces results with artificial
regions, e.g., Figure 8a-c, or results that ignore weak-edged
regions, e.g., Figure 8d and Figure 9a-d.

In Figure 8a, the multiphase result detects the streak
of shadow in the middle of the image along with an edge
as a region. However, these should not appear as distinct
regions at all. On the other hand, the segmentation result
of the local multiphase result works properly. Moreover,
it detects smaller and more subtle regions of the cartoon
image, which are located in the top left and bottom right.

Figure 8b is heavily affected by illumination bias. Hence,
we have a poor segmentation result from the multiphase
algorithm. On the other hand, the result from local mul-
tiphase is able to identify the natural regions of its corre-
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original cartoon multiphase local multiphase

(a)

(b)

(c)

(d)

Fig. 9 Comparison between the multiphase CV and local MCV algorithms. The parameters are (a) λ = 5, µ = 10−1×2552,
β = 70, dtCV = 0.35, dtCV loc = 0.10 (b) λ = 10, µ = 10−2× 2552, β = 30, dtCV = 0.1, dtCV loc = 6.5 (c) λ = 7, µ =

10−4 × 2552, β = 65, dtCV = 5, dtCV loc = 18 (d) λ = 5, µ = 10−4 × 2552, β = 50, dtCV = 12, dtCV loc = 0.6. Raw
scanning tunneling microscope images of cyanide on Au{111}, reproduced from Guttentag et al (2016a) with permission.
Images copyright American Chemical Society

sponding cartoon image, thus appearing extremely similar
to it.

In Figure 8c-d, both multiphase and local multiphase
produce highly similar results. The results capture regions
corresponding to the different light intensities in their cor-
responding cartoon images. In Figure 8c, the results for
both multiphase and local multiphase look similar to their
cartoon image. In Figure 8d, the segmentation results by
multiphase and local multiphase appear to be dissimilar to
the cartoon image, but upon closer inspection, the results
detect regions of similar intensities that might be difficult
to discern from the cartoon image.

In Figure 9a, the local multiphase result resembles the
cartoon image more than does the multiphase result. The
local multiphase result is able to capture the “island” re-
gion on the top right and the small streak at the very bottom

of the image. The multiphase result is unable to capture the
small streak and it attempts to segment the “island” region.

In Figure 9b, unlike multiphase result, the local multi-
phase result is able to identify the oval region at the right of
the image. The oval region has weak edges because of the
apparent intensity inhomogeneity, which the multiphase al-
gorithm is unable to detect it.

As for Figure 9c, both multiphase and local multiphase
results appear similar to the cartoon image, but local mul-
tiphase is able to identify the small “islands” in the middle
of the image. The multiphase result tends to identify larger
regions. but for one or two regions of the result, some parts
of one region do not have similar gray-level intensities ac-
cording to the cartoon image.

In Figure 9d, both results provide a segmentation based
on the gray-level intensity. Local multiphase is able to de-
tect shadows, such as those in the top left corner and at the
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bottom of the image, with better precision. The multiphase
segmentation captures wider transition regions. However,
the slow varying vertical edges are not localized by neither
of the two methods, in which case, most likely, a nonlocal
version of the segmentation algorithms above would help
improve the results.

In summary, because of the local term, the local multi-
phase algorithm provides better segmentation results than
does the multiphase algorithm, The local term enables the
local multiphase algorithm to capture with better preci-
sion regions with shadows and intensity inhomogeneities.
The multiphase algorithm, on the other hand, fails to de-
tect such regions, and its results are significantly worse un-
der the presence of illumination bias and intensity inho-
mogeneity. Therefore, the local multiphase segmentation
is preferred to the multiphase segmentation in the case of
STM images.

5.2 Texture Segmentation Results

In order to segment the texture component of the image,
we apply Algorithm 4 to obtain its ECT coefficients. Next
we build the texture feature matrix accordingly to (44). Fi-
nally we apply a clustering algorithm to the energy ma-
trix. The number of clusters is determined by the user. In
our experiments, the clustering algorithms we use are k-
means, already implemented in MATLAB, and multiclass
MBO clustering (Garcia-Cardona et al 2014; Merkurjev
et al 2014). Both methods use the cityblock metric to mea-
sure the similarity between data points of the energy matrix
in order to determine the clusters.

As an unsupervised method, k-means utilizes random
initialization to determine the initial centroids. In order to
obtain high-quality clusters, Arthur and Vassilvitskii (2007)
devised a heuristic to ensure that every two initial cen-
troids are dissimilar to each other. As a semi-supervised
method, the multiclass MBO clustering randomly selects
25% of the labels determined by k-means as its initializa-
tion. Note that because of random initialization of the cen-
troids, results may differ for every run. Hence, for each im-
age, we run 10 replications of k-means and select the best
result based on minimum within-cluster sums of point-to-
centroid distances. The best result is only shown and is
used as an initialization to multiclass MBO clustering.

The multiclass MBO is a graph-based method, so it re-
quires constructing the graph Laplacian matrix which is
expensive both in computation and in memory. Instead of
computing the matrix exactly, we use Nyström extension to
approximate its eigen-decomposition (Fowlkes et al 2004).
The method requires from the user the number of data
points to sample and the number of eigenvectors to com-
pute. In our experiments, we sample 300 data points and
compute 30 eigenvectors.

For all images, the multiclass MBO clustering is set
with the following parameters: µ = 30 (fidelity parameter)
and η = 10−7 (tolerance), following the notations in the
work of Garcia-Cardona et al (2014). The thresholding step
is performed after every three iterations of the diffusion

step. The time step dt is the only parameter that differs
between the images.

Texture segmentation results obtained from k-means
and multiclass MBO clustering are shown in Figures 10
and 11. We observe that both clustering algorithms are able
to identify most of the recognizable texture patterns of the
images. Although both clustering results are similar, the
results obtained from multiclass MBO clustering tend to
have smoother clusters and appear less noisy than the re-
sults obtained from k means. In other words, the multiclass
MBO results are cleaner than the k-means results.

In Figure 10a, we select k = 5. Two of the clusters cor-
respond to the material interfaces: one interface is a deep
indentation and the other appears perforated. The three clus-
ters correspond to the most periodic texture patterns: one
that appears to have horizontal direction (the middle clus-
ter), one that is slanted upward (the left cluster), and one
that is finer and is slanted downward (top cluster).

In Figure 10b, we select k = 2. One cluster corresponds
to the perforated lines while the other corresponds to the
regions between the lines. However, some of the pixels ap-
pear to be misclassified. For example, pixels in the region
between the perforated lines are classified as the same clus-
ter. This result may be attributed to the noise or unexpected
anomalies within the texture patterns. Since the clustering
result from multiclass MBO appears to have less misclas-
sified pixels than does k-means, it affirms that multiclass
MBO is more resistant to noise, even with 25% of the la-
bels provided by k-means.

In Figure 10c, we select k = 2 again. One cluster cor-
responds to the uniform texture pattern that has an upward,
slanted direction while the other corresponds to the break
dividing the uniform texture pattern. We observe that pix-
els near the break tend to be misclassified because of the
break is relatively small compared to the uniform texture
pattern.

In Figure 10d, we select k = 3: one corresponding to
the perforated or indented edge, the other one correspond-
ing to the slightly horizontal texture pattern (top and bot-
tom right cluster), and the last one corresponding to the
texture pattern slanted downward (bottom left cluster).
Again, as for the previous image discussed, pixels near the
edge tend to be misclassified.

In Figure 11a, the methods have difficulty clustering
the texture patterns because the texture image itself has
various texture patterns occurring at different sizes in var-
ious locations. For example, our results have a rectangular
cluster located at the bottom of the image, but from the
texture component, we observe that many types of texture
patterns exist there. Furthermore, another cluster seems to
correspond to the circular region in the texture pattern, but
it also extends outside of it. Nevertheless, the other three
clusters do correspond to identifiable texture patterns in
the image. Two of the clusters correspond to texture pat-
terns that slant upward, but one has finer texture while the
other has sharper edges. The third cluster identifies with
the horizontal texture pattern (top and bottom cluster).
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original texture k-means multiclass MBO

(a)

(b)

(c)

(d)

Fig. 10 Texture segmentation results. The used parameters are: (a) τ = 92nd percentile, k = 5, dt = 0.03. (b) τ = 99.50th
percentile, k = 2, dt = 0.10. (c) τ = 98.80th percentile, k = 2, dt = 0.05. (d) τ = 85th percentile, k = 3, dt = 0.05.
Raw scanning tunneling microscope images of cyanide on Au{111}, reproduced from Guttentag et al (2016a) with per-
mission. Texture segmentation results in (a) were reproduced with permission from Guttentag et al (2016a). Images and
segmentation results copyright American Chemical Society

In Figure 11b, we select k = 4. One cluster corresponds
to the smoothest regions of the texture component. Another
corresponds to the texture pattern slanted downward and
with rough edges (bottom left cluster). The third cluster
corresponds to the finer texture pattern slanted downward
(top right, bottom left, and along the right edge of the el-
liptical smooth region). However, the last cluster seems to
correspond to the miscellaneous region that does not have
any apparent pattern.

In Figure 11c, we select k = 2, one cluster correspond-
ing to the scaly texture pattern in the top right and the other
one corresponding to the rough texture pattern that have
some lines slanted downward. We observe that some pixels
outside of the top right region belong to the same cluster,
and most of them do look similar to the top right texture
pattern as they look like scales.

In Figure 11d, we select k = 4. One cluster corresponds
to the texture slanted downward and it is located at the bot-
tom left and bottom middle of the image. Another cluster
corresponds to the smooth regions of the image, which are
located at the top left corner and most of the right side
of the image. The other cluster seems to correspond to the
rough edges, which are located mostly in the left of the im-
age. The last cluster seems to correspond to miscellaneous
patterns like in Figure 11b.

6 Conclusions

In this paper, we proposed a framework to segment STM
images, combining variational methods and a clustering al-
gorithm based on features extracted by the empirical wavelet
transform. The expected information of microscopy im-
ages led us to first apply a cartoon+texture decomposi-
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original texture k-means multiclass MBO
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(b)

(c)

(d)

Fig. 11 Texture segmentation results. The parameters are (a) τ = 95.15th percentile, k = 5, dt = 0.10 (b) τ = 45th
percentile, k = 4, τ = 0.10 (c) τ = 85th percentile, k = 2, dt = 0.05 (d) τ = 72.50th percentile, k = 4, dt = 0.05. Raw
scanning tunneling microscope images of cyanide on Au{111}, reproduced from Guttentag et al (2016a) with permission.
Images copyright American Chemical Society

tion and then run a modified version of the multiphase CV
model on the cartoon part, and a clustering of features ex-
tracted by the empirical curvelet transform on the texture
part. The results in Section 5 demonstrate the proficiency
of this framework to analyze STM images. Guttentag et al
(2016a) have already used the proposed approach to char-
acterize patterns of cyanide molecules on Au{111}, com-
plementing the results in another related work (Guttentag
et al 2016b).

There are several directions to investigate in order to
improve the proposed framework. One direction is employ-
ing directional filters (Buades and Lisani 2016a,b) instead
of isotropic filters Lσ in the cartoon+texture decomposi-
tion, which are designed to separate noise and micro-texture
better in the proximity of edges. As such, in the proposed
local MCV model, the Gaussian filter could be upgraded
to a nonlocal filter, incorporating direction to better char-
acterize weak edges. To gain robustness against low con-

trast and impulse noise, one could work with the L1 fidelity
term, but since the latter is non-differentiable at the origin,
one would have to use convex optimization algorithms like
primal-dual methods. Finally, in order to overcome arti-
facts (e.g., scars, occluions, scratches), one could incorpo-
rate an indicator function as done by Zosso et al (2017a).
As for the segmentation of the texture component, the use
of other features than the local energy of the curvelet co-
efficient, such as the co-ocurrence matrices (Haralick et al
1973) constructed from the empirical curvelets, is likely to
lead to more adapted clustering results.

Overall, the proposed framework has produced remark-
able segmentation results of STM images using variants
of the state-of-the-art image processing algorithms. One
could modify and apply this framework to other kinds of
images, thus leading to more interesting contributions and
applications in other scientific areas beyond nanoscience.
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